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Abstract. In this paper we highlight a few open problems concerning maximal sum-free sets in
abelian groups. In addition, for most even order abelian groups G we asymptotically determine the
number of maximal distinct sum-free subsets in G. Our proof makes use of the container method.

1. Introduction

Let (G,+) be an abelian group. A triple x, y, z ∈ G is a Schur triple if x+ y = z; if additionally
x, y, z are distinct, we call them a distinct Schur triple. A subset S ⊆ G is a sum-free set if S does
not contain any Schur triple. Similarly, we say S is a distinct sum-free set if S does not contain any
distinct Schur triple. A sum-free set S ⊆ G is maximal if S is not properly contained in another
sum-free subset of G; we define the notion of a maximal distinct sum-free subset analogously. We
let µ(G) denote the size of the largest sum-free subset of G and µ?(G) denote the size of the largest
distinct sum-free subset of G.

The study of µ(G) dates back to the 1960s [9] and we now (through work of Green and Ruzsa [11])
have a complete understanding of the exact value of µ(G) for all abelian groups. To articulate this
behaviour we need the following definition.

Definition 1.1. Let G be an abelian group of order n.

• Let n be divisible by a prime p ≡ 2 (mod 3). Given the smallest such p, we say that G is
type I(p).
• If n is not divisible by any prime p ≡ 2 (mod 3), but 3|n, then we say that G is type II.
• Otherwise, G is type III.

Theorem 1.2. [9, 11] Given any finite abelian group G, if G is type I(p) then µ(G) = |G|
(

1
3 + 1

3p

)
.

Otherwise, if G is type II then µ(G) = |G|
3 . Finally, if G is type III then µ(G) = |G|

(
1
3 −

1
3m

)
where

m is the exponent (largest order of any element) of G.

The case of type I and II groups in Theorem 1.2 is due to Diananda and Yap [9]; the case of type
III groups is due to Green and Ruzsa [11]. Notice that Theorem 1.2 tells us that for every finite
abelian group G of order n, we have that 2n/7 ≤ µ(G) ≤ n/2.

In recent years there has been significant interest in the study of transferring (combinatorial)
theorems into the random setting; see, e.g., the survey of Conlon [7]. The next result provides a
random analogue of Theorem 1.2. Note that it is implicit in the literature (e.g., it a simple corollary
of Theorem 5.2 from [5] and a removal lemma of Green [10, Theorem 1.5]; see also [8, 19, 20]).

Given a finite abelian group Gn, let Gn,p be a random subset of Gn obtained by including each
element of Gn independently with probability p. Note that throughout the paper N denotes the
set of positive integers (i.e., it does not contain 0).
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Theorem 1.3. Let (Gn)n∈N be a sequence of finite abelian groups where |Gi| < |Gj | and µ(Gi)/|Gi| =
µ(Gj)/|Gj | for all i < j. For any ε > 0 there exists C > 0 such that the following holds. If

pn ≥ C|Gn|−1/2 for each n ∈ N, then

lim
n→∞

P(the largest sum-free set in Gn,pn has size (1± ε)µ(Gn) · pn) = 1.

�

As an illustrative example, a natural class to take in Theorem 1.3 is Gn := Znq = Zq ⊕ · · · ⊕ Zq
for some fixed prime q. In particular, Theorem 1.2 implies that µ(Gi)/|Gi| = µ(Gj)/|Gj | for all
i, j ∈ N.

Let M be a largest sum-free subset of a finite abelian group Gn. Note that E(|Gn,p ∩M |) =
µ(Gn) · p. Thus, Theorem 1.3 can be interpreted as follows: in a ‘typical’ subset S of Gn of size

significantly more than
√
|Gn|, the largest sum-free subset of S has size close to what is ‘expected’,

i.e., close to |S ∩M |. Furthermore, it is not difficult to show that the bound on the probability pn
in Theorem 1.3 is essentially best possible.

Note that there are also related results on the structure of maximum-size sum-free subsets of a
random subset of an abelian group G; see [4, 6].

2. Maximal sum-free subsets

There has been interest in the number of sum-free subsets f(G) of a finite abelian group G. By

considering all possible subsets of a largest sum-free subset in G, one obtains that f(G) ≥ 2µ(G). It
turns out this trivial bound is not far from being tight. Indeed, Green and Ruzsa [11] proved that

f(G) = 2µ(G)+o(n) for all abelian groups G of order n. A refined version of this theorem for type I
groups was obtained by Alon, Balogh, Morris and Samotij [1]. Specifically, for such type I groups
they asymptotically determine the number of sum-free sets of a given size m, for all not too small
m.

We now consider the maximal sum-free version of this problem. That is, we consider the number
of maximal sum-free subsets fmax(G) in a finite abelian group G. This problem is wide open
in general, though there now are several results on this topic. Improving an earlier bound of
Wolfovitz [22], in [3] it was proven that fmax(G) ≤ 3µ(G)/3+o(n) for all abelian groups G of order n;
in particular, this shows that fmax(G) � f(G) for all sufficiently large abelian groups. Moreover,

Liu and Sharifzadeh [15] showed that fmax(G) = 3µ(G)/3+o(n) for all type II groups G whose order n
is divisible by 9. In contrast, there are groups where this upper bound is far from tight. In [3] it was

shown that fmax(Zk2) = 2µ(G)/2+o(n), and this bound was further refined in [12] (see Theorem 2.2
below). Furthermore, in [15] it was shown that there is a c > 0 such that almost all even order

abelian groups G satisfy fmax(G) ≤ 2(1/2−c)µ(G). Constructions from [3, Proposition 5.7] and [12,

Proposition 5.3] show that fmax(G) ≥ 2µ(G)/2−2 for all type III abelian groups whose exponent is
7, 13 or 19. See [3, 12, 15] for further results on fmax(G).

These results paint a rather mixed picture, and it remains unclear how fmax(G) behaves in
general. However, the work in [3, 15] implicitly raises the following question.

Question 2.1. Given an abelian group G of order n, is it true that either fmax(G) = 3µ(G)/3+o(n)

or fmax(G) ≤ 2µ(G)/2+o(n)?

For proving upper bounds on fmax(G) there is now a somewhat well-trodden approach that
makes use of the container method ; see [2, 3, 12, 15]. We will use this approach later in the paper
also. Using this approach, in [12] we proved the following sharp result.

Theorem 2.2. [12] If k ∈ N and n := 2k, then fmax(Zk2) =
((
n−1

2

)
+ o(1)

)
2n/4. Further, if k ∈ N

and n := 3k, then fmax(Zk3) =
(

(n−3)(n−1)
3 + o(1)

)
3n/9.
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Perhaps the next natural case to consider is fmax(Zk5). On the positive side, a recent result of
Lev [14] gives a structural characterisation of the large sum-free subsets of Zk5; this result should
very likely be needed in order to obtain asymptotically exact bounds on fmax(Zk5). However, despite
having this result at hand, and receiving very nice suggestions from Vsevolod Lev and Wojciech
Samotij, we were unable to obtain such sharp bounds. We therefore state the following as a
conjecture.

Conjecture 2.3. If k ∈ N and n := 5k, then fmax(Zk5) = 3n/10+o(n).

The following construction shows that the bound on fmax(Zk5) in Conjecture 2.3 cannot be

lowered. Let B2 := {2} ⊕ Zk−1
5 , and s := {1} ⊕ {0}. The map φ : b 7→ −b − s is an involution

of B2, and its only fixed point is 2s. In particular, there are (|B2| − 1)/2 orbits {b, φ(b)} in B2 of
cardinality 2. Now consider the sets of the form

{s} ∪
⋃

{b,φ(b)}∈B2/φ

Ab,

where the union ranges over all orbits of cardinality 2 of φ, and for each such orbit {b, φ(b)}, we
choose Ab to be one of {b,−b}, {b,−b − s} or {b + s,−b − s}. This choice ensures that one can

generate 3(|B2|−1)/2 = 3n/10−1/2 sets S of this form. Further, each such set S is sum-free; this
follows as S \ {s} ⊆ {2, 3} ⊕ Zk−1

5 is sum-free and the only Schur triples (other than s, s, 2s) in

{s} ∪ ({2, 3} ⊕Zk−1
5 ) contain precisely two of {b,−b, b+ s,−b− s} for some b ∈ B2. Moreover, one

can check that each of these sets lies in a different maximal sum-free subset of Zk5. Indeed, given two
distinct such sets S, S′ the choice of Ab for S and S′ must differ for at least one {b, φ(b)} ∈ B2/φ.
But in this case S ∪ S′ will contain a Schur triple (formed using s and two of b, −b, b + s and

−b− s). This proves that fmax(Zk5) ≥ 3n/10−1/2.

Recently, further structural results for large sum-free subsets of Zkp were obtained when p is a

fixed prime where p ≡ 2 (mod 3); see [18, 21]. These results may also be useful for the fmax(Zkp)
problem more generally, although new ideas will again be needed to obtain sharp results.

3. Maximal distinct sum-free subsets

LetG be an abelian group of order n, and let f?(G) denote the number of distinct sum-free subsets
in G. As pointed out in [12], the removal lemma of Green [10] implies that µ(G) ≤ µ?(G) ≤ µ(G)+

o(n) and f(G) ≤ f?(G) ≤ 2o(n)f(G). By arguing as in the proof that fmax(G) ≤ 3µ(G)/3+o(n) for all

abelian groups G of order n [3, Proposition 5.1], one can also conclude that f?max(G) ≤ 3µ(G)/3+o(n).
However, we do not know whether fmax(G) is bounded from above by the number of maximal
distinct sum-free subsets f?max(G) of G for all finite abelian groups G. On the other hand, in [12,
Section 6.3] we showed that there are abelian groups G for which f?max(G) is exponentially larger
than fmax(G).

At least for type I abelian groups, we believe we have a clearer picture as to the behaviour of
f?max(G). Indeed, we conjecture the following.

Conjecture 3.1. Suppose that G is a type I abelian group of order n. Then f?max(G) = 2µ(G)/2+o(n).

In [12] we established the G = Zk2 case of Conjecture 3.1. In fact, we showed that fmax(Zk2) =
f?max(Zk2), and so the result follows by Theorem 2.2.

The next construction shows that, asymptotically, the bound on f?max(G) in Conjecture 3.1 cannot
be lowered in the case of type I(p) abelian groups for p ≥ 5. In Section 5, we give constructions
that show the bound in Conjecture 3.1 cannot be lowered in the case of even order groups (p = 2);
see Proposition 5.3.
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Proposition 3.2. Suppose p ≥ 5 and G is a type I(p) abelian group of order n. Then f?max(G) ≥
2µ(G)/2.

Proof. Let B be a sum-free subset of G (so in particular a distinct sum-free set) of size µ(G) = p+1
3p n

and such that B = −B,1 e.g.,

B :=

(p−2)/3⋃
k=0

((3k + 1) · g +H),

with H a subgroup of G of order |G|/p, and g 6∈ H. The map σ : x 7→ −x is an involution of B,
and since p ≥ 5, it has no fixed point. Then, there are |B|/2 orbits {x,−x} of σ with cardinality
2. Choose one element ax in each orbit {x,−x}, and consider the set

{0} ∪ {ax | {x,−x} ∈ B/σ}.

There are 2|B|/2 = 2µ(G)/2 ways to construct such a set, and notice each such set is distinct sum-free.
Further, given two distinct sets S, S′ constructed in this way, S and S′ must lie in different maximal
distinct sum-free subsets of G. Indeed, S ∪ S′ contains a Schur triple of the form 0, x,−x. Thus,
f?max(G) ≥ 2µ(G)/2. �

Our next result resolves Conjecture 3.1 for most even order abelian groups G.

Theorem 3.3. There exists an absolute constant C ∈ N such that the following holds. Let G be
an abelian group of even order n, where G = Z2α1 ⊕ . . .⊕Z2αr ⊕K, with r, α1, . . . , αr ∈ N, and |K|
odd. If n/2r ≥ C, then

f?max(G) = 2n/4+o(n).

Remarks 3.4. We now make a number of remarks concerning Theorem 3.3.

• Note that r may depend on n in the statement of Theorem 3.3.
• In Section 5, we will see that one can certainly take C := 1010.
• The condition that n/2r ≥ C is analogous to a condition in [15, Theorem 3.2], and is a very

mild restriction. Indeed, any even order abelian group G not covered by Theorem 3.3 must
be of the form G = Zt2 ⊕H for some abelian group H with |H| < C2.
• Theorem 3.3 tells us that almost all abelian groups G of even order n satisfy f?max(G) =

2µ(G)/2+o(n). This is in contrast to the aforementioned result of Liu and Sharifzadeh [15,
Theorem 3.2], which demonstrates that almost all even order abelian groups G satisfy

fmax(G)� 2µ(G)/2.

In Section 5 we prove – via Theorems 5.1 and 5.2 – a sharp version of Theorem 3.3 that determines
the term in front of 2n/4 rather than having the o(n) term in the exponent.

Whilst Theorem 3.3 makes substantial progress on the f?max(G) problem for even order abelian
groups, the picture is still far from clear in general. As a next step, it would be interesting to
establish whether the analogue of Question 2.1 holds for f?max(G). In particular, note that by
adapting an argument of Liu and Sharifzadeh [15, Proposition 1.5], one can deduce that f?max(G) =

3µ(G)/3+o(n) for all type II groups G whose order n is divisible by 9.

The rest of the paper is organised as follows. In the next section we introduce various results
and concepts that are useful for the proof of Theorem 3.3, including the notion of a link graph.
In Section 5 we prove (a strengthening of) Theorem 3.3 and provide extremal examples for Con-
jecture 3.1 for all even order abelian groups. In Section 6 we highlight a problem about maximal
independent sets in graphs that we came across when considering Conjecture 2.3.

1Actually, Lemma 4.2 implies that every maximum size sum-free subset B of G satisfies B = −B.
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4. Useful results for Theorem 3.3

4.1. Tools for abelian groups. The following is a distinct sum-free subset analogue of a container
result of Green and Rusza [11, Proposition 2.1], and is central to our approach.

Lemma 4.1. Given any δ > 0 there exists an n0 ∈ N such that the following holds. If G is a finite
abelian group of order n ≥ n0, then there is a family F of subsets of G with the following properties.

(i) Every F ∈ F has at most δn2 distinct Schur triples.
(ii) If S ⊆ G is distinct sum-free, then S is contained in some F ∈ F .

(iii) |F| ≤ 2δn.
(iv) Every F ∈ F is of the form F = A ∪ B where A is sum-free and |B| ≤ δn. In particular,

|F | ≤ µ(G) + δn.

�

Note that Lemma 4.1 follows immediately from [10, Theorem 1.5] and, e.g., [5, Theorem 2.2].
We refer to the sets in F as containers. With Lemma 4.1 at hand, we see that in order to count the
number of maximal distinct sum-free sets in an abelian group G, it suffices to count the number of
maximal distinct sum-free sets in each container. To do so, the next result provides structure on
the sum-free sets in type I(p) groups.

Lemma 4.2. [11, Lemma 5.6] Suppose that G is a type I(p) group and write p = 3k + 2. Let

A ⊆ G be sum-free, and suppose that |A| >
(

1
3 + 1

3(p+1)

)
n. Then we may find a homomorphism

ψ : G→ Zp such that A is contained in ψ−1({k + 1, . . . , 2k + 1}).

In the proof of Theorem 3.3, we will use the following easy fact about the number of solutions
of the equation 2x = g in an even order abelian group.

Fact 4.3. Let G := Z2α1 ⊕ Z2α2 ⊕ . . . ⊕ Z2αr ⊕K where K is an abelian group of odd order and
αi ∈ N for each i ∈ [r]. Fix g ∈ G. Then there are at most 2r solutions in G to the equation
2x = g. �

We end this subsection with a technical lemma that will help us make a sharp count on the
number of maximal distinct sum-free subsets in even order abelian groups with few elements of
order 2. To prove it, we will use the following well-known correspondence (e.g., it is an immediate
corollary of the first proposition in [16, Section 2.2]).

Lemma 4.4. Let G be a finite abelian group and k ∈ N. The number of subgroups of G of order k
equals the number of subgroups of G with index k. �

We also require the following fact about subgroups of maximal rank in some even order abelian
groups.

Fact 4.5. Given α1 ≥ . . . ≥ αr ≥ 1, let G := Z2α1 ⊕ . . .⊕ Z2αr be a group of rank r. If H ≤ G is
a subgroup of G, then H has rank r if and only if it contains every order 2 element of G.

Proof. First note that the order 2 elements in G are the non-zero elements of the set {0, 2α1−1} ⊕
. . .⊕{0, 2αr−1}, so there are 2r − 1 of them. Since H ≤ G, there exist β1 ≥ . . . ≥ βr′ ≥ 1 such that

H ∼= Z2β1 ⊕ . . . ⊕ Z
2βr′

, with r′ ≤ r the rank of H. Thus, H has 2r
′ − 1 order 2 elements. So H

contains every order 2 element of G if and only if 2r − 1 = 2r
′ − 1, i.e., if and only if r = r′. �

The final lemma of this subsection counts the number of index 2 subgroups of a given rank in
some even order abelian groups. Recall that given an abelian group G, 2G denotes the subgroup
of G whose elements are of the form 2g for some g ∈ G.
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Lemma 4.6. Let r1 and r2 be non-negative integers such that r := r1 + r2 ∈ N. Let G := Z2α1 ⊕
. . . ⊕ Z2αr1 ⊕ Zr22 with α1 ≥ . . . ≥ αr1 ≥ 2. Then there are 2r1 − 1 subgroups of index 2 of G with
rank r, and 2r − 2r1 subgroups of index 2 of G with rank r − 1.

Proof. Note that a subgroup of index 2 of G has either rank r or r− 1. Let I2(G) be the set of all
the subgroups of G with index 2. Let R(G) (resp. R−1(G)) be the set of the subgroups of index 2 of
G with rank r (resp. r − 1). Set ρ(G) := |R(G)| and ρ−1(G) := |R−1(G)|. By Lemma 4.4, |I2(G)|
is equal to the number of subgroups of order 2 of G (which is the number of order 2 elements in
G), namely 2r − 1. Then, ρ(G) + ρ−1(G) = 2r − 1.

We will now define a bijection ϕ between R(G) and I2(2G).
Let H ∈ R(G), and define ϕ(H) := 2H. Let us prove that ϕ(H) ∈ I2(2G). Consider the

homomorphism π : G → 2G/2H defined by π(g) = 2g + 2H. Then g ∈ ker(π) if and only if
2g ∈ 2H, which is true precisely if (i) g ∈ H or (ii) there exists h ∈ H such that g − h has order 2.
Note though that in case (ii), g − h ∈ H since H has rank r and so by Fact 4.5 it contains every
element of G of order 2; this then implies g ∈ H. So in fact g ∈ ker(π) if and only if g ∈ H and
thus ker(π) = H. By the fundamental theorem on homomorphisms, this implies that 2G/2H is
isomorphic to G/H, proving that 2H ∈ I2(2G). This proves that ϕ is well-defined.

Let H,H ′ ∈ R(G), and suppose that ϕ(H) = ϕ(H ′), i.e., 2H = 2H ′. Then for every h ∈ H,
either h ∈ H ′ or there exists h′ ∈ H ′ such that h−h′ has order 2. But since H ′ ∈ R(G), it contains
every order 2 element of G by Fact 4.5; this means h−h′ ∈ H ′, so h ∈ H ′. Thus, H ⊆ H ′. Similarly
H ′ ⊆ H, so H = H ′, and ϕ is injective.

Conversely, let H̃ ∈ I2(2G). Then H := {g ∈ G | 2g ∈ H̃} is such that ϕ(H) = H̃. Indeed,

consider the homomorphism π̃ : G → 2G/H̃ defined by π̃(g) = 2g + H̃. Then by definition
H = ker(π̃), so H is an index 2 subgroup of G. Further, H contains every element in G of order 2,
and so by Fact 4.5 must have rank r; that is, H ∈ R(G). This therefore shows ϕ is surjective.

This bijection ϕ proves that ρ(G) = |I2(2G)|. Note that 2G has rank r1, and so since 2G contains
2r1 − 1 order 2 elements, Lemma 4.4 implies that |I2(2G)| = 2r1 − 1. Thus, ρ(G) = 2r1 − 1, and
since ρ(G) + ρ−1(G) = 2r − 1 we also have that ρ−1(G) = 2r − 2r1 . �

4.2. Maximal independent sets in graphs. A key aspect of the approach we take is the transla-
tion of the problem of maximal sum-free sets in abelian groups into one about maximal independent
sets in graphs. Therefore, we now introduce some notation, and state several results that bound
the number of maximal independent sets in graphs.

Let Γ = (V,E) be a graph. We define v(Γ) := |V | and e(Γ) := |E|. Given a vertex x ∈ V , we
write d(x,Γ) for the degree of x in Γ (i.e., the number of edges in G incident to x). We write δ(Γ)
for the minimum degree and ∆(Γ) for the maximum degree of Γ. Given a subset X ⊆ V we write
Γ \X for the subgraph of Γ induced by V \X.

We write Km for the complete graph on m vertices and Cm for the cycle on m vertices. Given
graphs Γ and Γ′ we write Γ�Γ′ for the cartesian product graph; so its vertex set is V (Γ) × V (Γ′)
and (x, y) and (x′, y′) are adjacent in Γ�Γ′ if (i) x = x′ and y and y′ are adjacent in Γ′ or (ii) y = y′

and x and x′ are adjacent in Γ.
We denote by mis(Γ) the number of maximal independent sets in Γ. Moon and Moser [17] proved

the following bound which holds for any n-vertex graph Γ:

(4.1) mis(Γ) ≤ 3n/3.

Note the bound in (4.1) is tight; consider a graph consisting of the disjoint union of triangles.
However, Hujter and Tuza [13] improved this bound in the case of triangle-free n-vertex graphs Γ:

(4.2) mis(Γ) ≤ 2n/2.
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If Γ is a perfect matching then we have equality in (4.2). The following lemma improves on (4.1)
in the case of somewhat regular and dense graphs.

Lemma 4.7. [2, Equation (3)] Let k ≥ 1 and let Γ be a graph on n vertices. Suppose that

∆(Γ) ≤ kδ(Γ) and set b :=
√
δ(Γ). Then

mis(Γ) ≤
∑

0≤i≤n/b

(
n

i

)
· 3( k

k+1)n3 + 2n
3b .

We will also use the following refined versions of (4.2) and (4.1), respectively.

Lemma 4.8. [3, Corollary 3.3] Let n,D ∈ N and k ∈ R. Suppose that Γ is a graph and T is a set
such that Γ′ := Γ\T is triangle-free. Suppose that ∆(Γ) ≤ D, v(Γ′) = n and e(Γ′) ≥ n/2+k. Then

mis(Γ) ≤ 2n/2−k/(100D2)+2|T |.

Lemma 4.9. [15, Lemma 3.5] Let k ∈ Z, ∆ ∈ N, and C := 3∆/13. If Γ is an n-vertex graph with
n+ k edges and maximum degree ∆, then

mis(Γ) ≤ C · 3
n
3
− k

13∆ .

The next definition provides the graph that connects our distinct sum-free sets problem to
independent sets in graphs.

Definition 4.10. For subsets B,S ⊆ G, let L?S [B] be the distinct link graph of S on B defined as
follows. Its vertex set is B and its edge set consists of the following edges:

(i) two distinct vertices x, y ∈ B are adjacent if there exists s ∈ S such that {x, y, s} is a
distinct Schur triple;

(ii) there is a loop at a vertex x ∈ B if there exist distinct s, s′ ∈ S such that {x, s, s′} is a
distinct Schur triple.

We call an edge xy in L?S [B] a type 1 edge if x− y = s for some s ∈ S ∪ (−S), and a type 2 edge
if it is not a type 1 edge and x + y = s for some s ∈ S. We denote by di(x, L

?
S [B]) the number of

type i edges incident to x in L?S [B]. We write ei(L
?
S [B]) for the number of types i edges in L?S [B].

The following lemma provides the connection between maximal independent sets in the distinct
link graph and maximal distinct sum-free sets.

Lemma 4.11. Suppose that B,S ⊆ G are both distinct sum-free. If I ⊆ B is such that S ∪ I is a
maximal distinct sum-free subset of G, then I is a maximal independent set in L?S [B]. �

Note that the proof of Lemma 4.11 is identical to the proof [2, Lemma 3.1] (which deals with
maximal sum-free subsets of [n]).

5. Proof of Theorem 3.3

In this section we prove Theorem 3.3. The proof is based on the general approach initiated
in [2, 3], and also the proof adapts parts of arguments that appear in [12, 15]. Note that Theorem 3.3
follows immediately from the following two results.

Theorem 5.1 (Sharp upper bound for even order abelian groups). There exists an absolute constant
C ∈ N such that the following holds. Given any η > 0, there exists an n0 ∈ N such that the following
holds for all even n ≥ n0. Let G be an abelian group of order n, where G = Z2α1⊕. . .⊕Z2αr1 ⊕Zr22 ⊕
K, with r1 and r2 non-negative integers, α1 ≥ . . . ≥ αr1 ≥ 2, and |K| odd. Set r := r1 + r2 ∈ N. If
n/2r ≥ C, then

f?max(G) ≤ (22r−1 + 2r+r1−1 − 2r+1 + 2r1)2n/4 + (2r − 2r1 + η)2n/4−2r−2
.
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The following theorem shows that the upper bound on f?max(G) in Theorem 5.1 is essentially
best possible.

Theorem 5.2 (Sharp lower bound for even order abelian groups). There exists an absolute constant
C ∈ N such that the following holds. Given any η > 0, there exists an n0 ∈ N such that the following
holds for all even n ≥ n0. Let G be an abelian group of order n, where G = Z2α1⊕. . .⊕Z2αr1 ⊕Zr22 ⊕
K, with r1 and r2 non-negative integers, α1 ≥ . . . ≥ αr1 ≥ 2, and |K| odd. Set r := r1 + r2 ∈ N. If
n/2r ≥ C, then

(22r−1 + 2r+r1−1 − 2r+1 + 2r1)2n/4 + (2r − 2r1 − η)2n/4−2r−2 ≤ f?max(G).

Together Theorems 5.1 and 5.2 provide a sharp version of Theorem 3.3. Though the case G = Zk2
is not covered by these two theorems, notice that the coefficient in front of 2n/4 in Theorems 5.1
and 5.2 agrees with coefficient in front of 2n/4 in Theorem 2.2 (recall that f?max(Zk2) = fmax(Zk2)).

The next result provides an extremal example for Conjecture 3.1 for each even order abelian
group.

Proposition 5.3 (General lower bound for even order abelian groups). Suppose G is an abelian

group of even order n. Then f?max(G) ≥ 2(n−2)/4.

Proof. Let G be an abelian group of even order n. Thus, G = Z2α1 ⊕ . . . ⊕ Z2αr1 ⊕ Zr22 ⊕ K for
some non-negative integers r1 and r2, such that r := r1 + r2 ∈ N, α1 ≥ . . . ≥ αr1 ≥ 2, and |K| is

odd. Let H be an index 2 subgroup of Z2α1 ⊕ . . .⊕ Z2αr1 ⊕ Zr22 and let Ã be the coset associated

to H that does not contain the identity (i.e., the coset such that Ã 6= H).
We split our argument into two cases. First, suppose that r1 ≥ 1 or r2 ≥ 2. In this case |H| is

even, so there is some s ∈ G \ (Ã⊕K) = H ⊕K of order 2. Set Γ := L?{0,s}[Ã⊕K]. We now have

two subcases depending on the rank of H.

(i) H has rank r−1. In this subcase, if x ∈ Ã⊕K is such that 2x 6∈ {0, s}, then the component
of Γ containing x is precisely a K4 containing the vertices x, x + s, s − x,−x. If 2x = 0,
then x’s component in Γ is the edge {x, x + s}; if 2x = s, then x’s component in Γ is the

edge {x,−x}. Since H has rank r − 1, there are 2r−1 order 2 elements in Ã ⊕K. Let us

denote by a(s) the number of elements x ∈ Ã ⊕K such that 2x = s. Since mis(K4) = 4
and mis(K2) = 2, we then have

mis(Γ) = 2
2r−1+a(s)

2 · 4
n/2−2r−1−a(s)

4 = 2n/4.

(ii) H has rank r. In this subcase there are no order 2 elements in Ã⊕K, so Γ is the disjoint
union of a(s)/2 copies of K2 and (n/2− a(s))/4 copies of K4. Thus,

mis(Γ) = 2
a(s)

2 · 4
n/2−a(s)

4 = 2n/4.

In both subcases, mis(Γ) = 2n/4. Now if I is a maximal independent set in Γ, then {0, s} ∪ I is a
distinct sum-free subset of G, however, it might not be maximal. But if I ′ 6= I is another maximal
independent set in Γ, then {0, s} ∪ I and {0, s} ∪ I ′ must lie in different maximal distinct sum-free
subsets of G; indeed, otherwise I ∪ I ′ is an independent set in Γ, a contradiction as I and I ′ are
maximal independent sets in Γ. Hence, f?max(G) ≥ mis(Γ) = 2n/4 in this case.

Finally, suppose that r1 = 0 and r2 = 1. Thus, G = Z2 ⊕K. Set Γ := L?{0}[{1} ⊕K]. In this

case, Γ consists of an isolated vertex {1} ⊕ {0}, together with a matching where edges are of the

form {x,−x} for x ∈ {1}⊕K. Thus, mis(Γ) = 2
|K|−1

2 = 2(n−2)/4. Arguing as in the first case gives

f?max(G) ≥ mis(Γ) = 2(n−2)/4, as desired. �

Note that one can rephrase the proof of Proposition 3.2 in terms of link graphs as in the proof
of Proposition 5.3.
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5.1. Proof of Theorem 5.1. Let C := 3235084117. Given any η > 0, define additional constants
δ, ε, n0 > 0 so that

0 < 1/n0 � δ � ε� η, 1/C.

Here the additional constants in the hierarchy are chosen from right to left.
Let G be an abelian group of even order n ≥ n0 as in the statement of the theorem. Thus,

G = Z2α1 ⊕ . . . ⊕ Z2αr1 ⊕ Zr22 ⊕K with r1 and r2 non-negative integers, α1 ≥ . . . ≥ αr1 ≥ 2, and
|K| odd. Furthermore, n/2r1+r2 ≥ C.

Apply Lemma 4.1 to G with parameter δ to obtain a collection F of containers satisfying con-
ditions (i)–(iv) of the lemma.

By Lemma 4.1(ii), to obtain an upper bound on f?max(G) it suffices to bound the number of
maximal distinct sum-free subsets of G that lie in the containers. Given any F ∈ F , let f?max(F )
denote the number of maximal distinct sum-free subsets of G that lie in F . Lemma 4.1(iv) implies
that F = A ∪ B where A and B are disjoint, A is sum-free and |B| ≤ δn. Thus, each maximal
distinct sum-free subset of G lying in F can be obtained in the following way:

(1) Choose a (perhaps empty) distinct sum-free set S in B;
(2) Extend S in A to a maximal one.

This two-step approach, combined with Lemma 4.11, shows that

f?max(F ) ≤ 2δn max
S⊆B

S is distinct sum-free

mis(L?S [A]),

where L?S [A] is the distinct link graph of S on A. With this in mind, we now define 7 different
types of maximal distinct sum-free subsets of G.

Type 0: those obtained from a container F where S is chosen to be empty.
Type 1: those obtained from a container F where |A| ≤ 4n/9 and |S| ≥ 1.
Type 2: those obtained from a container F where |A| > 4n/9 and |S| > 872.
Type 3: those obtained from a container F where |A| > 4n/9 and 2 ≤ |S| ≤ 872, with S 6= {0, s}

for every order 2 element s ∈ G.
Type 4: those obtained from a container F where |A| > 4n/9 and S = {s} with s 6= 0.
Type 5: those obtained from a container F where |A| > 4n/9 and S = {0}.
Type 6: those obtained from a container F where |A| > 4n/9 and S = {0, s} with s an order 2

element.

Let f?,imax(G) be the total number of maximal distinct sum-free sets of type i in G. Similarly, we

write f?,imax(F ) for the total number of maximal distinct sum-free sets that lie in the container F .
Note that each container F can produce at most one type 0 maximal distinct sum-free set (namely

A), so f?,0max(G) ≤ |F| ≤ 2δn by Lemma 4.1.
Consider any container F ∈ F . Now we fix a non-empty distinct sum-free set S ⊆ B. In what

follows we count how many ways we can extend S in A to a maximal distinct sum-free subset of G.
Let Γ := L?S [A] be the distinct link graph of S on A. From Lemma 4.11, we see that the number
of extensions of S in B to a maximal sum-free set is at most mis(Γ).

The next claim will be used to bound f?,1max(G).

Claim 5.4. If |A| ≤ 4n/9, then mis(Γ) ≤ 2(1/4−ε)n−2r−2
.

Proof. By the Moon–Moser bound (4.1),

mis(Γ) ≤ 3|A|/3 ≤ 34n/27.

The choice of ε and C implies that 34n/27 ≤ 2(1/4−ε)n−2r−2
since n/2r ≥ C. �
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Now we consider type 2–6 maximal distinct sum-free sets. Suppose |A| > 4n/9; by Lemma 4.2

we can assume that A ⊆ Ã ⊕ K with Ã a coset (not containing the zero element) associated to
a subgroup of index 2 in Z2α1 ⊕ . . . ⊕ Z2αr1 ⊕ Zr22 . In fact, (by adding elements to the container

F if necessary) we may assume A = Ã ⊕K, as f?,imax(F ) ≤ f?,imax(F ′) for F ′ ⊇ F , i ∈ [6]. So A is
still sum-free. We can also still assume that A and B ⊇ S are disjoint. Under these conditions, we
obtain the following information about the regularity of Γ.

Claim 5.5. Let x ∈ A. Then,

• d1(x,Γ) = |(S ∪ −S) \ {0}|;
• d2(x,Γ) ≤ |S|;
• Γ does not contain any loops.

In particular,
|(S ∪ −S) \ {0}| ≤ δ(Γ) ≤ ∆(Γ) ≤ |(S ∪ −S) \ {0}|+ |S|.

Consequently,

(1) If 0 ∈ S and S = −S, then ∆(Γ) ≤ 2δ(Γ) + 1.
(2) Otherwise, ∆(Γ) ≤ 2δ(Γ).

Proof. For the first part, note that each element s of (S ∪ −S) \ {0} generates a unique type 1
neighbour y = x + s. For the second part, we have that x is incident to all edges of the form
(x, s − x), with s ∈ S such that x 6= s − x; we have an upper bound because, e.g., some of those
edges might be type 1.

Note that our assumptions ensure A = g+H where H is some index 2 subgroup of G and g /∈ H,
and where S ⊆ H. This, together with the definition of the distinct link graph, ensures Γ does not
contain loops.

The only possibility for |(S ∪−S) \ {0}|+ |S| to be greater than 2|(S ∪−S) \ {0}| is that 0 ∈ S,
and S = −S. Hence, (1) and (2) follow. �

Claim 5.6. e(Γ) ≥ |(S∪−S)\{0}|+|S|
2 |A| − |S|(|S ∪ −S|+ 1)2r ≥ ∆(Γ)|A|

2 − |S|(|S ∪ −S|+ 1)2r.

Proof. By Claim 5.5, we only need to prove that e2(Γ) ≥ |S||A|2 − |S|(|S ∪ −S|+ 1)2r.
Let X denote the number of pairs (x, s−x) where x ∈ A and s ∈ S such that either (i) (x, s−x)

is a type 1 edge in Γ or (ii) x = s− x. Note that e2(Γ) ≥ |S||A|2 −X.
Let x ∈ A and s ∈ S. Then (x, s−x) is a type 1 edge in Γ if and only if there exists s′ ∈ S ∪−S

such that x− (s− x) = s′, or equivalently, 2x = s+ s′. By Fact 4.3, we deduce there are at most
|S||S ∪ −S|2r such edges in Γ.

Similarly, given any s ∈ S, Fact 4.3 implies that there are at most 2r solutions x ∈ A to x = s−x.
Together with the last paragraph, this implies that X ≤ |S||S ∪ −S|2r + |S|2r, as required. �

The next claim will be used to bound f?,2max(G).

Claim 5.7. For any S ⊆ B with |S| > 872, we have mis(Γ) ≤ 2(1/4−ε)n−2r−2
.

Proof. By Claim 5.5, ∆(Γ) ≤ 3δ(Γ). We apply Lemma 4.7 with k = 3. Noting that v(Γ) = n/2

and b :=
√
δ(Γ) ≥ 87, we thus obtain that

mis(Γ) ≤
∑

0≤i≤n/174

(
n/2

i

)
3
n
8

+ n
261 ≤

( n

174
+ 1
)

(87e)
n

174 3
n
8

+ n
261 .

The choice of C and ε, together with the fact that n/2r ≥ C and n is sufficiently large, ensures

that
(
n

174 + 1
)

(87e)
n

174 3
n
8

+ n
261 ≤ 2(1/4−ε)n−2r−2

, as required. �

The next claim will be used to bound f?,3max(G).
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Claim 5.8. Consider any distinct sum-free subset S ⊆ B with 2 ≤ |S| ≤ 872 and S 6= {0, s} for

every order 2 element s ∈ G. Then mis(Γ) ≤ 2(1/4−ε)n−2r−2
.

Proof. Let us state 8 sub-cases:

(i) |S| = 4 and S = {0, s1, s2, s3} with s1, s2, s3 having order 2.
(ii) |S| = 3 and S = {s1, s2, s3} with s1, s2, s3 having order 2.

(iii) |S| = 3 and S = {s1, s2,−s2} with s1 having order 2.
(iv) |S| = 3 and S = {0, s1, s2} with s1 having order 2.
(v) |S| = 2 and S = {s,−s}.
(vi) |S| = 2 and S = {s1, s2} with s1 having order 2 and s2 6= 0.

(vii) |S| = 2 and S = {0, s} with s 6= −s.
(viii) Any other S satisfying the hypothesis of the claim.

Set ∆ := ∆(Γ). One can check that in case (viii), Claim 5.5 implies that ∆ ≥ |(S ∪−S) \ {0}| ≥ 4.
For example, if |S| = 4 and S does not satisfy (i), then 0 /∈ S or −S \ S 6= ∅ (note that here we are
using that S is distinct sum-free). Then Claim 5.5 ensures that ∆ ≥ 4.

We can also check by hand that ∆ ≥ 4 in cases (i)–(vii). Indeed, in cases (i) and (ii) consider
a vertex x ∈ V (Γ) such that 2x 6∈ {s1, s1 − s2, s1 − s3, 0}; note that such an x ∈ V (Γ) exists
by Fact 4.3 and as |Γ| = n/2 > 4 · 2r. Then x has degree at least 4 in Γ since x + s1, x + s2,
x + s3 and s1 − x are distinct neighbours of x in Γ. In case (iii) consider an x ∈ V (Γ) such that
2x 6∈ {s1, s1 − s2, s1 + s2, 0}; again such an x ∈ V (Γ) exists by Fact 4.3 and as |Γ| = n/2 > 4 · 2r.
Then x has degree at least 4 in Γ since x + s1, x + s2, x − s2 and s1 − x are distinct neighbours
of x. In cases (iv) and (vi) consider an x ∈ V (Γ) such that 2x 6∈ {0, s1 − s2, s2 − s1, s1, s2}; then
x+ s1, x+ s2, s1−x and s2−x are distinct neighbours of x. In case (v) consider an x ∈ V (Γ) such
that 2x 6∈ {0,−2s, 2s, s,−s}; then x+ s, x− s, s− x and −s− x are distinct neighbours. Finally,
in case (vii) consider an x ∈ V (Γ) such that 2x 6∈ {2s, 0, s,−s}; then x+ s, x− s, −x and s− x are
distinct neighbours of x.

By Claim 5.6 we have e(Γ) ≥ ∆n
4 − |S|(|S ∪ −S| + 1)2r. Applying Lemma 4.9 with k :=

d(∆− 2)n/4− |S|(|S ∪ −S|+ 1)2re, we have

mis(Γ) ≤ 3
∆
13 · 3

n
6
− (∆−2)n

52∆
+
|S|(|S∪−S|+1)·2r

13∆ .

Since |S|(|S ∪ −S|+ 1) ≤ 872 · (2 · 872 + 1) and 4 ≤ ∆ ≤ 3 · 872 by Claim 5.5, we have

mis(Γ) ≤ 3
3·872

13 · 3

(
49
312

n
2r

+
872·(2·872+1)

52

)
·2r
.

The choice of ε and C implies that mis(Γ) ≤ 2(1/4−ε)n−2r−2
, since n/2r ≥ C.2 �

The next claim will be used to bound f?,4max(G).

Claim 5.9. Let S = {s} with s 6= 0. Then mis(Γ) ≤ 2(1/4−ε)n−2r−2
.

Proof. Let ` denote the order of s. We first handle the case when ` ∈ {2, 3}.
(i) ` = 2. In this case, if x ∈ V (Γ) = A is such that 2x 6∈ {0, s}, then the component of Γ

containing x is precisely a 4-cycle {x, x+ s,−x, s−x}. If x ∈ V (Γ) is such that 2x ∈ {0, s},
the component containing x is an edge {x, x+ s}. Let I2 := {x ∈ V (Γ) | 2x ∈ {0, s}}. By

Fact 4.3, |I2| ≤ 2r+1. Then, mis(Γ) ≤ 2
|A|−|I2|

4 · 2|I2|/2 ≤ 2n/8+2r−1
. The choice of ε and C

implies that mis(Γ) ≤ 2(1/4−ε)n−2r−2
, since n/2r ≥ C.

2This is the place in the argument where we use the precise choice of C.
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(ii) ` = 3. In this case, if x ∈ V (Γ) is such that 2x 6∈ {0, s, 2s}, then the component of Γ
containing x is precisely a C3�K2; a perfect matching between the triangles {x, x+s, x+2s}
and {−x + s,−x,−x + 2s}. If x ∈ V (Γ) such that 2x ∈ {0, s, 2s}, then the component of
Γ containing x is a triangle {x, x + s, x + 2s}. Let I3 := {x ∈ V (Γ) | 2x ∈ {0, s, 2s}}. By
Fact 4.3, |I3| ≤ 3 · 2r. Noting that C3�K2 contains precisely 6 maximal independent sets,
we have that

mis(Γ) ≤ 6
|A|−|I3|

6 · 3|I3|/3 ≤ 6n/12−2r−1 · 32r .

The choice of ε and C implies that mis(Γ) ≤ 2(1/4−ε)n−2r−2
, since n/2r ≥ C.

Now assume ` > 3. Then we can adapt [15, Claim 3.9] to our distinct sum-free set setting: there
exists a subset At ⊂ A = V (Γ) with |At| ≤ 2r that intersects all triangles in Γ. The proof is exactly
the same as in the non-distinct setting (see [15, Claim 3.9]), so we omit it. Let At be such a set,
and let Γ′ := Γ \ At. By Claim 5.5, every vertex in Γ has degree at most 3, and by Claim 5.6,

e(Γ) ≥ 3|A|
2 − 3 · 2r, and thus,

e(Γ′) ≥ e(Γ)− 3|At| ≥
3|A|

2
− 6 · 2r.

By Lemma 4.8, with D := 3 and k := |A| − 6 · 2r, we obtain

mis(Γ) ≤ 2
n
4
−n/2−6·2r

900
+2·2r = 2

449
1800

n+ 301
150
·2r .

The choice of ε and C implies that mis(Γ) ≤ 2(1/4−ε)n−2r−2
, since n/2r ≥ C. �

With the previous claims at hand, it is now straightforward to bound the number of type 0–4
maximal distinct sum-free subsets of G.

Claim 5.10. f?,0max(G) + f?,1max(G) + f?,2max(G) + f?,3max(G) + f?,4max(G) ≤ η · 2n/4−2r−2
.

Proof. We already saw that f?,0max(G) ≤ 2δn. By Lemma 4.1, there are at most 2δn containers F ∈ F .
For each choice of F , there are at most 2δn choices for S ⊆ B. For any S as in the definitions of

types 1–4, Claims 5.4, 5.7, 5.8 and 5.9 imply that mis(Γ) ≤ 2(1/4−ε)n−2r−2
. Thus, by Lemma 4.11,

f?,imax(G) ≤ 2δn · 2δn · 2(1/4−ε)n−2r−2
= 2(1/4+2δ−ε)n−2r−2

for each i ∈ [4]. As δ � ε� η, the claim now follows.
�

The next two claims provide an upper bound on the number of type 5 and 6 maximal distinct
sum-free subsets of G.

Claim 5.11. f?,5max(G) ≤ (2r1 − 1)2n/4 + (2r − 2r1)2n/4−2r−2
.

Proof. Recall we assume that each relevant container is of the form F = A ∪B where A = Ã⊕K
with Ã a coset (not containing the zero element) associated to a subgroup of index 2 in Z2α1 ⊕
. . .⊕Z2αr1 ⊕Zr22 . Moreover, for type 5 maximal distinct sum-free sets, S = {0}; so to upper bound

f?,5max(G), it suffices to sum up the number of maximal independent sets in all distinct link graphs of

the form L?{0}[Ã⊕K]. Let Ã be a coset (not containing the zero element) associated to a subgroup

of index 2 in Z2α1 ⊕ . . .⊕Z2αr1 ⊕Zr22 , and set Γ := L?{0}[Ã⊕K]. We distinguish two cases depending

on the structure of Ã.

(i) Ã is a coset associated to a subgroup of index 2 with rank r − 1. In this case, Γ consists
of a set of isolated vertices I := {x ∈ A | 2x = 0} together with a matching where edges

are of the form {x,−x} for 2x 6= 0. Since Ã is a coset associated to a subgroup of index 2

with rank r − 1, we have |I| = 2r−1. Thus, mis(Γ) = 2
|A|−|I|

2 = 2n/4−2r−2
. By Lemma 4.6,
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there are 2r− 2r1 such sets Ã; thus such link graphs give rise to at most (2r− 2r1)2n/4−2r−2

type 5 maximal distinct sum-free sets.
(ii) Ã is a coset associated to a subgroup of index 2 with rank r. In this case, there are no

elements in A = Ã⊕K such that 2x = 0. Then, Γ is a perfect matching and mis(Γ) = 2n/4.

By Lemma 4.6, there are 2r1 − 1 such sets Ã; thus such link graphs give rise to at most
(2r1 − 1)2n/4 type 5 maximal distinct sum-free sets.

Summing over all the possible sets A, we obtain f?,5max(G) ≤ (2r1 − 1)2n/4 + (2r − 2r1)2n/4−2r−2
. �

Claim 5.12. f?,6max(G) ≤ (22r−1 + 2r+r1−1 − 2r+1 + 1)2n/4.

Proof. As in Claim 5.11, we assume that each relevant container is of the form F = A ∪ B where
A = Ã ⊕K with Ã a coset (not containing the zero element) associated to a subgroup of index 2
in Z2α1 ⊕ . . .⊕Z2αr1 ⊕Zr22 , and where A and B are disjoint. Moreover, for type 6 maximal distinct

sum-free sets, S = {0, s} for some order 2 element s ∈ B; so to upper bound f?,6max(G), it suffices to

sum up the number of maximal independent sets in all distinct link graphs of the form L?{0,s}[Ã⊕K]

where s /∈ Ã ⊕ K has order 2. Let Ã be a coset (not containing the zero element) associated to

a subgroup of index 2 in Z2α1 ⊕ . . . ⊕ Z2αr1 ⊕ Zr22 , let s /∈ Ã ⊕K be an order 2 element, and set

Γ := L?{0,s}[Ã⊕K]. We saw in the proof of Proposition 5.3 that mis(Γ) = 2n/4. Now let us count

the pairs (Ã, {0, s}).
(i) Ã is a coset associated to a subgroup of index 2 with rank r − 1. By Lemma 4.6, there

are 2r − 2r1 such sets Ã. Since there are 2r−1 − 1 order 2 elements of G not belonging to
A = Ã⊕K, there are 2r−1− 1 choices for s. Thus, such pairs (Ã, {0, s}) contribute at most

(2r − 2r1)(2r−1 − 1)2n/4 type 6 maximal distinct sum-free sets.

(ii) Ã is a coset associated to a subgroup of index 2 with rank r. By Lemma 4.6, there are

2r1 − 1 such sets Ã. Since A = Ã⊕K contains no order 2 elements, there are 2r− 1 choices
for s. Thus, such pairs (Ã, {0, s}) contribute at most (2r1 − 1)(2r − 1)2n/4 type 6 maximal
distinct sum-free sets.

Summing over all the possible choices, we obtain

f?,6max(G) ≤
[
(2r − 2r1)(2r−1 − 1) + (2r1 − 1)(2r − 1)

]
2n/4

= (22r−1 + 2r+r1−1 − 2r+1 + 1)2n/4.

�

Since every maximal distinct sum-free subset of G is of type 0–6, Claims 5.10–5.12 yield the
desired upper bound:

f?max(G) ≤ (22r−1 + 2r+r1−1 − 2r+1 + 2r1)2n/4 + (2r − 2r1 + η)2n/4−2r−2
.

�

5.2. Proof of Theorem 5.2. Let C := 3235084117. Given any η > 0, define additional constants
ε, n0 > 0 so that

0 < 1/n0 � ε� η, 1/C.

Let G be an abelian group of even order n ≥ n0 as in the statement of the theorem. Thus,
G = Z2α1 ⊕ . . . ⊕ Z2αr1 ⊕ Zr22 ⊕K with r1 and r2 non-negative integers, α1 ≥ . . . ≥ αr1 ≥ 2, and
|K| odd. Furthermore, n/2r1+r2 ≥ C.

For a set A := Ã⊕K with Ã a coset (not containing the zero element) associated to a subgroup
of index 2 in Z2α1 ⊕ . . .⊕ Z2αr1 ⊕ Zr22 , and a set S ⊆ G \ A, we say that the pair (A,S) generates
a distinct sum-free set D in G if there exists a maximal independent set I in the link graph L?S [A]
such that D = I ∪ S.
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Claim 5.13. Consider A = Ã⊕K with Ã a coset (not containing the zero element) of a subgroup
H of index 2 in Z2α1 ⊕ . . .⊕ Z2αr1 ⊕ Zr22 .

(i) If H has rank r−1, then (A, {0}) generates at least 2n/4−2r−2− (n/2−2r−1) ·2(1/4−ε)n−2r−2

maximal distinct sum-free sets in G.

(ii) If H has rank r, then (A, {0}) generates at least 2n/4 − (n/2− 2r) · 2(1/4−ε)n−2r−2
maximal

distinct sum-free sets in G.

(iii) If s ∈ G\ (A∪{0}) has order 2, (A, {0, s}) generates at least 2n/4− (n/2−2) ·2(1/4−ε)n−2r−2

maximal distinct sum-free sets in G.

Proof. (i) We fix such an A. In the proof of Claim 5.11 we saw that L?{0}[A] has 2n/4−2r−2
maximal

independent sets. Let I ⊆ A be such a maximal independent set and suppose that I ∪ {0} is not
a maximal distinct sum-free set in G; call such an I bad. Then there exists s ∈ G \ (A ∪ {0}) such
that {0, s} ∪ I is distinct sum-free. So I is a maximal independent set in L?{0,s}[A].

Suppose first that s does not have order 2. By case (vii) in the proof of Claim 5.8, there are at

most 2(1/4−ε)n−2r−2
such sets I.

Now suppose that s has order 2. We saw in Claim 5.11 that L?{0}[A] consists of a matching

between |A| − 2r−1 elements, and has 2r−1 isolated vertices. So |I| = (|A| − 2r−1)/2 + 2r−1 =
(|A|+ 2r−1)/2. On the other hand, in the proof of Proposition 5.3, we saw that L?{0,s}[A] consists

of the disjoint union of (|A| − 2r−1 − a(s))/4 copies of K4 and (2r−1 + a(s))/2 copies of K2, where
a(s) is the number of x ∈ A such that 2x = s. So |I| = (|A|+ 2r−1 +a(s))/4, which is possible only
if a(s) = |A| + 2r−1 = n/2 + 2r−1. Since n/2 > n/C ≥ 2r, such an I cannot exist since a(s) ≤ 2r

by Fact 4.3.
Thus, all bad Is come from s that do not have order 2. The bound in the claim now follows as

there are n/2− 2r−1 choices for s ∈ G \ (A ∪ {0}) that do not have order 2.

(ii) In the proof of Claim 5.11 we saw that L?{0}[A] has 2n/4 maximal independent sets I. In

this case, again all bad Is come from s that do not have order 2. Indeed, suppose s ∈ G \ A has
order 2. In the proof of Claim 5.11 we saw maximal independent sets in L?{0}[A] have size |A|/2.

Meanwhile, in the proof of Proposition 5.3 we saw that maximal independent sets in L?{0,s}[A] have

size |A|/4 + a(s)/4. These sizes coincide only if a(s) = n/2 > n/C ≥ 2r, which is impossible by
Fact 4.3. The bound in the claim now follows by case (vii) from the proof of Claim 5.8 and the
fact that there are n/2− 2r elements in G \ (A ∪ {0}) that do not have order 2.

(iii) We saw in the proof of Proposition 5.3 that L?{0,s}[A] has 2n/4 maximal independent sets I.

If I ∪ {0, s} is not a maximal sum-free subset of G, then there a exists s′ ∈ G \ (A ∪ {0, s}) such
that I is a maximal independent set in L?{0,s,s′}[A]. By case (iv) in the proof of Claim 5.8, there

are at most 2(1/4−ε)n−2r−2
such sets I. The bound in the claim now follows as there are n/2 − 2

choices for s′ ∈ G \ (A ∪ {0, s}). �

Now we need to be careful because we may count the same maximal distinct sum-free set in two
different pairs (A, {0}) and (A′, {0}).

Claim 5.14. Consider distinct sets A = Ã⊕K and A′ = Ã′⊕K, with Ã and Ã′ cosets of subgroups
of index 2 in Z2α1 ⊕ . . .⊕Z2αr1 ⊕Zr22 . Then there is at most one maximal distinct sum-free subset
of G generated by both (A, {0}) and (A′, {0}).

Proof. Note that |A ∩A′| = |Ã ∩ Ã′| ≤ µ(G)/2. Let D be a maximal distinct sum-free subset of G
and suppose that it is generated by both (A, {0}) and (A′, {0}). Then D = {0}∪I with I ⊆ A∩A′.

(i) If Ã and Ã′ are both cosets associated to subgroups of index 2 with rank r − 1, then
|I| = µ(G)/2 + 2r−2. Indeed, in this case, in the proof of Claim 5.11 we saw that the link
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graph L?{0}[A] consists of a matching containing µ(G)−2r−1 vertices, as well as 2r−1 isolated

vertices. So the size of a maximal independent set is (µ(G)−2r−1)/2+2r−1 = µ(G)/2+2r−2.
In particular |A ∩A′| ≥ |I| ≥ µ(G)/2 + 2r−2, which is impossible.

(ii) If Ã and Ã′ are both cosets associated to subgroups of index 2 with rank r, then |I| =
µ(G)/2. Indeed we saw in the proof of Claim 5.11 that L?{0}[A] is a perfect matching. This

is only possible if I = A ∩A′. So there is at most one possible set D generated by both.
(iii) If we have one of each, then |I| = µ(G)/2 = µ(G)/2 + 2r−2, which is impossible.

�

Claim 5.15. Consider two sets A = Ã⊕K and A′ = Ã′⊕K, with Ã and Ã′ cosets of subgroups of
index 2 in Z2α1 ⊕ . . .⊕Z2αr1 ⊕Zr22 , and s ∈ G \ (A′ ∪ {0}) with order 2. Then there is no maximal
distinct sum-free set generated by both (A, {0}) and (A′, {0, s}).

Proof. Let D be a maximal distinct sum-free set and suppose for a contradiction that it is generated
by both (A, {0}) and (A′, {0, s}). Then D = {0} ∪ I = {0, s} ∪ I ′ with I ⊆ A and I ′ ⊆ A′. In
particular, |I| = |I ′|+ 1, and s ∈ I ⊆ A; so A contains an order 2 element, and thus it is associated
to a subgroup with rank r − 1. In the proof of Claim 5.11 we saw that in this case we have
|I| = µ(G)/2 + 2r−2.

(i) If Ã′ is a coset associated to a subgroup of index 2 with rank r − 1, then by the proof
of Proposition 5.3, |I ′| = (µ(G) + 2r−1 + a(s))/4. Since |I| = |I ′| + 1, this implies that
a(s) = n/2 + 2r−1 − 4 > 2r, which is impossible by Fact 4.3.

(ii) If Ã′ is a coset associated to a subgroup of index 2 with rank r, then by the proof of
Proposition 5.3, |I ′| = (µ(G) + a(s))/4. It follows that a(s) = n/2 + 2r − 4 > 2r, which is
again impossible.

�

Claim 5.16. Consider two sets A = Ã ⊕K and A′ = Ã′ ⊕K, with Ã and Ã′ cosets of subgroups
of index 2 in Z2α1 ⊕ . . . ⊕ Z2αr1 ⊕ Zr22 , and s ∈ G \ (A ∪ {0}), s′ ∈ G \ (A′ ∪ {0}) both with order

2. Then there are at most 3n/12 maximal distinct sum-free sets generated by both (A, {0, s}) and
(A′, {0, s′}).

Proof. Let D be a maximal distinct sum-free set generated by both (A, {0, s}) and (A′, {0, s′}).
Then D = {0, s} ∪ I = {0, s′} ∪ I ′ with I ⊆ A and I ′ ⊆ A′. Let D′ := D \ {0, s, s′}. Then by
Lemma 4.11, D′ is a maximal independent set in L{0,s,s′}[A ∩ A′]. Since |A ∩ A′| ≤ n/4, by (4.1)

there are at most 3n/12 choices for D′, and thus for D, as desired. �

Lemma 4.6 implies that there are 2r−2r1 choices for (A, {0}) in Claim 5.13(i) and 2r1−1 choices
for (A, {0}) in Claim 5.13(ii). The argument in the proof of Claim 5.12 implies that there are
22r−1 + 2r+r1−1− 2r+1 + 1 choices for (A, {0, s}) in Claim 5.13(iii). By Lemma 4.6 there are 2r − 1

subgroups of index 2 of Z2α1 ⊕ . . .⊕Z2αr1 ⊕Zr22 . Thus, there are at most
(

2r−1
2

)
choices for (A,A′)

in each of Claims 5.14–5.16. Further, there at most (2r)4 choices for (A, {0, s}) and (A′, {0, s′}) in
Claim 5.16. Therefore, Claims 5.13–5.16 imply that

f?max(G) ≥ (2r1 − 1)
(

2n/4 − (n/2− 2r) · 2(1/4−ε)n−2r−2
)

+ (2r − 2r1)
(

2n/4−2r−2 − (n/2− 2r−1) · 2(1/4−ε)n−2r−2
)

+ (22r−1 + 2r+r1−1 − 2r+1 + 1)
(

2n/4 − (n/2− 2) · 2(1/4−ε)n−2r−2
)

−
(

2r − 1

2

)
− (2r)4 · 3n/12.
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As n is sufficiently large, we have that

f?max(G) ≥ (22r−1 + 2r+r1−1 − 2r+1 + 2r1)2n/4 + (2r − 2r1 − η)2n/4−2r−2
.

�

Remark 5.17. Note that we did not try to optimise the value of C in the proof of Theorem 5.2.
With more careful analysis of the link graphs, it may be possible to reduce the value of C to a
single-digit number. Theorem 5.1 should also hold with a much smaller choice of C, although with
our argument the choice of C is essentially tight.

6. A conjecture on maximal independent sets in graphs with perfect matchings

We conclude this paper by raising a conjecture on the number of maximal independent sets in
graphs that contain a perfect matching.

Conjecture 6.1. Let Γ be an n-vertex graph that contains a perfect matching. Then Γ contains at
most 2n/2 maximal independent sets.

Note that we came to this conjecture whilst studying auxiliary (link) graphs for Conjecture 3.1.
A resolution of Conjecture 6.1 may therefore be helpful for attacking Conjecture 3.1. Two examples
show that the bound in Conjecture 6.1 cannot be lowered. Indeed, if Γ itself is a perfect matching
then Γ contains precisely 2n/2 maximal independent sets. Similarly, suppose Γ is the disjoint union
of n/6 copies of the following graph H: H consists of two disjoint triangles joined together by a
single edge. Then H contains 8 maximal independent sets, and thus Γ itself contains precisely
8n/6 = 2n/2 maximal independent sets.
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