Mechanics

Lecturer Details	Dr. Jamal Uddin Office Hours: Monday 3-4pm and Tues 11- 11.30 in Room 229a	<i>Tel:</i> (0121) 414 6578 <i>E-mail:</i> J.Uddin@bham.ac.uk
Course Objectives	This module seeks to make the student familiar with Newton's Laws of Motion and other physical laws concerning, for example, friction, impacts and elasticity. We will use Newton's Laws of Motion to derive various consequences such as con- stant acceleration equations, the existence of the centre of mass and conservation of liner momentum. Set up and solve equations for problems in classical mechan- ics by resolving forces, use of moments, energy, momentum and impact. Solve multi-step modelling problems under classical assumptions, including problems related to equilibria, motion under constant acceleration, projectiles, relative velocity, circular motion, and simple variable acceleration (including simple har- monic motion).	
Course Description	Classical or Newtonian mechanics is the found is an astonishingly powerful tool for explaining to planetary motion to the design of racing of point for any serious discussion of mathemat This module uses ideas such as forces, momen energy to model practical situations. These mo- wide range of techniques from pure mathemat calculus and, in particular, vector methods. illustrate the theory and some surprising an discussed.	ation of applied mathematics and physical systems, from projectiles ars. It acts as a natural starting tical modelling in broader areas. ts, Newton's Laws of Motion and odels can then be analysed using a ics such as trigonometry, algebra, Real world problems are used to d counter-intuitive examples are
Delivery	22 hours of lectures (Mondays 5pm-6pm Howa Jefferys). In addition the following contact modules: 11 hours of small group tutorials, 11 of computer labs.	rth 101 and 6pm-7pm in Vaughan hours will be shared with other hours of seminars, up to 11 hours
Assessment	Assessment: 1.5 hour examination (80%) , w Reassessment: best of 1.5 hour resit examina amination (80%) and work done during the se	ork done during semester (20%) tion (100%) or 1.5 hour resit ex- emester (20%)
Syllabus	1. Vectors. 2. Forces and Circular Motion. Momentum. 5. Dimensional Aanalysis. 6. C Variable Mass Problems.	3. Projectiles. 4. Impulse and ollisions 7. Oscillatory Motion 8.
Recommended Reading	There is no course book as such and we will be any book with mechanics in its title.	covering material found in almost