Unavoidable trees in tournaments

Richard Mycroft Tássio Naia

20 April 2016

CIÊNCIA

Tournaments \& Oriented Trees

Oriented tree T on n vertices, tournament G

Tournaments \& Oriented Trees

Oriented tree T on n vertices, tournament G

Is there a copy of T in G ?

$$
|V(T)|=n \leq|V(G)|
$$

Tournaments \& Oriented Trees

Oriented tree T on n vertices, tournament G

Is there a copy of T in G ?

$$
|V(T)|=n \leq|V(G)|
$$

Tournaments \& Oriented Trees

Oriented tree T on n vertices, tournament G

Is there a copy of T in G ?

$$
|V(T)|=n \leq|V(G)|
$$

Definition (unavoidable trees)
A (oriented) tree T with $|V(T)|=n$ is unavoidable if every tournament on n vertices contains a copy of T.

Unavoidable trees - examples

Directed paths (Rédei 1934) $\bullet \rightarrow \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet$

Unavoidable trees - examples

Directed paths (Rédei 1934) • $\rightarrow \bullet \bullet \rightarrow \bullet \cdots \bullet \rightarrow \bullet$
All large paths (Thomason '86)

Unavoidable trees - examples

Directed paths (Rédei 1934) $\bullet \rightarrow \bullet \bullet \bullet \bullet \bullet \bullet \bullet$
All large paths (Thomason '86)
All paths, 3 exceptions (Havet \& Thomassé '98)

Unavoidable trees - examples

Directed paths (Rédei 1934) $\bullet \rightarrow \bullet \bullet \bullet \cdots \bullet \rightarrow \bullet$
All large paths (Thomason '86)
All paths, 3 exceptions (Havet \& Thomassé '98)
Some claws (Saks \& Sós 84; Lu '93; Lu, Wang \& Wong '98)

Examples - non-unavoidable trees

Examples - non-unavoidable trees

is not in $n-3$

Examples - non-unavoidable trees

is not in
$n-3$

5 vertices

Examples - non-unavoidable trees

5 vertices

Examples - non-unavoidable trees

is not in

$$
n-3
$$

Examples - non-unavoidable trees

is not in

$$
n-3
$$

5 vertices

Examples - non-unavoidable trees

5 vertices

Examples - non-unavoidable trees

Conjecture and proofs

Sumner's conjecture (1971)
Every oriented tree on n vertices is contained in every tournament on $2 n-2$ vertices.

Conjecture and proofs

Sumner's conjecture (1971)

Every oriented tree on n vertices is contained in every tournament on $2 n-2$ vertices.

publ.	who	tournament size
1982	Chung	$n^{1+o(n)}$
1983	Wormald	$n \log _{2}(2 n / e)$
1991	Häggkvist \& Thomason	$12 n$ and also $(4+o(n)) n$
2002	Havet	$38 n / 5-6$
2000	Havet \& Thomassé	$(7 n-5) / 2$
2004	El Sahili	$3 n-3$
2011	Kühn, Mycroft \& Osthus	$2 n-2$ for large n

Embedding bounded-degree trees

Theorem (Kühn, Mycroft \& Osthus, 2011)
For all $\alpha, \Delta>0$ there exists n_{0} such that if $n>n_{0}$, each tournament on $(1+\alpha) n$ vertices contains any tree T on n vertices with $\Delta(T) \leq \Delta$.

When can we do better?

Question (Alon)
Which trees are unavoidable?

When can we do better?

Question (Alon)
Which trees are unavoidable?

Paths,

When can we do better?

Question (Alon)
Which trees are unavoidable?

Paths, some claws

When can we do better?

Question (Alon)
Which trees are unavoidable?

Paths, some claws

A family of examples - alternating trees

Alternating trees are rooted trees \mathbb{B}_{ℓ}

$$
\mathbb{B}_{1}: \quad \underset{r\left(\mathbb{B}_{1}\right)}{\bullet}
$$

A family of examples - alternating trees

Alternating trees are rooted trees \mathbb{B}_{ℓ}

A family of examples - alternating trees

Alternating trees are rooted trees \mathbb{B}_{ℓ}

A family of examples - alternating trees

Alternating trees are rooted trees \mathbb{B}_{ℓ}

$\mathbb{B}_{1}, \mathbb{B}_{2}$ and \mathbb{B}_{3} are unavoidable:

Theorem (Mycroft, N. 2016 ${ }^{+}$)
For ℓ large enough, \mathbb{B}_{ℓ} is unavoidable.

More examples - balanced q-ary trees

q-ary tree are rooted trees $\mathbb{B}_{\ell}^{q} \quad q \in \mathbb{N}$
$\mathbb{B}_{1}^{q}: \quad \underset{r\left(\mathbb{B}_{1}^{q}\right)}{\bullet}$

More examples - balanced q-ary trees

q-ary tree are rooted trees $\mathbb{B}_{\ell}^{q} \quad q \in \mathbb{N}$

More examples - balanced q-ary trees

q-ary tree are rooted trees $\mathbb{B}_{\ell}^{q} \quad q \in \mathbb{N}$

Theorem (Mycroft, N. 2016 ${ }^{+}$)
For each $q \in \mathbb{N}$, if ℓ large enough then almost all orientations of \mathbb{B}_{ℓ}^{q} are unavoidable.

More examples - balanced q-ary trees

q-ary tree are rooted trees $\mathbb{B}_{\ell}^{q} \quad q \in \mathbb{N}$

Theorem (Mycroft, N. 2016 ${ }^{+}$)
For each $q \in \mathbb{N}$, if ℓ large enough then almost all orientations of \mathbb{B}_{ℓ}^{q} are unavoidable.

The method works a much wider class of trees.

Some definitions and a property of \mathbb{B}_{ℓ}
centre
\mathbb{B}_{2} is a cherry:

Some definitions and a property of \mathbb{B}_{ℓ}
\mathbb{B}_{2} is a cherry:

Some definitions and a property of \mathbb{B}_{ℓ}

Some definitions and a property of \mathbb{B}_{ℓ}

centre

\mathbb{B}_{2} is a cherry:

\mathbb{B}_{ℓ} has many pendant cherries

Some definitions and a property of \mathbb{B}_{ℓ}

centre

\mathbb{B}_{2} is a cherry:

\mathbb{B}_{ℓ} has many pendant cherries

Characterization of large tournaments

Theorem (Kühn, Mycroft, Osthus 2011)
Large tournaments contain either a large strong cut or a large robust expander of linear minimum semidegree.

Characterization of large tournaments

Theorem (Kühn, Mycroft, Osthus 2011)
Large tournaments contain either a large strong cut or a large robust expander of linear minimum semidegree.

Characterization of large tournaments

Theorem (Kühn, Mycroft, Osthus 2011)
Large tournaments contain either a large strong cut or a large robust expander of linear minimum semidegree.

Characterization of large tournaments

Theorem (Kühn, Mycroft, Osthus 2011)
Large tournaments contain either a large strong cut or a large robust expander of linear minimum semidegree.

Theorem (Kühn, Osthus, Treglown 2010)
A large robust expander of linear minimum semidegree contains a regular cycle of cluster tournaments.

bad

Embedding \mathbb{B}_{ℓ} to G (general scheme)

Embedding \mathbb{B}_{ℓ} to G (general scheme)

- reserve a small set $S \subseteq G$

Embedding \mathbb{B}_{ℓ} to G (general scheme)

- reserve a small set $S \subseteq G$
- form $T^{\prime} \subseteq \mathbb{B}_{\ell}$ removing a few leaves

G

Embedding \mathbb{B}_{ℓ} to G (general scheme)

- reserve a small set $S \subseteq G$
- form $T^{\prime} \subseteq \mathbb{B}_{\ell}$ removing a few leaves
- embed T^{\prime} to $G-S$ (uses [KMO '11])

G

Embedding \mathbb{B}_{ℓ} to G (general scheme)

- reserve a small set $S \subseteq G$
- form $T^{\prime} \subseteq \mathbb{B}_{\ell}$ removing a few leaves
- embed T^{\prime} to $G-S$ (uses [KMO '11])
- use S to cover tricky vertices

Embedding \mathbb{B}_{ℓ} to G (general scheme)

- reserve a small set $S \subseteq G$
- form $T^{\prime} \subseteq \mathbb{B}_{\ell}$ removing a few leaves
- embed T^{\prime} to $G-S$ (uses [KMO '11])
- use S to cover tricky vertices
- use perfect matchings to complete the copy of \mathbb{B}_{ℓ}

Embedding \mathbb{B}_{ℓ} to G (general scheme)

- reserve a small set $S \subseteq G$
- form $T^{\prime} \subseteq \mathbb{B}_{\ell}$ removing a few leaves
- embed T^{\prime} to $G-S$ (uses [KMO '11])
- use S to cover tricky vertices
- use perfect matchings to complete the copy of \mathbb{B}_{ℓ}

Beyond binary trees

Theorem (R. Mycroft, N., 2016 ${ }^{+}$)
For all $q>0$ there exists n_{0} such that if $n>n_{0}$ almost all orientations of every "roughly balanced" q-ary tree on n vertices are unavoidable.

Beyond binary trees

Theorem (R. Mycroft, N., 2016 ${ }^{+}$)
For all $q>0$ there exists n_{0} such that if $n>n_{0}$ almost all orientations of every "roughly balanced" q-ary tree on n vertices are unavoidable.

Work in progress
For all $\Delta>0$ there exists n_{0} such that for $n>n_{0}$ almost all labelled trees T on n vertices with $\Delta(T) \leq \Delta$ are unavoidable.

Beyond binary trees

Theorem (R. Mycroft, N., 2016 ${ }^{+}$)
For all $q>0$ there exists n_{0} such that if $n>n_{0}$ almost all orientations of every "roughly balanced" q-ary tree on n vertices are unavoidable.

Work in progress
For all $\Delta>0$ there exists n_{0} such that for $n>n_{0}$ almost all labelled trees T on n vertices with $\Delta(T) \leq \Delta$ are unavoidable.

- most labelled undirected trees have pendant cherries
- most orientations of a labelled tree have good cherry orientations

Beyond binary trees

Theorem (R. Mycroft, N., 2016 ${ }^{+}$)
For all $q>0$ there exists n_{0} such that if $n>n_{0}$ almost all orientations of every "roughly balanced" q-ary tree on n vertices are unavoidable.

Work in progress
For all $\Delta>0$ there exists n_{0} such that for $n>n_{0}$ almost all labelled trees T on n vertices with $\Delta(T) \leq \Delta$ are unavoidable.

- most labelled undirected trees have pendant cherries
- most orientations of a labelled tree have good cherry orientations

Questions

How about unbounded degree?
How about the binary arborescence?

Quick Reference

Introduction

Examples

Sumner
Back to the main question

Results
Alternating trees
q-ary trees
Useful features these trees
Characterization of Large Tournaments
Proof outline

Further extensions

