Unavoidable trees in tournaments

Richard Mycroft Tássio Naia

20 April 2016

Oriented tree T on n vertices, tournament G

Oriented tree T on n vertices, tournament G

Is there a copy of T in G? $|V(T)| = n \le |V(G)|$

Oriented tree T on n vertices, tournament G

Is there a copy of T in G? $|V(T)| = n \le |V(G)|$

Oriented tree T on n vertices, tournament G

Is there a copy of T in G? $|V(T)| = n \le |V(G)|$

Definition (unavoidable trees)

A (oriented) tree T with |V(T)| = n is unavoidable if every tournament on n vertices contains a copy of T.

Directed paths (Rédei 1934) $\bullet \rightarrow \bullet \rightarrow \bullet \cdots \bullet \rightarrow \bullet$

Directed paths (Rédei 1934) $\bullet \rightarrow \bullet \rightarrow \bullet \cdots \bullet \rightarrow \bullet$

All large paths (Thomason '86)

Directed paths (Rédei 1934) $\bullet \rightarrow \bullet \rightarrow \bullet \cdots \bullet \rightarrow \bullet$

```
All large paths (Thomason '86)
```

All paths, 3 exceptions (Havet & Thomassé '98)

Directed paths (Rédei 1934) $\bullet \rightarrow \bullet \rightarrow \bullet \cdots \bullet \rightarrow \bullet$

All large paths (Thomason '86)

All paths, 3 exceptions (Havet & Thomassé '98)

Some claws (Saks & Sós 84; Lu '93; Lu, Wang & Wong '98)

5 vertices

3-regular

Conjecture and proofs

Sumner's conjecture (1971)

Every oriented tree on n vertices is contained in every tournament on 2n - 2 vertices.

Conjecture and proofs

Sumner's conjecture (1971)

Every oriented tree on n vertices is contained in every tournament on 2n - 2 vertices.

publ.	who	tournament size
1982	Chung	$n^{1+o(n)}$
1983	Wormald	$n\log_2(2n/e)$
1991	Häggkvist & Thomason	12n and also $(4 + o(n))n$
2002	Havet	38n/5-6
2000	Havet & Thomassé	(7n - 5)/2
2004	El Sahili	3 <i>n</i> – 3
2011	Kühn, Mycroft & Osthus	2n-2 for large n

Embedding bounded-degree trees

Theorem (Kühn, Mycroft & Osthus, 2011) For all α , $\Delta > 0$ there exists n_0 such that if $n > n_0$, each tournament on $(1 + \alpha)n$ vertices contains any tree T on n vertices with $\Delta(T) \leq \Delta$.

Question (Alon)

Which trees are unavoidable?

Question (Alon)

Which trees are unavoidable?

Paths,

Question (Alon)

Which trees are unavoidable?

Paths, some claws

Question (Alon)

Which trees are unavoidable?

Alternating trees are rooted trees \mathbb{B}_{ℓ}

Alternating trees are rooted trees \mathbb{B}_{ℓ}

 \mathbb{B}_1 :

 $r(\mathbb{B}_1)$

8

More examples - balanced q-ary trees

q-ary tree are rooted trees \mathbb{B}_{ℓ}^q $q \in \mathbb{N}$

More examples – balanced q-ary trees

More examples - balanced q-ary trees

Theorem (Mycroft, N. 2016⁺)

For each $q \in \mathbb{N}$, if ℓ large enough then almost all orientations of \mathbb{B}_{ℓ}^{q} are unavoidable.

More examples - balanced q-ary trees

Theorem (Mycroft, N. 2016⁺)

For each $q \in \mathbb{N}$, if ℓ large enough then almost all orientations of \mathbb{B}_{ℓ}^{q} are unavoidable.

The method works a much wider class of trees.

 \mathbb{B}_2 is a cherry:

 \mathbb{B}_2 is a cherry:

 \mathbb{B}_ℓ has many pendant cherries

Some definitions and a property of \mathbb{B}_ℓ

 \mathbb{B}_ℓ has many pendant cherries

Theorem (Kühn, Mycroft, Osthus 2011)

Large tournaments contain either a large strong cut or a large robust expander of linear minimum semidegree.

Theorem (Kühn, Mycroft, Osthus 2011)

Large tournaments contain either a large strong cut or a large robust expander of linear minimum semidegree.

Theorem (Kühn, Mycroft, Osthus 2011)

Large tournaments contain either a large strong cut or a large robust expander of linear minimum semidegree.

Theorem (Kühn, Mycroft, Osthus 2011)

Large tournaments contain either a large strong cut or a large robust expander of linear minimum semidegree.

Theorem (Kühn, Osthus, Treglown 2010)

A large robust expander of linear minimum semidegree contains a regular cycle of cluster tournaments.

• reserve a small set $S \subseteq G$

- reserve a small set $S \subseteq G$
- form $T' \subseteq \mathbb{B}_{\ell}$ removing a few leaves

- reserve a small set $S \subseteq G$
- form $T' \subseteq \mathbb{B}_{\ell}$ removing a few leaves
- embed T' to G S (uses [KMO '11])

- reserve a small set $S \subseteq G$
- form $T' \subseteq \mathbb{B}_{\ell}$ removing a few leaves
- embed T' to G S (uses [KMO '11])
- use S to cover tricky vertices

- reserve a small set $S \subseteq G$
- form $T' \subseteq \mathbb{B}_{\ell}$ removing a few leaves
- embed T' to G S (uses [KMO '11])
- use S to cover tricky vertices
- use perfect matchings to complete the copy of \mathbb{B}_{ℓ}

- reserve a small set $S \subseteq G$
- form $T' \subseteq \mathbb{B}_{\ell}$ removing a few leaves
- embed T' to G S (uses [KMO '11])
- use S to cover tricky vertices
- use perfect matchings to complete the copy of \mathbb{B}_{ℓ}

Theorem (R. Mycroft, N., 2016⁺)

For all q > 0 there exists n_0 such that if $n > n_0$ almost all orientations of every "roughly balanced" q-ary tree on n vertices are unavoidable.

Theorem (R. Mycroft, N., 2016⁺)

For all q > 0 there exists n_0 such that if $n > n_0$ almost all orientations of every "roughly balanced" q-ary tree on n vertices are unavoidable.

Work in progress

For all $\Delta > 0$ there exists n_0 such that for $n > n_0$ almost all labelled trees T on n vertices with $\Delta(T) \leq \Delta$ are unavoidable.

Theorem (R. Mycroft, N., 2016⁺)

For all q > 0 there exists n_0 such that if $n > n_0$ almost all orientations of every "roughly balanced" q-ary tree on n vertices are unavoidable.

Work in progress

For all $\Delta > 0$ there exists n_0 such that for $n > n_0$ almost all labelled trees T on n vertices with $\Delta(T) \leq \Delta$ are unavoidable.

- most labelled undirected trees have pendant cherries
- most orientations of a labelled tree have good cherry orientations

Theorem (R. Mycroft, N., 2016⁺)

For all q > 0 there exists n_0 such that if $n > n_0$ almost all orientations of every "roughly balanced" q-ary tree on n vertices are unavoidable.

Work in progress

For all $\Delta > 0$ there exists n_0 such that for $n > n_0$ almost all labelled trees T on n vertices with $\Delta(T) \leq \Delta$ are unavoidable.

- most labelled undirected trees have pendant cherries
- most orientations of a labelled tree have good cherry orientations

Questions

How about unbounded degree? How about the binary arborescence? (hopefully soon!)

Quick Reference

Introduction

Examples Sumner Back to the main question

Results

Alternating trees q-ary trees Useful features these trees Characterization of Large Tournaments

Proof outline

Further extensions