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ABSTRACT. A famous conjecture of Pésa from 1962 asserts that every graph on n vertices and
with minimum degree at least 2n/3 contains the square of a Hamilton cycle. The conjecture was
proven for large graphs in 1996 by Komlds, Sarkozy and Szemerédi [23]. In this paper we prove
a degree sequence version of Pdsa’s conjecture: Given any n > 0, every graph G of sufficiently
large order n contains the square of a Hamilton cycle if its degree sequence d; < --- < d,, satisfies
di > (1/3+n)n+1 for all i < n/3. The degree sequence condition here is asymptotically best
possible. Our approach uses a hybrid of the Regularity-Blow-up method and the Connecting-
Absorbing method.

1. INTRODUCTION

One of the most fundamental results in extremal graph theory is Dirac’s theorem [I4] which
states that every graph G on n > 3 vertices with minimum degree §(G) at least n/2 contains a
Hamilton cycle. It is easy to see that the minimum degree condition here is best possible. The
square of a Hamilton cycle C' is obtained from C' by adding an edge between every pair of vertices
of distance two on C. A famous conjecture of Pésa from 1962 (see [16]) provides an analogue of
Dirac’s theorem for the square of a Hamilton cycle.

Conjecture 1.1 (Pésa [16]). Let G be a graph on n vertices. If 6(G) > 2n/3, then G contains the
square of a Hamilton cycle.

Again, it is easy to see that the minimum degree condition in Pdsa’s conjecture cannot be lowered.
The conjecture was intensively studied in the 1990s (see e.g. [17, [I8] 19, 20, 21]), culminating in its
proof for large graphs G by Komlés, Sérkozy and Szemerédi [23]. The proof applies Szemerédi’s
Regularity lemma and as such the graphs G considered are extremely large. More recently, the
lower bound on the size of G in this result has been significantly lowered (see [10] 28]).

Although the minimum degree condition is best possible in Dirac’s theorem, this does not nec-
essarily mean that one cannot significantly strengthen this result. Indeed, Ore [29] showed that
a graph G of order n > 3 contains a Hamilton cycle if d(x) + d(y) > n for all non-adjacent
x #y € V(G). The following result of Pésa [30] provides a degree sequence condition that ensures
Hamiltonicity.

Theorem 1.2 (Pésa [30]). Let G be a graph on n > 3 vertices with degree sequence dy < --- < d,,.
Ifdi > i+1 for alli < (n—1)/2 and if additionally dj,, /91 > [n/2] when n is odd, then G contains
a Hamilton cycle.

Notice that Theorem [I.2]is significantly stronger than Dirac’s theorem as it allows for almost half
of the vertices of G to have degree less than n/2. A theorem of Chvatal [I1] generalises Theorem
by characterising all those degree sequences which ensure the existence of a Hamilton cycle in a
graph: Suppose that the degrees of a graph G are d; < --- < dy. If n >3 and d; > ¢+ 1 or
dp—i > n—ifor all i < n/2 then G is Hamiltonian. Moreover, if d; < --- < d,, is a degree sequence
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that does not satisfy this condition then there exists a non-Hamiltonian graph G whose degree
sequence dj < --- < dj, is such that d; > d; for all 1 <i < mn.

Recently there has been an interest in generalising Pésa’s conjecture. An ‘Ore-type’ analogue
of Pésa’s conjecture has been proven for large graphs in [9, 13]. A random version of Pdsa’s
conjecture was proven by Kiithn and Osthus in [26]. In [4], Allen, Béttcher and Hladky determined
the minimum degree threshold that ensures a large graph contains a square cycle of a given length.
The problem of finding the square of a Hamilton cycle in a pseudorandom graph has recently been
studied in [3]. The focus of this paper is to investigate degree sequence conditions that guarantee a
graph contains the square of a Hamilton cycle. This problem was raised in the arXiv version of [6].
The main result of this paper is the following degree sequence version of Pdsa’s conjecture.

Theorem 1.3. Given any n > 0 there exists an ng € N such that the following holds. If G is a
graph on n > ngy vertices whose degree sequence dy < --- < d,, satisfies

di >n/3+i+nn forall i <n/3,
then G contains the square of a Hamilton cycle.

Note that Theorem allows for almost n/3 vertices in G to have degree substantially smaller
than 2n/3. However, it does not quite imply Pdsa’s conjecture for large graphs due to the term
nn. An example from the arXiv version of [6] shows that the term nn in Theorem cannot
be replaced by o(y/n) for every i < n/3. So in this sense Theorem is close to best possible.
(Extremal examples for Theorem are discussed in more detail in Section ) We suspect though
that the degrees in Theorem can be capped at 2n/3.

Conjecture 1.4. Given any n > 0 there exists an ng € N such that the following holds. If G is a
graph on n > ngy vertices whose degree sequence dy < --- < d,, satisfies

d; > min{n/3 +i+nn,2n/3} for all i,
then G contains the square of a Hamilton cycle.

It would be extremely interesting to establish an analogue of Chvatal’s theorem for the square of
a Hamilton cycle, i.e., to characterise those degree sequences which force the square of a Hamilton
cycle.

A well-known result of Aigner and Brandt [2] and Alon and Fischer [5] states that if G is a graph
on n vertices with minimum degree §(G) > (2n—1)/3 then G contains every graph H on n vertices
with maximum degree A(H) < 2. (A conjecture of El-Zahar [I5], that was proven for large graphs
by Abbasi [1], implies that for many graphs H with A(H) < 2, the minimum degree condition here
can be substantially lowered.) Since a square path on n vertices contains any such graph H, an
immediate consequence of Theorem [[.3]is the following degree sequence result.

Corollary 1.5. Given any n > 0 there exists an ng € N such that the following holds. Suppose
that H is a graph on n > ng vertices such that A(H) < 2. If G is a graph on n vertices whose
degree sequence di < --- < d, satisfies

di >n/3+i+nn forall i <n/3,
then G contains H.

The case when H is a triangle factor was proved in [36], and in fact this result is used as a tool
in the proof of Theorem (see Section [5)).

The proof of Theoremﬁ makes use of Szemerédi’s Regularity lemma [35] and the Blow-up
lemma [24]. In Section [2| we give a detailed sketch of the proof. We discuss extremal examples for
Theorem in Section [3] After introducing some notation and preliminary results in Section [4]

we prove Theorem [I.3]in Sections
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2. OVERVIEW OF THE PROOF

Over the last few decades a number of powerful techniques have been developed for embedding
problems in graphs. The Blow-up lemma [24], in combination with the Regularity lemma [35],
has been used to resolve a number of long-standing open problems, including Pésa’s conjecture for
large graphs [23]. More recently, the so-called Connecting-Absorbing method developed by Rédl,
Rucinski and Szemerédi [31] has also proven to be highly effective in tackling such embedding
problems.

Typically, both these approaches have been applied to graphs with ‘large’ minimum degree. Our
graph G in Theorem [1.3|may have minimum degree (1/3+o0(1))n. In particular, this is significantly
smaller than the minimum degree threshold that forces the square of a Hamilton cycle in a graph
(namely, 2n/3). As we describe below, having vertices of relatively small degree makes the proof
of Theorem highly involved and rather delicate. Indeed, our proof draws on ideas from both
the Regularity-Blow-up method and the Connecting-Absorbing method. Further, we also develop
a number of new ideas in order to deal with these vertices of small degree.

2.1. An approximate version of Pdsa’s conjecture. In order to highlight some of the diffi-
culties in the proof of Theorem we first give a sketch of a proof of an approximate version of
Pésa’s conjecture. This is based on the proof of Pésa’s conjecture for large graphs given in [2§].

Let 0 < ¢ < v < 1. Suppose that G is a sufficiently large graph on n vertices with 6(G) >
(2/3 4+ n)n. We wish to find the square of a Hamilton cycle in G. The proof splits into three main
parts.

e Step 1 (Absorbing path): Find an ‘absorbing’ square path P4 in G such that |P4| < yn.
P4 has the property that given any set A C V(G)\ V(P4) such that |A| < 2en, G contains
a square path P with vertex set V(P4) U A, where the first and last two vertices on P are
the same as the first and last two vertices on Py4.

e Step 2 (Reservoir set): Let G’ := G\ V(P4). Find a ‘reservoir’ set R C V(G’) such that
|R| < en. R has the property that, given arbitrary disjoint ordered edges ab,cd € E(G),
there are ‘many’ short square paths P in G so that: (i) The first two vertices on P are a, b
respectively; (ii) The last two vertices on P are ¢, d respectively; (iii) V(P)\{a, b, c,d} C R.

e Step 3 (Almost tiling with square paths): Let G” := G’ \ R. Find a collection P of a
bounded number of vertex-disjoint square paths in G that together cover all but en of the
vertices in G”.

Assuming that 6(G) > (2/3 4+ n)n, the proof of each of these three steps is not too involved. (Note
though that the proof in [28] is more technical since there §(G) > 2n/3.)

After completing Steps 1-3, it is straightforward to find the square of a Hamilton cycle in G.
Indeed, suppose ab is the last edge on a square path P; from P and cd is the first edge on a square
path P, from P. Then Step 2 implies that we can ‘go through’ R to join P; and P into a single
square path in GG. Repeating this process we can obtain a square cycle C' in GG that contains all the
square paths from P. Further, we may also incorporate the absorbing square path P4 into C. C
now covers almost all the vertices of G. We then use P4 to absorb all the vertices from V(G)\V (C)
into C' to obtain the square of a Hamilton cycle.

2.2. A degree sequence version of Pésa’s conjecture. Suppose that G is a sufficiently large

graph on n vertices as in the statement of Theorem[1.3] A result of the second author [36] guarantees

that G contains a collection of |n/3| vertex-disjoint triangles (see Theorem [5.2)). Further, this

result together with a simple application of the Regularity lemma implies that G in fact contains a

collection P of a bounded number of vertex-disjoint square paths that together cover almost all of

the vertices in G. So we can indeed prove an analogue of Step 3 in this setting. In particular, if we
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could find a reservoir set R as above, then certainly we would be able to join together the square
paths in P through R, to obtain an almost spanning square cycle C in G.

Suppose that ab,cd € E(G) and we wish to find a square path P in G between ab and cd. If
dg(a),dg(b) < n/2 then it may be the case that a and b have no common neighbours. Then it is
clearly impossible to find such a square path P between ab and cd (since ab does not lie in a single
square path!). The degree sequence condition on G is such that almost n/6 vertices in G may have
degree less than n/2. Therefore we cannot hope to find a reservoir set precisely as in Step 2 above.

We overcome this significant problem as follows. We first show that G contains a reservoir set
R that can only be used to find a square path between pairs of edges ab, cd € E(QG) of large degree
(namely, at least (2/3+mn)n). This turns out to be quite involved (the whole of Section [f]is devoted
to constructing R). In order to use R to join together the square paths P € P into an almost
spanning square cycle, we now require that the first and last two vertices on each such P have large
degree.

To find such a collection of square paths P we first find a special collection F of so-called ‘folded
paths’ in a reduced graph R of G. Roughly speaking, folded paths are a generalisation of the notion
of a square path. Each such folded path F' € F will act as a ‘guide’ for embedding one of the paths
P € P into G. More precisely, there is a homomorphism from a square path P into a folded path F'.
In particular, the structure of F' will ensure that the first and last two vertices on P are ‘mapped’
to large degree vertices in G. This is achieved in Section

Given our new reservoir set R and collection of square paths P, we again can obtain an almost
spanning square cycle C' in G. Further, if we could construct an absorbing square path P4 as in
Step 1, we would be able to absorb the vertices in V(G) \ V(C) to obtain the square of a Hamilton
cycle. However, we were unable to construct such an absorbing square path, and do not believe
there is a ‘simple’ way to construct one. (Though, one could construct such a square path P4 if
one only requires P4 to absorb vertices of large degree.) Instead, our method now turns towards
the Regularity-Blow-up approach.

Using the results from Sections [f| and [] we can obtain an almost spanning square cycle in the
reduced graph R of G. In fact, we obtain a much richer structure Z; in R called a ‘triangle cycle’
(see Section . Zy is a special 6-regular graph on 3¢ vertices that contains the square of a Hamilton
cycle. In particular, Z, contains a collection of vertex-disjoint triangles 7y that together cover all
the vertices in Z;. We then show that G contains an almost spanning structure C that looks like
the ‘blow-up’ of Z,. More precisely, if V(Zy) = {1,...,3¢} and Vi,..., V3, are the corresponding
clusters in G, then

¢ V(C)=ViU- U Vi
e C[V;,V;] is e-regular whenever ij € E(Z;);
e If ij is an edge in a triangle T' € T, then C[V;, V}] is e-superregular.

We call C a ‘cycle structure’ (see Section for the formal definition). The initial structure of C
is such that it contains a spanning square cycle. However, since C is not necessarily spanning in
G, this does not correspond to the square of a Hamilton cycle in G. We thus need to incorporate
the ‘exceptional vertices’ of GG into this cycle structure C in a balanced way so that at the end C
(and hence G) contains the square of a Hamilton cycle. The rich structure of Z, and thus C is vital
for this. Again particular care is needed when incorporating exceptional vertices of small degree
into our cycle structure. This is achieved in Section [8| This part of the proof builds on ideas used
in [7, ).

3. EXTREMAL EXAMPLES FOR THEOREM [ 3|

In this section we describe examples which show that Theorem [I.3]is asymptotically best possible.
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Given a fixed graph H, an H-packing in a graph G is a collection of vertex-disjoint copies of H in
G. We say that an H-packing is perfect if it contains ||G|/|H|] copies of H in G, i.e. the maximum
number. Observe that the square of a Hamilton cycle contains a perfect Ks-packing. The following
proposition is a special case of Proposition 17 in [6]. It implies that one cannot replace nn with —1
in Theorem [L.3l

Proposition 3.1. Suppose that n € 3N, k € N and 1 < k < n/3. Then there exists a graph G on
n vertices whose degree sequence dy < --- < d, satisfies

n/3+k—1 if 1<i<k

g 2n/3 if k+1<i<n/3+k
ln—-k—-1  if n/3+k+1<i<n—k+1

but such that G does not contain a perfect Ks-packing.

Proof. Construct G as follows. The vertex set of G is the union of disjoint sets V1, V5, A, B of sizes
n/3, 2n/3 — 2k + 1, k — 1, k respectively. Add all edges from B UV, U A to Vi. Further, add all
edges with both endpoints in V5 U A. Add all possible edges between A and B.

Consider an arbitrary copy 17" of K3 in G which contains b € B. Since B is an independent set
in G and there are no edges between B and V3, we have that V(T) \ {b} C AUV;. But V; is an
independent set in G, so T' contains at most one vertex in V; and hence at least one vertex in A.
But since |B| > | A| this implies that G does not contain a perfect K3-packing. Furthermore, it is
easy to check that G has our desired degree sequence. O

Note that Proposition [3.1] shows that, if true, Conjecture [1.4] is close to best possible in the
following sense: Given any 1 < k < n/3, there is a graph G on n vertices with degree sequence
dy < --- <d, such that (i) G does not contain the square of a Hamilton cycle and (ii) G satisfies
the degree sequence condition in Conjecture except for the terms di_,p, ..., d, which only ‘just’
fail to satisfy the desired condition.

At first sight, one might think that the nn term in Theorem is an artifact of our proof, but
in fact it is a feature of the problem: indeed, it cannot be replaced by o(y/n). This is shown by an
example in Proposition 22 in the arXiv version of [6].

4. PRELIMINARIES

4.1. Notation. We write |G| for the order of a graph G and 6(G) and A(G) for its minimum
and maximum degrees respectively. The degree of a vertex x € V(G) is denoted by dg(z) and
its neighbourhood by Ng(z). Given A C V(G), we write Ng(A) := [Jyea Na(a). We will write
N(A), for example, if this is unambiguous. For z € V(G) and A C V(G) we write dg(x, A) for
the number of edges zy in G with y € A. Given (not necessarily disjoint) X,Y C V(G), we write
E(G[X,Y]) for the collection of edges with one endpoint in X and the other endpoint in Y. Define
eq(X,Y) = |E(G[X,Y])|. For each k € N, we let K}, denote the complete graph on k vertices.
Given a graph G, X C V(G) and an integer k < |X|, we define the k-neighbourhood of X in G
by
Ne(X)= |J ) Na),

x'cx xeX’

|X"|=k
that is, the set of all vertices in G adjacent to at least kK members of X. When X = {z1,..., 2},
we will also write N&(z1,...,2¢) := NE(X). Observe that, if X,Y C V(G) are disjoint, then

(4.1) NYx) AN vy = NS (x Uy,
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If HC G we set N5(H) := NE(V(H)). For A C V(G) we define N%(X) := NE(X) N A, and
holds with G replaced by A.

Given a graph G and a subset X C V(G), we write G[X] for the subgraph of G induced by
X. We write G\ X for the subgraph of G induced by V(G) \ X. Given disjoint X,Y C V(G)
we let G[X,Y] denote the graph with vertex set X UY whose edge set consists of all those edges
zy € E(G) withze X andy €Y.

Given a function f: D — C and D’ C D, we write f(D'):={f(d):de D'} C C.

Given a graph H, the square of H is obtained from H by adding an edge between every pair
of vertices of distance two in H. In particular, we say that P = v1...v; is a square path if
V(P) ={vi,...,vx} and

E(P) = {vwit1 : 1 <i <k =1} U{vwi42: 1 <i <k —2}.

So we always implicitly assume that a square path P is equipped with an ordering. We write
P* = v ...v; for P ‘ordered backwards’; so P # P*. Given vertices z1,...,z, € V(G) such that
Vi...Ukx]...2p iS a square path, we sometimes write Pxj...xr := v1...0:21...2¢. The square
path z1...zpP is defined similarly. Given sets X1,..., Xy, we write P € X7 x ... x X} if v; € X
forall 1 <4<k,

Given a square path P and a positive integer ¢ < |P|, we say that [P]y is an ¢-segment if it is an
ordered set whose members are £ consecutive vertices of P, endowed with the ordering of P. We
usually write aj . ..ay for the ¢-segment (ay,...,ar). We define the final £-segment [P]Z of P to be
the ordered set of the final £ vertices in P, whose order is inherited from P. The initial £-segment
[P], is defined analogously. We write (P),, (P), for the unordered versions. By a slight abuse of
notation, we also write [P]y for the square path P[(P),] and similarly for [P]f

Throughout we will omit floors and ceilings where the argument is unaffected. The constants in
the hierarchies used to state our results are chosen from right to left. For example, if we claim that
a result holds whenever 0 < 1/n < a < b < ¢ < 1 (where n is the order of the graph), then there
are non-decreasing functions f : (0,1] — (0,1], g : (0,1] — (0,1] and A : (0, 1] — (0, 1] such that the
result holds for all 0 < a,b,c <1 and alln € Nwith b < f(c¢), a < ¢g(b) and 1/n < h(a). Hierarchies
with more constants are defined in a similar way. Note that ¢ < b implies that we may assume in
the proof that e.g. a < bor a < b%. Given n,n’ € N with n < n’, we write [n,n'] := {n,...,n'} and
[n] := [1,n]. We write aN := {an : n € N}. We also write a =b+e fora € [b—e,b+¢].

We will need the following simple consequence of the inclusion-exclusion principle.

Proposition 4.1. Let G be a graph on n vertices and let w,z,y € V(G) be distinct. Then

(i) [N&(z,y)| > da(z) + da(y) — n;
(i) |N&(w, z,y)| + [Ng(w, z,y)| > da(w) + da(z) + da(y) — n.

Proof. We will only prove (ii). Observe that
n > [Ng(w) U Ng(x) U Na(y)| = do(w) + da(x) + da(y) — NG (w, 2,y)| — [NE(w, z,y)],

as required. O

4.2. The Regularity and Blow-up lemmas. In the proof of Theorem 1.3 we apply Szemerédi’s
Regularity lemma [35]. To state it we need some more definitions. We write dg(A, B) for the

density e?jﬁéﬁg) of a bipartite graph G with vertex classes A and B. Given € > 0 we say that G is

e-regular if every X C Aand Y C B with | X| > ¢|A| and |Y| > €| B| satisfy |d(A, B) —d(X,Y)| < e.
Given ¢,d € (0,1) we say that G is (g, d)-regular if G is e-regular and dg(A, B) > d. Observe the
following:
(%) Given an (g, d)-regular bipartite graph G[A, B] and X C A with |X| > ¢|A|, there are less
than e|B| vertices in B which have less than (d — ¢)|X| neighbours in X.
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We say that G is (g, d)-superregular if both of the following hold:
o (G is (g,d)-regular;
o dg(a) > d|B| and dg(b) > d|A| for alla € A, b € B.
We will use the degree form of the Regularity lemma, which can be easily derived from the
standard version [35].

Lemma 4.2. (Degree form of the Regularity lemma) For every e € (0,1) and every M’ € N there
exist M,ng € N such that if G is a graph on n > ng vertices and d € [0, 1] is any real number, then
there is a partition of the vertex set of G into Vy,Vi,...,Vy and a spanning subgraph G' of G such
that the following holds:
i) M' <L<M;

(i) Vol < =n;
(iii) V1| =...=|VL| = m;
(iv) dg/(z) > da(z) — (d+e)n for all z € V(G);
(v) for all 1 < i < L the graph G'|V;] is empty;
(vi) for all1 <i< j<L,GV;,V;] is e-regular and has density either 0 or at least d.

We call Vq,...,Vp clusters, Vyy the exceptional set and the vertices in Vy exceptional vertices. We
refer to G’ as the pure graph. The last condition of the lemma says that all pairs of clusters are
e-regular (but possibly with different densities). The reduced graph R of G with parameters €, d
and M’ is the graph whose vertices are 1,..., L and in which 4j is an edge precisely when G'[V;, V}]
is e-regular and has density at least d.

The following simple observation is well known; its proof may be found in [34]. All other omitted
proofs also appear here.

Proposition 4.3. [34] Suppose that 0 < e < d < d <1 and d < d/2,1/6. Let G be a bipartite
graph with vertex classes A and B of size (1+e)m. Suppose that G' is obtained from G by removing
at most d'm vertices from each vertex class.

(i) If G is (e,d)-regular then G' is (2d',d — €)-regular.

(ii) If G is (e, d)-superregular then G is (2d',d — 2d')-superregular.

The next proposition appears as Proposition 8 in [7], and is a slight variant of Proposition

Proposition 4.4. Let G be a graph with A, B C V(QG) disjoint. Suppose that G|A, B] is (g,d)-
regular and let A'; B C V(QG) be such that |AANA"| < a|A’| and |BAB’'| < | B'| for some 0 < o < 1.
Then G[A", B'] is (¢, d')-regular, with

i =e+6y/a and d :=d-—4o.

If, moreover, G[A, B] is (g, d)-superreqular and each vertex x € A’ has at least d'|B’| neighbours in
B’ and each vertex x € B’ has at least d'|A’| neighbours in A', then G[A’, B'] is (€', d')-superregular
with €' and d' as above.

The following lemma is well known in several variations. The version here is almost identical to
Proposition 8 in [27].

Lemma 4.5. [34] Let L € N and suppose that 0 < 1/m < 1/L < ¢ < d,1/A < 1. Let R be a
graph with V(R) = [L]. Let G be a graph with vertex partition Vi, ..., VL such that |Vi| = (1 £e)m
for all1 < i < L, and in which G[V;, V] is (e, d)-regular whenever ij € E(R). Let H be a subgraph
of R with A(H) < A. Then for each i € V(H), V; contains a subset V' of size (1 —\/e)m such

that for every edge ij of H, the graph G[V/,V]] is (4/¢,d/2)-superregular.

The following proposition is an easy consequence of (g, d)-regularity. We omit the proof.
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Proposition 4.6. [34] Let 0 < 1/m < ¢ < ¢,d < 1. Let G be a graph with vertex partition
X1, X2, X3 where | X;| = (1 £e)m for all 1 <i <3 and such that G[X;, Xj] is (¢, d)-regular for all
1<i<j<3. Foreachi=1,2, let A;, B; C X;, where |A;|,|B;| > cm. Let W C V(G) be such
that (W NX;| <em/2 for all1 <i < 3. Then there exists a square path P € A; X A x X3x By X By
with V(P) N W = 0.

Given two graphs H,G, we say that a function ¢ : V(H) — V(G) is a graph homomorphism
if, for all edges uv € E(H), we have that ¢(u)p(v) € E(G). If ¢ is injective, then we call it an
embedding, in which case H C G.

We need the following result from [7] which, given a homomorphism from a graph H into the
reduced graph R, allows us to embed H into G. Furthermore, under certain conditions we can
guarantee that a small fraction of the vertices of H are mapped into specific sets. A similar result
was first obtained by Chvatal, R6dl, Szemerédi and Trotter [12].

Lemma 4.7. (Partial embedding lemma) Suppose that L € N and 0 < 1/m < 1/L € ¢ € ¢ K
d,1/A < 1. Let R be a graph with V(R) = [L]. Let G be a graph with vertex partition Vi,...,Vr,
such that |Vi| = (1 £ ¢e)m for all 1 < i < L, and in which G[V;,V}] is (e,d)-reqular whenever
ij € E(R).

Let H be a graph with vertezx partition X,Y and let f : V(H) — V(R) be a graph homomorphism
(so f(h)f(h') € E(R) whenever hh' € E(H)).

Then, if |H| < em and A(H) < A, there exists an injective mapping 7 : X — V(G) with
T(z) € Vi) for all w € X, such that for all y € Y there exist sets C; C Vi, \ 7(X) such that the
following hold:

(i) if z,2’ € X and x2’ € E(H), then 7(z)7(2') € E(G);
(ii) for ally € Y we have that Cy C Ng(7(x)) for all x € Ng(y) N X;

(iii) |Cy| > c[Vyqy| for ally € Y.

In its simplest form, the Blow-up lemma of Komlés, Sarkozy and Szemerédi [24] states that
for the purposes of embedding a spanning bipartite graph of bounded degree, a superregular pair
behaves like a complete bipartite graph.

Theorem 4.8. (Blow-up lemma [24]) For every d,A,c > 0 and k € N there exist constants €y and
« such that the following holds. Let nq,...,ny be positive integers, 0 < € < g9, and G be a k-partite
graph with vertex classes Vi,..., Vi where |V;| = n; fori € [k]. Let J be a graph on vertex set [k
such that G[V;, V] is (e, d)-superreqular whenever ij € E(J). Suppose that H is a k-partite graph
with vertex classes Wi, ..., Wy of size at most ny,...,ny respectively with A(H) < A. Suppose
further that there exists a graph homomorphism ¢ : V(H) — V(J) such that |¢p~1(i)| < n; for every
i € [k]. Moreover, suppose that in each class W; there is a set of at most an; special vertices y,
each of them equipped with a set S, C V; with |Sy| > cn;. Then there is an embedding of H into G
such that every special vertex y is mapped to a vertex in Sy.

4.3. n-good degree sequences. We will often think of the collection of degrees of the vertices of
a graph G as a function dg : V(G) — {0,1,...,n—1}. The notation dg will always be used in this
way. Later we will define a different notion of degree, a function whose image is not necessarily a
subset of NU {0}.

Definition 4.9. (n-goodness) Given n > 0, n € N, a finite set V, and a function d : V. — R, let
v1,...,vy| be an ordering of the elements of V' such that d(v;) < d(v;) whenever 1 <i < j <[V].
We say that d is (n,n)-good if d(v;) > (1/3+n)n+i+1 for all1 <i < |V|/3. If V is the vertex
set of a graph G, and d(v) is the degree of v € V in G, we say that G is (n,n)-good. If |V| =n we
say that G is n-good.
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The next simple proposition is very useful. Its proof follows immediately from the definition of
(n,n)-good, so we omit it.

Proposition 4.10. Let n > 0 and n € N. Let G be a graph on n vertices and let d : V(G) — R be
an (n,n)-good function. Then the following hold:

(i) for all X C V(G) with |X| > n/3, there exist at least | X| — n/3 vertices x € X with
d(z) > (2/3+n)n;

(ii) for all X C V(G) with k < |X| < n/3, there exist at least k vertices x € X with d(x) >
(1/34+n)n+|X|—k+2.

Given a graph G on n vertices and a set X C V(G), we write
Xy ={x e X :dg(x) > (2/3+n)n}.
Observe that, if G is n-good, then
(4.2) |V (G)y| > 2n/3.
The following proposition collects together some useful facts about 1-good graphs.

Proposition 4.11. Let n,k € N and n > 0 such that 0 < 1/n < 1/k,n < 1. Let G be an n-good
graph on n vertices and let X,Y C V(G). Then the following hold:

(i) of X,y =0, then | X| <n/3;

ii) if | Xy > (1/3 — n/2)n, then there are no isolated vertices in G[Xp);
(iil) if | X| > n/3 + k, then eq(X) > k%/2;
(iv) if X, Y #0 and E(G[X,Y]) =0, then | X|+ Y| < (2/3 —n)n.

Proof. First note that (i) and (ii) follow immediately from the definition of X, and n-goodness.
We now prove (iii). By (i), |X,| > k. For each x € X,, we have

da(z,X) > dg(x) — (n—|X]) > (2/3+n)n— (2n/3 — k) > k.

So e(G[X]) > 1> v da(z, X) > k?/2, as required.

To prove (iv), suppose, without loss of generality, that |X| < |Y|. Note that | X| < n/3 otherwise
(i) implies that X,, # () and then since |Y| > |X| > n/3 we have that eq(X,Y’) > 0, a contradiction.
Let xp € X be such that maxzex{dg(x)} = dg(xo). Proposition ii) applied with k£ := 1 implies
that

(1/34+n)n+|X|+ 1 <dg(zo) <n-|Y],
and so |X| + Y| < (2/3 — n)n, as desired. O

We now define what it means for a square path to be head- or tail-heavy. We will show in
Section [6] that if P is a tail-heavy square path and @ is a head-heavy square path, then we can
‘connect’ them in an appropriate manner.

Definition 4.12. (n-heaviness) Let n € N and n > 0. Let G be an n-good graph on n vertices
containing a square path P. We say that P is n-tail-heavy if [Pl € V(G), x V(G),. We say that
P is n-head-heavy if [Py € V(G), x V(G),. If P is both n-head- and n-tail-heavy, we say that it
is n-heavy. We omit the prefix n- if it is clear from the context.

Equivalently, P is n-tail-heavy if dg(z) > (2/3 + n)n for all + € (P)J, and analogously for
head-heavy. Note that P is n-tail-heavy if and only if P* is n-head-heavy.
9



4.4. Core degree. Suppose that R is the reduced graph (with parameters e,d and M’) of a graph
G. If G is n-good then we will show that R ‘inherits’ the degree sequence of G (see Lemma [£.13{(ii)).
Note though that the degree of a vertex ¢ € V(R) does not provide precise information about the
degrees of the vertices x € V; in GG. In particular, if d is small it is possible for ¢ to have ‘large’
degree in R but for every vertex x € V; to have ‘small’ degree in G. In the proof of Theorem it
will be important to ensure that certain clusters contain a ‘significant’ number of vertices of ‘large’
degree in G. For this, we introduce the notion of the ‘core degree’ of a cluster in R.

Given 0 < o < 1, a graph G on n vertices and a collection R of disjoint subsets of V(G), we
define the a-core degree d (X) of X € R (with respect to G) as follows. Let di < ... < d|x| be
the vertex degrees in GG of the vertices in X. Then we let

d% (X)) == d|q—a)x|]+1|RI/n.

So d% (X) > k|R]| if and only if there are at least a|X| vertices x € X with dg(z) > kn. Note

that whenever o/ < a we have that d%,G(X) > dy o(X) for all X € R.
Suppose that R := {V1,..., Vi }. If R is a graph such that each j € V(R) corresponds to the set
Vi € R, we define

(i) =dgra(Vj).

(Typically R will be a reduced graph and so its vertex set {1,...,k} naturally corresponds to
clusters Vi,..., Vi in G.) In this case, we often think of df ¢ as a function which maps each vertex
of R to some rational less than |R|, and call this function the a-core degree function of R (with
respect to G ).

The next lemma shows that the reduced graph R and the function df ¢ ‘inherit’ the degree
sequence of G.

Lemma 4.13. Let 0 < 1/n < 1/M' < e < d,a < n < 1 and let G be a graph of order n which
is m-good. Apply Lemma@ with parameters ,d and M’ to obtain a pure graph G' and a reduced
graph R of G. Then

() dr(j) > (1 — 6d)d (i) for all j € V(R);
(ii) df ¢ and R are both (1/2,|R|)-good.

Proof. Let L := |R| and R := {Vi,...,VL} be the clusters of G such that V; is associated with

j € V(R). Set m:= |Vi| =...=|V|. Lemma[4.2ii) implies that
(4.3) mL <n=mL+ |Vy| <mL +en.

To prove (i), fix j € V(R) and let D := d ;(j). Note first that D > 6(G)L/n > (1/3+n)L since G
is n-good. By the definition of d%, ., there is a set X; C Vj such that | X;| > am and dg(z) > Dn/L
for all € X;. So by Lemma (iv), de/(x) > Dn/L — (d + €)n. Given any vertex z € X, the
number of clusters V; € R containing a neighbour of x in G’ is at least

_ E3) [3)
Dn/L — (d+ 2e)n gD_M ED_QdLZD(l—Gd).

m m

Lemma (Vi) implies that j is adjacent to each of the vertices corresponding to these clusters in
R. So dr(j) > D(1 — 6d), proving (i).

To prove (i), fix 1 <4 < L/3 and X C V(R) with |X]| = 4. Let X' := J;c, Vj € V(G). Then
|X'| = im < Lm/3 < n/3 by ([4.3). Since G is n-good, Proposition ii) implies that there is a
subset Y of X’ with |Y| > aim such that mingey{da(y)} > (1/3 +n)n + (1 — «)im + 2. Observe
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further that there exists some j € X such that |Y NVj| > am. Thus

rali) = Zféig{dc(y)}i > (; +n) [y Lza)iml

(4.3) 1 1 2
> <3+n)L+(l—a)(1—5)i2<3+:)L—I—i—i—l.

Since X' was arbitrary, this proves that d% ; is (21/3, L)-good and hence (1,2, L)-good.
Let 1 <i < L/3. Now, by (i), the vertex j; of R with ith smallest degree satisfies

1 2 1
dp(i) > (1—6d) ( (s + ) L+i+t1)> (s +2)L+i+1.
3 3 3 2
So R is (n/2, L)-good, completing the proof of (ii). O

The next proposition shows that, given an (n,n)-good function d, after slightly shrinking the
domain of d or by slightly reducing each of the values that d takes, the function that remains is

(n/2,n)-good.

Proposition 4.14. Let n € N and n > 0 such that 0 < 1/n < n < 1. Let V be a set of order n
and let d : V — R be (n,n)-good. Let V' CV with |[V'| > (1 —n/4)n and let d' : V' — R be such
that d'(v) > d(v) —nn/4 for allv € V'. Then d' is (n/2,n)-good. In particular, any graph obtained
from an n-good graph G on n vertices by removing at most nn/4 vertices and nn/4 edges from each
vertex is (n/2,m)-good.

Proof. Let v1,...,v, be an ordering of V such that d(v;) < d(v;) whenever 1 < i < j < n. Then
d(v;)) > (1/3+nn+i+1forall 1 <i<n/3.

Let i1, ...,4x be the subsequence of 1,...,n corresponding to the vertices in V'. So k := [V'| >
(1 —n/4)n. Let 1 < j < k/3 be arbitrary. Since j < k/3 <n/3 and i; > j we have

2 (0) > d(v,) = /4 > d(o;) — /4> (1/3+mn -+ (G + 1) — /4
> (1/3+0/2n++1.
This implies that d’ is (r/2,n)-good. The final assertion follows by taking d := dg. O

5. AN ALMOST PERFECT PACKING OF HEAVY SQUARE PATHS

The aim of this section is to prove the following lemma, which ensures that every sufficiently
large n-good graph G on n vertices contains an almost perfect packing of square paths, and the
number of these paths is bounded. As mentioned in Section [2] a relatively simple application of
Lemma [£.2) and Theorems [£.8) and [5.2] can achieve this. However, we also require that the first and
last two vertices of each of these paths have degree at least (2/3+n)n in G, for which considerably
more work is needed. This property is crucial when, in Section [6] we connect these paths to obtain
an almost spanning square cycle.

Lemma 5.1. Let 0 < ¢, < 1. Then there exist ng, M € N such that the following holds. For
every n-good graph G on n > ng vertices, G contains a collection P of at most M wvertex-disjoint
n-heavy square paths such that )" pcp |P| > (1 —¢)n.

To prove Lemma we will use the following result of the second author [36] which guarantees
a perfect triangle packing in a sufficiently large n-good graph.

Theorem 5.2. [36] For everyn > 0, there exists ng € N such that every n-good graph G on n > ng
vertices contains a perfect Ks-packing.
11



Theorem is a special case of a more general result from [36] on a degree sequence condition
that forces a graph to contain a perfect H-packing for arbitrary H.

To find a bounded number of vertex-disjoint square paths which together cover almost every
vertex of G, we apply Szemerédi’s Regularity lemma to G and then apply Theorem to the
reduced graph R of G to find a perfect triangle packing (7}); in R. Then we use the Blow-up
lemma to find a square path in G for each triangle T; that covers almost all of the vertices in the
clusters of Tj.

However, to guarantee that our paths are n-heavy, more work is needed. We extend each triangle
T; in R into two ‘folded paths’ Fj, F’ J’ — a folded path is essentially a sequence of triangles such that
the ith triangle shares exactly two vertices with the (i — 1)th triangle. A folded path is therefore
a generalisation of a square path. We choose both F; and F ]’ so that their final two clusters each
contain many vertices of degree at least (2/3 +n)n. Further, the initial triangle of both Fj and Fj
is Tj. These properties will allow us to find a square path @); in G so that:

(i) @; only contains vertices from the clusters in F; and F ]’ ;
(ii) @; contains most of the vertices from the clusters in T};
(iii) @j is n-heavy.
Note that for distinct T}, T} in R, the folded paths F}, I ]’ , Fyand F J’», may intersect. Thus care is
needed to ensure the square paths @Q;, Q)js constructed are vertex-disjoint.

5.1. Folded paths. Here we define a structure — a ‘folded path’ — which will be useful when
embedding square paths. Indeed, if the reduced graph of G contains a short folded path F', we can
embed a short square path into G using only vertices lying in the clusters which form the vertex
set of F.

Definition 5.3. (Folded paths) We say a graph F is a folded path if there exists an ordered
sequence v, . .., v, of distinct vertices and integers ks, ..., k, such that

o V(F)={v1,...,un};

o ks:=1and k; € {i —2,ki_1} ford <i<n;

o E(F) ={viva} U{vjvg,,vivi—1 :3 <i < n}.

We implicitly assume that a folded path is equipped with ordered sequences wvy,...,v, and
ks, ..., k. We will sometimes write F' = v;...v,, and say that ks,...,k, is the ordering of F.
Observe that ks, ..., k, is a non-decreasing sequence and k; < ¢ — 2 for all ¢ > 3.

A folded path F'is a generalisation of a square path. Indeed, the special case when the ordering
of Fis1,...,n—2 (i.e. k; =i—2 for all i > 3) corresponds to the square path on n vertices. When
ki # 1 — 2, one can think of vy, as a ‘pivot’, at which the triangles that form the structure ‘change
direction’. The top of Figure [I| shows a folded path, with arrows drawn from a pivot v, to v;.

Another way to view a folded path is as a sequence of square paths which are disjoint apart from
initial and final triangles, which are shared by consecutive paths. Figure [1| gives an example of a
homomorphism from a square path to a folded path. One can visualise folding a square path so
that triangles map onto triangles, using the pivots as directions for where to fold. In Lemma [5.5
we show that given any folded path F, there is a homomorphism from some square path P to F
where P ‘stretches along the length’ of F' and where |P| is not significantly greater than |F|.

In the next proposition, we prove that, in a folded path, every edge lies in a triangle.

Proposition 5.4. Let F' := vy...v, be a folded path with ordering ks,...,k,. Then, for all
zy € E(F), we have N2(z,y) # 0.

Proof. Write z =: v; and y =: vy where j < £. Then j € {¢ — 1, k¢}. Recall that k, € {£ —2,k¢_;}.
For each of the four possible values of (j, k), we will exhibit a vertex z € N2(v;, vy). Suppose first
12
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Figure 1: A folded path F' with |F| = 28, and a square path P with |P| = 38, drawn to show a ho-
momorphism g : [|P|] — [|F|] (so, for example, g({17,20,23}) = {15}), as described in Lemmal5.5]
The final two vertices map to each other: ¢(37) = 28 and ¢(38) = 27.

that kp = ¢ — 2. If j = £ — 1, then we set z := vy_o. If j = k4, then we set z := vy_1. Suppose
instead that ky = ky_;. If j = £ — 1, then we set z := vy, . If j = Ky, then we set z := vy_;. ]

5.2. Embedding a square path into a folded path. The next lemma guarantees a homomor-
phism from a square path P into a given folded path F', with some special properties. Later (in the
13



proof of Lemma , we will use this lemma in combination with Lemma to embed a square
path P into a graph G whose reduced graph contains a copy of some folded path F'.

Lemma 5.5. Let n > 3 be an integer and let ' = v1...v, be a folded path. Then there exists a
square path P :=x1 ...z, withn <p <2n+1 and a mapping g : [p]| — [n] such that

(1) vg()vg(j) € E(F) whenever z;x; € E(P);

(i) g(1) =1, 9(2) =2, g(3) =3, g({p — L,p}) = {n—L,n}.

Proof. Let ks, ..., ky, be the ordering of F'. We will begin by finding a square path P’ :=x;...zy
with n < p’ < 2n and a function g : [p] — [n] such that vy vy;) € E(F) whenever z;z; € E(P');
g(1) =1, g(2) = 2, g(3) = 3 and g(p') = n. We prove this iteratively. Suppose that for some
3 <i < n —1 there exists p; € N such that i < p; < 2i and a function g : [p;] — [n] such that

(4i) 9(1) =1, 9(2) = 2, g(3) = 3, g(pi) = i, g([p]) = [i], and g(j) < for all j < p;;

(Bi) vg(j)ve(y) € E(F) whenever 1 < j < j' <p; and j' —j € {1,2}.

Observe that (B;) is equivalent to the statement that vg;yvg;) € E(F) whenever z;z; € E(F),
where P; := x1 ...z, is a square path. So our aim is to find p’ := p, € Nand g : [p'] — [n] such that
(A,) and (By) hold. Certainly (As) and (Bs) hold. Assume that (A4;) and (B;) hold for some fixed
3 <i<n—1. We will extend the domain of g by defining p;+1 > p; + 1 and g(p; + 1), ..., 9(pi+1)
so that (A;41) and (Bj4+1) hold.

We first give some motivation. Ideally, we would like to set p;+1 := p;+1, so g(p;+1) =i+1. But
we can only do so if vy, _1), Vy(p,) are both neighbours of v;1 in F' such that g(p; — 1), g(pi) < i,
and by definition of F', this only occurs if g({p; — 1, pi}) = {ki+1,i}. By (A:), g(pi) = i, so we need
that g(p; — 1) = k;41. If this is not the case, we cannot set p;1+1 = p; + 1, but it turns out that we
can take p;11 = p; + 2 (by taking a single intermediate step via k;y1).

Indeed, set
(5.1) piv1=pi+1 and g(pi+1):=i+1 if ki1 =g(pi —1);
(5.2) pir1:=pi+2 and g(pi+1):=kiy1, g(pi +2):=i+1 if ki1 #g(pi—1).

First we check that (A;;+1) holds. We have g(1) =1, g(2) =2, ¢(3) =3 and pi41 > p; +1 > i+ 1.
Moreover, pi11 < p; +2 < 2(i+ 1) and g(pi+1) = i + 1. Furthermore,

g([pisa)) = 9([piD) U g((ps + Lpisa]) € {18 UG+ 11, (11U {kien, i+ 13} = i+ 1),
and g(j) <i+1 for all j < p;+1. (Here we used that k;11 <i—1.) So (A;+1) holds.

Now we show that (B;y1) holds. Let E'(F) be the set of all triples {j,j’, 7"} such that vjvjv;n
is a triangle in F. It suffices to prove that g({j — 2,7 —1,5}) € E'(F) for all p; +1 < j < p;y1. We
claim that

(5.3) {ky,t — 1,t} € E'(F)

for all 3 <t < n. To see this, note that {vg, ,vi—1,vi—2vi—1, Vg, v, ve—1v:} C E(F) by definition
and k; € {ki—1,t — 2}, proving the claim.
By the definition of a folded path,

(4i)
(5.4) NF(UZ') N {vg(l), ... 7vg(pi)} = NF(Ui) N {Ul, .. ,Ui} = {Uki,vi_l}.
(B;) implies that vy, 1yVg(p,) € E(F), ie. that vy, 1) € Np(v;). So (5.4) implies that
(5.5) g(pi —1) € {ki,i — 1}, andalso ki1 € {ki,i—1}.

There are now two cases to consider depending on the value of g(p; — 1).
Suppose first that k; 11 = g(p; — 1). Then p;11 = p; +1 by (6.1). We have that

ED ()
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proving (B;11) in this case.
Suppose instead that k;+1 # g(p; — 1). Then p;11 = p; +2 by (5.2). Now (5.5) gives that

(5.6) {kiv1,9(pi — 1)} = {ksyi — 1}.
Therefore

15.2) . . .
o({({pi — L pi + 10 g+ Lo+ 21) B (oo — 1)1 ki), (i i, i 4+ 13

(kivi — 1,4}, {ki,dyi + 1))

5.3
< e,
proving (B;+1) here.

We have proved that we can obtain p’ := p, where n <p’ <2n and g : [p'] — [n] such that (A,)
and (B,,) hold. Now ¢(p') = n by (A4,). Therefore if g(p' — 1) = n — 1, we are done. So suppose
not (see e.g. Figure [l with p’ = 37). The definition of F implies that N (vy,) = {vk,,, vn—1}. So v,
has exactly one neighbour vk, in F which is not v,_1. Then (B,) implies that g(p’ — 1) = k,, and
g(p' —2)=n—1. Now implies that {k,,n —1,n} € E'(F), i.e. vk, vp—10, is a triangle in F.
We are done by setting p :=p’ + 1 and g(p) :=n — 1. O

5.3. Finding a folded path in an 7n-good graph. Recall that we can use Theorem to
find a triangle packing (73); in the reduced graph R of G, and then apply the Blow-up lemma
(Theorem so that for each ¢ we find a square path P; in G that almost spans the vertex set of
G corresponding to T;. So (P;); covers almost all the vertices of G. However, to prove Lemma
we require that each P; is both head- and tail-heavy. We will extend each P; both forwards and
backwards by finding square paths R;, R, such that R; PR} is a top- and tail-heavy square path,
and |R;|,|R}| are small. To do so, we will find folded paths F; and F! in R which will form the
‘framework’ for R; and R respectively.

This is achieved in Lemma [5.6] whose proof is the aim of this subsection. Given a triangle T;, in
order to find two ‘types’ of paths R;, R;, Lemma ‘produces’ two folded paths such that the first
three clusters in both of these folded paths are the clusters from 7;, but the order of these clusters
differs. Further, in both folded paths the last two vertices correspond to clusters containing many
high-degree vertices in G.

We use standard cycle notation for permutations, so, for example, (132) maps 1 to 3, 3 to 2 and
2 to 1.

Lemma 5.6. Let v,n >0 and n € N where 0 < 1/n < v < n < 1. Suppose that G is a graph on
n vertices. Let di; : V(G) — R be an (n,n)-good function such that

(5.7) dg(z) = (1 —v)dg(z)

for all x € V(G). Let T be the vertex set of a triangle in G. Then there exists 8 < t < 5/n
and an ordering vi,vs,v3 of T such that G contains a folded path F = wvivous...vs such that
di(vi—1),diz(ve) > (2/3 +m)n. Moreover, there exists o € {(132),(213)} and 8 < t' < 5/n such
that G contains a folded path H = Vy(1)Vs(2)Vo(3)V) - - - vy such that dg(vy_y), dg(vy) > (2/3 +n)n.

Proof. We split the proof into three steps. In the first step, we find a short folded path F’ whose
final vertex vs has di;(vs) > (2/3 +n)n. In the second step, we extend F” into F" so that the final
vertex v, of F' is a neighbour of v, in F”, and di(v,) > (2/3 + n)n. Finally, in the third step,
we extend F” into F' by appending four additional vertices. Simultaneously we will construct H
(using the same process used to construct F').

Step 1. Obtain an ordering vy, vs,v3 of T such that there exists a folded path F/ = vjvovs. .. vs
where di;(vs) > (2/3 +n)n and 3 < s < 4/n. Obtain o € {(132),(213)} such that there exists a
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folded path H' = v, (1)U (2)V0(3)V} - - - vy Where 3 < 5" < 4/n and diy(v) > (2/3 + n)n for the final
vertex v on H'.

Consider any S C V(G) with |S| = 3 and write S = {x1, 22, 23} where d| ( 1) < dp(xe) < dp(xs).
We define C(S) := (a1, a2, a3) where di;(z;) = (1/3 4+ aym)n for all 1 <1 < 3. So 1 <ap <ap <
as < 2/3n. We also write ¢(S) := a1 + ag + as.

Suppose that there exists z € T' with di,(z) > (2/3 4+ n)n. Then, writing T' := {v1, v2, v3 = 2},
we are done by setting F’ := v1vqvs and H' := vgvivz (s0 0 = (213)).

Therefore we may assume that di,(z) < (2/3 +n)n for all z € T. Note that ¢(T) > 3 since d,
s (n,n)-good. Further, the minimum degree of G implies that there are two vertices vy, v3 in T
with common neighbour vy € NA(T) \ T. Let v1 be the vertex in T\ {v2,vs}. Set F| := vivous
and F} := v1v9vsvg. Then FJ is a folded path with {vq,ve,v3} = T; and ks, k4 is the ordering of
Fj where k3 := 1 and k4 := 2. Since di; is (n,n)-good, we have c¢({v2,v3,v4}) > 3. Note that the
ordering ve,vs was arbitrary.

To achieve Step 1, we will now concentrate on achieving Step 1’.

Step 1'. Obtain a folded path F' = vivpvs. .. vs where d(vs) > (2/34+n)n and 4 < s < 4/n.

Suppose that for some 2 < i < 3/n, we have defined a folded path F such that the following hold.
(A;) F!:=wvi...vp, for some 4 <m; <i+2;
(Bi) Ti == {vm,, Vm,—1, Uk, } is such that c(T;) > i/2.

Note that T; = {vy, } U N/ (vmz) We have shown that (A2) and (B2) hold.
If diy(vm;) > (2/3 + n)n, set s := m; and F' := F]. Otherwise, we will obtain Fj ; from Fj

SO that F/ | satisfies (A;;1) and (Bjy1). Write m := m; and let k3, ..., k,, be the ordering of F’
Note that 1f there exist

(5'8) km+1 € {m -1, km} and Um+41 € Né(vm7vkm+1) \ V(Fi/)7
then vy ... vm41 is a folded path in G with ordering ks, ..., kmt1.
Proposmon ) and (5.7)) imply that
(5.9) !NG(Ti)! +NS(T)| > MY dg(x) —n = (1=)e(Ti)ygn —yn.
z€eT;
Write
(5.10) C(T;) =: (a1, a2,c3) 80 aq + o+ ag >i/2.

There are two cases to consider, depending on the sizes of NZ(T;) and NZ(T;).
Case 1. [N2(T;)| > (1 — v)aann — yn/2.
Suppose that there is no vertex vm41 € N&(T;) \ V(F) with d;(vm+1) > (2/3 + n)n. Then

(1= y)aann —yn/2 = |F{| < [NG(T) \ V(F)| <n/3

by Proposition 4.10|(i). So Proposition |4.10{(ii) implies that we can choose vy11 € N&(T;) \ V(F))
with

1
(.11) dofomin) = (G4n)net (1= argn = /2 |F
(A) /1 3
> —4+(ar+)n)n—2yn—(—-+2
3 U
1
> <3+(a1+1/2)77>n
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Let v;,vp € T; be such that d;(vj) = (1/3 + an)n and d’(vg) = (1/3 + agn)n. Observe that
Uma1 € N(Z;(Uj,vg). Set Tiy1 := {Um+1,v5,v¢}. Then, by (5 ,
(5.12) (Tit1) 2 (a1 +1/2) +aa + a3 or dG(va) (2/3 +n)n.
Case 2. |[NA(T;)| > (1 — v)(az + az)nn — yn/2.
Note that this is indeed the only other case by (5.9) and :5.10}. Then, similarly as above, Propo-
sition [4.10(i) and (ii) imply that we can choose vy, 41 € N&(T;) \ V(F}) with
2 1
(5.13) diz (V1) > min { <3 + 7}> n, <3 + (a2 + a3 +1/2) 77> n} .

Let vj,ve be two neighbours of vy, 41 in T;, where di(v;) < di(ve). So di(vs) > (1/3 + aun)n and
di:(ve) > (1/3 4+ agn)n. In this case we set Tjq1 := {vm41,vj,v¢}. Then

(5.14) c(Tiy1) > a1 +ag+ (ag +asz +1/2) or  dg(vmi1) > (2/3 +n)n.

In both Cases 1 and 2, vy, 41 ¢ V(F]) and {4, ¢} C {ky,,m —1,m}. If {j, £} = {ky,,m — 1} then we
obtain Fj, , from Fj by replacing vy, with vp, 11 (and &y, is unchanged). Then Fj _, is certainly a
folded path in G. Otherwise, one of j,ﬁ equals m, and we choose ky,11 so that {m, kn+1} = {J, ¢}
Note that ky,q1 € {km,m —1}. So Fj, | := v1...UnUnq1 is a folded path in G by . In both
cases, Fy,, is a folded path with

4<m<I|F | <m+1<i+3.

Moreover, since m = m; > 4, the first three vertices of Fj _; are vi,vs,v3, as required. So (A;;1)
holds.

If dG(vm+1) (2/3 +n)n then we set F' := Fj ; and Step 1’ is complete. Otherwise, ,
- 5.14)) and (B;) imply that ¢(T;41) > (i41)/2. So (Bi11) holds. We have thus deﬁned
so that A 1) and (Bi+1) both hold.

Therefore after repeating this process at most S := 3/ times either we obtain a folded path F’
as desired in Step 1’ or we obtain a folded path F{ = v;...vs (where s := mg) that satisfies (Ag)
and (Bg) and so ¢(Ts) > 3/2n. In the latter case, we may assume that di;(v;) < (2/3 +n)n for all
4<5<s-1 (otherwise setting F':=wv;...vj; yields our desired folded path). Note that

(Bs) 1
- Z . 1 +oTs)n > S (143/2)n = 5n/6 > (2/3+m)n
IETS
and so
(5.15) di:(vs) > (2/3 +n)n.
Observe that
(As)
(5.16) s < S+2<3/n+2<4/n.

Set F’ := Fg. This completes the proof of Step 1. Since the choice of the ordering v, v3 was
arbitrary, we can argue precisely as in Step 1, now with F} replaced with HY := v1v3v9v4 to obtain
a folded path H' as desired in Step 1 (so o = (132)). This completes Step 1. From now on we only
extend F’ to F since the process of extending H' to H is identical.

Step 2. Obtain a folded path F” := vjvovs...v, where 4 < s+ 1 <r <49/10n, where k, = s and
de(vs), dg(vr) > (2/3 +m)n.

Let Fy := F’' = v1...vs. Suppose that for some 0 < i < 1/37, we have defined folded paths
Fo, ..., Fjsuch that F; := vy ...vey; where for all 1 < j < i we have veyj € Np,(vs) and df; (vsyi) >
(1/3+in)n. So keyj =sforall 2 < j <.

17



By choosing an arbitrary vei1 € NZ(vs—1,vs) \ V(F') we can find our desired folded path Fy =
V1 ...0sVs41. (Such a vertex vgy; exists by and (5.15)) and since di; is (1, n)-good.) Thus, we
may assume that ¢ > 1.

If there exists 1 < j < with di;(vetj) > (2/3 + n)n, we are done by setting 7 := s+ j > 1 and
F" := Fj. Otherwise, Proposition [4.1{i) implies that

(5.16)

[NE (vs, vs4i) \ V (F3)] (da(vs) + da(vs4i)) —n — (4/n+10)

(1 =)(dg(vs) + dg(vsyi)) —=n = 5/n

(1= + )nn —yn —5/n > inn.

Since i < 1/3n, Proposition M(u) implies that NZ(vs, vs1i) \ V(F;) contains a vertex vsii4+1 with
dg(Vstit1) = (1/3 + (i + n)n.

Therefore (5.8)) implies that Fi11 := vy ...vsyi41 is a folded path with kg1 = s.
After r — s < 1/3n+ 1 steps we obtain F” := F,_; = vy ...v,, where v, € Npr(vg) and

(5.17) da(op) > (1/3+ (1737 + Dn)n = (2/3 + m)n.

Now implies that 4 <r <4/n+1/3n+ 1 <49/10n. This completes the proof of Step 2.
Step 3. Obtain F.

Let a,b € V(G), /2 be arbitrary. By Proposition (i), we have that

IN&(a, ) \ V(F")] > (; +n) n— (;47 tart 1) > <; " g) .
Proposition i) implies that there exists a set K (a,b) C NZ(a,b)\V(F") with |K (a,b)| > nn/2,
such that for each z € K(a,b) we have di(z) > (2/3 + n)n. Furthermore, implies that
K(a,b) € V(G),/2- Observe that {vs,v.} C V(G),/2. So, for each 1 < j < 4, we can find a distinct
vertex v,4; so that v,11 € K(vs,v,), and v,qj € K(Vy4j—2,0p4j-1) for all 2 < j < 4. Let ky, ..., k,
be the ordering of F”. Then F := vy ...v,44 is a folded path with ordering k1, ..., ky14, where

>
>

kri1:=8, kpyo: =71, kpgg:=1r+1, kepg:=1r+2.

To see this, observe that k; € {i —2,k;_1} forall r +1 <i <r+4since k, = s < 7.
Let t := r + 4. Then Step 2 implies that 8 < ¢t < 49/10n + 4 < 5/n, as required. Finally,
diz(vi—1), diz(ve) > (2/3 4 n)n, as required. O

Note that in Step 3 of the proof of Lemma [5.6| we add 4 vertices only to ensure that the folded
path F' has length at least 8 (this property will be useful later on). In particular, we could have
guaranteed that the last two vertices of F' have ‘large’ degree by only adding a single vertex in this
final step.

5.4. The proof of Lemma The next lemma shows that, given a suitable framework in the
reduced graph R of G, we can find a tail-heavy square path P such that, in two (or three) given
clusters, there are many pairs (or triples) of vertices that can be added to the start of P to extend
the square path. The necessary framework is a folded path whose first three vertices correspond to
these given clusters, and whose final two vertices have large core degree. (Recall that the a-core
degree df ;; is defined in Section ) The proof is essentially just an application of Lemmas
and its length is due to technical issues.
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Lemma 5.7. Let n,L € N and suppose that 0 < 1/n K 1/L < e K c < d < n < 1. Let R be
a graph with V(R) = [L]. Let G be a graph on n vertices with vertex partition Vo, Vi,..., VL such
that |Vo| < en and so that there exists m € N with |V;| = (1 £e)m for all 1 < i < L. Further,
suppose that G[V;, Vj] is (e,d)-regular whenever ij € E(R). Let F' =iy ...4; be a folded path in R
with 8 <t <5/n such that d%%c,G(it—l)v d%G(it) > (2/34+n)L. Then
(1) G contains an n-tail-heavy square path Q with |Q| < 11/n, and sets Ay, C Vi, \ V(Q) for
k = 1,2 with |Ag| > em, such that for any zp, € Ay where z129 € E(G), we have that z1220Q
is a square path;
(2) G contains an n-tail-heavy square path P with |P| < 11/n, and sets By C V;, \ V(P) for
k =1,2,3 with |By| > c¢m, such that for any z,, € By where z12223 is a triangle in G, we
have that z1z023P is a square path. Further, for any zo € Ba, z3 € Bs such that zoz3 € E(QG)
we have that zoz3P 1s a square path.

Moreover, neither P nor ) contain any vertices from Vj.

Proof. We will only prove (2) since the proof of (1) is very similar. Apply Lemmawith t playing
the role of n to obtain a square path P’ := z; ...z, where p satisfies

(5.18) 8<t<p<2A+1<10/n+1

and a mapping g : [p] — [t] such that dg;yig) € E(F) whenever zjz, € E(P'); and g(1) = 1,
9(2) =2, 9(3) =3 and g({p — 1,p}) = {t — 1,t}. Let f: V(P') — V(F) be such that f(z;) = ig(5)
for all 1 < j <p. So f(z)f(y) € E(F) whenever xy € E(P’). Moreover,

(5.19) flz1) =11, f(xe) =i2, f(x3)=1i3 and f({zp-1,2p}) = {it—1,0t}-
Let
(5.20) Y := (P); U(P)g = {z1,22,23,2p-1,2,} andlet X :=V(P)\Y.

Observe that X # () by (5.18). Then Lemma with G\ Vo, R, P', X, Y, 2¢, f playing the roles of
G,R,H,X,Y,c, f implies that there exists an injective mapping 7 : X — V(G) with 7(x;) € Vi(z))
for all 4 < j < p — 2, such that there exist sets
(5.21) Cr € Vi \7(X) forall ke{1,2,3,p—1,p}
such that
(i) if 2,2’ € X and za’ € E(P’) then 7(z)7(2’) € E(G);

(ii) for all k € {1,2,3,p — 1, p} we have that Cx C Ng(7(z)) for all x € Np/(xg) N X;

(iii) |Ck| > 2¢(1 —e)m for all k € {1,2,3,p — 1,p}.
Property (i) implies that 7(X) spans a square path P, := 7(x4)...7(2p—2) in G (which contains at
least three vertices by ) We would like to use P; to find an n-tail-heavy path. To do this, we
will find a short square path whose first two vertices lie in C},_1, C, respectively, and whose last two
vertices both lie in V(G),. Since d%f’G(it),d%G(it,l) > (2/3 + n)L, there exist sets Bt™1 C V;,_,
and Bt C V;, such that |B7!|,|Bt| > 2¢(1 —¢)m and B""1U B! C V(Q),. Let C*=! := B!\ 7(X)
and define C? similarly. Then

518
T, |ICY > 2¢(1 — e)m — |7(X)| > 2¢(1 —e)m —p+5 2¢(1 —e)m —10/n+4 > cm.
Recall that i;_1i; € E(F) by the definition of a folded path. Proposition implies that there
exists ig € N%(it_l, it), i.e. is84—1%¢ is a triangle in F'.

We will assume that f(z,—1) = i1 and so f(z,) = i by (the other case, when f(zp_1) = i
and f(xp) = it-1, is almost identical). Then (5.21)) implies that Cp—1 C Vi, ) \ 7(X) = Vi, \
7(X). Similarly C, C V;,\7(X). Proposition4.6{applied with V;, ,,V;,,V;,,Cp_1,Cp, Ct1, Ct, 7(X)
playing the roles of X1, Xo, X3, A1, A2, By, Ba, W implies that G contains a square path P, € C),_; X
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Cp x Vi, x Ct71 x Ct. Write P := y19y2y3y1ys. Observe that, by construction, V (P) N7(X) = 0,
and Ps is n-tail-heavy. We claim that

P = PPy = 71(x4) ... T(Tp—2)Y1Y2Y3Y4Y5

is an n-tail-heavy square path. Since P; and P, are vertex-disjoint square paths each containing at
least two vertices (by ), it suffices to show that the necessary edges between P; and P, are
present, i.e. that the necessary edges between 7(z,_3), 7(xp—2) and y1, y2 are present. Observe that
Np/(zp—1) N X = {zp—3,2p—2}. Then (ii) implies that y; € Cp—1 € Ng(7(zp—3)) N Na((T(zp—2)),
as required. Similarly yo € Cp, € Ng((7(zp—2)), as required. So P is a square path. Further, by
construction, P is disjoint from Vj.

Note further that
(GNE)
|Pl=|P|+|Pl=p < 11/n.

Let By := Cy \ V(P2) for k =1,2,3. Then (5.21]) implies that
(5.19)
B € Vi@ \ (T(X) UV (R)) =" Vi \V(P).
Moreover, (iii) implies that, for k£ = 1,2, 3, we have |Bg| > 2¢(1 —e)m—|P| = 2¢(1 —e)m—5 > cm.
Let 2z € By for k = 1,2,3 such that 212923 is a triangle in G. We must show that z12923P is a
square path. That is, we need to show that zo € Ng(7(z4)) and 23 € Ng(7(z4)) N Ng(7(z5)). But,
since z;, € Cy, for all k = 1,2, 3, this is implied by (ii). Similarly, given any zo € B, 23 € B3 such
that 2923 € E(G), (ii) implies that 2223 P is a square path. O

In the next lemma, given a small collection of folded paths, we obtain a small collection of short
square paths, with certain useful properties. We find a pair of square paths in G corresponding to
each of the ¢ triangles T; = (i,1)(¢,2)(7,3) in the reduced graph R of G. The first, P;, is tail-heavy,
and there are many pairs of vertices in (i,1) x (i,2) which can precede P;. The second, Py;, is
head-heavy, and there are many pairs of vertices in (4,3) x (i,1) which can succeed Pyy;. The proof
is by repeated application of Lemma

In the proof of Lemma [5.1) we will find a square path ); containing most of the vertices in T;
which will be sandwiched between Ppy; and P;. In order to connect ; with P; and Pp,; we need
many pairs of possible start- and endpoints.

Lemma 5.8. Suppose that 0 < 1/n < 1/l < e K c < d < n <K 1. Let R be a graph with V(R) =
(0] x [3]. Suppose that G is a graph on n vertices with vertex partition {Vo} U{Vi; : (i,7) € [{] x [3]}
such that |Vo| < en and |V; ;| =: m for all (i,7) € [{]x[3], and G|V} ;, Vi jr] is (e, d)-reqular whenever
(i,7)(#,7") € E(R). DefineV := {(i,]) : d%%C,G(ViJ) > (2/3+mn)3¢}. Let Fy,...,Fy, F{,...,F] be a
collection of folded paths in R such that, for all 1 < i < £ we have
(F1) F;:==v;1...viy, and F! := ;1 ... u;s, where 8 < s;,t; <5/n;
(F2) {,U’L',tifla ,Ui,tz‘a Ui,siflv ui,si} g V)‘
(F3) for all 1 < j < 3 we have v;j = (i,j) and there exists o; € {(132),(213)} such that
Ui oy(1) = Vil Ujgy(2) = Vi2 and Uj 5, (3) = Vi3
Then G contains a collection P := {Py,..., Py} of vertex-disjoint square paths such that, for all
1 < s <Y, the following hold.
(Pl) |Ps|a |P€+s| < 11/7’;
(P2) Ps is n-tail-heavy and Py s is n-head-heavy;
(P3) for k = 1,2, there are sets A}, C Vi such that |A;| > ¢cm/2, with the following property:
for any x), € Aj where 112 € E(G) we have that x1x9P5 is a square path;
(P4) for j = 3,1, there are sets B C V;; such that |Bj| > ¢cm/2, with the following property:
for any y; € B; where ysy1 € E(G) we have that Ppysysy; s a square path.
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Proof. Suppose, for some 1 < r < 2/, we have obtained a collection P’ = {Py,..., P._1} of vertex-
disjoint square paths, such that each P; with 1 < i < r — 1 satisfies the required properties. We
will find a suitable embedding of P, into G.

Observe that

(5.22) 3ml <n=3ml+ |Vo| <3ml+en < 4ml.
For (i,7) € [€] x [3], let V/; := V; j \ Upep: V(P). Then

11 22 22¢? 88¢?
(5.23) Vi \Vijl< —@r-1)<Ze< =070 =< =8
T U n t U 3
Proposition (1) implies that G[V/;, Vj; ., is (2¢, d/2)-regular whenever (i,5)(7, j') € E(R).

Define V{j so that {Vg}U{V}; : (i,7) € [¢] x [3]} is a partition of V/(G). Thus, (5.23) implies that
Vol < en+eml < 2en. We can view the vertices (i,7) in R as corresponding to the clusters V/ ;.
In particular, if d2RC7G(VZ-7j) > (2/3 4 1)3¢ then 1’ implies that df, ;(V/';) > (2/3 +n)3L.

We will consider three cases, depending on the value of r, i.e. depending on the properties
required of P,.

Case 1. 1 <r < /.

Apply Lemma to G with Vg, V/;,2e,¢/2,d/2,n, F, playing the roles of Vo, Vi, e, ¢,d,n, F. Thus
Lemma [5.7(1) implies that G contains an n-tail-heavy square path P, with |P,| < 11/n and sets
AR CVAV(B,) for k= 1,2 with |A}| > em/2 such that for any z), € A} where 2122 € E(G), we
have that xyx9 P, is a square path. Note that P, shares no vertex with any square path we have

previously embedded (since it is disjoint from Vjj). Therefore P, has the required properties.
Case 2. (+1<r <2l and o,—y = (132).

Let s := r—/{. The first three vertices in F are (s, 1), (s, 3), (s, 2) in that order. Apply Lemmal5.7|to
G with Vj, ifj, 2e,¢/2,d/2,n, F! playing the roles of Vp, V;, ¢, ¢,d,n, F. Thus Lemma 1) implies
that G contains an n-tail-heavy square path Qs with |Qs| < 11/n and sets B: CV, V(Qs) for
J =1,3 with |Bj| > em/2 such that for any y; € Bj where y1y3 € E(G), we have that y1y3Qs is
a square path. Note that Qs shares no vertex with any square path we have previously embedded

(since it is disjoint from Vj). Finally, observe that P, := Q% is precisely the required square path.
Case 3. /+1<r <20 and o,_; = (213).

Let s := r—/¢. The first three vertices of F. are (s,2), (s, 1), (s,3) in that order. Apply Lemmal5.7|to
G with V), Vi’,j7 2e,¢/2,d/2,n, F! playing the roles of Vp, V;, ¢, ¢,d,n, F. Thus Lemma 2) implies
that G contains an 7n-tail-heavy square path Qs with |Qs| < 11/n and sets B: CV,; V(Qs) for
J = 1,3 such that for any y; € B where y1y3 € E(G), we have that y;1y3Q5 is a square path. Note
that Qs shares no vertex with any square path we have previously embedded. Finally, observe that

P, := Qj} is precisely the required square path (and Bf, B3 the required sets). ]

The final step in this section is to combine Theorem and Lemmas and to prove
Lemma [5.11

Proof of Lemma[5.1. Without loss of generality, we may suppose that 0 < ¢ < 7 < 1 since proving

the lemma for & < e implies the lemma for €. Choose further constants d,a with e < d < a < 7.

Apply Theorem to obtain Ly € N such that every (n/2)-good graph on L > Lj vertices

contains a perfect Ks-packing. Without loss of generality, we may assume that 1/Ly < &, and

that the conclusion of Lemma holds with Lo/2,7d,n/4 playing the roles of n,7,n. Apply
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Lemma with parameters ¢’ := €%, L to obtain M, ng. Without loss of generality, assume that
1/ng < 1/M < 1/Ly. We therefore have the hierarchy

0<l/mp<gl/M<xl/[j<e<d<agn<K]l.

Let G be a graph of order n > ng such that G is n-good. Apply the Regularity lemma (Lemma
to G with parameters €', d, Ly to obtain clusters V7, ...,V of size m, an exceptional set j, a pure
graph G’ and a reduced graph R. So |R| = L and Ly < L < M and |Vy| < €'n; and G'[V}, Vj/]
is (¢/,d)-regular whenever jj’ € E(R). By Lemma {4.13(ii), d o and R are both (1/2, L)-good.
Moreover, Lemma [4.13|i) implies that, for all j € V(R),

(5.24) dr(j) = (1 = 6d)dp 6 (5)-
Theorem implies that R contains a perfect K3-packing 7. So there exists an integer ¢ with
(5.25) 0<L-30<L2

so that T := {T1,...,Ty} contains exactly ¢ triangles. Let R’ := R[V(T)]. Then T is a 2-regular
spanning subgraph of R’. We have that

623
(5.26) n=mL+|Vo| <mL+en < mB+2)+en andso n <4mdl.

Relabel the vertices in R’ so that the ith triangle of T has vertex set T; := {(¢,1), (i,2),(i,3)}. So
V(R') = [¢] x [3]. Relabel those clusters of G which correspond to vertices of R’ by writing X, ; for
the cluster corresponding to (4, j). Choose X¢ so that {Xo} U{X;; : (i,7) € [¢] x [3]} is a partition
of V(G). Note that | Xo| < |Vp| + 2m < 2¢'n.

Notice that since G’ is the pure graph of G, the definition of core degree implies that for all
X =(i,j) e V(R)),
(5.27) % (X)) > dfy (X) > diy o(X) — (d+¢)|R|
and (df o(X))/|R'| = (d% o(X))/|R|. Thus, Proposition implies that d, o, and R’ are both
(n/4, L)-good. Then ([5.24) implies that, for all X € V(R’), we have

629 27
drp/(X) 2 dr(X) -2 = (1-6d)drc(X)—22>(1-T7d)dp o(X) = (1-7d)dg o (X).

Let
(5.28) X = {(i,j) € V(R)) : dj (i, 5)) = (2/3 + n/4)L}.
For each 1 < i < ¢, apply Lemmawith R',)30,T;,n/4,7d, d ¢ Playing the roles of G, n, T', 7,7, dg,
to show that R’ contains a folded path F; := v} ...v] where 8 <t; < 20/n and {v}, v}, v}} = T;;
and {vgﬁl, vfgl} C X. Without loss of generality, we may assume that

vi = (i,4) for (i,j) €[] x [3].

Moreover, for each 1 < i < ¢, R’ contains a folded path F] := ut . u; where 8 < s; < 20/,
{ul,uh,us} = Tj; and {u) _;,u’} C X. Further, there exists o; € {(132),(213)} such that

uj = (i,04(7)) for (i,j) € [f] x [3].
Therefore the properties (F1)—(F3) as stated in Lemma |5.8/ hold with n/4 playing the role of 7.
Therefore Lemma applied with R',G’, Xo, X, ;,¢',/2,d,n/4, X, F;, F] playing the roles of
R,G, Vo, Vij,e,c,d,n,V, F;, F/, implies that G’ contains a collection P := {Pi,..., Py} of vertex-
disjoint square paths which satisfy (P1)—(P4) with n/4, /2 playing the roles of 7, ¢ respectively.
In particular, (P1) implies that |P| < 44/n for all P € P.
For each 1 < i < ¢, write [Pi]3 =: wjv; and [Ppy]; =: viu}. So (P2) implies that
{ui,vi,u;,vg} Q V(G/)U/4 g V(G)ﬁ/4
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Now Lemma implies that

88¢
(5.29) Y < =< @
Pep
Let a,b € V(G)n/4 be arbitrary. By Propositions {.1] E ) and [4.11] -

1 n n nn-
N2 >+l )n—= =210 P| + 4¢.
| G<a,b>nr_(3+2)n 575 o 2P

So we can find a collection {w;, z;, w},z : i € [¢]} of distinct vertices disjoint from P such that

(ARt
w;v;w;x; is an n-tail-heavy square path in G, and z/wlviu! is an n-head-heavy square path in

G. Therefore, for 1 < i < /, setting Q; = Pyw;x; anZi ZQ;H = wia} Py, we have that Q :=
{Q1,...,Qa} is a collection of vertex-disjoint square paths in G such that |Q| < 44/n+ 4 < 45/n
for all @ € Q; for all 1 < ¢ < ¢ we have that Q; is n-tail-heavy and Qyy; is n-head-heavy; and Q
satisfies (P3) and (P4) with /2 playing the role of c¢. For each 1 <i < fand k = 1,2, let AL C X;
be the sets guaranteed by (P3), and for each j = 3,1, let Bji- C X, ; be the sets guaranteed by (P4).
So |AL], \BZ] > am/4.

For (i, ) €[] x 3], let X[ ;:=X;;\Ugeo V(Q)- So

(1-eYym< (1 —-€/2)m -4 < [X; ;] <m.

Lemma (1) implies that, whenever (i,5)(¢,5") € E(R'), G’[X{Q,X’, ,] is (2¢',d/2)-regular.
Recall that E(T) = {(i,5)(4,5") : 1 < i < {1 < j < j < 3} Apply Lemma with
R, G XZ’],BE, T,2,2¢',d/2 playing the roles of R,G,V;,L, H, A, ¢,d to obtain a collection {Y;; :
(i,5) € [f] x [3]} of disjoint subsets of V(G) so that, for all (i,7) € [[] x [3], Y;; C X[, (so
YiiNUgeo V(Q) =0); G'[Y:;, Y ] is (¢'V/3,d/4)-superregular for all 1 <i < fand 1 < j < j' < 3;

and
(5.30) Vi = m'>1—Y3)m forall (i,5)e[f] x[3].
Lemma [5.8(P3) implies that, for k € {1,2},
|AL N Y] > (/4 —3)m > am! /5,
and similarly (P4) implies that, for j € {3,1}, |B} NY; ;| > am'/5.

Write P32m, = 21 ...23,, for the square path on 3m’ vertices. Let ¢; : V(P32m,) — T; be defined
as follows. For all integers 0 < j < m/, we set ¢;(23541) = (2,3), ¢i(23542) = (i,1), and ¢;(23543) =
(7,2). It is easy to check that, for all 1 < ¢ < ¢, ¢; is a graph homomorphism; and \¢Z_1(x)\ =m/
for all z € T;.

For each 1 < i < ¢ we will (independently) do the following. Apply Theorem [.8to the subgraph
of G’ spanned by Y; 1 UY;2 UY;3, with P32m, playing the role of H (so A := 4) and ¢; playing
the role of ¢. (So the remaining parameters are given by d/4, a/5,&'V/? playing the roles of d, c,¢.)
Ident1fy special vertices 21, 29, 23m/—1, Z23m’ t0 the corresponding special sets B3 nY;s, B1 NYi1, A N
Yi1, A5 N Y.

Thus obtain a square path

Si = 1;717337%71373’2%%73 “e x%.b/ﬁxfn/’lx%lg
in G' with V(S;) =Y; 1 UY; 2 UY] 3 such that
x’i73 € Bé NY;3; $Zi,1 S Bi NYi1; :L'in/J S A’i NY;1 and xfnlg S A’é NYo.

Lemma (P3) implies that xin,71xin,’2Qi is a square path and (P4) implies that Qgﬂ-ﬂ:’i’?)xil is a
square path.
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Let P’ := {Qu4:SiQ; : 1 < i < £}. Observe that P’ is a collection of vertex-disjoint square
paths. We saw earlier that Q; is n-tail-heavy and Q. ; is n-head-heavy. Therefore each path in P’
is n-heavy. Finally,

(5-26)
Sl > Y si=smt > 31 -YPyml S (1-e)n.
pPeP’ 1<i<t
This completes the proof of Lemma [5.1 O

6. CONNECTING HEAVY SQUARE PATHS INTO AN ALMOST SPANNING SQUARE CYCLE

Lemma implies that we can obtain a collection (P;); of vertex-disjoint n-heavy square paths,
which together cover almost all of the vertices of our n7-good graph G. The next stage — the goal of
this section — is to connect these paths together into a square cycle, which necessarily covers almost
all of the vertices of G. Roughly speaking, we will show that one can connect square paths P and
() into a new square path whose initial segment is P and whose final segment is (), provided that
P is n-tail-heavy and @ is n-head-heavy. This new square path will only contain a small number
of vertices which do not lie in P or ). Then, provided that the additional vertices lie outside of
(P;)i, we can repeat this process to obtain an almost spanning square cycle.

Given a graph G with ab,cd € E(G), we define an (ab, cd)-path to be a square path R in G
such that [R], = ab and [R]] = cd. Note that an (ab, cd)-path is not, for example, a (ba, cd)-path.
Given a set of vertices W, we say that a square path P avoids W if V(P)NW = (.

Definition 6.1. (n-flexibility) Given n > 0, we say that a square path P in a graph G is n-head-
flexible if P is n-head-heavy and G[(P);] = K4. We say that P is n-tail-flexible if P is n-tail-heavy
and G[(P)f] & Ky. If P is both n-head- and n-tail-flezible, we say that it is n-flexible. We drop
the prefiz n- if it is clear from the context.

This concept is useful for the following reason. Suppose that P = x1...xy is a tail-heavy square
path and ¢ > 4. If P is tail-flexible, then P’ := x1...2y_sxpxs_1 is also a tail-heavy square path.
So we have more flexibility (in the literal sense) in connecting P (or rather a square path containing
the vertices of P) to another square path.

Our first aim will be to extend a tail-heavy square path to a tail-flexible square path.

6.1. Finding flexible square paths. Our aim in this subsection is to prove the following lemma,
which implies that, given a tail-heavy square path P and a head-heavy square path P’, either P
and P’ can be ‘connected’ or P and P’ can be extended to tail- and head-flexible square paths
respectively. Recall that in an 7-good graph G on n vertices, V(G), is the set of all vertices
x € V(Q) with dg(z) > (2/3 + n)n.

Lemma 6.2. Let n € N and n > 0 such that 0 < 1/n < n < 1. Suppose that G is an n-good
graph on n wvertices. Let a,b,c,d be distinct vertices in V(GQ),, and suppose that ab,cd € E(G). Let
W C V(G)\ {a,b,c,d} with |W| < nn/8. Suppose that G contains no (ab,cd)-path P such that
|P| <17 and P avoids W. Then there exist square paths S, S’ such that all of the following hold.
(i) [S]; = ab, "] = cd and S, S’ avoid W ;
(ii) |[S|,]57] <10 and V(S)NV(S") = 0;
(iii) S is n-tail-flexible and S is n-head-flexible.

Proof. Throughout the proof, we will write tail-flexible (head-flexible) for n-tail-flexible (n-head-

flexible) and will similarly write tail-heavy and head-heavy. We say that a square path S is ab-good

if |S| < 10; [S]; = ab; S avoids W U {c,d}; and S is tail-flexible. Analogously, we say that a path

S’ is ed-good if |S'| < 10; [9'] = cd; S” avoids W U {a,b}; and S’ is head-flexible. Suppose that

G contains no pair S, S’ of vertex-disjoint square paths such that S is ab-good and S’ is cd-good.
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We must show that this implies that G contains an (ab, cd)-path which has at most 17 vertices and
avoids W.

Suppose that there is a square path S in G that is ab-good. By our assumption any cd-good
square path S” in G is such that V(S) NV (S’) # 0. By adding the vertices in V(S) \ {a,b} to W
we now have that |W| < nn/7 and there is no cd-good square path S’ in G. Otherwise, we have
that there is no square path S in G that is ab-good (and |W| < nn/8). Without loss of generality,
assume that |W| < nn/7 and there is no cd-good square path S’ in G. (The proof in the other case
is essentially identical.)

At every step of the proof, we will have two vertex-disjoint square paths P, P’ such that [P];, = ab
and [P']J = cd, and |P|,|P'| < 8; and a set U := V(G) \ (W U V(P) U V(P')) which we call the
surround of P, P’. Initially, we take P := ab and P’ := cd. In each step, we modify P, P’ so
that any new additional vertices were taken from U, and P, P’ still satisfy the specified properties.
Then we update the surround U of the new P, P’. Note that P’ is not head-flexible at any stage
(otherwise it is cd-good). Further, in every step we have |U| > (1—mn/4)n. Proposition [4.14] implies
that the graph with vertex set V(G) containing every edge of G with at least one endpoint in U is
(n/2,n)-good. Moreover, for all x € V(G),

(6.1) da(z,U) > dg(x) — nn/4.

Assume, for a contradiction, that there is no (ab, cd)-path in G which has at most 17 vertices and
avoids W.

Claim 1. Suppose that P, P' are vertex-disjoint square paths that avoid W with |P|,|P’| <8 and
[P]; = ab,[P']3 = cd. Let U be the surround of P, P'. Then the following hold:
(A) for any 4-segment x1x2y1y2 of P’ with x1,x9 € V(G)y,, we have Ng,(xl, xg)ﬁNIQJ(yl, y2) = 0;
(B) for any 2-segment x1z2 of P’ we have that NE(x1,x2), is an independent set in G;
(C) for any 2-segments x1x9,y2y1 of P, P’ respectively, where xoys € E(G), we have that

NE (21, 22) N NE(y1,y2) = 0.

We now prove Claim 1. If (A) does not hold, there is some u € NZ(21,22) N N3 (y1,y2) and then
G contains a cd-good path @ (with |Q] < [P'|+1 <9 and [Q]; = zi1x2uyiy2), a contradiction. If
(B) does not hold, there is an edge uv € E(G[N(z1,%2),]) and then G contains a cd-good path @
(with |Q] < |P'|+2 < 10 and [Q]; = uvzi22), a contradiction. If (C) does not hold, there is some
z € NE(z1,22) N NZ(y1,y2) and then G contains an (ab, cd)-path @ with |Q| < |P|+ |P/|+1 < 17
which avoids W, a contradiction. This completes the proof of the claim.

Observe that, by Propositions [4.1[i) and [£.11f(i), for all distinct u,v € V(G),,
, 2
(6.2) ING (u,v)] = 2(2/34+3n/4)n—n> (1/3+n)n and |Ngj(u,v),| > nn.

Claim 2. There exist vertex-disjoint square paths T,T' in G such that |T|,|T’| < 5; T is tail-heavy
and T’ is head-heavy; [T]; = ab, [T']3 = cd; T,T" avoid W; and the final vertex of T is adjacent
to the initial vertex of T".

We now prove Claim 2. Let U be the surround of ab,cd. By , there exist d' € NZ(c,d),
and ¢’ € NE(d', c), (which are necessarily distinct). Then ab and ¢/d’cd are vertex-disjoint square
paths avoiding W. Remove ¢,d’ from U. So U is the surround of ab, c’d'cd. Since ¢,d" € V(G),,
Claim 1(A) applied to ¢/d’'cd implies that N3 (¢, d’) N NZ(c,d) = 0. Let

N := Ng(a,b) and N':= NZ(c,d)UNE(c,d).

Then
6-2)
IN'| = ING (', d)| + | NG (e, d)| = (2/3+ 2n)n.
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Proposition [4.11](i) implies that
(6.3) [Ny | > (1/3 4 2n)n.
Let y € Ny, be arbitrary (N, # 0 by (6.2))). Then

, ,

So there is some z € N; N Ng(y). Set T := aby and take T := zcd if z € N (¢, d), or T := zdd'cd
if z € NA(¢,d’). This completes the proof of Claim 2.

Let T and T’ be as in Claim 2. Write [T]3 := wz and [T']; = 2'w’, where 22’ € E(G) (see
Figure. Let t :=|T| <5 and ¢’ := |T’| < 5. Let U be the surround of T, 7" and let Y := N (w, z)

and Y’ := NZ(2/,w’). Claim 1(C) applied with T, 7", wz, z'w’ playing the roles of P, P, z122, yay1
implies that Y NY’ = (). Therefore, by Proposition [4.11|(i),

! !/ !
(YUY | > YUY | —n/3=|Y|+|Y'|—n/3 = (1/3+2n)n.
Now G[(Y UY"),] contains no isolated vertices by Proposition |4.11{ii). Observe that Y, # () by
(6.2). Moreover, Claim 1(B) implies that Y,  is an independent set in G. Therefore every vertex of
Y, has a neighbour in ;. Choose 3’ € Y, and y € Y, with y'y € E(G).
We have obtained vertex-disjoint square paths
(6.4) Ty =T, qwzy and y'T =y'z’w'[T']) , suchthat z2’,yy’ € E(G),
and T is tail-heavy and T” is head-heavy. Remove y,3 from U. So U is the surround of Ty, y'T".
Let Z := Nj(z,y) and Z' :== NE(y',2'). Claim 1(C) applied with Ty, y'T", xy, y'z’ playing the roles
of P, P, z1x9,yoy1 implies that
(6.5) zZnz =0.
Let A% := ZN N} (y',2') be the set of vertices in U adjacent to both x,y and at least one of ¢/, '
Define A¥'* .= 7' N N{(x,y) similarly. So certainly
(6.6) Az
Claim 3. E(G[A}, Z;]) # 0.

Now (6.5) and (4.1)) imply that

(6.7) 0= Nj(z,y,y,2") = AN AV =7 N AW = Zn AV,
Let A:= NP (x,y,y,2'). Observe that A = A™ U AY® and U N {z,y,y’,2'} = 0. Then
(8/3_'_377)” Z dG’(UvU) = ZdG’(u7 {w,y,y',w'}) 3‘A’ +2(n — ‘AD = |A’ + 2n,
ve{z,y,y' x'} uelU
and hence |A| > (2/3 + 3n)n. By Proposition [4.11](i),
(65) 4] = (1/3+ 3.

(6.2) implies that |Z}| > nn. Claim 1(B) applied with T'y,y"T",y'z" playing the roles of P, P', z1x

implies that Z; is an independent set in G. Suppose that E(G[A7?,Z]]) = 0. Then no vertex in

Z, has a neighbour in A3”. Therefore, for all z € Z;, Ny (2) N ((A*™ U Z'),) = 0. So

16.7) /ot
(Al = AT AR S A 12 = (AT U 20| < U\ Nu(Zy)] < n - maxde(z,U)
n
©1)

< (1/3-30/4)m,
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Figure 2: The structure obtained at . We first obtain the black edges (Claim 2), then the blue
edges, then the red edges, where at least one of the dashed red edges is present after .

a contradiction to . This proves Claim 3.

By Claim 3, we may choose z € A3 and 2’ € Z; such that 2z’ € E(G). We have shown that G
contains vertex-disjoint W-avoiding square paths

(6.9) Tyz = [T),_ywzyz and 2'y'T =2'yz'w' [T} ,;

such that z2’,yy/, 22’ € E(G) and one of zy/, za’ € E(G); where {w,z,y, 2,2,y , 2, w'} C V(G),
(see Figure[2). Claim 2 implies that |Tyz|,|2'y/T’| < 7. Remove z, 2’ from U. So U is the surround
of Tyz, 2/y'T'.

We consider two cases, depending on whether z2' € E(G) or zy' € E(G).
Case 1. z2’ € E(G).

We will apply Claim 1(A) and (C) with T'yz, 2'y/T’ playing the roles of P, P’. Claim 1(A) applied
with 2'y/z’'w’ playing the role of z1zoy1y2 implies that NZ(2',y') N N (2/,w') = 0. Claim 1(C)
applied with yz, 2’y playing the roles of x1x2, yoy1 implies that N (y, 2)NNZ(2',y') = 0. Claim 1(C)
applied with yz, z'w’ playing the roles of 212, yoy1 implies that N (y, 2)NNZ(z',w’) = 0. Therefore
NE(y,2), NE(2',y'), NE (2!, w') are pairwise vertex-disjoint subsets of U. But implies that each
set has size at least (1/3 4+ n)n, a contradiction. So we are done in Case 1.

Case 2. zy' € E(G).

This case is similar to Case 1. Observe that now Ty, z2'y'T" are vertex-disjoint square paths each
containing at most eight vertices, and U is the surround of Ty, zz'y/T’. We will apply Claim 1(A)
and (C) with Ty, zz'y'T’ playing the roles of P, P’. Claim 1(A) applied with zz'y’2’ playing the role
of x122y1y2 implies that NZ(z, 2/)NNZ(y',2') = 0. Claim 1(C) applied with zy, zz’ playing the roles
of 2129, y2y1 implies that NZ(x,y) N N3 (z,2') = 0. Claim 1(C) applied with zy,y'z’ playing the
roles of x1x2, yoy1 implies that N7 (z,y) N NE(y',2') = 0. Therefore NZ(z,y), N (z,2'), NG (Y, ')
are pairwise vertex-disjoint subsets of U. But implies that each set has size at least (1/3+n)n,
a contradiction. So we are done in Case 2.

In both cases we obtain a contradiction to our assumption that there is no (ab, cd)-path in G which
has at most 17 vertices and avoids W. This completes the proof of the lemma. O

6.2. Connecting flexible square paths. The proof of the next result is similar to that of
Lemma 21 in [10] (although there the graph G has minimum degree not much less than 2n/3
and is ‘non-extremal’).

Lemma 6.3 (Connecting lemma). Let n € N and 6,7 > 0 such that 0 < 1/n < § < n < 1.
Suppose that G is an n-good graph on n vertices. Let a/,b',c,d’" be distinct vertices in V(G), where
adtl,dd € E(G). Let W C V(G)\{d,V,c,d'} with |W| < dn. Then G contains an (a'b',dd")-path
on at most 23 vertices which avoids W .
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Proof. Suppose that G contains no (a't/,¢’d’)-path on at most 17 vertices which avoids W. Ap-
ply Lemma to obtain vertex-disjoint square paths @, Q" such that (i)—(iii) hold. (Where
atl,dd,Q,Q play the roles of ab,cd, S, S’ respectively.) Let ¢ := |Q| < 10 and ¢ := |Q'| < 10.
Write [Q]3 =: ab and [Q']; =: ed and set X := {a,b,c,d} C V(G),. Let U :=V(G)\ (WUV(Q)U
V(Q')). Observe that X NU = (), and |U| > (1 — 2§)n. Proposition implies that G[U] is
(n/2,n)-good. Moreover, for all x € V(G),

(6.10) da(z,U) > dg(x) —nn/2.
Claim. It suffices to find a path P with (P); = {a,b}, (P)y = {c,d}; V(P)\ X CU and |P| < 7.

To prove the claim, suppose we have such a path P. Note that

(Qlgab, [Ql;gba, edlQ5y delQ)E,

are square paths by Lemma (iii). Then P’ := [Q];QP[Q’];Lz is an (a't/, ¢'d")-path which avoids
W by Lemma [6.2(i). Finally, Lemma [6.2{ii) implies that |[P'| < |Q| + |Q'| + |P| — 4 < 23. This
completes the proof of the claim.

Forall1 <i<4 letS;:={veU:dg(v,X)=1i}. Then

(6.10)
8/3+2mn < Y da(x,U) = da(u,X) = Y i|Si| <4|Ss| +3|Ss| +2(n — [S3] - |Sa]),

reX uelU 1<i<4

and therefore

(6.11) |Ss] + 2|S4| > (2/3 + n)n.

Suppose that there is some xy € E(G[S4,S3 U Sy]). Then G contains a square path P with
V(P) = {a,b,z,y,c,d} which satisfies the claim. (Indeed, if for example a ¢ Ng(y), then we can
take P := abxycd or P := abxydc; or if ¢ ¢ Ng(x), then we can take P := abxydc or P := baxydc.
The other cases are similar.) Therefore we may assume that

(6.12) E(G[Sy,S3U S4]) = 0.

Suppose that Sy # (). Proposition :4.11(iv) applied with G[U],n/2,Sy4,S3 U Sy playing the roles of
G,n, X,Y implies that |Sy4| + (|S3| + [S4|) < (2/3 —n/2)n, a contradiction to (6.11). Therefore
(6.11]) implies that

(6.13) Sy=0 and |S3| > (2/3+n)n.

Let

Tup = NZ(a,b) N S3 and Toq:= N{(c,d) N Ss.

Suppose that there exists © € Ty, and y € T4 such that zy € E(G). Then G contains a square
path P with V(P) = {a,b,z,y,c,d} which satisfies the claim. (For example, if = € N(?}(a, b,c) and
Yy € ng}(a, ¢,d) then we can take P := baxycd, as in Figure Observe that in this case and the
other three cases, there is exactly one such P.) So we may assume that

(6.14) TowNTey = 1] ; TypUTe.g=S3 and E(G[Tab,Tc ]) = 0.

(The first two assertions follow from and the definitions.) Proposition [£.11fiv) applied with
GU],n/2, Tay, Teq playing the roles of G,n, X, Y implies that, if Ty, Teq are both non-empty, then
|Tap| + |Teal < (2/3 —n/2)n, a contradiction to and (6.14). Without loss of generality, we
may assume that T, = (. Therefore |T4| > (2/3 + n)n. Now, by Proposition [4.1}i) and (6.10)),
we have that |NZ(a,b)| > 2(2/3 +n/2)n —n > (1/3 + n)n. Proposition i) implies that there
exists z € NZ(a,b),. Then
(6.10)
Ny (2) (Tl > ds(2, V) + | Teal =1 5 (134 35/2)n.
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b d

Figure 3: A tail-flexible path Q and head-flexible path @’ with [Q]3 = ab and [Q'], = cd and
adjacent vertices x € N3(a,b,c¢) C Ty and y € N3(a,c,d) C T.q. The red line represents the
ordering of a square path with vertex set V(Q) UV (Q') U {x,y}.

So there exists uv € E(G[Ny(z) NT,4]) by Proposition |4.11{(iii). But then we can set P := abzuvcd
if u € Ng(b); or P := bazuved if u € Ng(a). This completes the proof of the lemma. O

6.3. An almost spanning square cycle. The aim of this section is to prove Lemma which
states that every sufficiently large n-good graph G on n vertices contains a square cycle that covers
almost every vertex in G. The idea is to first apply Lemma [5.1] to G to find a collection P of heavy
square paths that cover most of G. Then we repeatedly apply Lemma to connect together these
square paths into a single almost spanning square cycle in GG. If we just apply Lemma to G,
then when connecting two square paths together we may be forced to use some vertices from other
square paths from P. To avoid this problem we in fact connect the square paths from P together
using only vertices from a small set R C V(G) that is disjoint from P. We refer to R as a reservoir.
R will be constructed in Lemma [6.5] so that G[R] ‘inherits’ the degree sequence of G (that is G[R]
is (n/2,|R|)-good). This will allow us to apply Lemma [6.3| to G[R] rather that G itself. The idea
of connecting paths through a reservoir has been used, for example, in [10} 13} 28, [32].

The hypergeometric random variable X with parameters (n,m, k) is defined as follows. We let
N be a set of size n, fix S C N of size |S| = m, pick a uniformly random 7' C N of size |T| = k,
then define X = |T'N S|. Note that EX = km/n. To prove Lemma we will use the following
standard Chernoff-type bound (see e.g. Theorem 2.10 in [22]).

Proposition 6.4. Suppose X has hypergeometric distribution and 0 < a < 3/2. Then P(|X —
a2
EX|> aEX) < 2e 55X,

Lemma 6.5. (Reservoir lemma) Let n € N and let 6,7 > 0 such that 0 < 1/n < 6§ < n < 1.
Suppose that G is an n-good graph on n vertices. Then there exists R C V(G) such that |R| = on
and

o for all v € V(G) we have dg(v, R) > (dg(v)/n —n/8)|R|;
e G[R] is (n/2,dn)-good.

Proof. Choose R C V(G) uniformly at random from all () subsets of V(G) with size én. We first
show that the probability that, for all v € V(G), we have

(6.15) de(v, R) > (1 _ g) 3dc(v)
is more than 1/2. Indeed, for each v € V(G), we have

E(dg(v, R)) = dg(v)|R|/n = ddg(v).
Proposition [6.4] implies that

P (dg(v, R) < (1 - g) 5d(;(v)> < 2e0dG(0)/192  9=n*0n/5T6 < =/
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(For the penultimate inequality, we used the fact that G is n-good and so 6(G) > n/3.) So taking a
union bound over all v € V(G), we see that the probability that some vertex fails to satisfy (6.15])

is at most ne V" < 1 /2, as required.

Given j,A > 0and H C H' C G, let

TyA(HH') = {x € V(H) : dyp(2) > (1/3+ NJH' |+ +1}.
Note that for all K € R, whenever j > k|H'| and A\ 4+ £ > 0, we have
(616) Tj,)x(H7 H/) = j—jj—f{‘H,l,A-i-li(H? H,)
Observe that H is A-good if and only if, for all integers 1 < j < |H|/3 we have [T \(H, H)| >
|H| — j + 1. So, since G is n-good, for all integers 1 < j < n/3 we have |Tj,(G,G)| > n—j+ 1.
Observe that
E(|Tj(G[R], G)|) = 0[Tj,(G, G)| = 6(n — j).
Proposition [6.4] implies that, for fixed 1 < j < n/3,
P(ITin(GIR)L, G < (1= 2) 6(n = j)) < 267700192 < geron/258 < (=,

So the probability that |7}, (G[R],G)| < (1 —n/8)d(n — j) for some integer 1 < j < n/3 is at most
ne vV'/3 < 1/2.

Thus there is some choice of R such that, for all v € V(G), we have

(6.17) da(o, R) > (1= 1) 6da(v) = (1= "/SBJRWG(”) > (dc';i“) - ;’) IR,
and for all integers 1 < j < n/3 we have
(6.18) T3(GIR).G)| = (1= 3) o(n — j).

To complete the proof, it remains to show that G[R] is (n/2,dn)-good. By an earlier observation,
it suffices to show that

(6.19) |T; /2(G[R], G[R])| > én —i+1 for all integers 1 <i < dn/3.
Let € R be arbitrary. Then (6.17)) and the fact that G is n-good imply that
1 7y 1 57
> (=42 > (=4 2t 1.
dg(xz,R) > <3+ 8>5n_ <3—|— 6>5n+

A simple rearrangement implies that [T, /3,/2(G[R], G[R])| = |R| = dn. So, for all 1 <i < dnn/3
we have that |T;, »(G[R], G[R])| = n > dn — i+ 1. Thus, to show , we may assume that
dnn/3 < i < dn/3 for the remainder of the proof.

By definition, for all x € T;/59,/3(G[R], G), we have that dg(z) > (1/3 + 2n/3)n + i/ + 1.
Therefore implies that for such x,

n 1 29 . 1 .
dg(z, R) > <1—8)5(<3+3>n+z/5+1) > <3+2> on+1+1.

Ti,n/Q(G[R]a G[R]) 2 Ti/é,2n/3(G[R]) G)
Therefore for all dnn/3 < i < dn/3,

Thus

(6:16)
\L,n/z(G[RLG[R])I > ui/mn/:a(G[R],G)\ = \L/é—nn/s,n(G[R]aGﬂ
(618 ‘ onn {
n i nn Y| n ,
> ! o Y i =)+ L > —i+ 1.
(1 8> 5 <n 573 ) on —i 51 (5—mn) g n—i+1

So (6.19) holds, as required. O
30



We will now combine Lemmas and [6.5] to prove the main result of this section.

Lemma 6.6. Let n € N and 0 < 1/n < ¢ < n < 1. Then every n-good graph G on n vertices
contains a square cycle C with |C| > (1 — e)n.

Proof. Apply Lemma with 7/2,e/2 playing the roles of n,e to obtain ng, M € N such that
every (n/2)-good graph H on at least ng vertices contains a collection of at most M vertex-disjoint
(n/2)-heavy square paths which together cover at least (1 — e/2)|H| vertices. Note that we may
assume that 1/n < 1/ny < 1/M < e. Further, choose 0 so that 1/M < § < e.

Apply Lemma 6.5/ to G to obtain a set R such that |R| = dn; for all v € V(G) we have

(6.20) dotw ) > (1) 1)

and G[R] is (n/2,dn)-good.

Note that |G\ R| = (1 —6)n > (1 —n/4)n. Proposition implies that G \ R is (1/2, n)-good.
Lemma and the choice of M above implies that G \ R contains a collection P of m < M
vertex-disjoint (1/2)-heavy square paths such that

(6.21) Y IPI=(1—¢/2)(1—6)n > (1—¢)n.
PeP

Write P := {Py,...,Pn}. Let Py = Qo := 0 and P,,+1 := P;. For each 0 < i < m, we will find
a square path @; in G[R] such that P;Q;P;y1 is an (n/2)-heavy square path in G. Suppose, for
some 0 < i < m — 1, we have obtained vertex-disjoint square paths Qy,...,Q; in G[R] such that,
for all 0 < j < i we have that P;Q;Pj;1 is an (1/2)-heavy square path in G, and |Q;| < 19. Let
[Pl = a't and [Piia]y = 'd.

Set G .= G[RU{d,V,,d'}] and n’ := |G'| = on + 4. We claim that G’ is (n/4,n’)-good. First
note that, for all v € V(G),, /2, implies that

2 3 2
So, since P;y1 and P2 are (1/2)-heavy square paths in G, we have {a’,V/,c,d'} C V(G'), 4. Fix
1 <i<n//3and let X; C V(G’) be such that | X;| = i. We need to show that max,ex, dg/(x) >
(1/3+n/4)n" +i+1. So we may assume that {a’,V/,¢,d'} N X; =0, i.e. X; C R (otherwise we are
done). Since G[R] is (n/2)-good, we have that

1 1

as required. So G’ is (n/4,n)-good.

Let W := U< j<; V(Qj). Then [W| < 19M < én'. So we can apply Lemmawith G',n',6,n/4
playing the roles of G,n,d,n to find in G’ an (a’t/, ¢'d")-path P’ on at most 23 vertices which avoids
W. We take Q;+1 to be the square path such that P/ = a’b'Q;1c/d’. So Qi+1 C G[R]. Then Q;11
is vertex-disjoint from Qo, ..., Qs; |Qi+1] < 19 and P;y1Q;+1Pit2 is an (/2)-heavy square path in
G.

Follow this procedure until we have obtained Qo, ..., Q. in G[R] with the required properties.
It is easy to see that C := Pi@Q1P,...P,Qy is a square cycle in G. Finally, (6.21) implies that
1> Y pep P = (1—2)n. 0

7. AN ALMOST SPANNING TRIANGLE CYCLE

In order to find the square of a Hamilton cycle in G, we will first show that the reduced graph R
of G contains an almost spanning subgraph Z, which itself contains a spanning square cycle, but
with some specific additional edges. We call this structure Z, an ‘/-triangle cycle’. The structure Z,
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in R will act as a ‘framework’ for embedding the square of a Hamilton cycle in G. A structure very
similar to Z, was used in [8] as a framework for embedding spanning subgraphs of small bandwidth
and bounded maximum degree. Given ¢ € N, write C2 for the square cycle on ¢ vertices. So
V(C2) = {z1,...,2.}, and z;z; € E(C?) whenever |i — j| € {1,2} modulo c. We will often write

C
C?=:21...7,.

Definition 7.1. (¢-triangle cycle Z;) Write Zy for the graph with vertex set [¢] x [3] such that for
all 1 < i < ¥ and distinct 1 < j,j" < 3, we have (i,5)(i,5") € E(Zy), and (i,7)(i + 1,5") € E(Zy),
where addition is modulo £. We call Zy an (-triangle cycle.

Let Ty be the spanning subgraph of Z; such that for all1 < i < i <l and1 < j < j < 3,
(1,7)(7,7") € E(Ty) whenever i =1'. So Ty is a collection of ¢ vertex-disjoint triangles.

So Zy consists of a cyclically ordered collection of £ vertex-disjoint triangles Ty, and between any
pair of consecutive triangles, there is a complete bipartite graph minus a perfect matching. We
observe the following properties of Z;:

o |Zy| =30 and Z; is 6-regular;

e 7; D Cge, i.e. Zy contains the square of a Hamilton cycle;

e 7, is a 3-partite graph (where the vertex (7, j) belongs to the jth colour class);

e 7, is invariant under permutation of the second index j.
This final property will be crucial when using a copy of Zy in R to embed the square of a Hamilton
cycle in G. We explain this further in Section [§

The following lemma states that a large n-good graph G contains a copy of Z, which covers
almost every vertex of G. Its proof is a consequence of Theorem and Lemma

Lemma 7.2. Letn € N and 0 < 1/n < e < n < 1. Then, for every n-good graph G on n vertices,
there exists an integer £ with (1 — e)n < 3¢ < n such that G D Z,.

Proof. Let M € N and let d be a constant such that 1/n < 1/M < ¢ < d < n. Apply Lemma
(the Regularity lemma) to G' with parameters %, d, M to obtain a reduced graph R with |R| =: L
and pure graph G’. So G has a partition into L clusters V4, ..., V, each of size m, and an exceptional
set Vo of size at most e*n. We may assume that n is sufficiently large so that 1/n < 1/L < 1/M.
Therefore we have the hierarchy

0<l/n<l/L<Ke<gd<gn<l.
Moreover,
(1—¢ehn
—
Lemma M(u) implies that R is (n/2, L)-good. Lemma applied with 7/2,¢*, L playing the
roles of 17,&,n implies that R contains a square cycle C2 with
(7.2) |IC?|=c¢>(1-€YL.
So each edge ij € E(C?) corresponds to an (g4, d)-regular pair G'[V;, V;] in G'. Lemma applied
with 02,4,64, d playing the roles of H,A,e,d implies that each V; contains a set V/ with |V/| =
(1 — £2)m such that for every edge ij of C?, the graph G'[V/, V] is (4¢2,d/2)-superregular. Now

PRI
vertices in R correspond naturally to the clusters V. Choose ¢ € 3¢N + 1 such that

(7.3) <;—§>n<€<(;—§>n.

(This is possible since 3¢ < 3L < en/6.)
Note that it suffices to find a graph homomorphism ¢ : V(Z;) — V(C?) such that at most
(1 —&2)m vertices of Z; are mapped to the same vertex of C?, i.e. that |¢p~!(w)| < (1 —&2)m for all
32
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w € V(C?). Then Theorem E (the Blow-up lemma) with Z,, V/, (1 — £2)m, C? playing the roles
of H,V;,n;,J implies that GG contains a copy of Z,.

We will find ¢ in two stages. We define graph homomorphisms ¢; : V(C3%.) — V(C?) and
¢2: V(Zy) = V(C3.). Then ¢ := ¢y 0 ¢o : V(Zy) — V(C?) is a graph homomorphism.

Write C? := w; ... w, and C’%C := 1 ...x3.. Given integers k, N, write [k]y for the unique integer
in [N] such that k = [k]xy mod N. Let ¢; : V(C3.) — V(CZ) be defined setting ¢ (z;) = wy;, for
all 1 <14 < 3c. Then ¢; is a graph homomorphism, and

(7.4) o7 H(w)| =3 for all w € V(C?).

For each 1 < j < 3c, relabel the vertex x; of C3. by the ordered pair ([j/3],[j]3). (So the new
vertex set is [c] x [3].) For each 1 < j < 3¢, let T} be the triangle in C3, spanned by x;, ¥;4+1, ;42
(where x3c41 := x1 and 3042 := x32). S0

V) = wparmaiad = { ([] 00 ([252] o+ 1) (|25 ] b 2m) }-

So for any j, T; and T} have exactly two vertices in common. Observe that {[j]3, [j+1]3, [j+2]3} =
[3]. Let ¢ : V(Zy) — V(C2.) be the map that takes a vertex (4,7) to the unique vertex in Tii)s.
whose second index is j. This is illustrated in Figure 4.

To see why ¢9 is a graph homomorphism, consider an edge uv € E(Zy). Let S; be the triangle
in Zy spanned by (i,1),(7,2), (,3). So ¢2 maps each of the vertices of S; to a distinct vertex in
T; [i]3c- Suppose first that there exists 1 < ¢ < £ such that u and v both lie in S;. Then ¢9 maps
both of u and v to different vertices of the same triangle Ty, in C3.. So ¢a(u)p2(v) € E(C5,).
Suppose instead that u and v do not lie in the same triangle S;. Then, since uv € E(Zy), u and
v lie in consecutive triangles. More precisely, there exist 1 < i < £ and distinct 1 < j, 5/ < 3 such
that u = (i,7) and v = (i + 1, ") (where (£ +1,75") := (1,7)).

Suppose first that ¢ < £—1. Then by definition ¢2 maps v and v to consecutive triangles T and
Ty11 respectively. It is not hard to see that every pair of the four vertices in Ty U Tk is joined
by an edge whenever their second index is different. But the second indices of ¢2(u) and ¢a(v) are
indeed different since j # j'. So ¢o(u)g2(v) € E(C3,).

Suppose instead that i = ¢ (observe that we cannot have i > £). So v = (¢, j) and v = (1, ') for
some distinet 1 < j, 5/ < 3. Since £ € 3¢N+ 1, we have [{]s. = 1 = [1]3.. So, by the definition of ¢2,
u is mapped to the unique vertex in 77 with second index j and v is mapped to the unique vertex
in Ty with second index j’. Since j # j', we have ¢a(u)p2(v) = (1,5)(1,5") € E(CZ,).

Therefore ¢2, and hence ¢, is a graph homomorphism. It remains to check that the preimage of
each vertex of C2 under ¢ is not too large. First note that

(7.5) |¢/c|] < |¢2_1(:c)\ <[t/c] forall z € V(CZ).

Thus, for each 1 < j < ¢ we have that

™3),(73) 3¢
=1, -1 - ot
[0 (wy)] < 2%, ¢y () werr%g)% (w)] = 3/l < — +3
(7-2),(7.3) — @1 (1 —
.g- M +3 ? (1—¢)m < (1 _ 62)m,
(1—¢eY)L (1—¢e%)?
as required. n
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- ([t — 1]3¢, 2 - ([Z + 1]3¢, 1 =
) r/ 7‘ [i+2]307 1)

A\ A

JAY.

/
([ = ]3¢, \ /‘

([i]3cv3) [z + 1]3072)

Figure 4: The homomorphism ¢o maps triangles S; in Z; (drawn in black) to triangles in C3,
(drawn in grey).

8. THE SQUARE OF A HAMILTON CYCLE

The final step in the proof of Theorem [I.3]is to use the almost spanning triangle cycle guaranteed
by Lemma to obtain the square of a Hamilton cycle.

Let G be a large n-good graph on n vertices. Since the reduced graph R almost inherits the
degree sequence of G, we can find an almost spanning ¢-triangle cycle Z, in R (whose vertices
correspond to clusters and edges to (e, d)-regular pairs). By removing a small number of vertices,
we can ensure that the edges in the triangle packing Ty C Z;, C R are superregular, and each of the
3¢ clusters has the same size. We say that the collection of clusters now induces a cycle structure
C in G. We colour the clusters and vertices in clusters of C according to the 3-colouring of Z,
(which is unique up to isomorphism), so that both V; ; and = € V; ; have colour j. It is now a fairly
simple consequence of the Blow-up lemma that G contains a square cycle whose vertex set contains
precisely the vertices in the clusters of C. In fact, this would still be true as long as the clusters in
each triangle in 7y each had the same size (in which case we say that C is 0-balanced).

However, there is a small set Vj of vertices in G which lie outside any of the clusters of C. We
need to incorporate these into the clusters in an appropriate way, and also preserve the structure
C (perhaps with slightly worse parameters). So after any changes to the clusters we require that

(i) regular pairs remain regular;
(ii) superregular pairs remain superregular;
(iii) C is 0-balanced.

(i) is satisfied as long as no cluster gains or loses too many vertices. For (ii), we need to ensure
that, if we insert a vertex v into a cluster V', then v has many neighbours in the two other clusters
which lie in the same triangle as V' in Ty. (In this case we say that v — V is valid.) It turns out
that since §(G) > (1/3 + n)n, for each vertex v there are at least n|R| clusters V such that v — V'
is valid. This appears promising, but recall that a necessary condition for (iii) is that the colour
classes in C are all the same size. However, we may not be able to assign the vertices of v € Vj so
that this is even almost true. For example, every v € V might only have valid clusters in the first
colour class.
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Given any v € V(G), we can guarantee more valid clusters V' if dg(v) is larger. In fact, if
v € V(G)y, there are n|R| triangles T' € T, such that v — V is valid for every V € T (see
Proposition . So, if it were true that Vo C V(G),, then we could assign each v € 1} to a
triangle in 7T, so that no triangle receives too many vertices, and then split the vertices in each
triangle among its clusters as equally as possible. Then C is very close to being 0-balanced (the
sizes of clusters in a triangle in T differ by at most one).

In order to achieve that Vo C V(G), (see Lemma [8.7)), we do the following. Whenever there is
v € Vo \V(G),, we find many clusters V such that v — V is valid, and V contains many vertices v’
with dg(v") > dg(v) + nn/4. Then we swap v and v without destroying the cycle structure. This
process is repeated until no longer possible, in such a way that no cluster X is the location of too
many swaps.

Now we have achieved (i) and (ii), and C is almost 0-balanced. Note that a necessary condition
for (iii) is that 3|n, so assume that this is true. At this stage we appeal to those pairs in C which
correspond to edges in Zy (not just those in Ty). This is also the stage where having Z, C R (and
not only ng C R) is useful. Consider a cluster V;;. Then the fact that Z, C R ensures that
almost every vertex v € V;; is such that v — V;_1 ; and v — V; 41 ; are both valid. Applying this
repeatedly allows us to make a small number of arbitrary reallocations within a colour class j (see
Lemma .

However, unless the colour classes have equal size (that is, size n/3), this procedure can never
ensure that C is O-balanced. We currently have that the colour classes have close to equal size.
Suppose, for example, that colour class 3 is larger than colour class 1, and colour class 2 has
exactly the right size. We identify a ‘feeder cluster’ X3 in C, whose vertices are all coloured 3, and
which has large core degree. Then X3 contains many vertices of degree at least (2/3 + n)n. For
each of these vertices v, there are many colour 1 clusters V' such that v — V is valid. So we can
move a small number of these vertices v to colour 1 clusters so that all the colour classes have the

same size (see Lemma .
8.1. Cycle structures. We begin by formally defining a cycle structure.

Definition 8.1. (Cycle structure) Given an ¢ x 3 integer matriz M, integers n, ¢, a graph G onn
vertices, and constants £,d, we say that G has an (R, ¢, M, e,d)-cycle structure C if the following
hold:
(C1) G has vertex partition {Vo} U{V;; : (i,7) € [£] x [3]} where the (i, j)th entry of M is |V ;|
and [Vo| < en. The sets V; j are called the clusters of C, Vp is called the exceptional set of
C, and M is called the size matrix of C;
(C2) R has vertex set [(]x [3] and R D Zy and G|V; ;, Vi j] is (¢, d)-reqular whenever (i, 7)(¢', j') €
E(R);
(C3) G[Viy,Vij] is (e,d)-superreqular whenever 1 <i < and 1 < j < j' <3.
We say that {Vj; : (4,7) € [¢] x [3]} induces C. If Vo = 0 we say that C is spanning.

Let C' be the cycle structure obtained from C by relabelling V; ; by V; ,(;) for all (i, ) € [{] x [3]
and some permutation o of [3]. Since Z; is invariant under permutation of the second index (as
observed immediately after Deﬁnition, C'is an (R, ¢, M’ e,d)-cycle structure where the (7, j)th
entry of M is |V, ;|-

Often we will consider two different cycles structures, say an (R, ¢, M, e, d)-cycle structure C and
an (R, ¢, M’ &' d')-cycle structure C’. Since the vertex set of R corresponds to both the clusters of
C and C’, it is ambiguous in this case to talk about the core degree df - Indeed, even though the
graph R is the same for both cycle structures C and C’, the clusters of C and C’ may be different.
We therefore say that d ; is (1, 3¢)-good with respect to C to mean that df o is (1, 3¢)-good when
considering the vertices of R as corresponding to the clusters of C.
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Definition 8.2. (Size matrices) Given an ny x ny integer matriz M, we write M = (m; ;) if the
(t,7)th entry of M is m; j for all (i,7) € [n1] X [na].

Given integers ki < ko, we say that M is (ki,k2)-bounded if ki1 < m;; < ko for all (i,j) €
[nl] X [ng]

For a non-negative integer k, whenever |m;; —m; j| <k for all1 <i<nj and1 < j < j < ng,
we say that M s k-balanced.

If Y cicn, Mig = D 1<icn, iy for all 1 < j,§" < g, we say that M has equal columns.

So if C is an (R, ¢, M, e, d)-cycle stucture in which M is (k1, k2)-bounded, then
(8.1) (1 —¢e)n <3lky and 3lk; <n.

Observe that, if C is spanning and M has equal columns, then 3|n. The columns of M correspond
to the colour classes of Z,.

The purpose of this section is to prove the following lemma, which states that any large n-good
graph contains a spanning 0-balanced cycle structure.

Lemma 8.3. Let n € 3N, Lyp,L’ € N, and let 0 < 1/n < 1/ < 1/ « e € d < n < 1.
Suppose that G is an n-good graph on n wvertices. Then there ewists a spanning subgraph G' C G
and £ € N with L' < ¢ < Ly such that G’ has a spanning (R, ¢, M,e,d)-cycle structure where M is
((1 —e)m, (1 + &)m)-bounded and 0-balanced.

The next proposition will be used several times to show that cycle structures are robust in the
following sense. If a small number of vertices in a cycle structure are reallocated, so that each of
them has many neighbours in appropriate clusters, we still have a cycle structure (with slightly
worse parameters). Its proof is a consequence of Proposition

Proposition 8.4. Let n,¢{,m,r € N and 0 < 1/n < 1/l < ¢ <y < d < 1. Suppose that G is
a graph on n vertices with an (R,{,M,e,d)-cycle structure, where M = (m; ;) is (m, (1 + e)m)-
bounded. Let {V;; : (i,7) € [{] x [3]} be the set of clusters of C, where m; ; := |V; j|. Suppose that
there exists a collection X := {X;; : (i,5) € [{] x [3]} of vertez-disjoint subsets of V(G) such that
for all (i, j) € [€] x [3],

L] ’Xi,jA‘/i,j| < ’ym/2,

e for all x € X;; \ Vi; we have that dg(z,V; ;7)) > (d —e)m for all j' € [3]\ {j}.
Let N := (n;;) where n;j = |X;;|. Then, for any e’ > e + 6./, we have that X induces an
(R,¢,N,e",d/2)-cycle structure C'.

Proof. Tt is clear that, for all (i,7) € [¢] x [3],
(8.2) (I =7y)m < |Xi| < (1+279)m.

We need to check that C’ satisfies (C1)—(C3). For (C1), it suffices to check that the exceptional
set Xo :=V(G) \ Uxex X of ' is such that [Xo| < e'n. Let Vj be the exceptional set of C. Then
[ Xol < Vol + 22 jyer s Vi O Xij| < en+3lym < e'n by (8.1). So (C1) holds.

Note that, since M is (m, (1 + €)m)-bounded, |X; ;AV; ;| < ~v|X;;|. For (C2), let (i,7)(i',j") €
E(R). Then Proposition [4.4] implies that G[X; j, Xy j7] is (¢/,d/2)-regular, as required.

For (C3),let 1 <4 < fand 1 < j < j/ < 3. Then, since (i,5)(i,j') € E(R), Proposition [4.4]
implies that it suffices to show that, for all x € X, ;, we have dg(x, X; ;) > d|X; ;|/2, and for all
y € X, j, we have dg(y, Xi ;) > d|X;;|/2. Let v € X, ;. Suppose first that € V; ;. Then, since
GV, Vi is (e,d)-superregular by (C3) for C, we have that dg(x,V; ) > d|V; | > dm. Suppose
instead that € X;; \ Vi ;. Then, by hypothesis, dg(z,V; ;) > (d —e)m. So for all x € X;; we
have dg(x,V; j7) > (d — e)m. Therefore

82 -
da(, Xij) = do(z, Viyr) = [Xiy AVig| = (d — g)m —ym d|);m\7
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as required. The second assertion follows similarly. This proves (C3). O

Our initial goal is to incorporate each vertex in the exceptional set into a suitable cluster.
However, we are only able to do this successfully for vertices with large degree. The following
proposition will be used to swap an exceptional vertex with a vertex in a cluster that has larger
degree. The cycle structure which remains has the same size matrix M and the exceptional set has
the same size. The proposition will be applied repeatedly until every exceptional vertex has degree

at least (2/3 4+ n)n (see Lemma[8.7).

Proposition 8.5. Letn,{,meNand 0 < I/n< Il < e < c<d<n<1l<a<1/3n+3/4.
Let G be an n-good graph on n wvertices with an (R, ¢, M, e, d)-cycle structure where M is (m,m)-
bounded. Let {V;; : (i,j) € [{] x [3]} be the set of clusters of C. Suppose further that d% o is
(n/2,30)-good with respect to C. Let v € V(G) with dg(v) > (1/3 + an)n. Then there exists
I CV(R) with |I| > nt/10 such that, for all (i,j) € I, the following hold:

(i) for all j" # j, we have dg(v,V; ;) > (d —e)m;

(ii) there are at least cm wvertices x in Vi ; such that dg(xz) > (1/3 + (o + 1/4)n)n.

Proof. We begin by proving the following claim.
Claim. LetI' := {(i,j) € V(R) : da(v, Vi ;7)) > (d—e)m for all j" # j}. Then|I'| > (3a—1/10)nt.
To prove the claim, define dg(v) :=n — dg(v). For integers 0 < p < 3, let
K, ={1<i</l:dg(v,Vi;) > (d—e)m for exactly p values j € [3]}
and k, := |Kp|. Observe that K, N K,; = ) whenever p # p’. So
(8.3) ko + ki + ko + ks =1

For each i € K5 there is exactly one 1 < j < 3 such that (i,5) € I, and for each i € K3 we have
(i,7) € I' for all 1 < j < 3. Therefore it suffices to show that ks + 3k3 > (3a — 1/10)n¢. We have

that
dagv) > >3 Y (m—dav,Vij) = Y. Y B-p(l—d—em
0<p<31eK, 1<5<3 0<p<3ieK,
= (3k0+2k1 —f—]fg)(l—d—é‘)mz (3k0+2k1 -l-kz) (1 —2d)m
> (35 — (k’l + k‘Q) — (kg + 3/<:3)) (1 — Qd) m > (2@ — (k)g + 3k3)) (1 — 2d) m.

Suppose that ko + 3k3 < (3w — 1/10)n¢. Then
dg(v) > (1 —2d) (2—3an+i> ml > (2—30&7+1) me ', (1—¢) <2 om+n)n
10 11 3 33
> (2/3 — am)n,
a contradiction. This completes the proof of the claim.

Recall that df,  is (1/2,3()-good. Proposition [4.10(ii) with R,d% 4, I’,7¢/10 playing the roles of
G,d, X, k implies that there exists I C I’ with |I| > n¢/10 such that for every (i,7) € I, we have

< (i L.n nt 1 1
>3(=+2 - >3(= el ‘
dR,G((Za])) _3(3-1- 2>€+3a77£ 5 —|—2_3<3+ <a+4> n)g

The claim together with the fact that I C I’ imply that I satisfies (i). By the definition of core
degree, for all (7,7) € I, there are at least c|V; j| = cm vertices & € Vj ; such that

dG(x)zWE (;—i—(a—i—i)n)n,
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so I also satisfies (ii). O

The previous proposition will be used to modify our cycle structure slightly so that every ex-
ceptional vertex has large degree. The next proposition will be used for incorporating these large
degree exceptional vertices into the cycle structure C. It shows that, for each such vertex v, there
are many triangles T € Ty such that v can be added to any of the three clusters in 7.

Proposition 8.6. Let n,{,m € N and 0 < 1/n < 1/l < ¢ < d < n < 1. Suppose that G is a
graph on n vertices with an (R, ¢, M, e, d)-cycle structure C, where M is (m, (1+¢c)m)-bounded. Let
{Vij: (i,5) € [€] x [3]} be the set of clusters of C. Let v € V(G) with dg(v) > (2/3+n/2)n. Then
there exists I C [¢] with |I| > nl such that, for alli € I and all j € [3] we have dg(v,V; ;) > (d—e)m

Proof. Let
K :={1<i</{: there exists j € [3] such that dg(v,V; ;) < (d —e)m}.
It suffices to show that [K| < (1 —n)¢. For all 1 <4 </, let U; := [J;<;<3 Vi,j- Then

do(v) =Y da(v,U;) + ) da(v,Ui) + da(v, Vo) < |K[(2 4+ d)m +3(£ — |[K|)(1 + e)m +en
ieK i¢K

=3lm — (1 —d+2¢)|K|m+3elm +en < 3lm— (1 —n/3)|K|m + 2¢en.
Suppose, for a contradiction, that |K| > (1 —n)¢. Then

dg(v) < <3— (1—%) (1—77))€m+28n—3(§ 4(;7 <1—4)>€m+2€n " <§+g>n,

a contradiction.

O

The following lemma is used to turn a cycle structure C which has a constant size matrix and non-
empty exceptional set into a spanning 1-balanced cycle structure C’. To prove it, we repeatedly
apply Proposition to swap vertices in and out of the exceptional set until every exceptional
vertex has large degree. We then apply Proposition to allocate each of these vertices v to a
suitable triangle in Ty, such that v can be placed in any of the three clusters in this triangle. For
each triangle, the allocated vertices are then split equally among the clusters so that they have size
as equal as possible.

Lemma 8.7. Let n,{,m € N and 0 < 1/n < 1/l € ¢ < ¢ < d < 1 < 1. Suppose that
G is an n-good graph on n vertices with an (R,¢, M,e,d)-cycle structure C, where M is (m,m)-
bounded. Suppose further that d, . is (n/2,30)-good with respect to C. Then G has a spanning
(R, 0, N,'/3 d/2)-cycle structure C', where N is (m, (14 /€)m)-bounded and 1-balanced. Further,

dC/2G is (n/2,3()-good with respect to C'.

Proof. Write V; ; for the cluster corresponding to (i,7) € V(R). Given a vertex v € V(G) and
(i,7) € [] x [3], we say that v — V; ; is valid if dg(v,V; ;) > (d —e)m for all j' € [3]\ {j}. As an
initial step, we will prove the following claim.
Claim. There exist subsets X, X;; of V(G) (for (i,j) € [¢] x [3]) so that the following hold:

(i) {Xo} U{X;;:(4,7) €[] x [3]} is a partition of V(G);

(ii | Xo| = [Vo| and |X; ;| =m for all (i,7) € [€] x [3];
Vi AX; 5] < 8lem/n?;
for allv € X” \ Vi,j we have that v — V; ; is valid;
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To prove the claim, let K := 4en/3n. Suppose that, for some 0 < k < K, we have obtained vertex
sets V¥, Vlkj for (i,7) € [£] x [3] such that the following properties hold:

() {VFIU {Vzkj : (i,7) € [€] x [3]} is a partition of V(G);

(Be) Vi = Vol and [V5| = m for all (i, j) € [¢] [3];

(k) |‘/2]A‘/zkj| < 8lem/n* and Z(i,j)ev |VwA | < 2k;

(0) for all v e Vzkj \ Vi,; we have that v —> Vijis vahd,

(ex) Sk = 2vevp da(v)/IVol 2 (1/3 +n)n + kn/de, where dg(v) := min{da(v), (2/3 + n)n}.
Observe that setting V) := Vp and Vi?j =V, ; for all (4,5) € [¢] x [3] satisfies (ag)—(g0). Indeed,
properties (a)—(dg) are clear; (g9) follows from the fact that G is n-good and therefore §(G) >

(1/34+n)n. So Sp > (1/3 + n)n.

We will show that there is some & < K for which we can set X, := Vok and X;; := VzkJ for all
(i,7) € [¢] x [3]. Observe that (ax)—(ex) imply that we can do this as long as V¥ C V(G)y)2-

So suppose that V¥ ¢ V(G)y/2- In particular, Vi # (0. Let vy € V¥ be such that minvevok{d(;(v)} =
dc(vg). Then dg(vo) < (2/3 +n/2)n, so there is some 1 < o < 1/3n + 1/2 such that dg(vg) =
(1/3 4 an)n. Proposition [8.5| implies that there exists I C V(R) with |I| > 1n¢/10 such that, for all
(i,7) € 1, the following hold:

e vy — V;; is valid;
e there are at least cm vertices x in V; j such that dg(x) > (1/3 + (o + 1/4)n)n.
We claim that mln(”)elﬂV,]AVk |} < 8lem/n? — 2. Suppose not. Then

81 81 8

3 Vi AvE| =11 5’"-6@ S PR L VR P P

“ 30n 3n

(i5)el
a contradiction to (yx). Therefore we can choose (i',j’) € I with
(8.4) Vi AVF 5| < 8lem/n® — 2.
Let U be the collection of vertices in Vs j» with degree at least (1/3 4 (a + 1/4)n)n in G. Then

(8.4) 81e em
UOVE 2 101 - VbVl = (o= 35 Jm2z G >0
so we can choose v1 € U N ij,. For each (i,7) € [€] x [3], set
(85) vkl . ‘/;Zj U {UO} \ {Ul} if (7’7.7): (ilvj/)
I Vi otherwise;

and
(8.6) Vot i= Vo U {or} \ {wo}-

We need to check that (ag41)—(ex+1) hold. First note that (a4+1) and (Br11) follow immediately
from (ay) and (fy) respectively. Property (yx+1) follows easily from (vx), and (B.5).
see (0k+1), implies that it suffices to show that vy — Vi ;s is valid. But thls follows since
(i) €l

It remains to prove that (exy1) holds. Recall that the choice of vy implies that dg(vg) =
(1/3+an)n < (2/3+n/2)n. In particular, d,(vo) = da(vo). Suppose first that di,(vi) = (2/34+n)n.
Then d;(v1) — di(vo) > nn/2. Suppose instead that di,(v1) = dg(vi). Then

1 1 1 nn
! o > (= + (2 _
dg(v1) — dg(vo) > <3 + <a + 4> 77> n <3 + an> n=-
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So this latter bound holds in both cases. Therefore

db(?)) d/G('Ul) — d/G(U()) nn n (ex) /1 n
Sk1 = >SS+ ——>S+-L > (= k4+1)-L-

3

ve V0’c

as required.

So, for each 0 < k < K, either the procedure has terminated, or we are able to proceed to step
k + 1. Observe that, for all k, we have Si < (2/3 4+ n)n. Moreover, S;, = (2/3 + n)n if and only if
Vo € V(G)y € V(G),/2- Suppose that this iteration does not terminate in at most K steps. Then
(k) implies that

Sk > (;Jrn) n+ Kn/4e = <§+17> n,
as required. So the iteration terminates at some p < 4en/3n. Let Xo := Vy and X;; := V; for all
(4,7) € [€] x [3]. This completes the proof of the claim.
Now we will use the claim to prove the lemma. For each = € X, let
(8.7) Sy ={1<i<l:2—V;; isvalid for all 1<j <3}

Property (v) of the claim together with Proposition imply that |S;| > n¢. Therefore, for each
x € X we can choose i, € S, such that for each i € [¢], there are at most |Xo|/n¢ vertices = € Xy
such that i = i,. For the collection of x € X with i, = i, choose j, as evenly as possible from [3].
More precisely, for each = € Xy, choose j, € [3] so that

(8.8) HzeXoti=igj=Jut| —H{r e Xo:i=1is,j =ja}]| <1 for 1<4,5 <3.
Define a partition {U; ; : (4, ) € [¢] x [3]} of V(G) by setting
(8.9) Uij = Xij U{z € Xo: (ia, jz) = (4,)}-

Then for all (i,7) € [¢] x [3], part (ii) of the claim implies that

(8.1

| Xo| 2 3em < dem < Jem.

nt (=g = n

Therefore the [¢] x [3] matrix N = (n; ;) with n; j := |U; ;| is (m, (1 + /¢)m)-bounded. Moreover,

i) §lem Vo) (815 4g> 82e 82e
+ < |zt m<—gm <

(8.10) 0 S |Ul'7j‘ —m S

(
Ui, AVij| < Ui jAX | + | XijAVi| < < Z|Ul
Ui i AVig| < Ui DXl 41X j AVl T Z T 7 7 Ui

Observe that (8.8)), and part (ii) of the claim imply that N is 1-balanced. Then Proposition [8.4]
(with 164e/n? playing the role of ) implies that G contains an (R, ¢, N, /3, d/2)-cycle structure
C’, which is spanning.

Now the vertices in R correspond to the clusters U, ;. Since |U; jAV; ;| < 82em/n? and ¢ < ¢, 7,
d%% is (n/2,3()-good with respect to C'. O

The following easy fact is a consequence of the triangle inequality.

Fact 8.8. Let ay,...,a, € R. Then for all 1 < i <mn,

1 n—1
a; — — E aj| < max |aj — ag|.
n  1<j<k<n
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In the next lemma, we make some small changes to ensure that the sizes of the colour classes in
our cycle structure C are equal, i.e. the size matrix has equal columns. Note that this is a necessary
condition for C to be 0-balanced. The proof is as follows. We assume that M is 1-balanced. So the
sum of entries in each column is almost equal (to within +¢). We show that for each of the three
colours (columns) j = 1,2,3, we can find a ‘feeder cluster’ X; of this colour which has large core
degree. Each feeder cluster has the property that it contains many vertices x such that, for each
J,J', there are many clusters Y of colour j' for which x — Y}/ is valid. So if the j'th column has
sum which is too small, and the jth column has sum which is too large, we remove some vertices
of large degree which lie in X; and add them to a cluster of colour j'.

Lemma 8.9. Letn € 3N and{,m e Nand 0 < 1/n < 1/l < e € ¢ < d < n < 1. Suppose that G
is a graph on n vertices with a spanning (R, ¢, M, e,d)-cycle structure C, where M is (m,(14+&)m)-
bounded and 1-balanced. Suppose further that dp s (n/2,3€)-good with respect to C. Then G
contains a spanning (R, ¢, N,e'/3 d/2)-cycle structure C', where N is 20-balanced, is ((1—¢)m, (1+
2e)m)-bounded, and has equal columns.

Proof. Write V;; for the cluster of C corresponding to (i,j) € V(R), and M := (m;;), where
m;; = |V;;|. As before, given a vertex v € V(G) and (4, j) € [¢] x [3], we say that v — Vj ; is valid
if dg(v, V) > (d —e)m for all j" € [3]\ {5}

For 1 <j <3, let M;:= Zl<i<é m; ; be the sum of the entries in the jth column of M. Since C
is spanning, o
(811) My + My + Mg = n.
Since M is 1-balanced, for all 1 < j < j/ < 3 we have

M — M| <> |mig—mi | <L
1<i<t

Therefore Fact applied with 3, M; playing the roles of n,a; together with (8.11)) imply that
20
(8.12) ‘Mj—%’gg for 1< <3.

Since df ¢ is (n/2,|R|)-good, Proposition (1) applied with R, d% g, V(R) playing the roles of
G, dg, X implies that there exists X C V(R) with |X| = 2|R|/3 and df o(X) > (2/3 + 1/2)|R|
for all X € X. Proposition (ii) applied with R,df o, V(R) \ X,n|R|/4 playing the roles of
G,d, X, k implies that there exists Y C V(R) \ X with || > n|R|/4 such that every Y € ) has
dm c(Y) = (2/3 +n/4)|R| + 2. Therefore there are at least (2/3 4 n/4)|R| vertices U € V(R) with
%2c(U) > (2/3 +n/4)|R|. Then, for each 1 < j < 3, there is some i; € [¢] and a feeder cluster
Xj = Vi ; such that dg ((i5,7)) > (2/3 +n/4)|R|. Let I' := {i1,i2,43}. By definition of core
degree, there exists C; C X; such that |C;| > ¢|X;| > c¢m and dg(x) > (2/3+n/4)n for all z € Cj.
Propositionapplied with 7)/2 playing the role of 7 implies that for z € C}, there exists I,(j) C [/]
with |[I(j)| > n¢/2 such that, for all ' € I,(j) and j' € [3], we have dg(z, Vi ) > (d — e)m.
M has equal columns if M; = My = M3 = n/3. By the observation immediately after Defini-
tion we may suppose without loss of generality that My < My < M3. So My < My, n/3 < Ms.
In fact we will assume that

(8.13) My < My < g < Ms.

(The other case is similar.) We wish to move some suitable vertices from the feeder cluster X3 into
clusters of colours 1 and 2 so that the new column sums are equal. Choose B3 o C C3 with

n 20
(8.14) |Bs 2| = 3~ My < ) < |Cs.
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For each = € B39, we can choose an arbitrary i, € I(3) \ I’ so that © — Vj, 2 is valid. We have

)€ 2 ED)
Mz — |Bs 2 E1.E19 ?n -M > M

Choose 3371 - Cg \ 3372 with

E12) &-14)
(8.15) Boal=2 My 5 20K |G\ Bl
For each = € B3, we can choose an arbitrary i, € I;(3) \ I’ so that z — V;_ ; is valid.

For j = 1,2, let X;; :==V;jU{x € B3j : i, = i} and let X;3 := Vj3\ (B3 U B32). For all
(1,7) € [€] x [3], let n; j := | X; ;| and let N := (n;;). Now {X;; : (4,7) € [£] x [3]} is a partition of
V(G). We claim that it induces a spanning cycle structure C'.

Observe that

(8.16) M + |B3;

= My + |Bso| = M3 — |B3

n
— |B3ao| = —=.

B2l = 3
So, for j = 1,2 we have

-8.16 n
> mij= Y mi;+|Bs;| = M;+|Bsl

1<i<e 1<i<e

w|

and similarly » 3, ., n;3 = n/3. So N has equal columns. Note that X;; 1 = Vi, 1 and Xj; 0 = Vi, 2
and Xi3,3 = Vi3,3 \ (3371 U 3372). So

E19).E19) 4¢
< 1+

Mg, 5 — Nig jr| < Mg 5 — Mg | + [ Bs 1| + | Bs 2 5 S2

Suppose that ¢ # 3. Then X; 3 = V; 3 and

20
[ni5 —mnijr| < Imig —my |+ max{|Bs1l,|Bs2|} <1+ 3 S 2

So N is 2¢-balanced. Similar calculations show that, for all (i, ) € [¢] x [3],
[ XijAVijl < |Bsi| +[Bso| < 20,

Thus,
(I—egm<m—20 <|X;;| < (I+e)m+20 < (14 2)m.

So N is ((1 — e)m, (1 4+ 2¢)m)-bounded. For all v € X;; \ V;; we have ¢ € I,(3) C C3, so
da(v,V;jr) > (d —e)m for all j' € [3]. Then Proposition implies that the partition into Xj js
induces a spanning (R, ¢, N, e'/3,d/2)-cycle structure C'. O

The next proposition shows that Z, C R implies that it is easy to slightly change the size of
clusters in the same colour class in our cycle structure. That is, given V; ; and V} ;, we can increase
|Vi,;| by b and decrease |V ;| by b, so long as b is not too large. We achieve this by successively
moving vertices from V;; to Viyq j, then Vi1 ; to Vij2;, and so on, until we reach Vj ;. In terms
of size matrices, this means we can redistribute the weight within a column.

Proposition 8.10. Let n,{,m € Nand 0 < 1/n <« 1/l < ¢ < d < n < 1. Suppose that G is
a graph on n vertices with a spanning (R,{, M, e,d)-cycle structure C, where M is ((1 —e)m, (1 +
2e)m)-bounded. Let (i,j) € [£] x [3]. Then there exist at least (1 — 8)m vertices v € V; j such that
da(v, Viz1,j1) = (d —2e)m for all j’ € [3]\ {j} (and addition is modulo ().
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Proof. Recall that, since Z;, C R by (C2), we have that (i,7)(i £ 1,5') € E(R) for all j’ € [3]\ {j}.
Then the statement (x) in Subsection implies that there exist four sets X;? C V;,; with \X]jﬂ >
(1 —=¢)|Vij| > (1 —2e)m such that every x € X;,[ has dg(z, Vitr,j1) > (d —€)|Vit1 7| = (d — 2e)m.
Observe that the intersection of these sets has size at least (1 — 8¢)m, and every vertex within has
the required properties. ]

Suppose that, instead of Z;, C R, we could only guarantee that ng C R. Then the conclusion of
the previous proposition may fail to hold. For example, neither (i,2)(i—1,1) nor (¢,2)(i+ 1, 3) may
be edges of R. Then it could be that every vertex x € V2 has dg(z,Vi—11) = da(z, Vig13) = 0.
So in this case no vertex in V; 2 can be moved to V;_1 2 or Vi1 9.

Now, given a cycle structure that has a 2¢-balanced size matrix with equal columns, we repeatedly
apply Proposition to obtain a 0-balanced cycle structure.

Lemma 8.11. Letn € 3N and{,m € Nand 0 < 1/n < 1/l < e < d < n < 1. Suppose that G is a
graph on n vertices with a spanning (R, £, M, e, d)-cycle structure C, where M is ((1—&)m, (1+&)m)-
bounded, 2(-balanced, and has equal columns. Then G has a spanning (R, ¢, N, el/3, d/2)-cycle
structure C' such that N is ((1 — 2e)m, (1 4+ 2¢)m)-bounded and 0-balanced.

Proof. Write {V;; : (4,5) € [£] x [3]} for the collection of clusters in C, and write M =: (m;;),
where m; j := |V, j|. Given a vertex v € V(G) and (i, ) € [{] x [3], we say that v — V; ; is valid if
da(v,V;jr) > (d —2e)m for all j' € [3]\ {j}.

We claim that, for each 1 <1 </, there exists n; € N so that

n
8.17 i—mi| <20 forall j=1,2,3, and p=
(8.17) |y —mg ;] orall j an Z ni=g

1<i<e

To see this, let m; := (m;,1 +m;2+m;3)/3. As an initial try, take n; := [m;] for all ¢. Then, since

C is spanning,
n 1 L n
373 Z mz‘,jﬁznz’< Z(mz‘—i-l):g—i-ﬂ
(i,5) €l x[3] 1<i<e 1<i<t

and so 0 <> ,,n; —n/3 < £ —1. Since this value is less than the number of n;s, we can reduce
exactly S, ;,n; — n/3 of them by one. So, for each i we have n; € {[7%;], [;] — 1}. Therefore
|n; — ;| <1 for all 1 <i < £. Recall that M is 2¢-balanced. Fact applied for 1 < j < 3 with
3,m;; playing the roles of n,a; implies that |m; ; — ;| < 4¢/3. But then, for each 1 < i < ¢ we
have

Ini —mgj| < |ng —mg| + [ —my | < 1+44/3 <20,

proving the claim.

In the remainder of the proof, we will adjust C until it has size matrix N = (n; ;) where n; j := n;
for all (i,5) € [{] x [3]. Let K := 3¢?. Suppose, for some 0 < k < K, we have found for each
(1,7) € V(R) subsets Vzkj C V(@) such that the following hold:

(k) {Vlkj : (4,7) € [€] x [3]} is a partition of V(G);

(B) for all v e ij \ Vi ; we have that v — V; ; is valid;

(k) for all (z,7) € [¢] x [3] we have \VZ’?AVH\ < 2k;

(6) for all 1 <j < 3 we have )., H/;k]\ =n/3, and Y ; e[ HVij\ —n;| < 602 — 2k.
Notice that we can set Vi(,)j =V, for all (i,7) € [¢] x [3]. Indeed, since C is spanning, (ag) holds.

Properties () and (7o) are vacuous. To see (dp), note that, for all 1 < j <3, 33, ]VZO]| =
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Zlgigz m;; = n/3 since M has equal columns. Furthermore,

8.17))

SVl —nl = D0 Imay—ml <667

(4.7) €[] % [3] (4.7) €[] % [3]

If |VZ’3| = n; for all (i,7) € [¢] x [3], then we stop. Otherwise, we will obtain sets ViZH from
Vlkj Since Y- ; ielax(s) |Vzkj\ =3 1<icgni =n by (ag) and , and n; € N, there exists some
(1%, jo) € [€] x [3] such that |Vk | > n;+ +1. Now, since ZKZQ\ ”0| =n/3 = Zlgigé n; by (o),
there exists 1 < i~ < £ such that \Vk J<n-—1

Proposition applied repeatedly implies that, for all integers r > 0, there exist (1 — 8)m
vertices v € V++m0 such that v — Vi+4,41 j, is valid (where, here and for the rest of the proof,
addition is modulo /). Let rg be the least non-negative integer such that i* + 79+ 1 =4~ mod /.
So0<r<f—1. Now (1 —8)m —2K = (1 —8)m — 602 > m/2 so () implies that for each
0 <r<rg, wecan find x, € V;]‘C*M,jo such that z, — Vi+ .14 j, is valid.

For each (i,7) € [¢] x [3] set

\ {xO} if (l,j) - (i+7j0)

Vfana U{xz 1)\ {=i} if it +1<i<it4+rgand j=jo
z] U {1:7,71} if (7’7]) = (i_ajO)
Zk] otherwise.

The definition of 7y implies that (ag41) holds. The choice of x, implies that (S;11) holds. We
have

(V&)
VI AVl < VETAVE] + VAV | < 2(k + 1),

proving (yx+1). Finally, observe that HV/jfjt] —nx| = HVl’ijo| —ng| —1 and \Vlk;r1| = \Vzkj\ for all
other (i, 7). Therefore
(9k)
Yo WVE = Y IVl il -2 < 6% = 2(k + 1),
(.5)€[€]x[3] (.5)€lf]x[3]

proving (.1).
So, for each 0 < k < K, either the procedure has terminated, or we are able to proceed to step

k + 1. Therefore there is some p < K = 3¢? such that > Gd)eldx[3] HVip | —n;] = 0. So |V} | =n;
for all (i, 7) € [€] x [3]. Set X; ;j := V", for all (i,5) € [¢] x [3].
We claim that the partition into Xj ;s induces a spanning cycle structure C’. Let N := (n; ;)

where n; ; := n; for all (i,7) € [¢] x [3]. Then N is the size matrix of C' and is 0-balanced by
definition. Note that, by (,), for all (4, j) € [¢] x [3] we have

(1-2em < (1—e)m—2K <|X;;| < (1+e)m+2K < (1+2e)m

So N is ((1—2¢)m, (14-2e)m)-bounded. Finally, Propositionimplies that C' is an (R, £, N, /3, d/2)-
cycle structure C’. O

We are now able to prove the main result of this section, Lemma

Proof of Lemma(8.3. Suppose that G is a sufficiently large graph on n vertices as in the statement of

the lemma. Apply Lemma (the Regularity lemma) with parameters %0 4L/ to obtain L* € N.

Since L* depends only on ¢ and L', which appear to the right of Ly in the hierarchy, we may

assume that 1/Lo < 1/L*. Apply Lemma to G with parameters £'%°, 16d, 4L’ to obtain clusters

Vi,..., VL of size m, an exceptional set V), a pure graph G’ and a reduced graph R'. So |R'| = L

where 4L’ < L < L* and |Vp| < €'%%; and G'[V;,V;] is (1%, 16d)-regular whenever ij € E(R').
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Lemma [4.2{iv) states that de/(z) > dg(z) — (d + €)n for all 2 € V(G). Then Proposition [£.14]
implies that G’ is (n/2,n)-good. Choose « such that ¢ < o < d. By Lemma (ii), d% ¢ and R
are (n/2, L)-good. Further, Lemma|4_._1\% applied to G’ implies that d%, . is (1/4, L)-good.

Apply Lemma with L,n/2, R',e'% playing the roles of n,n,G, e to obtain £ € N with (1 —
el9 [ < 3¢ < L such that R’ O Z; (where Z; is the {-triangle cycle). Observe that L' < L/4 <
¢ < L/3<L* < Lo, as required. Let R := R'[V(Z)]. Let also Vi’ := Vo UU;ev (v (r) Vi- Then

(818) "/0”| < 51007'L+€100Lm < 2510071.

Relabel the vertices of Z; (and hence R) in the canonical way given in Definition So V(R) =
[¢] x [3], and for all 1 < ¢ < ¢ and distinct 1 < 7,5/ < 3 we have (i,5)(¢,7') € E(Z;) and
(1,7)( + 1,5") € E(Z), where addition is modulo ¢. Then R D Z, O Ty, where T; consists of
the triangles (4,1)(¢,2)(4,3) for 1 <i < {. Given a vertex (4, j) in R write V; ; for the cluster in G
corresponding to (3, 7).

Apply Lemma with R, 30,190 16d, G', Ty, 2 playing the roles of R, L,e,d, G, H, A to obtain
for each (i,5) € V(T;) = V(R) a subset V//; C V;; of size
(8.19) m = (1-e""m
such that for all 1 <i < £and 1 < j < j’ <3, the graph G'[V/);, V/] is (4e®°, 8d)-superregular.
Let (¢,5)(¢,j") € E(R) be arbitrary. Then Proposition (1) with €109 16d, % playing the roles
of e,d,d" implies that G'[V/;, Vj; ., is (2679, 8d)-regular and hence (4e°°, 8d)-regular. Let V] be the

1,50 "4,
set of all those vertices of G not contained in any VZ’ ;- Then
Vi =< V) 4 3e%0%m < (26190 + 50 < 26500,

Let Ny be the ¢ x 3 matrix in which every entry is m/. It is now clear that G’ has an
(R, £, Ny, 4¢%°,8d)-cycle structure Cy where the VZ/ ; are the clusters of Cp and Vj is the excep-
tional set. In particular, now we view the vertices in R as corresponding to the clusters VZ’ ;- Recall
that d o is (1/4, L)-good when we view the vertices in R’ as corresponding to the clusters V; ;.
Thus, Proposition implies that d%G, is (n/8, L)-good when we view the vertices in R as corre-

sponding to the clusters V; ;. So by definition of core degree, d}l%/ é, is (n/8,3¢)-good when we view

the vertices in R as corresponding to the clusters V/; (i.e. d%{é, is (n/8,3¢)-good with respect to
Co).

We may therefore apply Lemmawith n,n/4,G',m’ 4% 8d, a/2 playing the roles of n,n, G, m,
e,d,c to show that G’ has a spanning (R, ¢, Ny, 4d)-cycle structure Ci, where Ny is (m/, (1 +
2e2%)m/)-bounded and 1-balanced. Moreover, d%{é, is (n/8,3¢)-good with respect to Cj.

Apply Lemma with G’,Cy, a/4 playing the roles of G,C, ¢ to show that G’ has a spanning
(R, !, Ny, 3, 2d)-cycle structure Co, where Ny is 2¢-balanced, ((1—¢&?)m/, (142¢%)m’)-bounded, and
has equal columns.

Finally, apply Lemma with G’,Cy playing the roles of G,C to show that G’ has a spanning
(R, ¢, M,e,d)-cycle structure C where M is O-balanced and ((1 —2¢3)m/, (1 + 2¢3)m’)-bounded, and
hence ((1 — &)m, (1 + £)m)-bounded by (8.19). O

8.2. Embedding the square of a Hamilton cycle. Given ¢t € N, recall that C3, denotes the
square cycle on 3t vertices. In this section we will always assume implicitly that C3, has vertex
set [t] x [3] such that for all 1 < i < ¢ and distinct 1 < 7,5/ < 3, we have (i,5)(4,5") € E(C3)
and (4,2)(i +1,1), (4,3)(i +1,1), (i, 3)(i + 1,2) € E(C3,), where addition is modulo t. Observe that
T, C C3,.
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‘/i,Q ‘/i—l—l,l ‘/z'-i-l 3

Yir1 = (i + 1, 1)/ \ & » (pi +1,3)

e (pz,?)) = T;
Via Vis

)

Figure 5: The square path y; P;z;y;+1 Py 1711 which forms part of the square cycle C2; and the
desired embedding into the clusters of G. The edges in C2[X] are coloured blue and the remaining
edges in J; are coloured red.

The following is essentially a special case of an argument in [7], but we prove it here for com-
pleteness.

Lemma 8.12. Let 0 < 1/n < 1/l < ¢ < d < 1. Suppose that G is a graph on n vertices
with a spanning (R, 4, M, e, d)-cycle structure C such that M is ((1 — e)m, (1 + e)m)-bounded and
0-balanced. Then G contains the square of a Hamilton cycle.

Proof. By (C2), we have that Z, C R. Then C%, C R. This is all we require in the proof. Write
{Vij : (i,7) € [£] x [3]} for the collection of clusters of C, where V; ; corresponds to (7,j) € V(R).
So this is a partition of V(G). Since M is O-balanced, for each 1 < i < ¢ there exists m; € N such
that

(8.20) Vijl=mi=(1=%e)m foral 1<j<3.

Let pg := 0 and p; := Zlgrgz‘ m, for all 1 < i < £. Note that 3p, = n, and, in particular, n is
divisible by 3. To prove the lemma, we will find an embedding h : V(C2) — V(G), where we write
Cr = (1,1)(1,2)(1,3)(2,1) ... (pe, 1) (pe, 2) (P, 3).-

The embedding will map the first 3p; vertices of C’,% to distinct vertices in Vi 1 UVj 2UV; 3, and the
(3p1 + 1)th to (3p2)th vertices of CfL to distinct vertices in Vo1 U Vo2 U Va3, and so on. For each

1 <i < ¢, define
(8.21) z; = (p;,3) and y;:= (pi—1+1,1).
Define also

Xi={zi,yit1} and Y= {(p;,1),(pi,2), (pi +1,2), (pi +1,3)} = Ne2 (Xi) \ X5
(8.22) P; = (pi—1 +1,2)(pi—1 + 1,3) ... (ps, 1) (s, 2),
where P is a square path. Let X = J;<;<, Xi and Y := J;;<,¥i = Negz2(X) \ X. Note further
that (Pl)gr U (Pi41); = Y;. We have that C2 = yy Pyz1yaPyxoysPs . .. Pyxy. (Figure |5 shows the

square path y; Pixiyit1 Pit12it1.)
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Our strategy is as follows: first embed the vertices in X UY using the partial embedding lemma
(Lemma , so that there are many choices for the embedding of each y € Y. Then, for each
1 < < ¢, apply the Blow-up lemma (Theorem to embed P; into V; 1 UV, 2 UV} 3 in such a way
that the two embeddings align.

Define f: V(C2) = V(C%,) by f((k,j)) = (g(k),j), where g(k) € [{] is such that

Pg(k)—1 < K < Dg(k)-

It is not hard to check that f is a graph homomorphism, i.e. f(z)f(y) € E(C%,) whenever zy €
E(C?). By a slight abuse of notation, we will write Vi((k,g)) for Vy(r),j- We will find an embedding
h:V(C2) = V(G) such that h(z) € Vy, for all z € C2.

For all 1 < i < /, since X; UY; is a collection of 6 consecutive vertices on C2, we have that
Jy == C2[X UY] is a collection of ¢ vertex-disjoint square paths of order 6. So |Jy| = 6/ < em
and A(Jy) = 4. Choose ¢ such that ¢ < ¢ < d < 1. Apply Lemma with C’??K,G,{Vm :
(7,7) € [€] x [3]}, Jo, ¢ playing the roles of R,G,{V; : 1 < i < L}, H,c. Thus obtain an injective
mapping 7 : X — V(G) with 7(x) € Vj(, for all z € X, such that for all y € Y there exist sets
Cy € Vi) \ 7(X) such that the following hold:

(i) for all 1 <4 </ (where addition is modulo /), we have that 7(z;)7(yi+1) € E(G);
(ii) for all y € Y we have that C, C Ng(7(z)) for all z € Ne2(y) N X;
(iii) |Cy| > |V} for all y € Y.

Note that for each 1 < i < ¢, as displayed in Figure
ViinT(X)={yi}, VieNn7(X)=0 and V;3N7(X)={z;}.

For all (4,7) € [€] x [3], let V], := Vi; \ 7(X). So |V/,| = m; — 1 for j = 1,3; and |V/,)] = m;.
Proposition (ii) implies that G[V/;,V; ] is (2¢,d/2)-superregular for all 1 <i < fand 1 < j <
j' < 3.

Note that for each 1 < ¢ < ¢, P; is a 3-partite graph with A(P;) = 4 and with vertex classes
Wi, Wi, Wi of sizes m; — 1, m;, m; — 1 respectively, where (k, j) € VVJ’ for all (k,7) € V(P;). Observe
that V(P,)NY = (P,); U(P;)5. So, by (iii), for each y € ((P,;)Q_U(Pi);)ﬂW;, there is a set Cyy C V/;
with |Cy| > cm; that satisfies (ii). Let T; be the triangle in R spanned by (i, 1), (4,2), (¢,3). Let
fi denote the restriction of f on P;. So f; : V(P) — V(T;) where f;i((k,j)) = (4,7) for all
(k) € V(P). .

For each 1 < ¢ < ¢, apply Theorem with 3,m; — 1, m;,m; — 1, 2¢, ifj,ﬂ,d/2,Pz~,W},4, fi
playing the roles of k,n1,n2,n3,¢,V;, J,d, H,W;, A, ¢ with special vertices y € (P;); U (P;)3 and
associated sets C playing the role of S,. Thus obtain an embedding of P; into G[V;; UV U V/3]
such that every y € (P;); U (P)5 is mapped to a vertex in Cy. Note that, for 1 <1i < i’ </, every
pair z; € V(P;) and z; € V(Py) are mapped to different vertices of G. By considering the union of
these embeddings, we obtain a bijective mapping o : (J,«,«, V(P;) = V(G) \ 7(X) such that

(8.23) o(z)o(x') € E(G) whenever za’ € U E(P) E(C?\ X).
1<i<t

In particular, we have that

(8.24) o(y) e Cy forall yev.

Let h: V(C2) — V(G) be defined by

(8.25) h(z) = { 7(x) ifreX

o(x) if z € V(C?)\ X.
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It remains to show that h is an embedding of C2 in G. Let zy € E(C2). We consider three cases.
Suppose first that xz,y € X. Then, without loss of generality, there is some 1 < ¢ < £ such that
x=xz; and y = yi+1. So h(x)h(y) = 7(x;)7(yi+1) € E(G) by (i). Suppose secondly that z € X and
y€V(C3)\ X. Then y € Nez(7) \ X CY, and so

) B2 o) B ¢, € No(r(@) B No(h(@)),

i.e. h(z)h(y) € E(G). Suppose finally that z,y € V(C2) \ X. Then h(z)h(y) = o(z)o(y) € E(G)
by . O

9. PROOF OF THEOREM [L.3|

We will first prove Theorem [1.3] for graphs whose order is divisible by three.

Theorem 9.1. Let n € 3N and let 0 < 1/n < n < 1. Suppose that G is an n-good graph on n
vertices. Then G contains the square of a Hamilton cycle.

Proof. Choose Ly, L' € N and positive constants €,d so that 0 < 1/n < 1/L) < 1/l < e € d <
n < 1. Apply Lemma to show that there exists a spanning subgraph G’ C G, and ¢ € N with
L' < < Ly, such that G’ has a spanning (R, ¢, M, e, d)-cycle structure such that M is 0-balanced
and ((1—&)m, (1+&)m)-bounded. Now apply Lemma [8.12] to show that G, and hence G, contains
the square of a Hamilton cycle. O

The proof of Theorem [I.3]is now a short step away.

Proof of Theorem[1.3 Let n > 0. Without loss of generality, we may assume that 7 < 1. Choose
ng € N so that 0 < 1/ng < n and the conclusion of Theorem holds whenever n > ng — 2 and
1/2 plays the role of . Let G be a graph on n > ng vertices, whose degree sequence d; < ... <d,
satisfies

d; >n/3+i+nn forall i<n/3.
Note firstly that G is (2n/3)-good. Then (4.2)) with 2r/3 playing the role of 7 implies that we can
find vertex-disjoint edges x1y1, z2y2 € E(G) such that x1,y1,x2,y2 € V(G)Qn/g.
Let k be the least non-negative integer such that n =k mod 3. So k € {0,1,2}. Let G’ be the

graph obtained as follows. If k = 0, set G’ := G. Otherwise, we let z; be a new vertex for each
1 <j <k, and set

V(G = V(G) Ufzy 1< < k}\ {mju; 1 <j <k}
and
E(G) :=EG\{zj,y; : 1 <j<k})U{vz; :1<j<k and ve N(Q;(l‘j»yj)}'

So G’ is obtained from G by contracting k of the edges z1y1, z2ys.
Note that, for all 1 < j < k we have

der(2;) = NG (x5, y;)1 > (1/3 +n)n

by Proposition [£.1[i). It is easy to see that G’ is an (1/2)-good graph and |G'| =n—k =0 mod 3.

Furthermore, |G'| > n — 2 > ng — 2. Then Theorem implies that G’ contains the square of a

Hamilton cycle C’. Since every neighbour of z; in G’ is a neighbour of both z; and y; in G, the

cycle C obtained from C’ by replacing each z; with the edge z;y; (in any order) gives the square

of a Hamilton cycle in G. O
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10. CONCLUDING REMARKS

We conclude the paper by discussing degree sequence conditions that force the kth power of a
Hamilton cycle in a graph. (The kth power of a Hamilton cycle C' is obtained from C by adding an
edge between every pair of vertices of distance at most k on C.) A conjecture of Seymour [33] states
that every graph G on n vertices with 6(G) > kn/(k + 1) contains the kth power of a Hamilton
cycle. Thus, Seymour’s conjecture is a generalisation of Conjecture Komléds, Sarkozy and
Szemerédi [25] proved Seymour’s conjecture for sufficiently large graphs G. In light of Theorem
we believe the following degree sequence version of Seymour’s conjecture is true.

Conjecture 10.1. Given anyn > 0 and k > 2 there exists an ng € N such that the following holds.
If G is a graph on n > ng vertices whose degree sequence di < --- < d,, satisfies

-1
Z-ZM—}—%’—G—nn for all igkil,

then G contains the kth power of a Hamilton cycle.

If true, Conjecture[10.1]would be essentially best possible. Indeed, the example in Proposition 17
in [6] shows that one cannot replace the term nn in the degree sequence condition here with —1.
Note that a necessary condition for a graph G to contain the kth power of a Hamilton cycle is that
G contains a perfect Ky q1-packing: In [36] it was shown that the hypothesis of Conjecture m
indeed ensures that G contains a perfect Ky 1-packing.

We believe that most of the proof of Theorem [I.3|naturally generalises to kth powers of Hamilton
cycles. The main difficulty in proving Conjecture [10.1| appears to be in proving a ‘connecting
lemma’ (i.e. an analogue of Lemma . In particular, the methods we use to prove Lemma
seem somewhat tailored to the case of the square of a Hamilton cycle.
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