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Abstract

Let P(n) denote the power set of [n]|, ordered by inclusion, and let P(n,p) be
obtained from P(n) by selecting elements from P(n) independently at random with
probability p. A classical result of Sperner [12] asserts that every antichain in P(n) has
size at most that of the middle layer, (LnT/LQ j)‘ In this note we prove an analogous result
for P(n,p): If pn. — oo then, with high probability, the size of the largest antichain in
P(n,p) is at most (1+ 0(1))})(@7;2 j)' This solves a conjecture of Osthus [9] who proved
the result in the case when pn/logn — oco. Our condition on p is best-possible. In
fact, we prove a more general result giving an upper bound on the size of the largest
antichain for a wider range of values of p.

We write [n] for the set of natural numbers up to n, and P(n) for the power set of [n].
Also, for any 0 < k < n we write ([Z]) for the subset of P(n) consisting of all sets of size k.
A subset A C P(n) is an antichain if for any A, B € A with A C B we have A = B. So ([Z])
is an antichain for any 0 < k < n; Sperner’s theorem [12] states that in fact no antichain
in P(n) has size larger than (V:/L? J)‘ Our main theorem is a random version of Sperner’s
theorem. For this, let P(n,p) be the set obtained from P(n) by selecting elements randomly
with probability p and independently of all other choices. Write m := (Ln72 j)' Roughly
speaking, our main result asserts that if p > C/n for some constant C, then with high
probability, the largest antichain in P(n,p) is approximately the same size as the ‘middle
layer’” in P(n, p).

Theorem 1. For any € > 0 there exists a constant C such that if p > C/n then with high
probability the largest antichain in P(n,p) has size at most (1 + &)pm.
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(Here, by ‘with high probability” we mean with probability tending to 1 as n tends to
infinity.)

The model P(n,p) was first investigated by Rényi [10] who determined the probability
threshold for the property that P(n, p) is not itself an antichain, thereby answering a question
of Erdés. The size of the largest antichain in P(n,p) for p above this threshold was first
studied by Kohayakawa and Kreuter [6]. In [6] they raised the question of which values of
p does the conclusion of Theorem 1 hold. Osthus [9] proved Theorem 1 in the case when
pn/logn — oo and conjectured that this can be replaced by pn — oco. (So Theorem 1 resolves
this conjecture.) Moreover, Osthus showed that, for a fixed ¢ > 0, if p = ¢/n then with high
probability the largest antichain in P(n,p) has size at least (14 o(1))(1 + e_c/z)p(tn’;zj). So
the bound on p in Theorem 1 is best-possible up to the constant C'. There have also been a
number of results concerning the length of (the longest) chains in P(n, p) and related models
of random posets (see for example, [2, 7, 8]).

Instead of proving Theorem 1 directly we prove the following more general result.

Theorem 2. For any e > 0 and t € N, there exists a constant C' such that if p > C'/n' then
with high probability the largest antichain in P(n,p) has size at most (1 + )pmt.

Osthus [9] proved this result in the case when p(n/t)'/logn — oo. (In fact, Osthus’s
result allows for ¢ to be an integer function, see [9] for the precise statement.) Moreover,
Osthus showed that, for 1/n' < p < 1/n'~! with high probability, P(n, p) has an antichain
of size at least (1 + o(1))pmt (so Theorem 2 is ‘tight’ in this window of p).

The method of proof of Theorem 2 also allows us to estimate the number of antichains
in P(n) of certain fixed sizes.

t—1

Proposition 3. Fiz any t € N, and suppose that m/n' < s < m/n'"*. Then the number

of antichains of size s in P(n) is ((”OS))’”),

To prove Theorem 2, let G be the graph with vertex set P(n) in which sets A and B are
adjacent if A C B or B C A. Then an antichain in P(n) is precisely an independent set in
G. We follow the ‘hypergraph container’ approach (see, for example, [1, 11]): Indeed, we
show that all independent sets in G are contained within a fairly small number of low-density
sets in G. Crucially, for this method to work, we have to construct our ‘containers’ in two
phases (see Lemma 6). For this we use a result of Kleitman [5] on the minimum number
of edges induced by a subset of G with a given fixed size. Define the centrality order on
the vertices of P(n) as follows: we begin with the elements of (UY/l}z J)’ ordered arbitrarily,

then the elements of (Ln /[;J] +1)’ then the elements of (Ln /[;Lj}—l)’ then the elements of (Ln /[;J] +2),
and so forth until all vertices of P(n) have been ordered. For any r € N let I, denote the
initial segment of this order of length r; Kleitman [5] proved that I, minimises the number

of induced edges over all sets of size r (see also [4], which characterises all the sets U of size

r for which e(G[U]) is minimised).

Theorem 4 (Kleitman [5]). For any r < 2" and any U C V(G) of size r we have e(G[U]) >
e(G[I,)).



We apply this theorem in the form of the following corollary.

Corollary 5. Let U C V(G), and suppose that 0 < e < 1/2 andt € N. If |U| > (t + €)m,
then e(G[U]) > ent|U|/(2t)".

Proof. Let r := |U|. We have r > (t + £)m, so in particular r — mt > 2er/(1 + 2t). Observe
that I, contains all of the at most mt elements of the ¢ ‘middle layers’, (L»r% J)’ (Ln /[gj +1),
and so forth. Further, I, contains at least » — mt elements from outside these layers, each
of which has at least ( [”{2]) > (n/2t)! neighbours in the ¢ middle layers. So by Theorem 4
we have

e(GU]) = e(G[1,]) > 1+ 92t

2er ( n )t - entr
= (20
Il

Let s € N, t > 0 and let S be a set of size |S| = s. Define (2,) to be the set of all

<t
subsets of S of size at most ¢ and ( 2 t) = ‘( f t) ‘ We can now prove the result we need on
independent sets, using the following algorithm.

Lemma 6. Suppose that t € N, 0 < e < 1/(2t)"™ and n is sufficiently large. Then there
: . _ V(G V(G ' V(G V(G
exist functions f : (Sn,(tio?gm) — (S(t+g+)€)m) and g : (g(t+2)r(n/)(52nt)) — (S(tisim) such that,

for any independent set I in G, there are disjoint subsets S1, 5 C I such that Sy U Sy and
g(S1 U Sy) are disjoint, So C f(S1), and I C S1U Sy U g(S1US,).

Proof. Fix an arbitrary total order vy, ..., v, on the vertices of V(G). Given any independent
set I in G, define Gy := (G, and take S; and S5 to be initially empty. We add vertices to S
and S5 through the following iterative process, beginning at Step 1 in Phase 1.

Phase 1: At Step i, let u be the maximum degree vertex of G;_; (with ties broken by
our fixed total order). If u ¢ I then define G; := G,;_1 \ {u}, and proceed to Step i + 1
(still in Phase 1). Alternatively, if v € I and degg,  (u) > n'*%? then add u to S, define
G; = Gi—1 \ ({u} U Ng(u)), and proceed to Step i + 1 (still in Phase 1). Finally, if u € I
and degg._ (u) < %9 then add u to Sy, define G; := G;_; \ {u} and f(S;) := V(G;), and
proceed to Step 7 + 1 of Phase 2.

Phase 2: At Step i, let u be the maximum degree vertex of G;_1. If w ¢ I then define
Gi = G;_1 \ {u}, and proceed to Step i + 1 (still in Phase 2). Alternatively, if v € I and
degg,  (u) > e?n' then add u to Ss, define G; := G;_1 \ ({u} U Ng(u)), and proceed to Step
i+ 1 (still in Phase 2). Finally, if u € I and degg,  (u) < e?n’, then add u to S,, define
G;:=G;_1 \ {u} and g(S; U Sy) := V(G;), and terminate.

Observe first that for any independent set [ in G the process defined ensures that S; and
Sy are disjoint subsets of I, that S; U S; is disjoint from ¢(S; U Sy), that Sy C f(S1) and
that I C S;U S U g(S; US,).

Next, note that for any independent set I, if a vertex u is added to S; at step ¢, u and at
least n*T%-9 neighbours of u are deleted from G;_; in forming G, with a single exception (when
u is the final vertex added to S;). So we must have |S;| < 1+|V(G)|/(nF0941) < n=¢+092n,
Furthermore, at the end of Phase 1 we know that every vertex v of G; has degg, (v) < n't%?,
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and so Corollary 5 implies that f(S7), the set of all vertices not deleted up to this point,
must have size |f(S1)| < (t + 14 ¢)m. Then, in Phase 2, if a vertex u is added to Sy at step
i, at least e2n! neighbours of u are deleted from G;_; in forming G;, again with the single
exception of the final vertex added to Ss. So we must have |So| < 1+ |f(S;)|/(e*n?) and
thus

1S, U Sy| < 14 (t+1+e)ym/(e*nl) + n~ 0N < (¢ 4 2)m/(e2nt).

Moreover, at the end of Phase 2 every vertex v of the final G; has degg, (v) < e°n' and so
e(G;) < e2nt|Gy| < ent|Gy|/(2t)". Thus, Corollary 5 implies that |g(S; U Ss)| < (t + &)m.
So it is sufficient to check that the functions f and g are well-defined. That is, we must
check that if the process described above yields the same set S; when applied to independent
sets I and I’; then it should also yield the same set f(S;), and if additionally the same set S,
is returned then the sets g(5;USs) should be identical. However, this is a consequence of the
fact that we always chose u to be the vertex of I of maximum degree in G;_;. Moreover, if our
algorithm produces sets Si, .5, for an independent set I and sets S7, .S, for an independent
set I’ such that Sy U Sy = S;US) then S = 57 (and Sy = S)). Thus, indeed f and g are
well-defined. O

Proof of Theorem 2. Fix ¢ > 0 and ¢ € N; we may assume that ¢ < 1/(2¢)"™!. Define
C = 10" and ¢, := ¢/4. Let G, be the graph formed from G by selecting vertices
independently at random with probability p > C'/n’. Then we must show that, with high
probability, G, has no independent set of size greater than (1+¢)pmt. Apply Lemma 6 with £,
playing the role of €. Suppose for a contradiction that G, does contain some independent set /
with [I| > (1+4¢)pmt. Then all vertices of the sets Sy and S, given by Lemma 6 for this  must
have been selected for G, along with at least |I| —|S;USs| > (1+¢)pmt — (t+2)m/(ein') >
(14 &/2)pmt vertices of g(S; U Ss) (the second inequality follows from C' = 10'%75).
However, the number of possibilities for S is ( <n_<f:0_9)2n), and for each possibility the

probability that S; C V(G,) is p/*il. For any fixed S; we have |f(S1)| < (t + 2)m and

Sy C f(S1), so the number of possibilities for Sy is at most ( < féﬁ)/ﬁzm)v and for each
> 1

possibility the probability that Sy C V(G,) is p/®2l. Finally, for any fixed S; and S, we have
g(S1USs) < (t+e1)m < (14¢/4)mt, so the expected number of vertices of g(S1USs) selected
for G, is at most (1 4 ¢/4)pmt. By a standard Chernoff bound the probability that at least
(14¢/2)pmt vertices of g(S;USs) are selected for G, is therefore at most e=="#/1%  Taking
a union bound, we conclude that the probability that G' contains an independent set I of
size greater than (1 + &)m is at most

=y T (2:) . ((t +b2)m) R

0<a<n=(t+0.92n  0<p<(t+2)m/(e3nt)

< (nH092m L) ((E+2)m/(e3n) + 1) (n_@.%z.g)zn) T ((t _,_O;;f/)gg%nt))

. p(t+2)m/(€§nt) . €—€2pmt/100



Note that for large n, with plenty of room to spare we have
(n=EF002m L 1) ((t + 2)m/(e3n') + 1) < e PmH/A0

and

2" —(t40.9)on 2
(n_(t+0.9)2n) " Y<el pmt/Aen,

Further, since C' = 10%7?, for large n we have that

( (t+2)m ) L p(tHDm/(Ent) < e2pmi/400
(t+2)m/(ein') -

Thus, the upper bound II on the probability is o(1). H

We conclude with a sketch of the proof of Proposition 3, on the number of antichains of
given fixed sizes in P(n).

Proof sketch of Proposition 3. The lower bound can be obtained by greedily choosing ver-
tices from within the ¢ middle layers of P(n) to form an antichain of size s, and counting
the number of ways to make these choices. For the upper bound, fix any € > 0 and apply
Lemma 6 with this € and ¢. Then any independent set in G of size s is uniquely determined
by the choice of

on

1. aset S; of size s; < ¢1 := 2" /n't% for which there are at most (<e1

) choices,

2. a set Sy C f(S)) of size s5 < ly := (t + 2)m/(e*n?), for which there are at most

((H;f;)m) choices, and
3. aset S C g(S;USy) of size s — s1 — $9, for which there are at most (S(irs)_m) choices.
1—S2

Summing over all these choices by a similar calculation as in the proof of Theorem 2, we find
that (for large n) there are at most ((Hig)m) independent sets of size s in G. O

When we completed the project, we were informed that Collares Neto and Morris [3]
independently proved Theorem 1. Their method is however different. We used the proof
technique of [1], and they followed the method of [11]. In particular, when we constructed
containers, we aimed at having few vertices, whilst they aimed at having only few edges.
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