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Abstract. We conjecture that every oriented graph G on n vertices with δ+(G), δ−(G) ≥
5n/12 contains the square of a Hamilton cycle. We also give a conjectural bound on
the minimum semidegree which ensures a perfect packing of transitive triangles in an
oriented graph. A link between Ramsey numbers and perfect packings of transitive
tournaments is also considered.

1.1. Powers of Hamilton cycles. One of the most studied problems in graph theory
concerns finding sufficient conditions that ensure a graph contains a Hamilton cycle.
Dirac [4] showed that any graph G on n ≥ 3 vertices has a Hamilton cycle provided
that it has minimum degree δ(G) at least n/2. For a digraph G it is natural to consider
its minimum semidegree δ0(G), which is the minimum of its minimum outdegree δ+(G)
and its minimum indegree δ−(G). (The digraphs we consider do not have loops and we
allow at most one edge in each direction between any pair of vertices.) Ghouila-Houri [6]
proved that every digraph G on n ≥ 2 vertices with δ0(G) ≥ n/2 is Hamiltonian.

An important subclass of digraphs is the class of oriented graphs: these are the digraphs
which do not contain any 2-cycles. Keevash, Kühn and Osthus [9] showed that any
sufficiently large oriented graph G on n vertices with δ0(G) ≥ (3n− 4)/8 is Hamiltonian,
thereby proving a conjecture of Häggkvist [7]. For a detailed account of other such results
concerning Hamilton cycles in directed and oriented graphs see [13].

A generalisation of the notion of a Hamilton cycle is that of the rth power of a Hamilton
cycle. Indeed, the rth power of a Hamilton cycle C is obtained from C by adding an edge
between every pair of vertices of distance at most r on C. Seymour [18] conjectured the
following strengthening of Dirac’s theorem.

Conjecture 1 (Seymour [18]). Let G be a graph on n vertices. If δ(G) ≥ r

r+1n then G
contains the rth power of a Hamilton cycle.

Pósa (see [5]) had earlier proposed the conjecture in the case of the square of a Hamilton
cycle (that is, when r = 2). Komlós, Sárközy and Szemerédi [11] proved Conjecture 1 for
sufficiently large graphs.

The notion of the rth power of a Hamilton cycle also makes sense in the digraph
setting: In this case the rth power of a Hamilton cycle C is the digraph obtained from
C by adding a directed edge from x to y if there is a path of length at most r from x
to y on C. Bollobás and Häggkvist [1] proved that given any ε > 0 and any r ∈ N, all
sufficiently large tournaments T on n vertices with δ0(T ) ≥ (1/4 + ε)n contain the rth
power of a Hamilton cycle.
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One would expect that the minimum semidegree threshold that ensures a digraph
contains the rth power of a Hamilton cycle is the ‘same’ as the condition in Conjecture 1.
But it is far less clear at first sight what to expect in the oriented case. We propose the
following oriented graph analogue of Pósa’s conjecture.

Conjecture 2. Suppose G is an oriented graph on n vertices such that δ0(G) ≥ 5n/12.
Then G contains the square of a Hamilton cycle.

The following proposition shows that, if true, Conjecture 2 is ‘best possible’.

Proposition 3. Let n ∈ N be divisible by 12. Then there is an oriented graph G on n
vertices with δ0(G) = 5n/12 − 1 which does not contain the square of a Hamilton cycle.

Proof. Let G denote the oriented graph on n vertices whose vertex set consists of the
sets A,B,C,D and E where |A| = n/6+1, |B| = n/6−1, |C| = n/3 and |D| = |E| = n/6.
The edge set of G is obtained as follows: Add all possible edges from A ∪ B to C, from
C to D ∪ E, from D to A ∪ B and from E to A ∪ D. Let B, C and D all induce
tournaments that are as regular as possible (so δ0(G[B]) = δ0(G[D]) = n/12 − 1 and
δ0(G[C]) = n/6− 1). We add edges between A and B in such a way that every vertex in
A sends and receives at least n/12− 1 edges to and from B, and every vertex in B sends
and receives at least n/12 edges to and from A. Similarly, we add edges between B and
E in such a way that every vertex in B sends and receives n/12 edges to and from E,
and every vertex in E sends and receives at least n/12 − 1 edges to and from B. A and
E are both independent sets (see Figure 1). So δ0(G) = 5n/12 − 1.

Assume that G contains the square of a Hamilton cycle F . Since |B| < |E|, showing
that F must visit B between any two visits of E would yield a contradiction. Thus,
consider any vertex e ∈ E. Its predecessor c1 on F lies in B ∪ C, so without loss of
generality we may assume that c1 ∈ C. The predecessor c2 of c1 on F must lie in
N−(e) ∩ N−(c1) ⊆ B ∪ C. So without loss of generality we may assume that c2 ∈ C.
The predecessor c3 of c2 on F lies in A ∪ B ∪ C. Again we are done if c3 ∈ B, so we
assume that c3 ∈ A∪C. Since F visits all the vertices of G we must eventually arrive at
a predecessor a ∈ A whose successor c on F lies in C. But now the predecessor of a on
F must lie in N−(c) ∩ N−(a) ⊆ B, as required. �

1.2. Transitive triangle packings. Given an (oriented) graph H, a perfect H-packing

in an (oriented) graph G is a collection of vertex-disjoint copies of H which covers all the
vertices in G. (Perfect H-packings are also referred to as H-factors or perfect H-tilings.)
Perfect H-packings in graphs have been widely studied. Hajnal and Szemerédi [8] char-
acterised the minimum degree which ensures a graph G contains a perfect Kr-packing.
More recently, Kühn and Osthus [12] characterised, up to an additive constant, the mini-
mum degree which ensures a graph G contains a perfect H-packing for an arbitrary graph
H. Far less is known in the oriented graph case. Keevash and Sudakov [10] showed that
any oriented graph G on n vertices with δ0(G) ≥ (1/2 − o(1))n contains a packing of
cyclic triangles covering all but at most 3 vertices.

It is natural to ask for the minimum semidegree of an oriented graph which ensures
a perfect packing of transitive triangles T3. Note that if 3 divides |G| then a necessary
condition for an oriented graph G to contain a square of a Hamilton cycle is that G
contains a perfect packing of transitive triangles. Let δ(G) denote the minimum degree
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Figure 1. The oriented graph G from Proposition 3

of an oriented graph G (that is, the minimum number of edges incident to a vertex in G).
The following proposition from [20] implies that a minimum semidegree as in Conjecture 2
ensures a perfect T3-packing.

Proposition 4 (Yuster [20]). Suppose G is an oriented graph whose order n is divisible

by 3. If δ(G) ≥ 5n/6 then G contains a perfect T3-packing.

Proposition 4 is best possible in the sense that there are oriented graphs G whose
order n is divisible by 3 and where δ(G) = (5n− 3)/6 but which do not contain a perfect
T3-packing. (Indeed, consider the oriented graph G on 6m + 3 vertices consisting of 3
vertex sets A, B and C where |A| = |B| = m + 1 and |C| = 4m + 1, and such that
C induces a tournament, A sends out all possible edges to B, B sends out all possible
edges to C and C sends out all possible edges to A. Then G does not contain a perfect
T3-packing since every copy of T3 in G has at most one vertex in A∪B.) However, when
considering embeddings in oriented graphs, it seems that the more natural parameter to
look at is the minimum semidegree. We believe that, in terms of minimum semidegree,
one can improve on the bound given in Proposition 4.

Conjecture 5. Suppose G is an oriented graph whose order n is divisible by 3. If δ0(G) ≥
7n/18 then G contains a perfect T3-packing.

If true, Conjecture 5 would characterise the minimum semidegree which ensures an
oriented graph has a perfect T3-packing.

Proposition 6. Let n ∈ N be divisible by 18. Then there is an oriented graph G on n
vertices with δ0(G) = 7n/18 − 1 which does not contain a perfect T3-packing.

Proof. Let G denote the oriented graph on n vertices whose vertex set consists of the
sets A, B, C and D where |A| = 2n/9 + 1, |B| = |C| = 2n/9 and |D| = n/3 − 1 and
whose edge set is obtained as follows: Add all possible edges from A to B, from B to
C and from C to A. Let D induce a regular tournament. Partition D into two sets D′

and D′′ of sizes n/6 and n/6 − 1 respectively. Add all possible edges from D′ to B ∪ C,
from A to D′, from D′′ to A and from B ∪ C to D′′ (see Figure 2). It is easy to see that
δ0(G) = 7n/18 − 1. Note that G does not have a perfect T3-packing since every copy of
T3 in G must have at least one vertex in D. �
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Figure 2. The oriented graph G from Proposition 6

1.3. Packing transitive tournaments. Let Tk denote the transitive tournament on k
vertices. In light of Conjecture 5 we ask the following question.

Question 7. What minimum semidegree condition ensures that an oriented graph con-

tains a perfect Tk-packing?

Recall that in the oriented graph G given in Proposition 6 the vertex set A ∪ B ∪ C
induces an oriented graph which does not contain a copy of T3. This is the ‘reason’ why
G does not contain a perfect T3-packing. It would be of interest to establish whether the
extremal examples, in terms of perfect Tk-packings, take a similar form. Thus, Question 7
is closely linked to the following question.

Question 8. What minimum semidegree condition ensures that an oriented graph con-

tains a copy of Tk?

Valadkhan [19] has investigated this problem with respect to density conditions (a
wider collection of problems of this nature are considered in [2]). It is easy to see that an
oriented graph G on n vertices with δ0(G) > n/3 contains a copy of T3 (and the blow-up
of a cyclic triangle shows that this bound is best possible).

1.4. Perfect packings and Ramsey numbers. The oriented tiling Ramsey number
−→
TR(k) of k is the smallest integer n divisible by k such that any orientation of the
complete graph Kn contains a perfect Tk-packing. Erdős (see [14]) proved the existence
of these numbers. The following simple result gives a bound on the minimum degree
which ensures an oriented graph G contains a perfect Tk-packing.

Proposition 9. Suppose G is an oriented graph whose order n is divisible by k and such

that δ(G) ≥ (1 − 1
−→
TR(k)

)n. Then G contains a perfect Tk-packing.

Sketch proof. Let m :=
−→
TR(k). Consider the case when m divides n. By disregarding

the orientations of the edges of G we obtain a graph G∗ on n vertices with δ(G∗) ≥
(1 − 1

m
)n. The Hajnal-Szemerédi theorem [8] implies that G∗ has a perfect Km-packing.

By definition of m this implies that G has a perfect Tk-packing. If n is not divisible by
m, we remove a number of vertex-disjoint copies of Tk from G until m divides |G|. We
then proceed as before. �
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Note that
−→
TR(3) = 6 so Proposition 9 implies Proposition 4. In view of Proposition 9

it is natural to seek good upper bounds on
−→
TR(k). The oriented Ramsey number

−→
R (k)

of k is the smallest integer n such that any orientation of Kn contains a copy of Tk.

The following proposition gives an upper bound on
−→
TR(k) in terms of oriented Ramsey

numbers.

Proposition 10. Given any k ∈ N,
−→
TR(k) ≤

−→
R (2k − 1) + (2k − 1)

−→
R (k).

Proof. We use the same trick as Caro used in [3]. Let n be the largest integer divisible

by k such that n ≤
−→
R (2k−1)+(2k−1)

−→
R (k) and ℓ the largest integer divisible by k which

satisfies ℓ ≤
−→
R (k). Consider any orientation

−→
K of Kn. By definition of n,

−→
K contains

ℓ vertex-disjoint copies of T2k−1. We can cover all but ℓ of the remaining vertices of
−→
K

with vertex-disjoint copies of Tk. Each of the ℓ uncovered vertices x are paired off with
one of our copies T ′

2k−1 of T2k−1. Since x either sends out at least k edges to T ′

2k−1 in
−→
K or receives at least k edges from T ′

2k−1 in
−→
K , we have that the oriented subgraph of

−→
K induced by V (T ′

2k−1) ∪ {x} contains a perfect Tk-packing. Thus
−→
K contains a perfect

Tk-packing. �

The numbers
−→
R (k) are known for k ≤ 6 (see [15, 16]). Sanchez-Flores [17] showed that

−→
R (7) ≤ 54 which by an induction argument implies that

−→
R (k) ≤ 54· 2k−7 for k ≥ 7 (this

is the best known general upper bound on oriented Ramsey numbers). Note also that
−→
R (k) ≤ R(k) where R(k) denotes the Ramsey number of k.

Acknowledgement

The author would like to thank Daniela Kühn, Richard Mycroft and Deryk Osthus for
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[5] P. Erdős, Problem 9, in: M. Fieldler (Ed.), Theory of Graphs and its Applications, Czech. Acad. Sci.

Publ., Prague, 1964, p. 159.
[6] A. Ghouila-Houri, Une condition suffisante d’existence d’un circuit hamiltonien,

C.R. Acad. Sci. Paris 25 (1960), 495–497.
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