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Abstract. Given a linear equation L, a set A ⊆ [n] is L-free if A does not contain any ‘non-trivial’
solutions to L. We determine the precise size of the largest L-free subset of [n] for several general
classes of linear equations L of the form px+ qy = rz for fixed p, q, r ∈ N where p ≥ q ≥ r. Further,
for all such linear equations L, we give an upper bound on the number of maximal L-free subsets of
[n]. In the case when p = q ≥ 2 and r = 1 this bound is exact up to an error term in the exponent.
We make use of container and removal lemmas of Green [12] to prove this result. Our results also
extend to various linear equations with more than three variables.
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1. Introduction

In this note we study solution-free sets of integers, that is, sets that contain no solution to a given
linear equation L. In particular, we investigate the size of the largest such subset of [n] := {1, . . . , n}
and the number of maximal solution-free subsets of [n].

More precisely, consider a fixed linear equation L of the form

a1x1 + · · ·+ akxk = b

where a1, . . . , ak, b ∈ Z. If b = 0 we say that L is homogeneous. If∑
i∈[k]

ai = b = 0

then we say that L is translation-invariant. A solution (x1, . . . , xk) to L is said to be trivial if L is
translation-invariant and if there exists a partition P1, . . . , P` of [k] so that:

(i) xi = xj for every i, j in the same partition class Pr;
(ii) For each r ∈ [`],

∑
i∈Pr

ai = 0.

A set A ⊆ [n] is L-free if A does not contain any non-trivial solutions to L. If the equation L is
clear from the context, then we simply say A is solution-free.

Many of the most famous results in combinatorial number theory concern solution-free sets. For
example, Schur’s theorem [25] states that if n is sufficiently large then [n] cannot be partitioned into
r sum-free sets (i.e. L is x+ y = z). Roth’s theorem [20] states that the largest progression-free set
(i.e. L is x1 + x2 = 2x3) has size o(n) whilst a classical result of Erdős and Turán [10] determines,
up to an error term, the size of the largest Sidon set (i.e. L is x1 + x2 = x3 + x4).

1.1. The size of the largest solution-free set. As indicated above, a key question in the study
of L-free sets is to establish the size µL(n) of the largest L-free subset of [n]. In general µL(n) = o(n)
if L is translation-invariant and µL(n) = Ω(n) otherwise (see [21]). When L is x+y = z it is easy to
see that µL(n) = dn/2e. Recently, the authors [14] established that if L is the equation px+ qy = z
with p, q ∈ N, p ≥ 2, then µL(n) = n− bn/(p+ q)c for sufficiently large n. This bound is attained
by the interval [bn/(p+ q)c+ 1, n]. For other (exact) bounds on µL(n) for various linear equations
L see, for example, [21, 22, 6, 9, 15].

Date: May 6, 2016.
The second author is supported by EPSRC grant EP/M016641/1.

1



Our first result determines µL(n) for a wide class of equations of the form px + qy = rz where
p ≥ q ≥ r and p, q, r are fixed positive integers.

Theorem 1. Let L denote the equation px+ qy = rz where p ≥ q ≥ r and p, q, r are fixed positive
integers satisfying gcd(p, q, r) = 1. Let t := gcd(p, q). Write r1 := p/t and r2 := q/t.

(i) If q divides p and p+ q ≤ rq then µL(n) = d(q − 1)n/qe;
(ii) If q divides p and p + q ≥ rq then µL(n) = d(p + q − r)(n − a)/(p + q)e + a where a is the

unique non-negative integer 0 ≤ a < q such that n− a is divisible by q;
(iii) If q does not divide p, t > 1 and

r > (r1r2 − r1 − r2 + 4)r2

(
r1 + 1 +

r2 − 1

r21 + (r1 − 1)(r2 − 1)

)
then µL(n) = d(t− 1)n/te.

Theorem 1(ii) was already proven (for large enough n) in [14] in the special case when r =
1. (Note though that our work in [14] determines µL(n) for many equations L not covered by
Theorem 1.) Previously, Hegarty [15] proved Theorem 1(i) in the case when p = q. In Section 3 we
also give a generalisation of Theorem 1 concerning some linear equations with more variables (see
Corollary 14).

Notice that in the case when q divides p, Theorem 1 gives a dichotomy for the value of µL(n):
when p+ q ≤ rq the set A := {x ∈ [n] : x 6≡ 0 mod q} is a largest L-free subset of [n], whilst when
p+ q ≥ rq the interval I := [br(n− a)/(p+ q)c+ 1, n] is a largest L-free subset of [n]. To see that
I is L-free observe that since gcd(p, q, r) = 1 and gcd(p, q) = q, any solution (x, y, z) to L with
x, y, z ∈ I must have z divisible by q. Since px+ qy > r(n− a), z must lie in [n− a+ 1, n] however
then z is not divisible by q and so I is L-free. Note that when r = 1, I := [br(n−a)/(p+q)c+1, n] =
[brn/(p+ q)c+ 1, n], though this does not hold in general when r > 1.

Theorem 1 does not provide us with as much information for the case when q does not divide p;
it would be interesting to establish whether a similar dichotomy occurs in this case.

1.2. The number of maximal solution-free sets. Given a linear equation L, write f(n,L) for
the number of L-free subsets of [n]. Observe that all possible subsets of an L-free set are also

L-free, and so f(n,L) ≥ 2µL(n). In fact, in general this trivial lower bound is not too far from the
precise value of f(n,L). Indeed, Green [12] showed that given a homogenous linear equation L,

then f(n,L) = 2µL(n)+o(n) (where here the o(n) may depend on L). (Recall though, in the case

when L is translation-invariant µL(n) = o(n), so Green’s theorem only tells us that f(n,L) = 2o(n)

for such L.) In the case of sum-free sets, Green [11] and independently Sapozhenko [23], showed

that there are constants C1 and C2 such that f(n,L) = (Ci + o(1))2n/2 for all n ≡ i mod 2. This
resolved a conjecture of Cameron and Erdős [7].

Far less is known about the number fmax(n,L) of maximal L-free subsets of [n]. (We say that
A ⊆ [n] is a maximal L-free subset of [n] if it is L-free and it is not properly contained in another
L-free subset of [n].) In the case when L is x + y = z, Cameron and Erdős [8] asked whether
fmax(n,L) ≤ f(n,L)/2εn for some constant ε > 0; a few years later  Luczak and Schoen [19]
confirmed this to be true. After further progress on the problem [26, 2], Balogh, Liu, Sharifzadeh
and Treglown [3] proved the following sharp result for maximal sum-free sets: For each 1 ≤ i ≤ 4,

there is a constant Ci such that, given any n ≡ i mod 4, fmax(n,L) = (Ci + o(1))2n/4.
For other linear equations L, it is also natural to ask whether there are significantly fewer

maximal L-free subsets of [n] than there are L-free subsets. In [14] we showed that this is the case
for all non-translation-invariant three-variable homogeneous equations L. In particular in this case
fmax(n,L) ≤ 3(µL(n)−µ

∗
L(n))/3+o(n) where µ∗L(n) denotes the number of elements in [n] which do not

lie in any non-trivial solution to L that only consists of elements from [n]. We also gave other
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upper bounds on fmax(n,L) for equations of the form px+ qy = z for fixed p, q ∈ N which in most
cases yielded better bounds (see [14]). In this paper we prove the following result.

Theorem 2. Let L denote the equation px+ qy = rz where p ≥ q ≥ r and p, q, r are fixed positive
integers satisfying gcd(p, q, r) = 1. Let t := gcd(p, q). Then

fmax(n,L) ≤ 2
Crn
q

+o(n)
where C := 1− t

p+ q

(p2 + (p− t)(q − t)
p2

)
.

For a wide class of equations L this is the current best known upper bound on fmax(n,L); see
the appendix for more details. In the case when p = q ≥ 2 and r = 1, the upper bound given by
Theorem 2 is actually exact up to the error term in the exponent.

Theorem 3. Let L denote the equation qx+ qy = z where q ≥ 2 is an integer. Then

fmax(n,L) = 2n/2q+o(n).

In Section 4 we will also generalise Theorem 2 to consider some linear equations with more
variables (see Theorem 15).

For the proof of both Theorems 1 and 2, a simple but crucial tool is a result (Lemma 8) which
ensures a certain auxiliary graph contains a large collection of disjoint edges. To prove Theorem 2
we also make use of container and removal lemmas of Green [12] (see Section 2.1).

In the next section we collect together a number of useful tools and lemmas. We prove our results
on the size of the largest solution-free subset of [n], and on the number of maximal solution-free
subsets of [n], in Section 3 and 4 respectively.

2. Containers, link hypergraphs and the main lemmas

2.1. Container and removal lemmas. Observe that we can formulate the study of L-free sets
in terms of independent sets in hypergraphs. Let H denote the hypergraph with vertex set [n]
and edges corresponding to non-trivial solutions to L. Then an independent set in H is precisely
an L-free set. The method of containers roughly states that for certain (hyper)graphs G, the
independent sets of G lie only in a small number of subsets of V (G) called containers, where
each container is an ‘almost independent set’. In general, the method of containers has had a wide
number of applications to combinatorics and other areas; the method for graphs was first developed
by Kleitman and Winston [16, 17]. More recently, the hypergraph container method was developed
by Balogh, Morris and Samotij [4] and independently by Saxton and Thomason [24]. In this section
we introduce a container lemma of Green [12] for L-free sets.

Lemma 4(i)–(iii) is stated explicitly in Proposition 9.1 of [12]. Lemma 4(iv) follows as an imme-
diate consequence of Lemma 4(i) and Lemma 5 below.

Lemma 4. [12] Fix a k-variable homogeneous linear equation L. There exists a family F of subsets
of [n] with the following properties:

(i) Every F ∈ F has at most o(nk−1) solutions to L.
(ii) If S ⊆ [n] is L-free, then S is a subset of some F ∈ F .

(iii) |F| = 2o(n).
(iv) Every F ∈ F has size at most µL(n) + o(n).

We call the elements of F containers. Observe that Lemma 4(iv) gives a bound on the size of
the containers in terms of µL(n), even in the case when µL(n) is not known.

The following removal lemma is a special case of a result of Green (Theorem 1.5 in [12]). This
result was also generalised to systems of linear equations by Král’, Serra and Vena (Theorem 2
in [18]).
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Lemma 5. [12] Fix a k-variable homogeneous linear equation L. Suppose that A ⊆ [n] is a set
containing o(nk−1) solutions to L. Then there exist B and C such that A = B ∪ C where B is
L-free and |C| = o(n).

We will use both the above results to obtain bounds on the number of maximal L-free sets.

2.2. Link hypergraphs. One can turn the problem of counting the number of maximal L-free
subsets of [n] into one of counting maximal independent sets in an auxiliary graph. Similar tech-
niques were used in [26, 2, 3, 14], and in the graph setting in [5, 1]. To be more precise let B and
S be disjoint subsets of [n] and fix a three-variable linear equation L. The link graph LS [B] of S
on B has vertex set B, and an edge set consisting of the following two types of edges:

(i) Two vertices x and y are adjacent if there exists an element z ∈ S such that {x, y, z} is an
L-triple;

(ii) There is a loop at a vertex x if there exists an element z ∈ S or elements z, z′ ∈ S such that
{x, x, z} or {x, z, z′} is an L-triple.

Here by L-triple we simply mean a multiset {x, y, z} which forms a solution to L.
Consider the following generalisation of a link graph LS [B] to that of a link hypergraph: Let

B and S be disjoint subsets of [n] and let L denote the equation p1x1 + · · · + pkxk = 0 where
p1, . . . , pk are fixed integers. The link hypergraph LS [B] of S on B has vertex set B; It has an edge
set consisting of hyperedges between s ≤ k distinct vertices v1, . . . , vs of B, whenever (x1, . . . , xk)
is a solution to L in which {x1, . . . , xk} ⊆ S ∪ {v1, . . . , vs} and {v1, . . . , vs} ⊆ {x1, . . . , xk}. In this
definition one could have edges corresponding to trivial solutions. However in our applications,
since we only consider non-translation-invariant equations, there are no trivial solutions.

The link graph lemmas used by the authors in [14] (Lemmas 12 and 15) can easily be extended
to the hypergraph case.

Lemma 6. Let L denote a non-translation-invariant linear equation. Suppose that B,S are disjoint
L-free subsets of [n]. If I ⊆ B is such that S ∪ I is a maximal L-free subset of [n], then I is a
maximal independent set in the link hypergraph LS [B]. �

Let MIS(G) denote the number of maximal independent sets in G. The above result can be used
in conjunction with the container lemma as follows. Let F = A ∪B be a container as in Lemma 4
where |A| = o(n) and B is L-free. Observe that any maximal L-free subset of [n] in F can be
found by first selecting an L-free subset S ⊆ A, and then extending S in B. Then the number of
extensions of S in B is bounded by MIS(LS [B]) by Lemma 6.

We can also use link graphs to obtain lower bounds.

Lemma 7. Let L denote a non-translation-invariant linear equation. Suppose that B,S are disjoint
L-free subsets of [n]. Let H be an induced subgraph of the link graph LS [B]. Then fmax(n,L) ≥
MIS(H). �

2.3. The main lemmas. Here we use a specific link graph as a means to bound the number of
elements in a solution-free subset of [n].

Let L denote the equation px + qy = rz where p ≥ q ≥ r and p, q, r are fixed positive integers
satisfying gcd(p, q, r) = 1. Let t := gcd(p, q) and write r1 := p/t, r2 := q/t. Fix M ∈ [n] such that
M is divisible by t. We define the graph GM to have vertex set [drM/qe − 1] and an edge between
x and y whenever px+ qy = rM .

Lemma 8. The graph GM contains a collection E of vertex-disjoint edges where

|E| =
⌊

rM

r2(p+ q)

⌋
+ (r1r2 − r1 − r2 + 1)

⌊⌊
rM

r1(p+ q)
− 1

r2

⌋
1

r1r2

⌋
and at most one edge in E is a loop.
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Proof. All edges in GM are pairs of the form {s, (rM − sp)/q} for some s ∈ N since ps+ q(rM −
sp)/q = rM . Since p = r1t and q = r2t where r1 and r2 are coprime, for a fixed integer s precisely
one element in {(rM − (s− j)p)/q : 0 ≤ j < r2} is an integer. (Note here we are using that M is
divisible by t.) In other words there exists a unique x ∈ N, 1 ≤ x ≤ r2 such that (rM −xp)/q is an
integer, and all edges in GM are of the form {x + ar2, (rM − xp)/q − ar1} for some non-negative
integer a. In particular there is an edge provided a satisfies (rM − xp)/q − ar1 ∈ N.

Write y := (rM − xp)/q. Note that if x+ ar2 ≤ rM/(p+ q) then

y − ar1 =
rM − (x+ ar2)p

q
≥ rM − prM/(p+ q)

q
=

rM

p+ q
.

Hence there are brM/(r2(p+q))c distinct edges in GM of the form {x+ar2, y−ar1} with x+ar2 ≤
rM/(p + q) ≤ y − ar1. Note that one of these edges may be a loop. (This will be at rM/(p + q)
in the case when rM/(p + q) ∈ N.) Call this collection of edges E1. Our next aim is to find an
additional collection E2 of edges in GM that is vertex-disjoint from E1.

Note that x + ar2 ≡ x mod r2 and y − ar1 ≡ y mod r1. Also p(rM/p) + q(0) = rM and
drM/pe ≤ drM/qe, hence there are at least⌊(⌈

rM

p

⌉
− 1−

⌊
rM

p+ q

⌋)
/r2

⌋
≥
⌊(

rM

p
− rM

p+ q
− 1

)
/r2

⌋
=

⌊
rM

r1(p+ q)
− 1

r2

⌋
edges in GM of the form {x+ar2, y−ar1} with x+ar2 > rM/(p+ q). Consider a set of r1r2 edges
{{x+ar2 + br2, y−ar1− br1} : 0 ≤ b < r1r2} for a fixed a. Since r1 and r2 are coprime, precisely r2
of these edges (1 in r1 of them) have x+ ar2 + br2 ≡ y mod r1, and precisely r1 of these edges have
y−ar1−br1 ≡ x mod r2. (Also, precisely 1 edge satisfies both.) In all other cases since x+ar2+br2 6≡
y mod r1 and y − ar1 − br1 6≡ x mod r2, the edge {x + ar2 + br2, y − ar1 − br1} is vertex-disjoint
from E1. Hence we obtain a set E2 of at least (r1r2− r1− r2 + 1)bbrM/(r1(p+ q))− 1/r2c/(r1r2)c
additional distinct edges. Thus E := E1 ∪ E2 is our desired set. �

Observe that the graph GM is a link graph LS [B], where S := {M} and B := [drM/qe − 1]. If
we wish to extend a solution-free set S into a solution-free subset of S ∪ B, then we must pick an
independent set in LS [B]. Similarly here if we wish to obtain a solution-free subset of [n] which
contains M divisible by t, then we must pick an independent set in GM . This is the idea behind
the following key lemma, which allows us to bound the number of elements in such an L-free set.

Lemma 9. Let L denote the equation px + qy = rz where p ≥ q ≥ r and p, q, r are fixed positive
integers satisfying gcd(p, q, r) = 1. Let t := gcd(p, q) and write r1 := p/t and r2 := q/t. Let S be
an L-free subset of [n]. If M ∈ S is divisible by t, then S contains at most⌈

rM

q

⌉
− 1−

⌊
rM

r2(p+ q)

⌋
− (r1r2 − r1 − r2 + 1)

⌊⌊
rM

r1(p+ q)
− 1

r2

⌋
1

r1r2

⌋
elements from [drM/qe − 1].

Proof. Consider the graph GM and observe that its edges correspond to L-triples: since p ≥ q ≥ r
there is an edge between x and y precisely when {x, y,M} is an L-triple. Hence if I ⊆ V (GM ) is
such that I ∪ {M} is an L-free subset of [n] then I is an independent set in GM . As a consequence
if we find a set of vertex-disjoint edges in GM of size J , then S contains at most drM/qe − 1 − J
elements from [drM/qe − 1]. The result then follows by applying Lemma 8. �
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First note that if L denotes the equation x+ y = z, then in Lemma 9 we are simply saying that
if a sum-free set S contains M , then it cannot contain both 1 and M − 1, it cannot contain both
2 and M − 2, and so on. So in a sense this lemma is a generalisation of the proof that sum-free
subsets of [n] cannot contain more than dn/2e elements.

Let L denote the equation px + qy = rz where p ≥ q ≥ r and p, q, r are fixed positive integers
satisfying gcd(p, q, r) = 1 and let t := gcd(p, q). Then observe that the set T := {x ∈ [n] : x 6≡ 0
mod t} is L-free: note that in any solution {x, y, z} to L, z must be divisible by t since gcd(r, t) = 1.
But T contains no elements divisible by t. Lemma 9 roughly implies that every L-free subset of
[n] must have ‘not too many small elements’ or must ‘look like’ T . Clearly this lemma gives rise to
an upper bound on the size of the largest L-free subset of [n]. In Section 4 we also show that this
lemma can be used to obtain an upper bound on the number of maximal L-free subsets of [n].

The following simple proposition allows us to extend our results for linear equations with three
variables to linear equations with more than three variables.

Proposition 10. Let L1 denote the equation p1x1 + · · ·+ pkxk = b where p1, . . . , pk, b ∈ Z and let
L2 denote the equation (p1 + p2)x1 + p3x2 + · · ·+ pkxk−1 = b. Then µL1(n) ≤ µL2(n).

Proof. If (p1 + p2)x1 + p3x2 + · · · + pkxk−1 = b for some xi ∈ [n], 1 ≤ i ≤ k − 1, then
p1x1 + p2x1 + p3x2 + · · · + pkxk−1 = b. Hence any solution to L2 in [n] gives rise to a solution to
L1 in [n]. So if A ⊆ [n] is L1-free, then A is also L2-free. Hence the size of the largest L2-free set
is at least the size of the largest L1-free set. �

We will also make use of the following trivial fact.

Fact 11. Suppose L1 is a linear equation and L2 is a positive integer multiple of L1. Then the set
of L1-free subsets of [n] is precisely the set of L2-free subsets of [n]. In particular µL1(n) = µL2(n),
f(n,L1) = f(n,L2) and fmax(n,L1) = fmax(n,L2).

The two results above allow us to extend the use of Lemma 9 to equations with more than three
variables.

Lemma 12. Let L denote the equation p1x1 + · · · + pkxk = 0 where pi ∈ Z. Suppose there is a
partition of the pi into three non-empty parts P1, P2 and P3 where p′ :=

∑
pj∈P1

pj, q
′ :=

∑
pj∈P2

pj
and r′ := −

∑
pj∈P3

pj satisfy p′ ≥ q′ ≥ r′ ≥ 1. Let t′ := gcd(p′, q′, r′) and write p := p′/t′, q := q′/t′

and r := r′/t′. Let t := gcd(p, q) and write r1 := p/t and r2 := q/t. Let S be an L-free subset of
[n]. If M ∈ S is divisible by t, then S contains at most⌈

rM

q

⌉
− 1−

⌊
rM

r2(p+ q)

⌋
− (r1r2 − r1 − r2 + 1)

⌊⌊
rM

r1(p+ q)
− 1

r2

⌋
1

r1r2

⌋
elements from [drM/qe − 1].

Proof. Let L′ denote the equation px + qy = rz. Now observe by repeatedly applying Proposi-
tion 10 and Fact 11 that any L-free set is also an L′-free set. Hence S must be L′-free and so we
simply apply Lemma 9. �

This bounds the number of ‘small elements’ in solution-free sets for equations with more than
three variables, and in Theorem 15 we will use this lemma to obtain a result for the number of
maximal solution-free sets.

3. The size of the largest solution-free set

The aim of this section is to use our results from the previous section to obtain bounds on µL(n)
for linear equations L of the form px + qy = rz with p ≥ q ≥ r positive integers and also linear
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equations with more than three variables. As previously mentioned we can use Lemma 9 to obtain
a bound on the size of a solution-free set.

Corollary 13. Let L denote the equation px+qy = rz where p ≥ q ≥ r and p, q, r are fixed positive
integers satisfying gcd(p, q, r) = 1. Let S be an L-free subset of [n] and suppose M is the largest
element of S divisible by t := gcd(p, q). Write r1 := p/t and r2 := q/t. Then

|S| ≤M −
⌊

rM

r2(p+ q)

⌋
− (r1r2 − r1 − r2 + 1)

⌊⌊
rM

r1(p+ q)
− 1

r2

⌋
1

r1r2

⌋
+

⌈
(n−M)(t− 1)

t

⌉
.

Proof. By Lemma 9, S contains at most drM/qe − 1 − brM/(r2(p + q))c − (r1r2 − r1 − r2 +
1)bbrM/(r1(p+ q))−1/r2c/(r1r2)c elements from [drM/qe−1]. It also cannot contain any element
larger than M and divisible by t. �

Note in the statement of Corollary 13 we are implicitly assuming that M exists. If it does not
then |S| ≤ dn(t− 1)/te.

Recall that if L denotes the equation px + qy = rz where p, q, r are fixed positive integers
satisfying gcd(p, q, r) = 1 and t := gcd(p, q), then the set T := {x ∈ [n] : x 6≡ 0 mod t} is L-free.
Let a be the unique non-negative integer 0 ≤ a < t such that n − a is divisible by t. The interval
I := [br(n− a)/(p+ q)c+ 1, n] is also L-free. So µL(n) ≥ max{|T |, |I|}.

In the following theorem we find equations where the set T is a largest solution-free set; We also
find equations where I is a largest solution-free set.

Theorem 1. Let L denote the equation px+ qy = rz where p ≥ q ≥ r and p, q, r are fixed positive
integers satisfying gcd(p, q, r) = 1. Let t := gcd(p, q). Write r1 := p/t and r2 := q/t.

(i) If q divides p and p+ q ≤ rq then µL(n) = d(q − 1)n/qe;
(ii) If q divides p and p + q ≥ rq then µL(n) = d(p + q − r)(n − a)/(p + q)e + a where a is the

unique non-negative integer 0 ≤ a < q such that n− a is divisible by q;
(iii) If q does not divide p, t > 1 and

r > (r1r2 − r1 − r2 + 4)r2

(
r1 + 1 +

r2 − 1

r21 + (r1 − 1)(r2 − 1)

)
then µL(n) = d(t− 1)n/te.

Proof. Let S be an L-free subset of [n] and suppose M is the largest element of S divisible by t.
If S does not contain an element divisible by t, set M := 0. If q divides p then t = q and r2 = 1
and hence by Corollary 13 we have

|S| ≤
⌈

(p+ q − r)M
p+ q

⌉
+

⌈
(n−M)(q − 1)

q

⌉
.(1)

(This is true even in the case M = 0.)
If p+ q ≤ rq then |S| ≤ d(q − 1)M/qe+ d(n−M)(q − 1)/qe = dn(q − 1)/qe since M is divisible

by q. Observe that the set T := {x ∈ [n] : x 6≡ 0 mod t} is an L-free set obtaining this size, and so
this proves (i).

For (ii) we will show that (1) is an increasing function of M (when restricted to running through
M divisible by t) and hence it will be maximised by taking M = n−a. Then |S| ≤ d(p+ q− r)(n−
a)/(p+ q)e+ a. Observe that the interval I := [br(n− a)/(p+ q)c+ 1, n] is an L-free set obtaining
this size and so this proves (ii), provided (1) is an increasing function of M .

Since M must be divisible by t = q, write M ′ := M/q and so (1) can be written as⌈
((r1 + 1)q − r)M ′

r1 + 1

⌉
+

⌈
n(q − 1)

q

⌉
−M ′(q − 1) = M ′ +

⌈
−rM ′

r1 + 1

⌉
+

⌈
n(q − 1)

q

⌉
.
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Now observe that the difference between successive terms M ′ and M ′ + 1 is given by

M ′ + 1 +

⌈
−r(M ′ + 1)

r1 + 1

⌉
−M ′ −

⌈
−rM ′

r1 + 1

⌉
= 1 +

⌈
−rM ′

r1 + 1
− r

r1 + 1

⌉
−
⌈
−rM ′

r1 + 1

⌉
≥ 0

where the inequality follows since r1 + 1 ≥ r. Hence (1) is an increasing function of M as required.
For (iii) if M = 0 then |S| ≤ dn(t− 1)/te as required. So assume M ≥ t. Then by Corollary 13

we have

|S| ≤M −
⌊

rM

r2(p+ q)

⌋
− (r1r2 − r1 − r2 + 1)

⌊⌊
rM

r1(p+ q)
− 1

r2

⌋
1

r1r2

⌋
+

⌈
(n−M)(t− 1)

t

⌉
≤M − rM

r2(p+ q)
+ 1− r1r2 − r1 − r2 + 1

r1r2

(
rM

r1(p+ q)
− 1

r2
− 1

)
+ r1r2 − r1 − r2 + 1

− M(t− 1)

t
+

⌈
n(t− 1)

t

⌉
≤
⌈
n(t− 1)

t

⌉
+ r1r2 − r1 − r2 + 3−M

(
r(r21 + (r1 − 1)(r2 − 1))

tr21r2(r1 + r2)
− 1

t

)
=

⌈
n(t− 1)

t

⌉
+ r1r2 − r1 − r2 + 3−M

(
r

tr2

(
r1 + 1 +

r2 − 1

r21 + (r1 − 1)(r2 − 1)

)−1
− 1

t

)
≤
⌈
n(t− 1)

t

⌉
+ r1r2 − r1 − r2 + 3−M

(
r1r2 − r1 − r2 + 4

t
− 1

t

)
≤
⌈
n(t− 1)

t

⌉
,

where the penultimate inequality follows by our lower bound on r and the last inequality follows
by using M ≥ t. �

For Theorem 1(iii) it is easy to check that actually given the conditions on r we must always
have t > 1 (we just state t > 1 in the theorem for clarity). As an example, p := 3t, q := 2t, r ≥ 41,
and t ≥ r/2 gives a set of equations which satisfy the conditions of Theorem 1(iii).

Theorem 1 together with Proposition 10 yield results for µL(n) where L is an equation with
more than three variables. Full details can be found in [13].

Corollary 14. Let L denote the equation a1x1 + · · ·+ akxk + b1y1 + · · ·+ b`y` = c1z1 + · · ·+ cmzm
where the ai, bi, ci ∈ N and p′ :=

∑
i ai, q

′ :=
∑

i bi and r′ :=
∑

i ci satisfy p′ ≥ q′ ≥ r′. Let
t′ := gcd(p′, q′, r′) and write p := p′/t′, q := q′/t′ and r := r′/t′. Let t := gcd(p, q).

(i) If m = 1, ` = 1, q′ = b1 divides ai for all 1 ≤ i ≤ k and p+ q ≤ rq then µL(n) = d(q−1)n/qe;
(ii) If q divides p and p+q ≥ rq then d(p+q−r)n/(p+q)e ≤ µL(n) ≤ d(p+q−r)(n−a)/(p+q)e+a

where a is the unique non-negative integer 0 ≤ a < q such that n− a is divisible by q;
(iii) Write r1 := p/t and r2 := q/t. If q does not divide p, m = 1, tt′ divides ai and bj for

1 ≤ i ≤ k, 1 ≤ j ≤ ` and

r > (r1r2 − r1 − r2 + 4)r2

(
r1 + 1 +

r2 − 1

r21 + (r1 − 1)(r2 − 1)

)
then µL(n) = d(t− 1)n/te.

�
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4. The number of maximal solution-free sets

We start this section with the proof of Theorem 2.

Theorem 2. Let L denote the equation px+ qy = rz where p ≥ q ≥ r and p, q, r are fixed positive
integers satisfying gcd(p, q, r) = 1. Let t := gcd(p, q). Then

fmax(n,L) ≤ 2
Crn
q

+o(n)
where C := 1− t

p+ q

(p2 + (p− t)(q − t)
p2

)
.

Proof. First note that C lies between 1/2 and 1− t/(p+ q). To see this, note that if q divides p,
then C = 1− q/(p+ q) ≥ 1/2 since p ≥ q. Otherwise, p > q > t, and so (p− t)(q − t) < p2. Hence
t(p2 + (p− t)(q − t))/(p2(p+ q)) < 2t/(p+ q) ≤ 2(q/2)/(p+ q) < 1/2 and so C > 1/2. We observe
that C ≤ 1− t/(p+ q) since p ≥ q ≥ t.

Let F denote the set of containers obtained by applying Lemma 4. Since every maximal L-free
subset of [n] lies in at least one of the 2o(n) containers, it suffices to show that every F ∈ F houses

at most 2Crn/q+o(n) maximal L-free sets.
Let F ∈ F . By Lemmas 4(i) and 5, F = A ∪ B where |A| = o(n), |B| ≤ µL(n) and B is L-free.

Define M := maxB, M ′ := max{x ∈ B : x ≡ 0 mod t} and u := max{brM ′/qc, brn/2qc}. Every
maximal L-free set which lies in such a container can be constructed by:

(i) Picking S1 ⊆ A to be L-free;
(ii) Adding a set S2 ⊆ [u] ∩B so that S1 ∪ S2 is L-free;

(iii) Extending to a maximal L-free set in [u+ 1,M ] ∩B.

There are 2o(n) ways to pick S1. If M ′ ≤ n/2 then u = brn/2qc and so there are at most

2rn/2q ≤ 2Crn/q ways to pick S2 so that S1 ∪ S2 is L-free. Write r1 := p/t and r2 := q/t. If
M ′ ≥ n/2 then since M ′ is divisible by t, we apply Lemma 9 to show that

|[u] ∩B| = |[brM ′/qc] ∩B|

≤
⌊
rM ′

q

⌋
−
⌊

rM ′

r2(p+ q)

⌋
− (r1r2 − r1 − r2 + 1)

⌊⌊
rM ′

r1(p+ q)
− 1

r2

⌋
1

r1r2

⌋
=
CrM ′

q
+ o(n).

Hence there are at most 2CrM
′/q+o(n) ≤ 2Crn/q+o(n) ways to pick S2 so that S1 ∪ S2 is L-free.

Let B′ := [u+ 1,M ]∩B. For step (iii) we calculate the number of extensions of S1 ∪S2 into B′.
Observe by Lemma 6, this is bounded above by MIS(LS1∪S2 [B′]). We will show that this link graph
has only one maximal independent set. Then combining steps (i)-(iii) we have that F contains at

most 2o(n) × 2Crn/q+o(n) = 2Crn/q+o(n) maximal L-free sets as desired.
If the link graph only contains loops and isolated vertices, then it has only one maximal in-

dependent set. For it to have an edge between distinct vertices, we either must have x, z ∈ B′,
y ∈ S1 ∪ S2 such that px + qy = rz or py + qx = rz, or we must have x, y ∈ B′, z ∈ S1 ∪ S2 such
that px+ qy = rz.

The first of these events does not occur since otherwise rz ≥ q(x+ y) > qx ≥ q(brM ′/qc+ 1) >
rM ′ and so z > M ′. Note that since z is part of the solution px+ qy = rz and gcd(p, q, r) = 1, it
must be divisible by t. However this contradicts z > M ′ as we have z ∈ B, but M ′ was defined to
be the largest element in B divisible by t.

If M ′ > n/2 then the second event does not occur since rz = px+ qy ≥ q(x+y) ≥ 2q(brM ′/qc+
1) > 2rM ′ > rn and so z > n. If M ′ ≤ n/2 then the second event does not occur since rz =
px+ qy ≥ q(x+ y) ≥ 2q(brn/2qc+ 1) > rn and so again z > n. �
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Note that when r = 1, Theorem 2 gives us new results for equations of the form px+qy = z. The
authors previously obtained results for such equations in [14]. In the appendix we give a summary
describing which result gives the best upper bound for various values of p and q.

When L denotes the equation qx + qy = z for some positive integer q ≥ 2, Proposition 26(iii)

from [14] gives a lower bound of fmax(n,L) ≥ 2(n−6q)/2q. Combining this with Theorem 2 gives us
the following asymptotically exact result.

Theorem 3. Let L denote the equation qx+ qy = z where q ≥ 2 is an integer. Then

fmax(n,L) = 2n/2q+o(n).

By adapting the proof of Theorem 2 we obtain the following result for fmax(n,L) for some
equations with more than three variables.

Theorem 15. Let L denote the equation p1x1 + · · · + pkxk = rz where p1, . . . , pk, r ∈ N satisfy

gcd(p1, . . . , pk, r) = 1 and p1 ≥ · · · ≥ pk ≥ r. Suppose that p :=
∑k−1

i=1 pi and q := pk satisfy
t := gcd(p, q) = gcd(p1, . . . , pk). Then

fmax(n,L) ≤ 2
Crn
q

+o(n)
where C := 1− t

p+ q

(p2 + (p− t)(q − t)
p2

)
.

Proof. We follow the proof used in Theorem 2 precisely (except for using Lemma 12 instead of
Lemma 9 in step (ii)) up until counting the number of ways of extending S1 ∪ S2 to a maximal
L-free set in B′ := [u+ 1,M ]∩B. Observe by Lemma 6, this is bounded above by MIS(LS1∪S2 [B′])
since B′ and S1∪S2 are L-free. To see that B′ is L-free, suppose (x1, . . . , xk, z) is a solution within
B′ and note that rz = p1x1 + · · · + pkxk > pkxk ≥ q(rM ′/q) = rM ′ and so z > M ′. (Here we
needed that each pi is positive.) Since gcd(p1, . . . , pk, r) = 1 and gcd(p, q) = gcd(p1, . . . , pk) we
have gcd(t, r) = 1 and so in any solution to L, z must be divisible by t. However this contradicts
z > M ′ as we have z ∈ B, but M ′ was defined to be the largest element in B divisible by t.

We will show that this link hypergraph LS1∪S2 [B′] has only one maximal independent set (and

hence the number of maximal L-free sets contained in F is at most 2Crn/q+o(n) as required). If the
link hypergraph only contains loops and isolated vertices, then it has only one maximal independent
set.

For it to have a hyperedge between at least two vertices, there must exist a solution (x1, . . . , xk, z)
where either there is a hyperedge with distinct vertices xi, z ∈ B′ for some 1 ≤ i ≤ k and
{x1, . . . , xi−1, xi+1, . . . , xk} ∈ B′ ∪S1 ∪S2, or there is a hyperedge with distinct vertices xi, xj ∈ B′
for some 1 ≤ i < j ≤ k and {x1, . . . , xi−1, xi+1, . . . , xj−1, xj+1, . . . , xk, z} ∈ B′ ∪ S1 ∪ S2.

Suppose the first event occurs with (x1, . . . , xk, z). Then rz = p1x1 + · · ·+ pkxk > pixi ≥ pkxi =
qxi ≥ q(rM ′/q) = rM ′ and so z > M ′. But since z is part of a solution, it must be divisible by t.
This contradicts z ∈ B, since M ′ was defined to be the largest element in B divisible by t.

If M ′ > n/2 then the second event does not occur since rz = p1x1 + · · ·+ pkxk > pk(xi + xj) ≥
2q(brM ′/qc + 1) > 2rM ′ > rn and so z > n. If M ′ ≤ n/2 then the second event does not occur
since rz = p1x1 + · · ·+ pkxk > pk(xi + xj) ≥ 2q(brn/(2q)c+ 1) > rn and so again z > n. �

We end the section with a lower bound.

Proposition 16. Let L denote the equation qx + qy = rz where q > r and q, r are fixed positive
integers satisfying gcd(q, r) = 1. Then

fmax(n,L) ≥ 2dbrn/2q−rq/2c(q−1)/qe−1.

Proof. Let B be the L-free set {z ∈ [n] : z 6≡ 0 mod q}. Let M := max{z ∈ [n] : rz/q2 ∈ [n]}; so
M > n− q2. Let S := {M} and consider the link graph LS [B]. Note that if i ∈ B where i < rM/q
then rM/q − i ∈ B. This follows since rM/q2 ∈ N and so rM/q − i 6≡ 0 mod q. Hence there is an
edge in LS [B] between every such i and rM/q− i since q(i+ rM/q− i) = rM . By running through
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all i ∈ B we obtain a total of dbrM/2qc(q − 1)/qe disjoint edges in LS [B] of which at most one
is a loop (at rM/2q if it is an integer not congruent to 0 modulo q). Hence we obtain an induced
matching E in LS [B] of size dbrM/2qc(q − 1)/qe − 1 ≥ dbrn/2q − rq/2c(q − 1)/qe − 1. It is easy

to see that this gives rise to 2|E| maximal independent sets in LS [B]. By applying Lemma 7 we
obtain the result. �

Question 17. Let L denote the equation qx+ qy = rz where q > r ≥ 2 and q, r are fixed positive

integers satisfying gcd(q, r) = 1. Does fmax(n,L) = 2rn(q−1)/(2q
2)+o(n)(= 2(µL(n)−µ

∗
L(n))/2+o(n))?

5. Concluding Remarks

In this paper we have used Lemma 8 as a tool to prove both results on the size of the largest
solution-free subset of [n] as well as on the number of maximal solution-free subsets of [n]. Recall

that Green [12] showed that given a homogenous linear equation L, then f(n,L) = 2µL(n)+o(n).

One can actually very easily apply Lemma 8 to obtain that f(n,L) = Θ(2µL(n))) for some linear
equations L of the form px + qy = rz where p ≥ q ≥ r are positive integers. However, the results
we obtain seem quite niche. Thus, we defer their statement and proof to the thesis of the first
author [13].

The crucial trick used in the proof of Theorems 2 and 15 was to choose our sets S carefully
so that the link hypergraphs LS [B] each contain precisely one maximal independent set. In other
applications of this method [2, 3, 14] the approach had been instead to obtain other structural
properties of the link graphs (such as being triangle-free) to ensure there are not too many maximal
independent sets in LS [B]. It would be interesting to see if the approach of our paper can be applied
to obtain other (exact) results in the area.

Although we have found an initial bound on fmax(n,L) for some equations with more than three
variables, we still do not know in general if there are significantly fewer maximal L-free subsets of
[n] than there are L-free subsets of [n]. Progress on giving general upper bounds on the number
of maximal independent sets in (non-uniform) hypergraphs should (through the method of link
hypergraphs) yield results in this direction.
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Appendix A

In this appendix we give a summary of the best known upper bound on fmax(n,L) for equations
of the form px+ qy = rz where p ≥ q ≥ r. First we recall some of the results from [14].

Theorem 18. [14] Let L be a fixed homogenous three-variable linear equation. Then

fmax(n,L) ≤ 3(µL(n)−µ
∗
L(n))/3+o(n).

Theorem 19. [14] Let L denote the equation px + qy = z where p ≥ q ≥ 2 are integers so that
p ≤ q2 − q and gcd(p, q) = q. Then

fmax(n,L) ≤ 2(µL(n)−µ
∗
L(n))/2+o(n).

Theorem 20. [14] Let L denote the equation px+ qy = rz where p ≥ q ≥ r and p, q, r ∈ N. Then

fmax(n,L) ≤ 2µL(rn/q)+o(n).

Proposition 21. [14] Let L denote the equation px+ qy = z where p ≥ q, p ≥ 2 and p, q ∈ N. The
best upper bound on fmax(n,L) given by Theorems 18, 19 and 20 is:

(i) fmax(n,L) ≤ 3(µL(n)−µ
∗
L(n))/3+o(n) if gcd(p, q) = q, p ≥ q2, and either q ≤ 9 or 10 ≤ q ≤ 17

and p < (a− 1)(q2 − q)/(q(2− a)− 1) where a := log3(8);

(ii) fmax(n,L) ≤ 2(µL(n)−µ
∗
L(n))/2+o(n) if gcd(p, q) = q and p ≤ q2 − q;

(iii) fmax(n,L) ≤ 2µL(n/q)+o(n) otherwise.

Recall µ∗L(n) denotes the number of elements in [n] which do not lie in any non-trivial solution to
L that only consists of elements from [n]. Let L denote the equation px+ qy = rz where p ≥ q ≥ r
and p, q, r are fixed positive integers satisfying gcd(p, q, r) = 1. Let t := gcd(p, q). Then notice that
S := {s ∈ [n] : s > b(rn−p)/qc, t - s} is a set of elements which do not lie in any solution to L in [n].
This follows since if s > b(rn−p)/qc then ps+q ≥ qs+p > rn and so s cannot play the role of x or
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y in an L-triple in [n]. If t - s then as t|(px+ qy) for any x, y ∈ [n] but gcd(r, t) = 1 we have that s
cannot play the role of z in an L-triple in [n]. Actually, for large enough n, every element that does
not lie in any solution to L in [n] is in S, and so we have µ∗L(n) = |S| = d(n−b(rn−p)/qc)(t−1)/te
for all such L. We omit the proof of this here.

We can now state the new summary.

Proposition 22. Let L denote the equation px + qy = rz where p ≥ q ≥ r, p ≥ 2 and p, q, r are
fixed positive integers satisfying gcd(p, q, r) = 1. Let t := gcd(p, q) and let a := log2 3. The best
upper bound on fmax(n,L) given by Theorems 18, 19, 20 and 2 is:

(i) fmax(n,L) ≤ 3(µL(n)−µ
∗
L(n))/3+o(n) if

(a) r = 1, gcd(p, q) = q, p ≥ max {q2, (q2 − q)a/(q(3− 2a) + a)}, and q ≤ 9;
(b) r ≥ 2, µL(n) = d(t− 1)n/te, and additionally (1) p 6= q or (2) 2 ≤ q ≤ 18;
(c) r ≥ 2, q divides p, p+ q ≥ rq and additionally (1) p 6= q or (2) 2 ≤ q ≤ 18;

(ii) fmax(n,L) ≤ 2Crn/q+o(n) where C := 1− t(p2 + (p− t)(q − t))/(p2(p+ q)) if
(a) r = 1, gcd(p, q) 6= q or q > 9 or p < q2 or p < (q2 − q)a/(q(3− 2a) + a);
(b) r ≥ 2, µL(n) = d(t− 1)n/te, and p = q ≥ 19.

Proof. First suppose that r = 1 (and so µL(n) = d(p + q − 1)n/(p + q)e). Note that C ≤
1− t/(p+q) = (p+q− t)/(p+q) ≤ (p+q−1)/(p+q) and so the exponent given by Theorem 2 is at
most the exponent given by Theorem 20. For Theorem 19 we require gcd(p, q) = q and p ≤ q2 − q.
In this case C = p/(p+q) and (p+q−1)/(2(p+q))−(q−1)2/(2q2) = (2pq+q2−p−q)/(2q2(p+q)) ≥
p/(q(p + q)) = C/q and so the exponent given by Theorem 2 is at most the exponent given by
Theorem 19.

It remains to check when the bound given by Theorem 18 is still better than the bound given
by Theorem 2. By Proposition 21 this can only possibly be the case if gcd(p, q) = q and p ≥ q2.
To prove (i)(a) it suffices to show that

3
(p+q−1)n
3(p+q)

− (q−1)2n

3q2 ≤ 2
pn

q(p+q) ,

or rearranging
p(q(3− 2a) + a) ≥ (q2 − q)a.

If q ≥ 10 then (q(3 − 2a) + a) is negative, but then we would require p negative, a contradiction.
Hence we must have q ≤ 9 and then the inequality holds if p > (q2 − q)a/(q(3− 2a) + a).

Now suppose that r ≥ 2 and µL(n) = d(t− 1)n/te. Then µL(n)− µ∗L(n) = r(t− 1)n/(qt) + o(n)

and 3x/3 < 2x and so Theorem 18 gives a better bound than Theorem 20. We wish to know when

3
r
q

t−1
3t < 2

r
q
(1− t

p+q
(
p2+(p−t)(q−t)

p2
))
.

Write r1 := p/t and r2 := q/t. The above rearranges to give

t((a− 3)r21(r1 + r2) + 3r21 + 3(r1 − 1)(r2 − 1)) < ar21(r1 + r2).

The right hand side is positive and the left hand side is negative unless r1 = r2 = 1. In this case
p = q = t and so we now require 3(q−1)/(3q) < 21/2, which holds when q ≤ 18.

Finally suppose that r ≥ 2, q divides p and p+ q ≥ rq (so µL(n) = d(p+ q− r)n/(p+ q)e). Since

q divides p, we have t = q and p = r1q, and so Theorem 2 gives a bound of 2rpn/(q(p+q))+o(n). This
is better than Theorem 20 which gives a bound of 2r(p+q−r)n/(q(p+q))+o(n) since q ≥ r. Therefore
we wish to know when

3
p+q−r
3(p+q)

− (q−r)(q−1)

3q2 < 2
rp

q(p+q) .

Rearranging, we require r1(a(q + qr − r)/3 − qr) ≤ a(r − q)/3. Now note a(q + qr − r)/3 − qr is
negative when r ≥ 2, so this rearranges to give r1 ≥ (q − r)/(r − q − rq + 3rq/a). If p > q (so
r1 ≥ 2), it suffices to have 2 ≥ (q − r)/(r − q − rq + 3rq/a) or rearranging, q(r(2− 6/a) + 3) ≤ 3r.
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This holds since r(2− 6/a) + 3 is negative for r ≥ 2. Otherwise p = q, and so since p+ q ≥ rq, we
have that r = 2. So we require 1 ≥ (q− 2)/((6/a− 3)q+ 2) which holds when q ≤ 18. (In this final
case, µL(n) = d(t− 1)n/te = d(p+ q − r)n/(p+ q)e = d(q − 1)n/qe.)

�
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