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Abstract. Many important problems in combinatorics and other related areas can be phrased in
the language of independent sets in hypergraphs. Recently Balogh, Morris and Samotij [3], and in-
dependently Saxton and Thomason [62] developed very general container theorems for independent
sets in hypergraphs; both of which have seen numerous applications to a wide range of problems. In
this paper we use the container method to give relatively short and elementary proofs of a number of
results concerning Ramsey (and Turán properties) of (hyper)graphs and the integers. In particular:
• We generalise the random Ramsey theorem of Rödl and Ruciński [54, 55, 56] by providing

a resilience analogue. Our result unifies and generalises several fundamental results in the
area including the random version of Turán’s theorem due to Conlon and Gowers [14] and
Schacht [64].

• The above result also resolves a general subcase of the asymmetric random Ramsey conjecture
of Kohayakawa and Kreuter [40].

• All of the above results in fact hold for uniform hypergraphs.
• For a (hyper)graph H, we determine, up to an error term in the exponent, the number of n-

vertex (hyper)graphs G that have the Ramsey property with respect to H (that is, whenever
G is r-coloured, there is a monochromatic copy of H in G).

• We strengthen the random Rado theorem of Friedgut, Rödl and Schacht [24] by proving a
resilience version of the result.

• For partition regular matrices A we determine, up to an error term in the exponent, the number
of subsets of {1, . . . , n} for which there exists an r-colouring which contains no monochromatic
solutions to Ax = 0.

Along the way a number of open problems are posed.

MSC2000: 5C30, 5C55, 5D10, 11B75.

1. Introduction

Recently, the container method has developed as a powerful tool for attacking problems which
reduce to counting independent sets in (hyper)graphs. Loosely speaking, container results typically
state that the independent sets of a given (hyper)graph H lie only in a ‘small’ number of subsets
of the vertex set of H (referred to as containers), where each of these containers is an ‘almost
independent set’. The method has been of particular importance because a diverse range of prob-
lems in combinatorics and other areas can be rephrased into this setting. For example, container
results have been used to tackle problems arising in Ramsey theory, combinatorial number theory,
positional games, list colourings of graphs and H-free graphs.

Although the container method has seen an explosion in applications over the last few years, the
technique actually dates back to work of Kleitman and Winston [38, 39] from more than 30 years
ago; they constructed a relatively simple algorithm that can be used to produce graph container
results. The catalysts for recent advances in the area are the hypergraph container theorems of
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Balogh, Morris and Samotij [3] and Saxton and Thomason [62]. Both works yield very general
container theorems for hypergraphs whose edge distribution satisfies certain boundedness condi-
tions. These results are also related to general transference theorems of Conlon and Gowers [14]
and Schacht [64]. In particular, these container and transference theorems can be used to prove a
range of combinatorial results in a random setting. See [4] for a survey on the container method.

An overarching aim of the paper is to demonstrate that with the container method at hand,
one can give relatively short and elementary proofs of fundamental results concerning Ramsey
properties of graphs and the integers. Moreover, our results give us a precise understanding about
how resiliently typical graphs and sets of integers of a given density possess a given Ramsey property.
In particular, one of our main results is a resilience random Ramsey theorem (Theorem 1.7). This
result provides a unified framework for studying both the Ramsey and Turán problems in the setting
of random (hyper)graphs. In particular, Theorem 1.7 implies the (so-called 1-statements of the)
random Ramsey theorem due to Rödl and Ruciński [54, 55, 56] and the random version of Turán’s
theorem [14, 64]. Moreover, Theorem 1.7 also resolves a general subcase of the asymmetric random
Ramsey conjecture of Kohayakawa and Kreuter [40]. Since Theorem 1.7 unifies and generalises
several fundamental results concerning Ramsey and Turán properties of random (hyper)graphs, we
survey these topics in Sections 1.1.2–1.1.4 before we state this result in Section 1.1.5.

We also prove a sister result to Theorem 1.7, a resilience strengthening of the random Rado
theorem (Theorem 1.11). Again the container method allows us to give a rather short proof of this
result. We further provide results on the enumeration of Ramsey graphs (Theorem 1.12) and sets
of integers without a given Ramsey property (Theorem 1.13).

The results we prove all correspond to problems concerning tuples of disjoint independent sets
in hypergraphs. In particular, from the container theorem of Balogh, Morris and Samotij one can
easily obtain an analogous result for tuples of independent sets in hypergraphs (see Proposition 3.2).
It turns out that many Ramsey-type questions (and other problems) can be naturally phrased in
this setting. For example, by Schur’s theorem we know that, if n is large, then whenever one
r-colours the elements of [n] := {1, . . . , n} there is a monochromatic solution to x + y = z. This
raises the question of how large can a subset S ⊆ [n] be whilst failing to have this property? (This
problem was first posed back in 1977 by Abbott and Wang [1].) Let H be the hypergraph with
vertex set [n] in which edges precisely correspond to solutions to x + y = z. (Note H will have
edges of size 2 and 3.) Then sets S ⊆ [n] without this property are precisely the union of r disjoint
independent sets in H.

In Section 3 we state the container theorem for tuples of independent sets in hypergraphs. In
Sections 4 and 5 we give our applications of this container result to enumeration and resilience
questions arising in Ramsey theory for graphs and the integers.

1.1. Resilience in hypergraphs and the integers.

1.1.1. Resilience in graphs. The notion of graph resilience has received significant attention in
recent years. Roughly speaking, resilience concerns the question of how ‘strongly’ a graph G
satisfies a certain monotone graph property P. Global resilience concerns how many edges one
can delete and still ensure the resulting graph has property P whilst local resilience considers how
many edges one can delete at each vertex whilst ensuring the resulting graph has property P.
More precisely, we define the global resilience of G with respect to P, res(G,P), to be the minimum
number t such that by deleting t edges from G, one can obtain a graph not having P. Many
classical results in extremal combinatorics can be rephrased in terms of resilience. For example,
Turán’s theorem determines the global resilience of Kn with respect to the property of containing
Kr (where r < n) as a subgraph.

The systematic study of graph resilience was initiated in a paper of Sudakov and Vu [69], though
such questions had been studied before this. In particular, a key question in the area is to establish
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the resilience of various properties of the Erdős–Rényi random graph Gn,p. (Recall that Gn,p has
vertex set [n] in which each possible edge is present with probability p, independent of all other
choices.) The local resilience of Gn,p has been investigated, for example, with respect to Hamil-
tonicity e.g. [69, 45], almost spanning trees [2] and embedding subgraphs of small bandwidth [8].
See [69] and the surveys [13, 68] for further background on the subject. In this paper we study
the global resilience of Gn,p with respect to Ramsey properties (in fact, as we explain later, we will

consider its hypergraph analogue G
(k)
n,p for k ≥ 2). First we will focus on the graph case.

1.1.2. Ramsey properties of random graphs. An event occurs in Gn,p with high probability (w.h.p.)
if its probability tends to 1 as n → ∞. For many properties P of Gn,p, the probability that Gn,p
has the property exhibits a phase transition, changing from 0 to 1 over a small interval. That is,
there is a threshold for P: a function p0 = p0(n) such that Gn,p has P w.h.p. when p � p0 (the
1-statement), while Gn,p does not have P w.h.p. when p� p0 (the 0-statement). Indeed, Bollobás
and Thomason [7] proved that every monotone property P has a threshold.

Given a graph H, set d2(H) := 0 if e(H) = 0; d2(H) := 1/2 when H is precisely an edge and
define d2(H) := (e(H) − 1)/(v(H) − 2) otherwise. Then define m2(H) := maxH′⊆H d2(H

′) to be
the 2-density of H. This graph parameter turns out to be very important when determining the
threshold for certain properties in Gn,p concerning the containment of a small subgraph H, which
we explain further below.

Given ε > 0 and a graph H, we say that a graph G is (H, ε)-Turán if every subgraph of G with
at least (1 − 1

χ(H)−1 + ε)e(G) edges contains a copy of H. Note that the Erdős–Stone theorem

implies that Kn is (H, ε)-Turán for any fixed H provided n is sufficiently large. To motivate the
definition, consider any graph G. Then by considering a random partition of V (G) into χ(H)− 1
parts (and then removing any edge contained within a part) we see that there is a subgraph G′ of
G that is (χ(H) − 1)-partite where e(G′) ≥ (1 − 1

χ(H)−1)e(G). In particular, H 6⊆ G′. Intuitively

speaking, this implies that (up to the ε term), (H, ε)-Turán graphs are those graphs that most
strongly contain H.

Rephrasing to the language of resilience, we see that if, for any ε > 0, G is (H, ε)-Turán,
then res(G,P) = ( 1

χ(H)−1 ± ε)e(G), and vice versa, where P is the property of containing H as a

subgraph. (Note that we write x = a±b to say that the value of x is some real number in the interval
[a− b, a+ b].) The global resilience of Gn,p with respect to the Turán problem has been extensively
studied. Indeed, a recent trend in combinatorics and probability concerns so-called sparse random
analogues of extremal theorems (see [13]), and determining when Gn,p is (H, ε)-Turán is an example
of such a result.

If p ≤ cn−1/m2(H) for some small constant c, then it is not hard to show that w.h.p. Gn,p is
not (H, ε)-Turán. In [30, 31, 41] it was conjectured that w.h.p. Gn,p is (H, ε)-Turán provided that

p ≥ Cn−1/m2(H), where C is a (large) constant. After a number of partial results, this conjecture
was confirmed by Schacht [64] and (in the case when H is strictly 2-balanced, i.e. m2(H

′) < m2(H)
for all H ′ ⊂ H) by Conlon and Gowers [14] .

Theorem 1.1 ([64, 14]). For any graph H with ∆(H) ≥ 2 and any ε > 0, there are positive
constants c, C such that

lim
n→∞

P[Gn,p is (H, ε)-Turán] =

{
0 if p < cn−1/m2(H);

1 if p > Cn−1/m2(H).

Given an integer r, an r-colouring of a graph G is a function σ : E(G) → [r]. (So this is not
necessarily a proper colouring.) We say that G is (H, r)-Ramsey if every r-colouring of G yields a
monochromatic copy of H in G. Observe that being (H, 1)-Ramsey is the same as containing H
as a subgraph. So the 1-statement of Theorem 1.1 says that, given ε > 0, there exists a positive

3



constant C such that, if p > Cn−1/m2(H), then

(1.1) lim
n→∞

P
[

res(Gn,p, (H, 1)-Ramsey)

e(Gn,p)
=

1

χ(H)− 1
± ε
]

= 1.

The following result of Rödl and Ruciński [54, 55, 56] yields a random version of Ramsey’s
theorem.

Theorem 1.2 ([54, 55, 56]). Let r ≥ 2 be a positive integer and let H be a graph that is not a
forest consisting of stars and paths of length 3. There are positive constants c, C such that

lim
n→∞

P[Gn,p is (H, r)-Ramsey] =

{
0 if p < cn−1/m2(H);

1 if p > Cn−1/m2(H).

Thus n−1/m2(H) is again the threshold for the (H, r)-Ramsey property. Let us provide some

intuition as to why. The expected number of copies of H in Gn,p is Θ(nv(H)pe(H)), while the

expected number of edges in Gn,p is Θ(pn2). When p = Θ(n−1/d2(H)), these quantities agree
up to a constant. Suppose that H is 2-balanced, i.e. d2(H) = m2(H). For small c > 0, when

p < cn−1/m2(H), most copies of H in Gn,p contain an edge which appears in no other copy. Thus
we can hope to colour these special edges blue and colour the remaining edges red to eliminate all
monochromatic copies of H. For large C > 0, most edges lie in many copies of H, so the copies of
H are highly overlapping and we cannot avoid monochromatic copies. In general, when H is not
necessarily 2-balanced, the threshold is n−1/d2(H

′) for the ‘densest’ subgraph H ′ of H since, roughly
speaking, the appearance of H is governed by the appearance of its densest part.

We remark that Nenadov and Steger [51] recently gave a short proof of Theorem 1.2 using the
container method.

1.1.3. Asymmetric Ramsey properties in random graphs. It is natural to ask for an asymmetric
analogue of Theorem 1.2. Now, for graphs H1, . . . ,Hr, a graph G is (H1, . . . ,Hr)-Ramsey if for any
r-colouring of G there is a copy of Hi in colour i for some i ∈ [r]. (This definition coincides with
that of (H, r)-Ramsey when H1 = . . . = Hr = H.) Kohayakawa and Kreuter [40] conjectured an
analogue of Theorem 1.2 in the asymmetric case. To state it, we need to introduce the asymmetric
density of H1, H2 where m2(H1) ≥ m2(H2) via

(1.2) m2(H1, H2) := max

{
e(H ′1)

v(H ′1)− 2 + 1/m2(H2)
: H ′1 ⊆ H1 and e(H ′1) ≥ 1

}
.

Conjecture 1.3 ([40]). For any graphs H1, . . . ,Hr with m2(H1) ≥ . . . ≥ m2(Hr) > 1, there are
positive constants c, C > 0 such that

lim
n→∞

P [Gn,p is (H1, . . . ,Hr)-Ramsey] =

{
0 if p < cn−1/m2(H1,H2);

1 if p > Cn−1/m2(H1,H2).

So the conjectured threshold only depends on the ‘joint density’ of the densest two graphs
H1, H2. The intuition for this threshold is discussed in detail e.g. in Section 1.1 in [29]. One can
show that m2(H1) ≥ m2(H1, H2) ≥ m2(H2) with equality if and only if m2(H1) = m2(H2). Thus
Conjecture 1.3 would generalise Theorem 1.2. Kohayakawa and Kreuter [40] have confirmed Con-
jecture 1.3 when the Hi are cycles. In [47] it was observed that the approach used by Kohayakawa
and Kreuter [40] implies the 1-statement of Conjecture 1.3 holds when H1 is strictly 2-balanced
provided the so-called K LR conjecture holds. This latter conjecture was proven by Balogh, Morris
and Samotij [3] thereby proving the 1-statement of Conjecture 1.3 holds in this case.

Additional note: Since the paper was submitted the 1-statement of Conjecture 1.3 has been
proven by Mousset, Nenadov and Samotij [49].
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1.1.4. Ramsey properties of random hypergraphs. Consider now the k-uniform analogue G
(k)
n,p of Gn,p

which has vertex set [n] and in which every k-element subset of [n] appears as an edge with prob-
ability p, independent of all other choices. Here, we wish to obtain analogues of Theorems 1.1, 1.2
and Conjecture 1.3 by determining the threshold for being (H, ε)-Turán, (H, r)-Ramsey, and more
generally being (H1, . . . ,Hr)-Ramsey. The definitions of (H, r)-Ramsey and (H1, . . . ,Hr)-Ramsey
extend from graphs in the obvious way. Given a k-uniform hypergraph H, let ex(n;H) be the
maximum size of an n-vertex H-free hypergraph. A simple averaging argument shows that the
limit

π(H) := lim
n→∞

ex(n;H)(
n
k

)
exists. Now we say that a k-uniform hypergraph G is (H, ε)-Turán if every subhypergraph of G
with at least (π(H) + ε)e(G) edges contains a copy of H. (Since π(H) = 1 − 1

χ(H)−1 when k = 2,

this generalises the definition we gave earlier.) We also need to generalise the notion of 2-density
to k-density : Given a k-graph H, define

dk(H) :=


0 if e(H) = 0;

1/k if v(H) = k and e(H) = 1;
e(H)−1
v(H)−k otherwise,

and let

mk(H) := max
H′⊆H

dk(H
′).

The techniques of Conlon–Gowers [14] and of Schacht [64] actually extended to a proof of a version
of Theorem 1.1 for hypergraphs:

Theorem 1.4 ([14, 64]). For any k-uniform hypergraph H with maximum vertex degree at least
two and any ε > 0, there are positive constants c, C such that

lim
n→∞

P[G(k)
n,p is (H, ε)-Turán] =

{
0 if p < cn−1/mk(H);

1 if p > Cn−1/mk(H).

The 1-statement of Theorem 1.2 was generalised to hypergraphs by Friedgut, Rödl and Schacht [24]
and by Conlon and Gowers [14], proving a conjecture of Rödl and Ruciński [58]. (The special cases

of the complete 3-uniform hypergraph K
(3)
4 on four vertices and of k-partite k-uniform hypergraphs

were already proved in [58], [59] respectively. Also in [51] Nenadov and Steger remark that their
proof of the 1-statement of Theorem 1.2 extends to Theorem 1.5.)

Theorem 1.5 ([14, 24]). Let r, k ≥ 2 be integers and let H be a k-uniform hypergraph with maxi-
mum vertex degree at least two. There is a positive constant C such that

lim
n→∞

P[G(k)
n,p is (H, r)-Ramsey] = 1 if p > Cn−1/mk(H).

In [29], sufficient conditions are given for a corresponding 0-statement. However, the authors

further show that, for k ≥ 4, there is a k-uniform hypergraph H such that the threshold for G
(k)
n,p

to be (H, r)-Ramsey is not n−1/mk(H), and nor does it correspond to the exceptional case in the
graph setting of certain forests, where there is a coarse threshold due to the appearance of small
subgraphs. (This H is the disjoint union of a tight cycle and hypergraph triangle.)

For the asymmetric Ramsey problem, we need to suitably generalise (1.2), in the obvious way:
for any k-uniform hypergraphs H1, H2 with non-empty edge sets and mk(H1) ≥ mk(H2), let

(1.3) mk(H1, H2) := max

{
e(H ′1)

v(H ′1)− k + 1/mk(H2)
: H ′1 ⊆ H1 and e(H ′1) ≥ 1

}
5



be the asymmetric k-density of (H1, H2). Again,

mk(H1) ≥ mk(H1, H2) ≥ mk(H2),

so, in particular, mk(H1, H2) = mk(H1) if and only if H1 and H2 have the same k-density.
Recently, Gugelmann, Nenadov, Person, Steger, Škorić and Thomas [29] generalised the 1-

statement of Conjecture 1.3 to k-uniform hypergraphs, in the case when H ′1 = H1 is the unique
maximiser in (1.3), i.e. H1 is strictly k-balanced with respect to mk(·, H2).

Theorem 1.6 ([29]). For all positive integers r, k with k ≥ 2 and k-uniform hypergraphs H1, . . . ,Hr

with mk(H1) ≥ . . . ≥ mk(Hr) where H1 is strictly k-balanced with respect to mk(·, H2), there exists
C > 0 such that

lim
n→∞

P
[
G(k)
n,p is (H1, . . . ,Hr)-Ramsey

]
= 1 if p > Cn−1/mk(H1,H2).

They further prove a version of Theorem 1.6 with the weaker bound p > Cn−1/mk(H1,H2) log n
when H1 is not required to be strictly k-balanced with respect to mk(·, H2).

1.1.5. New resilience result. Our main result here is Theorem 1.7, which generalises, fully and
partially, all of the 1-statements of the results discussed in this section, giving a unified setting
for both the random Ramsey theorem and the random Turán theorem. Once we have obtained a
container theorem for Ramsey graphs (Theorem 5.11), the proof is short (see Section 5.6).

For k-uniform hypergraphs H1, . . . ,Hr and a positive integer n, let exr(n;H1, . . . ,Hr) be the
maximum size of an n-vertex k-uniform hypergraph G which is not (H1, . . . ,Hr)-Ramsey. Define
the r-coloured Turán density

(1.4) π(H1, . . . ,Hr) := lim
n→∞

exr(n;H1, . . . ,Hr)(
n
k

) .

Observe that ex1(n;H) = ex(n;H) since a hypergraph is H-free if and only if it is not (H, 1)-
Ramsey. Note further that π(·, . . . , ·) generalises π(·). So when k = 2, we have π(H) = 1− 1

χ(H)−1 .

We will observe in Section 5.2 that the limit in (1.4) does indeed exist, so π(·, . . . , ·) is well-defined.
Further, crucially for k-uniform hypergraphs H1, . . . ,Hr, there exists an ε = ε(H1, . . . ,Hr) > 0 so
that π(H1, . . . ,Hr) < 1− ε (see (5.3) in Section 5.2).

Theorem 1.7 (Resilience for random Ramsey). Let δ > 0, let r, k be positive integers with k ≥ 2
and let H1, . . . ,Hr be k-uniform hypergraphs each with maximum vertex degree at least two, and
such that mk(H1) ≥ . . . ≥ mk(Hr). There exists C > 0 such that

lim
n→∞

P

res
(
G

(k)
n,p, (H1, . . . ,Hr)-Ramsey

)
e
(
G

(k)
n,p

) = 1− π(H1, . . . ,Hr)± δ

 = 1 if p > Cn−1/mk(H1).

Thus, when p > Cn−1/mk(H1), the random hypergraph G
(k)
n,p is w.h.p such that every subhy-

pergraph G′ with at least a π(H1, . . . ,Hr) + Ω(1) fraction of the edges is (H1, . . . ,Hr)-Ramsey.

Conversely, there is a subgraph of G
(k)
n,p whose edge density is slightly smaller than this which does

not have the Ramsey property.
Note that the threshold of p > Cn−1/mk(H1) in Theorem 1.7 is tight up to the multiplicative

constant C. Indeed, consider the random hypergraph G
(k)
n,p with p� n−1/mk(H1). Let H ′1 ⊆ H1 be

such that mk(H1) = dk(H
′
1). Then the expected number of copies of H ′1 in G

(k)
n,p is much smaller

than the expected number of edges in G
(k)
n,p, so w.h.p. we can delete every copy of H ′1 (and therefore

H1) by removing o(e(G
(k)
n,p)) edges. So the hypergraph G that remains has (1− o(1))e(G

(k)
n,p) edges,
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and is not (H1, . . . ,Hr)-Ramsey because we can colour every edge of G with colour 1. Then, since
G is H1-free, there is no copy of Hi in colour i in G.

Let us describe the importance of Theorem 1.7 (in the case k = 2 and H1 = . . . = Hr = H)
in conjunction with Theorem 1.2. The 0-statement of Theorem 1.2 says that a typical sparse
graph, i.e. one with density at most cn2−1/m2(H), is not (H, r)-Ramsey. On the other hand, by

Theorem 1.7, a typical dense graph, i.e. one with density at least Cn2−1/m2(H), has the Ramsey
property in a sense which is as strong as possible with respect to subgraphs: every sufficiently dense
subgraph is (H, r)-Ramsey, and this minimum density is the largest we could hope to require.

The relationship between Theorem 1.7 and the previous results stated in this section can be
summarised as follows:

• The 1-statement of Theorem 1.1 is recovered when k = 2 and r = 1. This follows from (1.1)
and the relation between π(H) and χ(H).
• In the case k = 2 and H1 = . . . = Hr = H, we obtain a stronger statement in place of the

1-statement of Theorem 1.2 as described above.
• Theorem 1.7 proves the 1-statement of Conjecture 1.3 in the case when m2(H1) = m2(H2)

in the same stronger sense as above.
• The 1-statement of Theorem 1.4 is recovered when r = 1.
• Theorem 1.7 implies Theorem 1.5, yielding a resilience version of this result.
• Theorem 1.7 implies a version of Theorem 1.6 when mk(H1) = mk(H2) but now H1 is not

required to be strictly k-balanced with respect to mk(·, H2).

Note that even though Theorem 1.7 implies many of the known results concerning Ramsey
properties of random (hyper)graphs, often the resilience random Ramsey problem is different to
the random Ramsey problem. In particular, we have determined the threshold for the former
problem, whilst we have seen above examples of (hyper)graphs H1, . . . ,Hr where a lower value of

p still ensures that G
(k)
n,p is w.h.p. (H1, . . . ,Hr)-Ramsey.

1.1.6. Resilience in the integers. An important branch of Ramsey theory concerns partition prop-
erties of sets of integers. Schur’s classical theorem [65] states that if N is r-coloured there exists a
monochromatic solution to x+ y = z; later van der Waerden [72] showed that the same hypothesis
ensures a monochromatic arithmetic progression of arbitrary length. More generally, Rado’s the-
orem [53] characterises all those systems of homogeneous linear equations L for which every finite
colouring of N yields a monochromatic solution to L.

As in the graph case, there has been interest in proving random analogues of such results from
arithmetic Ramsey theory. Before we describe the background of this area we will introduce some
notation and definitions. Throughout we will assume that A is an `× k integer matrix where k ≥ `
of full rank `. We will let L(A) denote the associated system of linear equations Ax = 0, noting
that for brevity we will simply write L if it is clear from the context which matrix A it refers to.
Let S be a set of integers. If a vector x = (x1, . . . , xk) ∈ Sk satisfies Ax = 0 (i.e. it is a solution to
L) and the xi are distinct we call x a k-distinct solution to L in S.

We call a set S of integers (L, r)-free if there exists an r-colouring of S such that it contains no
monochromatic k-distinct solution to L. Otherwise we call S (L, r)-Rado. In the case when r = 1,
we write L-free instead of (L, 1)-free. Define µ(n,L, r) to be the size of the largest (L, r)-free subset
of [n].

A matrix A is partition regular if for any finite colouring of N, there is always a monochromatic
solution to L. As mentioned above, Rado’s theorem characterises all those integer matrices A
that are partition regular. A matrix A is irredundant if there exists a k-distinct solution to L in
N. Otherwise A is redundant. The study of random versions of Rado’s theorem has focused on
irredundant partition regular matrices. This is natural since for every redundant ` × k matrix A
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there exists an irredundant `′ × k′ matrix A′ for some `′ < ` and k′ < k with the same family of
solutions (viewed as sets). See [57, Section 1] for a full explanation.

Another class of matrices that have received attention in relation to this problem are so-called
density regular matrices: An irredundant, partition regular matrix A is density regular if any subset
F ⊆ N with positive upper density, i.e.,

lim sup
n→∞

|F ∩ [n]|
n

> 0,

contains a k-distinct solution to L.
Index the columns of A by [k]. For a partition W ∪̇W = [k] of the columns of A, we denote by

AW the matrix obtained from A by restricting to the columns indexed by W . Let rank(AW ) be

the rank of AW , where rank(AW ) = 0 for W = ∅. We set

m(A) := max
W ∪̇W=[k]
|W |≥2

|W | − 1

|W | − 1 + rank(AW )− rank(A)
.(1.5)

We remark that the denominator of m(A) is strictly positive provided that A is irredundant and
partition regular.

We now describe some random analogues of results from arithmetic Ramsey theory. Recall that
[n]p denotes a set where each element a ∈ [n] is included with probability p independently of all
other elements. Rödl and Ruciński [57] showed that for irredundant partition regular matrices A,
m(A) is an important parameter for determining whether [n]p is (L, r)-Rado or (L, r)-free.

Theorem 1.8 ([57]). For all irredundant partition regular full rank matrices A and all positive
integers r ≥ 2, there exists a constant c > 0 such that

lim
n→∞

P [[n]p is (L, r)-Rado] = 0 if p < cn−1/m(A).

We remark it is important that r ≥ 2 in Theorem 1.8. That is, the corresponding statement for
r = 1 is not true in general. Roughly speaking, Theorem 1.8 implies that almost all subsets of
[n] with significantly fewer than n1−1/m(A) elements are (L, r)-free for any irredundant partition
regular matrix A. The following theorem of Friedgut, Rödl and Schacht [24] complements this

result, implying that almost all subsets of [n] with significantly more than n1−1/m(A) elements are
(L, r)-Rado for any irredundant partition regular matrix A.

Theorem 1.9 ([24]). For all irredundant partition regular full rank matrices A and all positive
integers r, there exists a constant C > 0 such that

lim
n→∞

P [[n]p is (L, r)-Rado] = 1 if p > Cn−1/m(A).

Earlier, Theorem 1.9 was confirmed by Graham, Rödl and Ruciński [25] in the case where L is
x+ y = z and r = 2, and then by Rödl and Ruciński [57] in the case when A is density regular.

Together Theorems 1.8 and 1.9 show that the threshold for the property of being (L, r)-Rado is

p = n−1/m(A). In light of this, it is interesting to ask if above this threshold the property of being
(L, r)-Rado is resilient to the deletion of a significant number of elements. To be precise, given a
set S, we define the resilience of S with respect to P, res(S,P), to be the minimum number t such
that by deleting t elements from S, one can obtain a set not having P. For example, when P is
the property of containing an arithmetic progression of length k, then Szemerédi’s theorem can be
phrased in terms of resilience; it states that for all k ≥ 3 and ε > 0, there exists n0 > 0 such that
for all integers n ≥ n0, we have res([n],P) ≥ (1− ε)n.

The following result of Schacht [64] provides a resilience strengthening of Theorem 1.9 in the
case of density regular matrices.
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Theorem 1.10 ([64]). For all irredundant density regular full rank matrices A, all positive integers
r and all ε > 0, there exists a constant C > 0 such that

lim
n→∞

P
[

res([n]p, (L, r)-Rado)

|[n]p|
≥ 1− ε

]
= 1 if p > Cn−1/m(A).

Note that in [64] the result is stated in the r = 1 case only, but the general result follows
immediately from this special case.

Our next result gives a resilience strengthening of Theorem 1.9 for all irredundant partition
regular matrices.

Theorem 1.11. For all irredundant partition regular full rank matrices A, all positive integers r
and all δ > 0, there exists a constant C > 0 such that

lim
n→∞

P
[

res([n]p, (L, r)-Rado)

|[n]p|
= 1− µ(n,L, r)

n
± δ
]

= 1 if p > Cn−1/m(A).

It is well known that for all irredundant partition regular full rank matrices A and all positive
integers r, there exist n0 = n0(A, r), η = η(A, r) > 0, such that for all integers n ≥ n0, we have
µ(n,L, r) ≤ (1−η)n. (This follows from a supersaturation lemma of Frankl, Graham and Rödl [23,
Theorem 1].) Thus, Theorem 1.11 does imply Theorem 1.9. Further, in the case when A is density
regular, [23, Theorem 2] immediately implies that µ(n,L, r) = o(n) for any fixed r ∈ N. Thus
Theorem 1.11 implies Theorem 1.10. Theorem 1.11 in the case when r = 1 and L is x+ y = z was
proved by Schacht [64]. In fact, the method of Schacht can be used to prove the theorem for r = 1
and every irredundant partition regular matrix A.

Intuitively, the reader can interpret Theorem 1.11 as stating that almost all subsets of [n] with

significantly more than n1−1/m(A) elements strongly possess the property of being (L, r)-Rado
for any irredundant partition regular matrix A. The ‘strength’ here depends on the parameter
µ(n,L, r). In light of this it is natural to seek good bounds on µ(n,L, r) (particularly in the cases
when µ(n,L, r) = Ω(n)). In general, not too much is known about this parameter. However, as
mentioned earlier, in the case when A = (1, 1,−1) (i.e. L is x + y = z), this is (essentially) a
40-year-old problem of Abbott and Wang [1]. In Section 4.6 we give an upper bound on µ(n,L, r)
in this case for all r ∈ N.

Instead of proving Theorem 1.11 directly, in Section 4 we will prove a version of the result that
holds for a more general class of matrices A, and also deals with the asymmetric case, namely
Theorem 4.1.

Additional note. Just before submitting the paper we were made aware of simultaneous and
independent work of Spiegel [67]. In [67] the case r = 1 of Theorem 4.1 is proven. Spiegel also used
the container method to give an alternative proof of Theorem 1.9.

1.2. Enumeration questions for Ramsey problems. A fundamental question in combinatorics
is to determine the number of structures with a given property. For example, Erdős, Frankl and

Rödl [18] proved that the number of n-vertex H-free graphs is 2(n2)(1−
1
r−1

+o(1)) for any graph
H of chromatic number r. Here the lower bound follows by considering all the subgraphs of
the (r − 1)-partite Turán graph. There has also been interest in strengthening this result e.g.
in the case when H is bipartite; see e.g. [22, 48]. Given any k, r, n ∈ N with k ≥ 2 and k-
uniform hypergraphs H1, . . . ,Hr, define Ram(n;H1, . . . ,Hr) to be the collection of all k-uniform
hypergraphs on vertex set [n] that are (H1, . . . ,Hr)-Ramsey and Ram(n;H1, . . . ,Hr) to be all those
k-uniform hypergraphs on [n] that are not (H1, . . . ,Hr)-Ramsey. A natural question is to determine
the size of Ram(n;H1, . . . ,Hr). Surprisingly, we are unaware of any explicit results in this direction
for r ≥ 2. The next application of the container method fully answers this question up to an error
term in the exponent.

9



Theorem 1.12. Let k, r, n ∈ N with k ≥ 2 and H1, . . . ,Hr be k-uniform hypergraphs. Then

|Ram(n;H1, . . . ,Hr)| = 2ex
r(n,H1,...,Hr)+o(nk) = 2π(H1,...,Hr)(nk)+o(n

k).

Note that in the case when k = 2 and r = 1, Theorem 1.12 is precisely the above mentioned
result of Erdős, Frankl and Rödl [18]. In fact, one can also obtain Theorem 1.12 by using the work
from [50], a hypergraph analogue of the result in [18]; see Section 5.5 for a proof of this. Similar
results were obtained also using containers by Falgas-Ravry, O’Connell and Uzzell in [21], and by
Terry in [70] who reproved a result of Ishigami [33].

Our final application of the container method determines, up to an error term in the exponent,
the number of (L, r)-free subsets of [n].

Theorem 1.13. Let A be an irredundant partition regular matrix of full rank and let r ∈ N be
fixed. There are 2µ(n,L,r)+o(n) (L, r)-free subsets of [n].

As an illustration, a result of Hu [32] implies that µ(n,L, 2) = 4n/5 + o(n) in the case when L is

x+y = z. Thus, Theorem 1.13 tells us all but 2(4/5+o(1))n subsets of [n] are (L, 2)-Rado in this case.
Related results (in the 1-colour case) were obtained by Green [27] and Saxton and Thomason [63].

2. Notation

For a (hyper)graph H, we define V (H) and E(H) to be the vertex and edge sets of H respectively,
and set v(H) := |V (H)| and e(H) := |E(H)|. For a set A ⊆ V (H), we define H[A] to be the induced
subgraph of H on the vertex set A. For an edge set X ⊆ E(H), we define H −X to be hypergraph
with vertex set V (H) and edge set E(H) \X.

For a set A and a positive integer x, we define
(
A
x

)
to be the set of all subsets of A of size x,

and we define
(
A
≤x
)

to be the set of all subsets of A of size at most x. We use P(X) to denote the

powerset of X, that is, the set of all subsets of X. If B is a family of subsets of A, then we define
B to be the complement family, that is, precisely the subsets of A which are not in B.

Given a hypergraph H, for each T ⊆ V (H), we define degH(T ) := |{e ∈ E(H) : T ⊆ e}|, and let
∆`(H) := max{degH(T ) : T ⊆ V (H) and |T | = `}.

We write x = a± b to say that the value of x is some real number in the interval [a− b, a + b].
We use the convention that the set of natural numbers N does not include zero.

We will make use of the following Chernoff inequality (see e.g. [34, Theorem 2.1, Corollary 2.3]).

Proposition 2.1. Suppose X has binomial distribution and λ ≥ 0. Then

P[X > E[X] + λ] ≤ exp

(
− λ2

2(E[X] + λ/3)

)
.

Further, if 0 < ε ≤ 3/2 then

P[|X − E[X]| ≥ εE[X]] ≤ 2 exp

(
−ε

2

3
E[X]

)
.

3. Container results for disjoint independent sets

Let H be a k-uniform hypergraph with vertex set V . A family of sets F ⊆ P(V ) is called
increasing if it is closed under taking supersets; in other words for every A,B ⊆ V , if A ∈ F and
A ⊆ B, then B ∈ F . Suppose F is an increasing family of subsets of V and let ε ∈ (0, 1]. We say
that H is (F , ε)-dense if

e(H[A]) ≥ εe(H)

for every A ∈ F . We define I(H) to be the set of all independent sets in H.
The next result is the general hypergraph container theorem of Balogh, Morris and Samotij [3].
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Theorem 3.1 ([3], Theorem 2.2). For every k ∈ N and all positive c and ε, there exists a positive
constant C such that the following holds. Let H be a k-uniform hypergraph and let F ⊆ P(V (H))
be an increasing family of sets such that |A| ≥ εv(H) for all A ∈ F . Suppose that H is (F , ε)-dense
and p ∈ (0, 1) is such that, for every ` ∈ [k],

∆`(H) ≤ c · p`−1 e(H)

v(H)
.

Then there exists a family S ⊆
( V (H)
≤Cp·v(H)

)
and functions f : S → F and g : I(H) → S such that

for every I ∈ I(H), we have that g(I) ⊆ I and I \ g(I) ⊆ f(g(I)).

Using the above notation, we refer to the set C := {f(g(I)) ∪ g(I) : I ∈ I(H)} as a set of
containers and the g(I) ∈ S as fingerprints.

Throughout the paper, when we consider r-tuples of sets, the r-tuples are always ordered. For
two r-tuples of sets (I1, . . . , Ir) and (J1, . . . , Jr) we write (I1, . . . , Ir) ⊆ (J1, . . . , Jr) if Ix ⊆ Jx for
each x ∈ [r]. We write (I1, . . . , Ir) ∪ (J1, . . . , Jr) := (I1 ∪ J1, . . . , Ir ∪ Jr).

If X is a collection of sets then we write X r for the collection of r-tuples (X1, . . . , Xr) so that
Xi ∈ X for all 1 ≤ i ≤ r. So for example, P([n])r denotes the collection of all r-tuples (X1, . . . , Xr)
so that Xi ⊆ [n] for all 1 ≤ i ≤ r. We write ij to denote the pair {i, j}. For a hypergraph H define

Ir(H) :=

{
(I1, . . . , Ir) ∈ P(V (H))r : Ix ∈ I(H) and Ii ∩ Ij = ∅ for all x ∈ [r], ij ∈

(
[r]

2

)}
.

Whereas Theorem 3.1 provides a set of containers for the independent sets of a hypergraph,
the following proposition is an analogous result for the r-tuples of disjoint independent sets of a
hypergraph. It is a straightforward consequence of Theorem 3.1.

Proposition 3.2. For every k, r ∈ N and all positive c and ε, there exists a positive constant
C such that the following holds. Let H be a k-uniform hypergraph and let F ⊆ P(V (H)) be an
increasing family of sets such that |A| ≥ εv(H) for all A ∈ F . Suppose that H is (F , ε)-dense and
p ∈ (0, 1) is such that, for every ` ∈ [k],

∆`(H) ≤ c · p`−1 e(H)

v(H)
.

Then there exists a family Sr ⊆ Ir(H) and functions f : Sr → (F)r and g : Ir(H) → Sr such that
the following conditions hold:

(i) If (S1, . . . , Sr) ∈ Sr then
∑
|Si| ≤ Cp · v(H);

(ii) for every (I1, . . . , Ir) ∈ Ir(H), we have that S ⊆ (I1, . . . , Ir) ⊆ S ∪ f(S) where S :=
g(I1, . . . , Ir).

Proof. Apply Theorem 3.1 with k, c, ε to obtain a positive constant C1. Let C := rC1. We will show
that C has the required properties. Let H be a k-uniform hypergraph which together with a set
F ⊆ P(V (H)) satisfies the hypotheses of Proposition 3.2. Since H, F also satisfy the hypotheses

of Theorem 3.1, there exists a family S ⊆
( V (H)
≤C1p·v(H)

)
and functions f ′ : S → F and g′ : I(H)→ S

such that for every I ∈ I(H) we have g′(I) ⊆ I and I \ g′(I) ⊆ f ′(g′(I)). Define

S ′ := {S ∈ S : there exists I ∈ I(H) such that g′(I) = S},

and

Sr :=

{
(S1, . . . , Sr) ∈ P(V (H))r : Sx ∈ S ′ and Si ∩ Sj = ∅ for all x ∈ [r], ij ∈

(
[r]

2

)}
.
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Let (S1, . . . , Sr) ∈ Sr. First note that∑
x∈[r]

|Sx| ≤ C1r · pv(H) = Cp · v(H),

so (i) holds. Also since Sx ∈ S ′ for all x ∈ [r], we have Sx ∈ I(H) and so by definition of Sr we
have Sr ⊆ Ir(H).

Consider any (S1, . . . , Sr) ∈ Sr and any (I1, . . . , Ir) ∈ Ir(H). Define f : Sr → (F)r by set-
ting f(S1, . . . , Sr) := (f ′(S1), . . . , f

′(Sr)) and define g : Ir(H) → Sr by setting g(I1, . . . , Ir) :=
(g′(I1), . . . , g

′(Ir)).

Note that since f ′(Sx) ∈ F , g′(Ix) ∈ S ′ and g′(Ii)∩ g′(Ij) = ∅ for all x ∈ [r] and ij ∈
(
[r]
2

)
, we do

indeed have (f ′(S1), . . . , f
′(Sr)) ∈ (F)r and (g′(I1), . . . , g

′(Ir)) ∈ Sr.
Now for (ii), since g′(Ix) ⊆ Ix and Ix \ g′(Ix) ⊆ f ′(g′(Ix)) for all x ∈ [r], we have g(I1, . . . , Ir) =

(g′(I1), . . . , g
′(Ir)) ⊆ (I1, . . . , Ir). Since f(g(I1, . . . , Ir)) = (f ′(g′(I1)), . . . , f

′(g′(Ir))) we also have
(I1, . . . , Ir) ⊆ f(g(I1, . . . , Ir)) ∪ g(I1, . . . , Ir) as required. �

In all of our applications of the container method, we will in fact apply the following asymmetric
version of Proposition 3.2. In particular, in the proof of e.g. Theorem 1.7, instead of considering
tuples of disjoint independent sets from the same hypergraph H, we are actually concerned with
disjoint independent sets from different hypergraphs but which have the same vertex set : For all
i ∈ [r], let Hi be a ki-uniform hypergraph, each on the same vertex set V , and define I(H1, . . . ,Hr)
to be the set of all r-tuples (I1, . . . , Ir) ∈

∏
i∈[r] I(Hi) such that Ii ∩ Ij = ∅ for all 1 ≤ i < j ≤ r.

We omit the proof of Proposition 3.3 since it follows from Theorem 3.1 as in the proof of
Proposition 3.2.

Proposition 3.3. For every r, k1, . . . , kr ∈ N with ki ≥ 2 for all i ∈ [r], and all c, ε > 0, there
exists a positive constant C such that the following holds. For all i ∈ [r], let Hi be a ki-uniform
hypergraph, each on the same vertex set V . For all i ∈ [r], let Fi ⊆ P(V ) be an increasing family
of sets such that |A| ≥ ε|V | for all A ∈ Fi. Suppose that each Hi is (Fi, ε)-dense. Further suppose
p ∈ (0, 1) is such that, for every i ∈ [r] and ` ∈ [ki],

∆`(Hi) ≤ c · p`−1
e(Hi)
|V |

.

Then there exists a family Sr ⊆ I(H1, . . . ,Hr) and functions f : Sr →
∏
i∈[r]Fi and g : I(H1, . . . ,Hr)→

Sr such that the following conditions hold:

(i) If (S1, . . . , Sr) ∈ Sr then
∑
|Si| ≤ Cp|V |;

(ii) for every (I1, . . . , Ir) ∈ I(H1, . . . ,Hr), we have that S ⊆ (I1, . . . , Ir) ⊆ S ∪ f(S) where
S := g(I1, . . . , Ir).

4. Applications of the container method to (L, r)-free sets

In this section we will prove Theorems 1.11 and 1.13 by using the container theorem for r-tuples
of disjoint independent sets, applied with irredundant partition regular matrices A. Suppose that
we have a k-uniform hypergraphH whose vertex set is a subset of N and where the edges correspond
to the k-distinct solutions of L. Then in this setting, an (L, r)-free set is precisely an r-tuple of
disjoint independent sets in H.

Theorems 1.11 and 1.13 will be deduced from a container theorem, Theorem 4.7, which in turn
follows from Proposition 3.3. Theorem 4.7 actually holds for a class of irredundant matrices of
which partition regular matrices are a subclass. Let (∗) be the following matrix property:

(∗) Under Gaussian elimination A does not have any row which consists of precisely two non-
zero rational entries.

12



Call an integer matrix A (and the corresponding system of linear equations L) r-regular if all
r-colourings of N yield a monochromatic solution to L. Observe that a matrix is r-regular for
all r ∈ N if and only if it is partition regular. As outlined in the next subsection, given any
r ≥ 2, all irredundant r-regular matrices A satisfy (∗). We will in fact prove stronger versions of
Theorems 1.11 and 1.13 that consider irredundant matrices with property (∗).

These general results also consider ‘asymmetric’ Rado properties: Suppose that Li is a system of
linear equations for each 1 ≤ i ≤ r (and, here and elsewhere, Ai is the matrix such that Li = L(Ai)).
We say a setX ⊆ N is (L1, . . . ,Lr)-free if there is an r-colouring ofX such that there are no solutions
to Li in X in colour i for every i ∈ [r]. Otherwise we say that X is (L1, . . . ,Lr)-Rado. We denote
the size of the largest (L1, . . . ,Lr)-free subset of [n] by µ(n,L1, . . . ,Lr).

In general it is not known which systems of linear equations L1, . . . ,Lr are such that N is
(L1, . . . ,Lr)-Rado. However, if each Li is an r-regular homogenous linear equation, then N is
(L1, . . . ,Lr)-Rado (see [44, Theorem 9.19]).

We will prove the following strengthenings of Theorems 1.11 and 1.13.

Theorem 4.1. For all positive integers r, all irredundant full rank matrices A1, . . . , Ar which
satisfy (∗) with m(A1) ≥ · · · ≥ m(Ar), and all δ > 0, there exists a constant C > 0 such that

lim
n→∞

P
[

res([n]p, (L1, . . . ,Lr)-Rado)

|[n]p|
= 1− µ(n,L1, . . . ,Lr)

n
± δ
]

= 1 if p > Cn−1/m(A1).

Theorem 4.2. For all positive integers r, all irredundant full rank matrices A1, . . . , Ar which
satisfy (∗), there are 2µ(n,L1,...,Lr)+o(n) (L1, . . . ,Lr)-free subsets of [n].

Given a system of linear equations L, a strongly L-free subset of [n] is a subset that contains no
solution to L. Although this is not quite the same definition as L-free, we remark that Theorem 4.2
implies a result of Green [27, Theorem 9.3] in the case where k ≥ 3, on the number of strongly
L-free subsets of [n] for homogeneous linear equations L.

Additional note. As mentioned in the introduction, Spiegel [67] independently proved the case
r = 1 of Theorem 4.1. (Note in [67] this result is mentioned in terms of abundant matrices A. That
is every ` × (k − 2) submatrix of A has rank `. But this is clearly equivalent to (∗) in the case of
irredundant full rank matrices.)

4.1. Matrices which satisfy (∗). First we prove that irredundant partition regular matrices are
a strict subclass of irredundant matrices which satisfy (∗).

Suppose that an irredundant matrix A does not satisfy (∗). Then there exists a pair ij ∈
(
[k]
2

)
and non-zero rationals α, β such that for all solutions (x1, . . . , xk) to L we have αxi = βxj . If α = β
then no solution to L is k-distinct and so A is redundant, a contradiction. Otherwise, without loss
of generality, assume that α > β > 0, and devise the following 2-colouring of N: greedily colour
the numbers {1, 2, 3, ...} so that when colouring x, we always give it a different colour to βx/α (if
βx/α ∈ N). Such a colouring ensures that no solution to L is monochromatic, and so A is not
partition regular.

Note that the converse is not true. An ` × k matrix with columns a(1), . . . , a(k) satisfies the
columns property if there is a partition of [k], say [k] = D1 ∪ · · · ∪Dt such that∑

i∈D1

a(i) = 0

and for every r ∈ [t] we have ∑
i∈Dr

a(i) ∈ 〈a(j) : j ∈ D1 ∪ · · · ∪Dr−1〉.
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Rado’s theorem [53] states that a matrix is partition regular if and only if it satisfies the columns
property. Now, for example A :=

(
2 2 −1

)
is irredundant and clearly satisfies (∗), and addition-

ally does not have the columns property, so is not partition regular.
The argument above actually implies that if an irredundant matrix A is 2-regular, then it satisfies

(∗). So in the symmetric case, Theorems 4.1 and 4.2 consider all pairs (A, r) such that A is an
irredundant r-regular matrix and r ≥ 2.

4.2. Useful matrix lemmas. Before we can prove our container result (Theorem 4.7), we require
some matrix lemmas. Note that all of these lemmas hold for irredundant matrices which satisfy
(∗). As a consequence, Theorem 1.8 was actually implicitly proven for irredundant matrices which
satisfy (∗), since in [57] the only necessity of the matrix being partition regular was so that the
results stated below could be applied.

Recall the definition of m(A) given by (1.5). Parts (i) and (ii) of the following proposition
were verified for irredundant partition regular matrices by Rödl and Ruciński (see Proposition 2.2
in [57]). In fact their result easily extends to matrices which satisfy (∗). We give the full proof for
completeness, and add further facts ((iii)–(v)) which will be useful in the proof of Theorem 4.7.

Proposition 4.3. Let A be an `×k irredundant matrix of full rank ` which satisfies (∗). Then for
every W ⊆ [k], the following hold.

(i) If |W | = 1, then rank(AW ) = `.
(ii) If |W | ≥ 2, then `− rank(AW ) + 2 ≤ |W |.

(iii) If |W | ≥ 2, then

−|W | − rank(AW ) ≤ −`− 1− |W | − 1

m(A)
.

Furthermore,

(iv) k ≥ `+ 2;
(v) m(A) > 1.

Proof. For (i), suppose that rank(AW ) = ` − 1 for some W ⊆ [k] with |W | = 1. Since AW is
an ` × (k − 1) matrix of rank ` − 1, under Gaussian elimination it must contain a row of zeroes.
Hence A under Gaussian elimination contains a row with at most one non-zero entry. If there is
a non-zero entry in this row, then there are no positive solutions to L, which contradicts A being
irredundant. If there are none, then A does not have rank `, also a contradiction.

For (ii) proceed by induction on |W |. Assume first that there is a W ⊆ [k] with |W | = 2, such
that rank(AW ) < `. Using a similar argument to (i), under Gaussian elimination A contains a row
with at most two non-zero entries. If there are two non-zero entries this contradicts A satisfying
(∗). Otherwise we again get a contradiction to either A being irredundant or of rank `. Assume
now that |W | ≥ 3 and that the statement holds for |W |−1. The rank of a matrix drops by at most
one when a column is deleted, hence the required inequality follows by induction.

For (iii), note that for |W | ≥ 2, by definition we have m(A) ≥ (|W |−1)/(|W |−1+rank(AW )−`).
This can be rearranged to give the required inequality. For (iv), by taking W = [k] the result
follows immediately from (ii). For (v), again take W = [k]. Then by definition (1.5) m(A) ≥
(k − 1)/(k − ` − 1) > 1, where the second inequality follows since the denominator is positive by
(iv). �

The following supersaturation lemma follows easily from the (1-colour) removal lemma proved
for integer matrices by Král’, Serra and Vena (Theorem 2 in [43]).

Lemma 4.4. Fix r ∈ N and for each i ∈ [r], let Ai be an `i×ki integer matrix of rank `i, and write
Li := L(Ai). For every δ > 0 there exist n0, ε > 0 with the following property. Suppose n ≥ n0 is
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an integer and X ⊆ [n] is r-coloured, and |X| ≥ µ(n,L1, . . . ,Lr) + δn. Then there exists an i ∈ [r]
such that there are more than εnki−`i ki-distinct solutions to Li in colour i in X.

Finally we need the following well known result (and a simple corollary of it), which gives a
useful upper bound on the number of solutions to a system of linear equations. Note that in this
lemma only, we do not assume A to be necessarily of full rank (as we will apply the result directly
to matrices formed by deleting columns from our original matrix of full rank).

Lemma 4.5. For an `× k matrix A not necessarily of full rank, an `-dimensional integer vector b
and a set X ⊆ [n], the system Ax = b has at most |X|k−rank(A) solutions in X.

Proof. Use Gaussian elimination to turn A into echelon form. Now note that when picking a
solution to Ax = b in X (where x = (x1, . . . , xk)), there are |X| choices for k − rank(A) of the xi
(the ‘free’ variables), and the other rank(A) of the xi are immediately determined. Thus there are

at most |X|k−rank(A) solutions as required. �

Corollary 4.6. Consider an `×k matrix A of rank `, a set X ⊆ [n] and an integer 1 ≤ t ≤ k. Fix
distinct y1, . . . , yt ∈ X and consider any W = {s1, . . . , st} ⊆ [k]. The system Ax = 0 has at most

|X|k−t−rank(AW ) solutions (x1, . . . , xk) in X for which xsj = yj for each j ∈ [t]. Moreover, if A is

irredundant and satisfies (∗) and t = 1, then the system Ax = 0 has at most |X|k−`−1 solutions
(x1, . . . , xk) in X for which xs1 = y1.

Proof. Write A =: (aij). Consider the system of linear equations AWx
′ = b where, for each r ∈ [`],

the rth term in b is
br := −

∑
sj∈W

arsjyj .

Now by Lemma 4.5 the system of linear equations AWx
′ = b has at most |X|k−t−rank(AW ) solutions

in X. The first part of the corollary then follows since all solutions (x1, . . . , xk) to Ax = b with
xsj = yj for each j ∈ [t], rise from a solution x′ to AWx

′ = b. For the second part, if A is irredundant
and satisfies (∗) and t = 1, then by Proposition 4.3(i), we have rank(AW ) = ` and so the result
follows. �

4.3. A container theorem for tuples of L-free sets. Recall that an L-free set is simply an
(L, 1)-free set. Let I(n,L1, . . . ,Lr) denote the set of all ordered r-tuples (X1, . . . , Xr) ∈ P([n])r so
that each Xi is Li-free and Xi ∩Xj = ∅ for all distinct i, j ∈ [r]. Note that any (L1, . . . ,Lr)-free
subset X of [n] has a partition X1, . . . , Xr so that (X1, . . . , Xr) ∈ I(n,L1, . . . ,Lr). We now prove
a container theorem for the elements of I(n,L1, . . . ,Lr).

Theorem 4.7. Let r ∈ N and 0 < δ < 1. For each i ∈ [r] let Ai be an `i × ki irredundant matrix
of full rank `i which satisfies (∗), and suppose that m(A1) ≥ · · · ≥ m(Ar). Then there exists D > 0
such that the following holds. For all n ∈ N, there is a collection Sr ⊆ P([n])r and a function
f : Sr → P([n])r such that:

(i) For all (I1, . . . , Ir) ∈ I(n,L1, . . . ,Lr), there exists S ∈ Sr such that S ⊆ (I1, . . . , Ir) ⊆ f(S).

(ii) If (S1, . . . , Sr) ∈ Sr then
∑

i∈[r] |Si| ≤ Dn
m(A1)−1
m(A1) .

(iii) Every S ∈ Sr satisfies S ∈ I(n,L1, . . . ,Lr).
(iv) Given any S = (S1, . . . , Sr) ∈ Sr, write f(S) =: (f(S1), . . . , f(Sr)). Then

(a) for each 1 ≤ i ≤ r, f(Si) contains at most δnki−`i ki-distinct solutions to Li; and
(b) | ∪i∈[r] f(Si)| ≤ µ(n,L1, . . . ,Lr) + δn.

We emphasise that (iv)(b) does not necessarily guarantee
∑

i∈[r] |f(Si)| ≤ µ(n,L1, . . . ,Lr) + δn.

Rather it ensures at most µ(n,L1, . . . ,Lr) + δn elements of [n] appear in at least one of the co-
ordinates of f(S). This property is crucial for our applications.
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Proof. First note that since each of the matrices Ai are irredundant, a result of Janson and
Ruciński [35] implies that there exists a constant d > 0 such that, for each i ∈ [r], there are
at least dnki−`i ki-distinct solutions to Li in [n].

Note that it suffices to prove the theorem in the case when 0 < δ < d. Also, it suffices to prove
the theorem when n is sufficiently large; otherwise we can set Sr to be I(n,L1, . . . ,Lr); set f to be
the identity function and choose D to be large.

Let 0 < δ < d and r ∈ N be given and apply Lemma 4.4 to obtain n0, ε > 0. Without loss of
generality we may assume ε ≤ δ. Define k := max ki and let

ε′ :=
ε

2
and c :=

k!

ε′
.

Apply Proposition 3.3 with parameters r, k1, . . . , kr, c, ε
′ playing the roles of r, k1, . . . , kr, c, ε respec-

tively to obtain D > 0. Increase n0 if necessary so that 0 < 1/n0 � 1/D, 1/k1, . . . , 1/kr, 1/r, ε, δ
and let n ≥ n0 be an integer.

For each i ∈ [r] let Hn,i be the hypergraph with V (Hn,i) := [n] and an edge set which consists
of all ki-distinct solutions to Li in [n]. Observe that Hn,i is ki-uniform and an independent set in
Hn,i is an Li-free set.

For each i ∈ [r] we define Fn,i := {F ⊆ V (Hn,i) : e(Hn,i[F ]) ≥ ε′e(Hn,i)}. Note that since ε′ < d,
we have

ε′nki−`i ≤ e(Hn,i).(4.1)

We claim that Hn,i and Fn,i satisfy the hypotheses of Proposition 3.3 with parameters chosen as
above with

p = p(n) := n−1/m(A1).

Clearly Fn,i is increasing and Hn,i is (Fn,i, ε′)-dense. By Lemma 4.5, a set F ⊆ V (Hn,i) contains

at most |F |ki−`i solutions to Li (so e(Hn,i[F ]) ≤ |F |ki−`i). Hence for all F ∈ Fn,i, we have

|F | ≥ e(Hn,i[F ])
1

ki−`i ≥ (ε′e(Hn,i))
1

ki−`i
(4.1)

≥ ((ε′)2nki−`i)
1

ki−`i ≥ ε′n

where the last inequality follows by Proposition 4.3(iv).
For each j ∈ [ki], we wish to bound the number of hyperedges containing some {y1, . . . , yj} ⊆

V (Hn,i). Suppose (x1, . . . , xki) is a ki-distinct solution to Li so that {y1, . . . , yj} ⊆ {x1, . . . , xki}.
There are ki!/(ki − j)! choices for picking the j roles the yi play in (x1, . . . , xki). Let W be one
such choice for the set of indices of the xa used by {y1, . . . , yj}. In this case, Corollary 4.6 implies

there are at most nki−j−rank((Ai)W ) such solutions to Li, and if j = 1, there are at most nki−`i−1

such solutions. So for j = 1 this yields

degHn,i(y1) ≤ kin
ki−`i−1

(4.1)

≤ ki
ε′
e(Hn,i)
v(Hn,i)

≤ c e(Hn,i)
v(Hn,i)

.

For j ≥ 2, by Proposition 4.3(iii) we have ki− j − rank((Ai)W ) ≤ ki− `i− 1− (j − 1)/m(Ai). Also
m(A1) ≥ m(Ai) for all i ∈ [r] and hence we have

degHn,i({y1, . . . , yj}) ≤ ki!n
ki−`i−1− j−1

m(Ai) ≤ ki!n
ki−`i−1− j−1

m(A1)

≤ ki!

ε′
pj−1

e(Hn,i)
v(Hn,i)

≤ cpj−1 e(Hn,i)
v(Hn,i)

.

Since {y1, . . . , yj} was arbitrary, we therefore have ∆j(Hn,i) ≤ cpj−1e(Hn,i)/v(Hn,i), as required.
We have therefore shown that Hn,i and Fn,i satisfy the hypotheses of Proposition 3.3 for all i ∈ [r].
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Then Proposition 3.3 implies that there exists a family Sr ⊆
∏
i∈[r] P(V (Hn,i)) = P([n])r and

functions f ′ : Sr →
∏
i∈[r]Fn,i and g : I(Hn,1, . . . ,Hn,r) → Sr such that the following conditions

hold:

(a) If (S1, . . . , Sr) ∈ Sr then
∑

i∈[r] |Si| ≤ Dpn;

(b) every S ∈ Sr satisfies S ∈ I(Hn,1, . . . ,Hn,r);
(c) for every (I1, . . . , Ir) ∈ I(Hn,1, . . . ,Hn,r), we have that S ⊆ (I1, . . . , Ir) ⊆ S ∪ f ′(S), where

S := g(I1, . . . , Ir).

Note that I(Hn,1, . . . ,Hn,r) = I(n,L1, . . . ,Lr). For each S ∈ Sr, define

f(S) := S ∪ f ′(S).

So f : Sr → P([n])r. Thus, (a)–(c) immediately imply that (i)–(iii) hold.
Given any S = (S1, . . . , Sr) ∈ Sr write f(S) =: (f(S1), . . . , f(Sr)) and f ′(S) =: (f ′(S1), . . . , f

′(Sr)).
(Note the slight abuse of the use of the f and f ′ notation here.) By definition of Fn,i any F ∈ Fn,i
contains at most ε′nki−`i ki-distinct solutions to Li. By Corollary 4.6, the number of ki-distinct
solutions to Li in [n] that use at least one element from Si is at most kin

ki−`i−1|Si|. Further,

kin
ki−`i−1|Si| ≤ kiDpnki−`i ≤ ε′nki−`i .

Here, the first inequality holds by (a), and the second since p = n−1/m(A1) and m(A1) > 0 by
Proposition 4.3(v). Thus, in total f(Si) = Si ∪ f ′(Si) contains at most 2ε′nki−`i ≤ δnki−`i ki-
distinct solutions to Li, so (iv)(a) holds.

In fact, the argument above implies that there is an r-colouring of the set ∪i∈[r]f(Si) so that

there are at most 2ε′nki−`i = εnki−`i ki-distinct solutions to Li in colour i, in ∪i∈[r]f(Si). Hence,
Lemma 4.4 ensures (iv)(b), as desired. �

4.4. The number of (L1, . . . ,Lr)-free subsets of [n]. Our first application of Theorem 4.7 yields
an enumeration result (Theorem 4.2) for the number of (L1, . . . ,Lr)-free subsets of [n].

Proof of Theorem 4.2. By definition of µ(n,L1, . . . ,Lr) there are at least 2µ(n,L1,...,Lr) (L1, . . . ,Lr)-
free subsets of [n]. So it suffices to prove the upper bound.

For this, note that we may assume n is sufficiently large. Let 0 < δ < 1 be arbitrary and let D > 0
be obtained from Theorem 4.7 applied to A1, . . . , Ar with parameter δ. We obtain a collection Sr
and function f as in Theorem 4.7. Consider any (L1, . . . ,Lr)-free subset X of [n]. Note that X has
a partition X1, . . . , Xr so that (X1, . . . , Xr) ∈ I(n,L1, . . . ,Lr). So by Theorem 4.7(i) this means
there is some S = (S1, . . . , Sr) ∈ Sr so that X ⊆ ∪i∈[r]f(Si).

Further, given any S = (S1, . . . , Sr) ∈ Sr, we have that | ∪i∈[r] f(Si)| ≤ µ(n,L1, . . . ,Lr) + δn.

Thus, each such ∪i∈[r]f(Si) contains at most 2µ(n,L1,...,Lr)+δn (L1, . . . ,Lr)-free subsets of [n]. Note
that, by Theorem 4.7(ii),

|Sr| ≤

Dn
m(A1)−1
m(A1)∑
s=0

(
n

s

)
r

< 2δn,

where the last inequality holds since n is sufficiently large.
Altogether, this implies that the number of (L1, . . . ,Lr)-free subsets of [n] is at most

2δn × 2µ(n,L1,...,Lr)+δn = 2µ(n,L1,...,Lr)+2δn.

Since the choice of 0 < δ < 1 was arbitrary this proves the theorem. �
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4.5. The resilience of being (L1, . . . ,Lr)-Rado. Recall that the resilience of S with respect to
P, res(S,P), is the minimum number t such that by deleting t elements from S, one can obtain
a set not having P. In this section we will determine res([n]p, (L1, . . . ,Lr)-Rado) for irredundant
matrices A1, . . . , Ar which satisfy (∗). We now use Theorem 4.7 to deduce Theorem 4.1.

Proof of Theorem 4.1. Let 0 < δ < 1, r ∈ N and A1, . . . , Ar be matrices as in the statement of the
theorem. Given n, if p > n−1/m(A1) then since m(A1) > 1 by Proposition 4.3(v), Proposition 2.1
implies that, w.h.p.,

|[n]p| =
(

1± δ

4

)
pn.(4.2)

We first show that

lim
n→∞

P
[

res([n]p, (L1, . . . ,Lr)-Rado)

|[n]p|
≤ 1− µ(n,L1, . . . ,Lr)

n
+ δ

]
= 1 if p > n−1/m(A1).

For this, we must show that the probability of the event that there exists a set S ⊆ [n]p such that
|S| ≥ (µ(n,L1, . . . ,Lr)/n − δ)|[n]p| and S is (L1, . . . ,Lr)-free, tends to one as n tends to infinity.
This indeed follows: Let T be an (L1, . . . ,Lr)-free subset of [n] of maximum size µ(n,L1, . . . ,Lr).
Then, by Proposition 2.1, w.h.p. we have |T ∩ [n]p| = (µ(n,L1, . . . ,Lr)/n± δ)|[n]p|, and T ∩ [n]p is
(L1, . . . ,Lr)-free, as required.

For the remainder of the proof, we will focus on the lower bound, namely that there exists C > 0
such that whenever p > Cn−1/m(A1),

P
[
res([n]p, (L1, . . . ,Lr)-Rado) ≥

(
1− µ(n,L1, . . . ,Lr)

n
− δ
)
|[n]p|

]
→ 1 as n→∞.(4.3)

Suppose n is sufficiently large. Apply Theorem 4.7 with parameters r, δ/8, A1, . . . , Ar to obtain
D > 0, a collection Sr ⊆ P([n])r and a function f satisfying (i)–(iv). Now choose C such that

0 < 1/C � 1/D, δ, 1/r. Let p ≥ Cn−1/m(A1).
Since (4.2) holds with high probability, to prove (4.3) holds it suffices to show that the probability

[n]p contains an (L1, . . . ,Lr)-free subset of size at least (µ(n,L1,...,Lr)n + δ/2)np tends to zero as n
tends to infinity.

Suppose that [n]p does contain an (L1, . . . ,Lr)-free subset I of size at least (µ(n,L1,...,Lr)n +δ/2)np.
Note that I has a partition I1, . . . , Ir so that (I1, . . . , Ir) ∈ I(n,L1, . . . ,Lr). Further, there is some
S = (S1, . . . , Sr) ∈ Sr such that S ⊆ (I1, . . . , Ir) ⊆ f(S). Thus, [n]p must contain ∪i∈[r]Si as

well as at least (µ(n,L1,...,Lr)n + δ/4)np elements from
(
∪i∈[r]f(Si)

)
\
(
∪i∈[r]Si

)
. (Note here we are

using that | ∪i∈[r] Si| ≤ δnp/4, which holds by Theorem 4.7(ii) and since 0 < 1/C � 1/D, δ.)

Writing s := | ∪i∈[r] Si|, the probability [n]p contains ∪i∈[r]Si is ps. Note that |
(
∪i∈[r]f(Si)

)
\(

∪i∈[r]Si
)
| ≤ µ(n,L1, . . . ,Lr)+δn/8 by Theorem 4.7(iv)(b). So by the first part of Proposition 2.1,

the probability [n]p contains at least (µ(n,L1,...,Lr)n + δ/4)np elements from
(
∪i∈[r]f(Si)

)
\
(
∪i∈[r]Si

)
,

is at most exp(−δ2np/256).

Write N := n(m(A1)−1)/m(A1) and γ := δ2/256. Given some 0 ≤ s ≤ DN , there are at most
rs
(
n
s

)
elements (S1, . . . , Sr) ∈ Sr such that | ∪i∈[r] Si| = s. Indeed, this follows since there are

rs ways to partition a set of size s into r classes. (Note we only need to consider s ≤ DN by
Theorem 4.7(ii).) Thus, the probability [n]p does contain an (L1, . . . ,Lr)-free subset I of size at

least (µ(n,L1,...,Lr)n + δ/2)np is at most

DN∑
s=0

rs
(
n

s

)
· ps · e−γnp ≤ (DN + 1)(rp)DN

(
n

DN

)
e−γnp ≤ (DN + 1)

(repn
DN

)DN
e−γnp
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≤ (DN + 1)

(
reC

D

)DN
e−γCN ≤ eγCN/2e−γCN = e−γCN/2

which tends to zero as n tends to infinity. This completes the proof.
�

4.6. The size of the largest (L, r)-free set. Both as a natural question in itself, and in light
of Theorems 4.1 and 4.2, it is of interest to obtain good bounds on µ(n,L1, . . . ,Lr). For the rest
of this section consider the symmetric case (A := A1 = · · · = Ar) and assume that A is a 1 × k
matrix, i.e. we are interested in solutions to a linear equation a1x1 + · · · + akxk = 0. Such L are
called translation-invariant if the coefficients ai sum to zero. It is known that µ(n,L, 1) = o(n)
if L is translation-invariant and µ(n,L, 1) = Ω(n) otherwise (see [60]). Determining exact bounds
remains open in many cases, famously including progression-free sets (where L is x + y = 2z).
See [6, 15, 28] for the state-of-the-art lower and upper bounds for this case.

Call S ⊆ [n] strongly (L, r)-free if there exists an r-colouring of S which contains no monochro-
matic solutions to L of any type (that is, solutions are not required to be k-distinct). Define
µ∗(n,L, r) to be the size of the largest strongly (L, r)-free subset S ⊆ [n]. Note that for any density
regular matrix A, (x, . . . , x) is a solution to L for all x ∈ [n] (as observed by Frankl, Graham and
Rödl [23, Fact 4]) and so we have µ∗(n,L, r) = 0. (Note that this result implies that all density
regular 1×k matrices give rise to an equation L which is translation-invariant.) In fact, if A is any
1× k irredundant integer matrix, then for all ε > 0 there exists an n0 > 0 such that for all integers
n ≥ n0 we have

µ∗(n,L, r) ≤ µ(n,L, r) ≤ µ∗(n,L, r) + εn.

This follows from e.g. [43, Theorem 2], since such L have o(nk−`) non-k-distinct solutions in [n]
(i.e. a solution (x1, . . . , xk) where there is an i 6= j such that xi = xj).

Consequently it is equally interesting to study µ∗(n,L, r) in the case when µ(n,L, r) = Ω(n).
In the case of sum-free sets (where L is x + y = z), the study of µ∗(n,L, r) is a classical problem
of Abbott and Wang [1]. (Note that the only difference between µ(n,L, r) and µ∗(n,L, r) in this
case is that µ(n,L, r) allows non-distinct sums x + x = z whereas µ∗(n,L, r) does not.) Let
µ(n, r) := µ∗(n,L, r) where L is x+ y = z. An easy proof shows that µ(n, 1) = dn/2e.

The following definitions help motivate the study of µ(n, r) for r ≥ 2. Let f(r) denote the largest
positive integer m for which there exists a partition of [m] into r sum-free sets, and let h(r) denote
the largest positive integer m for which there exists a partition of [m] into r sets which are sum-free
modulo m+ 1.

Abbott and Wang [1] conjectured that h(r) = f(r), and showed that µ(n, r) ≥ n−bn/(h(r)+1)c.
They also proved the following upper bound.

Theorem 4.8 ([1]). We have µ(n, r) ≤ n− bcn/((f(r) + 1) log(f(r) + 1))c where c := e−γ ≈ 0.56
(γ denotes the Euler-Mascheroni constant).

We provide an alternate upper bound, which is a modification of Hu’s [32] proof that µ(n, 2) =
n − bn5 c. (To see why this is a lower bound, consider the set {x ∈ [n] : x ≡ 1 or 4 mod 5} ∪ {y ∈
[n] : y ≡ 2 or 3 mod 5}.) First we need the following fact. Given x ∈ [n] and T ⊆ [n], write
x+ T := {x+ y : y ∈ T}. Given S, T ⊆ [n], say that T is a difference set of S if there exists x ∈ S
such that x+ T ⊆ S.

Fact 4.9. Let n ∈ N and S, T, T ′ ⊆ [n].

(i) If T is a difference set of a sum-free set S, then S ∩ T = ∅.
(ii) If T ′ is a difference set of T , and T is a difference set of S, then T ′ is a difference set of S.
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Proof. If there exists x ∈ S such that x+T ⊆ S and moreover there exists y ∈ S∩T , then x+y ∈ S,
proving (i). For (ii), suppose that there is x′ ∈ T and x ∈ S such that x′ + T ′ ⊆ T and x+ T ⊆ S.
Then x+ x′ + T ′ ⊆ S and x+ x′ ∈ x+ T ⊆ S, proving (ii). �

Theorem 4.10. We have µ(n, r) ≤ n− b n
br!ecc.

Note that Theorem 4.10 does indeed recover Hu’s bound [32] for the case r = 2.

Proof. Fix n, r ∈ N. Let `(0) := 1. For all integers i ≥ 1, define

`(i) := i!

1 +
∑
t∈[i]

1

t!

 = bi!ec.

Note that `(i) = i`(i−1)+1 for all i ≥ 1. Choose the unique q ∈ N∪{0} and 0 ≤ k ≤ `(r)−1 such
that n = `(r)q + k. Consider any partition S1∪̇ · · · ∪̇Sr∪̇R = [n], where each Si is sum-free. We
wish to show that |R| ≥ q, since then µ(`(r)q+k, r) ≤ (`(r)−1)q+k and so µ(n, r) ≤ n−bn/`(r)c.

Suppose not. We will obtain integers {j1, . . . , jr} = [r] and subsets D0, D1, . . . , Dr of [n] such
that the following properties hold for all 0 ≤ i ≤ r.
P1(i) |Di| ≥ `(r − i)q;
P2(i) Di is a difference set of Sjt for all t ∈ [i];
P3(i) Di ∩ Sjt = ∅ for all t ∈ [i].

Let D0 := [n]. Then P1(0) holds by definition, and P2(0) and P3(0) are vacuous. Suppose, for some
0 ≤ i < r, we have obtained distinct {j1, . . . , ji} ⊆ [r] and D0, D1, . . . , Di such that P1(t)–P3(t)
hold for all t ∈ [i].

Suppose that |Di ∩
⋃
t∈[r]\{j1,...,ji} St| ≤ (`(r − i)− 1)q. Then we have that

|Di ∩R|
P3(i)

≥ |Di| − (`(r − i)− 1)q
P1(i)

≥ q,

a contradiction. So by averaging, there exists ji+1 ∈ [r] \ {j1, . . . , ji} such that

|Di ∩ Sji+1 | ≥
⌈

(`(r − i)− 1)q + 1

r − i

⌉
= `(r − i− 1)q + 1.

Thus we can write Di∩Sji+1 ⊇ {si,0 < . . . < si,`(r−i−1)q}. Let Di+1 := {si,x−si,0 : x ∈ [`(r−i−1)q]}.
We claim that P1(i + 1)–P3(i + 1) hold. Property P1(i + 1) is clear by definition. For P2(i + 1),
note that Di+1 is a difference set of both Di and Sji+1 . Then Fact 4.9(ii) and P2(i) imply that
additionally Di+1 is a difference set of Sjt for all t ∈ [i]. Fact 4.9(i) implies that Di+1 ∩ Sjt = ∅ for
all t ∈ [i+ 1], proving P3(i+ 1).

Thus we obtain Dr satisfying P1(r)–P3(r). By P1(r) and P3(r) we have that |Dr| ≥ `(0)q = q
and Dr ⊆ R, a contradiction. �

4.7. Open Problem. We conclude the section with an open problem. Recall Hu [32] showed that

µ(n, 2) = n−bn5 c. So in the case when L is x+y = z, Theorem 4.2 implies that there are 24n/5+o(n)

(L, 2)-free subsets of [n]. We believe the error term in the exponent here can be replaced by a
constant.

Conjecture 4.11. Let L denote x+ y = z. There are Θ(24n/5) (L, 2)-free subsets of [n].

Note that Conjecture 4.11 can be viewed as a 2-coloured analogue of the Cameron–Erdős con-
jecture [11] which was famously resolved by Green [26] and independently Sapozhenko [61].

Since our paper was submitted, Tran [71] has proved a slight variant of Conjecture 4.11; that is,
he proves the result where one instead defines sum-free to also forbid non-distinct sums x+ x = z
(as in the previous section). Note Tran’s result does not quite imply Conjecture 4.11 directly.
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5. Applications of the container method to graph Ramsey theory

In this section we answer some questions in hypergraph Ramsey theory, introduced in Sections 1.1
and 1.2. How many n-vertex hypergraphs are not Ramsey, and what does a typical such hypergraph
look like? How dense must the Erdős-Rényi random hypergraph be to have the Ramsey property
with high probability, and above this threshold, how strongly does it possess the Ramsey property?

Our main results here are applications of the asymmetric container theorem (Proposition 3.3).
For arbitrary k-uniform hypergraphs H1, . . . ,Hr, we first prove Theorem 5.11, a container theorem
for non-(H1, . . . ,Hr)-Ramsey k-uniform hypergraphs. To see how one might prove such a theorem,
observe that, if Hi is the hypergraph of copies of Hi on n vertices (i.e. vertices correspond to
k-subsets of [n], and edges correspond to copies of E(Hi); see Definition 5.9), then every non-
(H1, . . . ,Hr)-Ramsey k-uniform hypergraph G corresponds to a set in I(H1, . . . ,Hr). We then use
Theorem 5.11 to:

(1) count the number of k-uniform hypergraphs on n vertices which are not (H1, . . . ,Hr)-
Ramsey (Theorem 1.12);

(2) determine the global resilience of G
(k)
n,p with respect to the property of being (H1, . . . ,Hr)-

Ramsey (Theorem 1.7). That is, we show that there is a constant C such that whenever

p ≥ Cn−1/mk(H1), we obtain a function t of n and p such that, with high probability, any

subhypergraph G ⊆ G(k)
n,p with e(G) > t+ Ω(pnk) is (H1, . . . ,Hr)-Ramsey. Further, there is

some G′ ⊆ G(k)
n,p with e(G′) > t− o(pnk) which is not (H1, . . . ,Hr)-Ramsey.

(3) As a corollary of (2), we see that, whenever p ≥ Cn−1/mk(H1), the random hypergraph G
(k)
n,p

is (H1, . . . ,Hr)-Ramsey with high probability.

The statements of (1)–(3) all involve a common parameter: the maximum size exr(n;H1, . . . ,Hr)
of an n-vertex k-uniform hypergraph which is not (H1, . . . ,Hr)-Ramsey. For this reason, we gen-
eralise the classical supersaturation result of Erdős and Simonovits [19] to show that any n-vertex
k-uniform hypergraph G with at least exr(n;H1, . . . ,Hr) + Ω(nk) edges is somehow ‘strongly’
(H1, . . . ,Hr)-Ramsey. In the graph case, an old result of Burr, Erdős and Lovász [9] allows us
to quite accurately determine exr(n;H1, . . . ,Hr).

5.1. Definitions and notation. In this section, k ≥ 2 is an integer and we use k-graph as
shorthand for k-uniform hypergraph. Recall from Section 1.1 that, given r ∈ N and a k-graph
G, an r-colouring is a function σ : E(G) → [r]. Given k-graphs H1, . . . ,Hr, we say that σ is
(H1, . . . ,Hr)-free if σ−1(i) is Hi-free for all i ∈ [r]. Then G is (H1, . . . ,Hr)-Ramsey if it has no
(H1, . . . ,Hr)-free r-colouring.

Given an integer ` ≥ k, denote by K
(k)
` the complete k-graph on ` vertices. A k-graph H is k-

partite if the vertices of H can be k-coloured so that each edge contains one vertex of each colour.
Given a k-graph S, recall the definitions

dk(S) :=


0 if e(S) = 0;

1/k if v(S) = k and e(S) = 1;
e(S)−1
v(S)−k otherwise

and

mk(S) := max
S′⊆S

dk(S
′).

5.2. The maximum density of a hypergraph which is not Ramsey. Given integers n ≥ k
and a k-graph H, we denote by ex(n;H) the maximum size of an n-vertex H-free k-graph. Define
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the Turán density π(H) of H by

(5.1) π(H) := lim
n→∞

ex(n;H)(
n
k

)
(which exists by a simple averaging argument, see [36]). The so-called supersaturation phenomenon
discovered by Erdős and Simonovits [19] asserts that any sufficiently large hypergraph with density
greater than π(H) contains not just one copy of H, but in fact a positive fraction of v(H)-sized sets
span a copy of H. Note supersaturation problems date back to a result of Rademacher (see [16]).

Theorem 5.1 ([19]). For all k ∈ N; δ > 0 and all k-graphs H, there exist n0, ε > 0 such that for
all integers n ≥ n0, every n-vertex k-graph G with e(G) ≥ (π(H) + δ)

(
n
k

)
contains at least ε

(
n

v(H)

)
copies of H.

When k = 2, the Erdős–Stone–Simonovits theorem [20] says that for all graphs H, the value of
π(H) is determined by the chromatic number χ(H) of H, via

(5.2) π(H) = 1− 1

χ(H)− 1
.

For k ≥ 3, the value of π(H) is only known for a small family of k-graphs H. It remains an open

problem to even determine the Turán density of K
(3)
4 , the smallest non-trivial complete 3-graph

(the widely-believed conjectured value is 5
9). For more background on this, the so-called hypergraph

Turán problem, the interested reader should consult the excellent survey of Keevash [37].
In this section, we generalise Theorem 5.1 from H-free hypergraphs to non-(H1, . . . ,Hr)-Ramsey

hypergraphs (note that a hypergraph is H-free if and only if it is not (H)-Ramsey). Given ε > 0,
we say that an n-vertex k-graph G is ε-weakly (H1, . . . ,Hr)-Ramsey if there exists an r-colouring σ
of G such that, for all i ∈ [r], the number of copies of Hi in σ−1(i) is less than ε

(
n

v(Hi)

)
. Otherwise,

G is ε-strongly (H1, . . . ,Hr)-Ramsey. Note that ε-weakly (H1, . . . ,Hr)-Ramsey graphs may not in
fact be (H1, . . . ,Hr)-Ramsey.

Using a well-known averaging argument of Katona, Nemetz and Simonovits [36], we can show

that
(
n
k

)−1
exr(n;H1, . . . ,Hr) converges as n tends to infinity. Indeed, let G be an n-vertex non-

(H1, . . . ,Hr)-Ramsey graph with e(G) = exr(n;H1, . . . ,Hr). The average density of an (n − 1)-
vertex induced subgraph of G is precisely(

n

n− 1

)−1 ∑
U⊆V (G):|U |=n−1

e(G[U ])(
n−1
k

) = (n− k)−1 ·
(
n

k

)−1 ∑
U⊆V (G):|U |=n−1

e(G[U ]) =

(
n

k

)−1
e(G).

But the left-hand side is at most
(
n−1
k

)−1 · exr(n − 1;H1, . . . ,Hr), otherwise G would contain an
(n− 1)-vertex subgraph which is (H1, . . . ,Hr)-Ramsey, violating the choice of G. We have shown
that

exr(n;H1, . . . ,Hr)(
n
k

)
is a non-increasing function of n (which is bounded below, by 0), and so this function has a limit.
Therefore we may define the r-coloured Turán density π(H1, . . . ,Hr) of (H1, . . . ,Hr) by

π(H1, . . . ,Hr) := lim
n→∞

exr(n;H1, . . . ,Hr)(
n
k

) .

As for k ≥ 3, the problem of determining π(H) is still out of reach, we certainly cannot evaluate

π(H1, . . . ,Hr) in general. However, any non-(H1, . . . ,Hr)-Ramsey graph is K
(k)
s -free, where s :=

R(H1, . . . ,Hr) is the smallest integer m such that K
(k)
m is (H1, . . . ,Hr)-Ramsey. Thus

(5.3) π(H1, . . . ,Hr) ≤ π(K(k)
s ),
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which is at most 1 −
(
s−1
k−1
)−1

(de Caen [10]). An interesting question is for which H1, . . . ,Hr the

inequality in (5.3) is tight. We discuss the case k = 2 in detail in Section 5.3.
We now state the main result of this subsection, which generalises Theorem 5.1 to r ≥ 1. The

proof follows a standard approach to proving supersaturation results.

Theorem 5.2. For all δ > 0, integers r ≥ 1 and k ≥ 2, and k-graphs H1, . . . ,Hr, there exist n0, ε >
0 such that for all integers n ≥ n0, every n-vertex k-graph G with e(G) ≥ (π(H1, . . . ,Hr) + δ)

(
n
k

)
is ε-strongly (H1, . . . ,Hr)-Ramsey.

Proof. Let δ > 0 and let r, k be positive integers with k ≥ 2. By the definition of π(·), there exists
m0 > 0 such that for all integers m ≥ m0,

exr(m;H1, . . . ,Hr) <

(
π(H1, . . . ,Hr) +

δ

2

)(
m

k

)
.

Fix an integer m ≥ m0. Without loss of generality, we may assume that m ≥ v(Hi) for all i ∈ [r].
Choose ε > 0 to be such that

ε ≤ δ

2r

(
m

v(Hi)

)−1
for all i ∈ [r]. Let n be an integer which is sufficiently large compared to m, and let G be a k-graph
on n vertices with e(G) = (π(H1, . . . ,Hr) + δ)

(
n
k

)
. We need to show that, for every r-colouring σ

of G, there is i ∈ [r] such that σ−1(i) contains at least ε
(

n
v(Hi)

)
copies of Hi; so fix an arbitrary σ.

Define M to be the set of M ∈
(
V (G)
m

)
such that e(G[M ]) ≥ (π(H1, . . . ,Hr) + δ

2)
(
m
k

)
. Then∑

U⊆V (G):|U |=m

e(G[U ]) ≤ |M|
(
m

k

)
+

((
n

m

)
− |M|

)(
π(H1, . . . ,Hr) +

δ

2

)(
m

k

)
.

But for every e ∈ E(G), there are exactly
(
n−k
m−k

)
sets U ⊆ V (G) with |U | = m such that e ∈

E(G[U ]). Thus also∑
U⊆V (G):|U |=m

e(G[U ]) ≥
(
n− k
m− k

)
(π(H1, . . . ,Hr) + δ)

(
n

k

)
= (π(H1, . . . ,Hr) + δ)

(
n

m

)(
m

k

)
,

and so, rearranging, we have |M| ≥ δ
(
n
m

)
/2. By the choice of m, for every M ∈ M, there exists

i = i(M) ∈ [r] such that σ−1(i) contains a copy of Hi with vertices in M . Choose M′ ⊆ M such
that the i(M ′) are equal for all M ′ ∈ M′ and |M′| ≥ |M|/r. Without loss of generality let us
assume that i(M ′) = 1 for all M ′ ∈ M′. So for each M ′ ∈ M′, there is a copy of H1 ⊆ G[M ′]
which is monochromatic with colour 1 under σ. Each such copy has vertex set contained in at most(n−v(H1)
m−v(H1)

)
sets M ′ ∈M′. Thus the number of such monochromatic copies of H1 in G is at least

δ
2 ·
(
n
m

)
r
(n−v(H1)
m−v(H1)

) =
δ

2r
·
(

m

v(H1)

)−1
·
(

n

v(H1)

)
≥ ε
(

n

v(H1)

)
.

So G is ε-strongly (H1, . . . ,Hr)-Ramsey, as required. �

5.3. The special case of graphs: maximum size and typical structure. The intimate con-
nection between forbidden subgraphs and chromatic number when k = 2 allows us to make some
further remarks here. (This section is separate from the remainder of the paper and the results
stated here will not be required later on.)
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5.3.1. The maximum number of edges in a graph which is not Ramsey. Given s, n ∈ N, let Ts(n)
denote the s-partite Turán (2-)graph on n vertices; that is, the vertex set of Ts(n) has a partition
into s parts V1, . . . , Vs such that ||Vi| − |Vj || ≤ 1 for all i, j ∈ [s]; and xy is an edge of Ts(n) if and

only if there are ij ∈
(
[s]
2

)
such that x ∈ Vi and y ∈ Vj . Write ts(n) := e(Ts(n)).

We need to define two notions of Ramsey number.

Definition 5.3 (Ramsey number, chromatic Ramsey number and chromatic Ramsey equivalence).
Given an integer r ≥ 1 and families H1, . . . ,Hr of graphs, the Ramsey number R(H1, . . . ,Hr) is
the least m such that any r-colouring of Km contains an i-coloured copy of Hj for some i ∈ [r] and
some Hj ∈ Hi. If Hi = {K`i} for all i ∈ [r] then we instead write R(`1, . . . , `r), and simply Rr(`)
in the case when `1 = . . . = `r =: `.

Given graphs H1, . . . ,Hr, the chromatic Ramsey number Rχ(H1, . . . ,Hr) is the least m for which
there exists an (H1, . . . ,Hr)-Ramsey graph with chromatic number m.

Trivially, for any k-graph H, we have that Rχ(H) = χ(H). If H1, . . . ,Hr are graphs, then

(5.4) tRχ(H1,...,Hr)−1(n) ≤ exr(n;H1, . . . ,Hr) ≤ tRχ(H1,...,Hr)−1(n) + o(n2).

Thus

(5.5) π(H1, . . . ,Hr) = 1− 1

Rχ(H1, . . . ,Hr)− 1
= π

(
KRχ(H1,...,Hr)

)
.

The first inequality in (5.4) follows by definition of exr(n;H1, . . . ,Hr); the second from (5.2) applied
with a graph H which is (H1, . . . ,Hr)-Ramsey and has χ(H) = Rχ(H1, . . . ,Hr). Clearly, then,
π(H1, . . . ,Hr) = π(J1, . . . , Jr) if and only if Rχ(J1, . . . , Jr) = Rχ(H1, . . . ,Hr). So, in the graph
case, the inequality (5.3) is tight when the Ramsey number and chromatic Ramsey number coincide.

As noted by Bialostocki, Caro and Roditty [5], one can determine exr(n;H1, . . . ,Hr) exactly in
the case when H1, . . . ,Hr are cliques of equal size.

Theorem 5.4 ([5]). For all positive integers `, n ≥ 3 and r ≥ 1, we have exr(n;K`, . . . ,K`) =
tRr(`)−1(n).

Thus in this case (5.3) is tight. The chromatic Ramsey number was introduced by Burr, Erdős
and Lovász [9] who showed that, in principle, one can determine Rχ given the usual Ramsey
number R. A graph homomorphism from a graph H to a graph K is a function φ : V (H)→ V (K)
such that φ(x)φ(y) ∈ E(K) whenever xy ∈ E(H). Let Hom(H) denote the set of all graphs
K such that there exists a graph homomorphism φ for which K = φ(H). Since there exists a
homomorphism from H into K` if and only if χ(H) ≤ `, we also have that R(Hom(H)) = χ(H).
Thus R(Hom(H)) = Rχ(H). In fact this relationship extends to all r ≥ 1.

Lemma 5.5 ([9, 12, 46]). For all integers r ∈ N and graphs H1, . . . ,Hr,

Rχ(H1, . . . ,Hr) = R(Hom(H1), . . . ,Hom(Hr)).

Moreover, for all integers `1, . . . , `r ≥ 3, we have that

Rχ(K`1 , . . . ,K`r) = R(`1, . . . , `r).

The second statement is a corollary of the first since Hom(K`) = {K`}. Another observation
(see [9]) is that for all ` ∈ N, the chromatic Ramsey number Rχ(C2`+1, C2`+1) is equal to 5 if ` = 2,
and equal to 6 otherwise.

The first inequality in (5.4) is not always tight, for example when H is the disjoint union of two
copies of some graph G. Indeed, Hom(H) ⊇ Hom(G) and so Rχ(H, . . . ,H) = Rχ(G, . . . , G). Let
F be an n-vertex graph with e(F ) = exr(n;G, . . . , G) which is not (G, r)-Ramsey. Obtain a graph
T by adding an edge e to F . Then there exists an r-colouring of T in which every monochromatic
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copy of G contains e (the monochromatic-G-free colouring of F , with e arbitrarily coloured). Hence
T is not (H, r)-Ramsey and so

exr(n;H, . . . ,H) > exr(n;G, . . . , G) ≥ tRχ(G,...,G)(n) = tRχ(H,...,H)(n).

We say that a graph H is (weakly) colour-critical if there exists e ∈ E(H) for which χ(H − e) <
χ(H). Complete graphs and odd cycles are examples of colour-critical graphs. The following
conjecture would generalise Theorem 5.4 to provide a large class of graphs where the first inequality
in (5.4) is tight.

Conjecture 5.6. Let r be a positive integer and H a colour-critical graph. Then, whenever n is
sufficiently large,

exr(n;H, . . . ,H) = tRχ(H,...,H)−1(n).

If true, this conjecture would also generalise a well-known result of Simonovits [66] which extends
Turán’s theorem to colour-critical graphs. It would also determine exr(n;H, . . . ,H) explicitly
whenever H is an odd cycle.

5.3.2. The typical structure of non-Ramsey graphs. There has been much interest in determining
the typical structure of an H-free graph. For example, Kolaitis, Prömel and Rothschild [42] proved
that almost all Kr-free graphs are (r − 1)-partite. It turns out that one can easily obtain a result
on the typical structure of non-Ramsey graphs from a result of Prömel and Steger [52].

Given two families A(n),B(n) of n-vertex graphs such that B(n) ⊆ A(n), we say that almost all
n-vertex graphs G ∈ A(n) are in B(n) if

lim
n→∞

|A(n)|
|B(n)|

= 1.

The next result of Prömel and Steger [52] immediately tells us the typical structure of non-
Ramsey graphs in certain cases.

Theorem 5.7 ([52]). For every graph H, the following holds. Almost all H-free graphs are (χ(H)−
1)-partite if and only if H is colour-critical.

Corollary 5.8. For all integers r and graphs H1, . . . ,Hr, if there exists an (H1, . . . ,Hr)-Ramsey
graph H such that χ(H) = Rχ(H1, . . . ,Hr) and H is colour-critical, then almost every non-
(H1, . . . ,Hr)-Ramsey graph is (Rχ(H1, . . . ,Hr)− 1)-partite.

Proof. The result follows since every non-(H1, . . . ,Hr)-Ramsey graph G is H-free, and every
(Rχ(H1, . . . ,Hr)− 1)-partite graph is non-(H1, . . . ,Hr)-Ramsey. �

In particular, if in Corollary 5.8, each Hi is a clique, say Hi = K`i , then by Lemma 5.5 we can
take H := KR(`1,...,`r). So, for example, almost every non-(K3, 2)-Ramsey graph is 5-partite.

5.4. A container theorem for Ramsey hypergraphs. Recall that Ram(n;H1, . . . ,Hr) is the
set of n-vertex k-graphs which are not (H1, . . . ,Hr)-Ramsey and Ram(H1, . . . ,Hr) is the set of
(H1, . . . ,Hr)-Ramsey k-graphs (on any number of vertices). Recall further that an H-free k-graph
is precisely a non-(H, 1)-Ramsey graph. Write Gk(n) for the set of all k-graphs on vertex set [n].
Let Ir(n;H1, . . . ,Hr) denote the set of all ordered r-tuples (G1, . . . , Gr) ∈ (Gk(n))r of k-graphs
such that each Gi is Hi-free and E(Gi) ∩ E(Gj) = ∅ for all distinct i, j ∈ [r]. Note that for

any G ∈ Ram(n;H1, . . . ,Hr), there exist pairwise edge-disjoint k-graphs G1, . . . , Gr such that⋃
i∈[r]Gi = G and (G1, . . . , Gr) ∈ Ir(n;H1, . . . ,Hr). In this subsection, we prove a container

theorem for elements in Ir(n;H1, . . . ,Hr). To do so, we will apply Proposition 3.3 to hypergraphs
H1, . . . ,Hr, where Hi is the hypergraph of copies of Hi (see Definition 5.9). In Hi, an independent
set corresponds to an Hi-free k-graph.
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Definition 5.9. Given an integer k ≥ 2, a k-graph H and positive integer n, the hypergraph H of

copies of H in K
(k)
n has vertex set V (H) :=

([n]
k

)
, and E ⊆

(V (H)
e(H)

)
is an edge of H if and only if E

is isomorphic to E(H).

We will need the following simple proposition from [3].

Proposition 5.10 ([3], Proposition 7.3). Let H be a k-graph. Then there exists c > 0 such that,
for all positive integers n, the following holds. Let H be the e(H)-uniform hypergraph of copies of

H in K
(k)
n . Then, letting p = n−1/mk(H),

∆`(H) ≤ c · p`−1 e(H)

v(H)
,

for every ` ∈ [e(H)].

We can now prove our container theorem for elements in Ir(n;H1, . . . ,Hr).

Theorem 5.11. Let r, k ∈ N with k ≥ 2 and δ > 0. Let H1, . . . ,Hr be k-graphs such that
mk(H1) ≥ . . . ≥ mk(Hr) and ∆1(Hi) ≥ 2 for all i ∈ [r]. Then there exists D > 0 such that the
following holds. For all n ∈ N, there is a collection Sr ⊆ (Gk(n))r and a function f : Sr → (Gk(n))r

such that:

(i) For all (I1, . . . , Ir) ∈ Ir(n;H1, . . . ,Hr), there exists S ∈ Sr such that S ⊆ (I1, . . . , Ir) ⊆
f(S).

(ii) If (S1, . . . , Sr) ∈ Sr then
∑

i∈[r] e(Si) ≤ Dnk−1/mk(H1).

(iii) Every S ∈ Sr satisfies S ∈ Ir(n;H1, . . . ,Hr).
(iv) Given any S = (S1, . . . , Sr) ∈ Sr, write f(S) =: (f(S1), . . . , f(Sr)). Then

(a)
⋃
i∈[r] f(Si) is δ-weakly (H1, . . . ,Hr)-Ramsey; and

(b) e
(⋃

i∈[r] f(Si)
)
≤ exr(n;H1, . . . ,Hr) + δ

(
n
k

)
.

Note that if H is a k-graph with ∆1(H) = 1, then H is a matching, i.e. a set of vertex-disjoint
edges.

Proof. We will identify any hypergraph which has vertex set [n] with its edge set. It suffices to
prove the theorem when n is sufficiently large; otherwise we can set Sr to be Ir(n;H1, . . . ,Hr); set
f to be the identity function and choose D to be large. We may further assume that there are no
isolated vertices in Hi for any i ∈ [r].

Apply Proposition 5.10 with input hypergraphs H1, . . . ,Hr to obtain c > 0 such that its conclu-
sion holds with Hi playing the role of H, for all i ∈ [r]. Let δ > 0, r ∈ N and k ≥ 2 be given and
apply Theorem 5.2 (with δ/2 playing the role of δ) to obtain n0, ε > 0. Without loss of generality
we may assume ε ≤ δ < 1. For each i ∈ [r], let vi := v(Hi) and mi := e(Hi) for all i ∈ [r]. Set
v := maxi∈[r] vi; m := maxi∈[r]mi;

ε′ :=
ε

2 · v!
; and ε′′ :=

ε′(
v
k

)
· v!

.

Apply Proposition 3.3 with parameters r,m1, . . . ,mr, c, ε
′′ playing the roles of r, k1, . . . , kr, c, ε

respectively to obtain D > 0. Increase n0 if necessary so that 0 < 1/n0 � 1/D, 1/k, 1/r, ε, δ and
let n ≥ n0 be an integer.

Let Hn,i be the hypergraph of copies of Hi in K
(k)
n . That is, V (Hn,i) :=

([n]
k

)
and for each

mi-subset E of
([n]
k

)
, put E ∈ E(Hn,i) if and only if E is isomorphic to a copy of Hi. By definition,

Hn,i is an mi-uniform hypergraph and an independent set in Hn,i corresponds to an Hi-free k-graph
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with vertex set [n]. Since Hi is a k-graph with no isolated vertices,

(5.6) e(Hn,i) =
vi!

|Aut(Hi)|

(
n

vi

)
where Aut(Hi) is the automorphism group of Hi. For all i ∈ [r], let

Fn,i :=

{
A ⊆

(
[n]

k

)
: e(Hn,i[A]) ≥ ε′e(Hn,i)

}
.

We claim that Hn,1, . . . ,Hn,r and Fn,1, . . . ,Fn,r satisfy the hypotheses of Proposition 3.3 with the
parameters chosen as above and with

p = p(n) := n−1/mk(H1).

Clearly each family Fn,i is increasing, and Hn,i is (Fn,i, ε′)-dense. Next, we show that |A| ≥ ε′′
(
n
k

)
for all A ∈ Fn,i. In any k-graph on n vertices, there are at most vi!

(
n−k
vi−k

)
copies of Hi that contain

some fixed set {x1, . . . , xk} of vertices. Therefore, for every e ∈
([n]
k

)
, the number of E ∈ E(Hn,i)

containing e is at most

(5.7) vi!

(
n− k
vi − k

)
.

Thus every A ∈ Fn,i satisfies

|A| ≥ e(Hn,i[A])

vi!
(
n−k
vi−k

) (5.6)

≥
ε′vi!

(
n
vi

)
vi!
(
n−k
vi−k

)
|Aut(Hi)|

=
ε′(

v
k

)
|Aut(Hi)|

(
n

k

)
≥ ε′′

(
n

k

)
,

where, in the final inequality, we used the fact that |Aut(Hi)| ≤ vi!. Note that ε′′ < ε′. So Hn,i is
(Fn,i, ε′′)-dense and |A| ≥ ε′′

(
n
k

)
for all A ∈ Fn,i.

Certainly p ≥ n−1/mk(Hj) for all j ∈ [r]. By the choice of c, we then have

∆`(Hn,i) ≤ c · p`−1
e(Hn,i)(

n
k

)
for all i ∈ [r] and ` ∈ [mi]. We have shown that Hn,i and Fn,i satisfy the hypotheses of Proposi-
tion 3.3 for all i ∈ [r].

Then Proposition 3.3 implies that there exists a family Sr ⊆
∏
i∈[r] P(V (Hn,i)) = P(

([n]
k

)
)r and

functions f ′ : Sr →
∏
i∈[r]Fn,i and g : I(Hn,1, . . . ,Hn,r) → Sr such that the following conditions

hold:

(a) If (S1, . . . , Sr) ∈ Sr then
∑
|Si| ≤ Dp

(
n
k

)
;

(b) every S ∈ Sr satisfies S ∈ I(Hn,1, . . . ,Hn,r);
(c) for every (I1, . . . , Ir) ∈ I(Hn,1, . . . ,Hn,r), we have that S ⊆ (I1, . . . , Ir) ⊆ S ∪ f ′(S), where

S := g(I1, . . . , Ir).

Note that (G1, . . . , Gr) ∈ I(Hn,1, . . . ,Hn,r) if and only if (G1, . . . , Gr) ∈ Ir(n;H1, . . . ,Hr) (where
we recall the identification of graphs and edge sets). For each S ∈ Sr, define

f(S) := S ∪ f ′(S).

So f : Sr → P(
([n]
k

)
)r. (Note that under the correspondence of graphs and edge sets we can view

P(
([n]
k

)
)r = (Gk(n))r.) Thus (a)–(c) immediately imply that (i) and (iii) hold, and additionally for

any (S1, . . . , Sr) ∈ Sr we have∑
i∈[r]

e(Si) ≤ Dp
(
n

k

)
≤ Dn−1/mk(H1) · n

k

k!
< Dnk−1/mk(H1),
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yielding (ii).
Given any S = (S1, . . . , Sr) ∈ Sr write f(S) =: (f(S1), . . . , f(Sr)) and f ′(S) =: (f ′(S1), . . . , f

′(Sr)).
Let G :=

⋃
i∈[r] f(Si); so G is a k-graph with vertex set [n]. To prove (iv)(a), we need to exhibit an

r-colouring σ of G with the property that σ−1(i) contains less than ε
(
n
vi

)
copies of Hi for all i ∈ [r].

Indeed, consider the r-colouring σ of G defined by setting σ(e) = i when i is the least integer such
that e ∈ f(Si). Then the subgraph of G coloured i is σ−1(i) ⊆ f(Si) = Si ∪ f ′(Si). Since Si is an
independent set in Hn,i, we have that Si is Hi-free. Every copy of Hi in σ−1(i) either contains at
least one edge in Si, or has every edge contained in f ′(Si). Note that mk(H1) ≤ m. By (5.7), the
number of copies of Hi in G containing at least one edge in Si is at most

e(Si) · vi!
(
n− k
vi − k

)
≤ Dnk−1/mk(H1) · vi!(n− k)vi−k ≤ Dvi! · nvi−

1
m <

ε

2

(
n

vi

)
.

For each i ∈ [r] we have that f ′(Si) ∈ Fn,i, and so e(Hn,i[f ′(Si)]) < ε′e(Hn,i). That is, the number
of copies of Hi in f ′(Si) is less than

ε′ · vi!

|Aut(Hi)|

(
n

vi

)
≤ ε

2

(
n

vi

)
.

Thus, in total f(Si) = Si∪f ′(Si) contains at most ε
(
n
vi

)
copies of Hi, so G is ε-weakly (H1, . . . ,Hr)-

Ramsey. Since ε ≤ δ, this immediately implies (iv)(a), and (iv)(b) follows from Theorem 5.2, our
choice of parameters, and since n is sufficiently large. �

As in Theorem 3.1, we will call the elements S ∈ Sr fingerprints, and each
⋃
i∈[r] f(Si) with

(S1, . . . , Sr) ∈ Sr is a container.

5.5. The number of hypergraphs which are not Ramsey. Our first application of Theo-
rem 5.11 is an enumeration result for non-(H1, . . . ,Hr)-Ramsey hypergraphs (Theorem 1.12), which
asymptotically determines the logarithm of |Ram(n;H1, . . . ,Hr)|.

Proof of Theorem 1.12. Let 0 < δ < 1 be arbitrary, and let n ∈ N be sufficiently large. Clearly,
|Ram(n;H1, . . . ,Hr)| ≥ 2ex

r(n;H1,...,Hr) since no subhypergraph of an n-vertex non-(H1, . . . ,Hr)-
Ramsey k-graph with exr(n;H1, . . . ,Hr) edges is (H1, . . . ,Hr)-Ramsey.

For the upper bound, suppose first that ∆1(Hi) ≥ 2 for all i ∈ [r]. Let D > 0 be obtained from
Theorem 5.11 applied to H1, . . . ,Hr with parameter δ. We obtain a collection Sr and a function
f as in Theorem 5.11. Consider any G ∈ Ram(n;H1, . . . ,Hr). Note that there are pairwise edge-
disjoint k-graphs G1, . . . , Gr such that

⋃
i∈[r]Gi = G and (G1, . . . , Gr) ∈ Ir(n;H1, . . . ,Hr). So by

Theorem 5.11(i) this means there is some S = (S1, . . . , Sr) ∈ Sr so that G ⊆
⋃
i∈[r] f(Si). Further,

given any S = (S1, . . . , Sr) ∈ Sr, we have

e

⋃
i∈[r]

f(Si)

 ≤ exr(n;H1, . . . ,Hr) + δ

(
n

k

)
.

Thus, each such
⋃
i∈[r] f(Si) contains at most 2ex

r(n;H1,...,Hr)+δ(nk) k-graphs in Ram(n;H1, . . . ,Hr).

Note that, by Theorem 5.11(ii),

|Sr| ≤

Dnk−1/mk(H1)∑
s=0

((n
k

)
s

)r

< 2δ(
n
k),

where the last inequality holds since n is sufficiently large. Altogether, this implies

(5.8) |Ram(n;H1, . . . ,Hr)| ≤ 2δ(
n
k) × 2ex

r(n;H1,...,Hr)+δ(nk) = 2ex
r(n;H1,...,Hr)+2δ(nk).
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Since the choice of 0 < δ < 1 was arbitrary, this proves the theorem in the case when ∆1(Hi) ≥ 2
for all i ∈ [r].

Suppose now that, say, ∆1(H1) = 1. Then H1 is a matching. Certainly every non-(H2, . . . ,Hr)-
Ramsey k-graph is non-(H1, . . . ,Hr)-Ramsey. Let H ∈ Ram(n;H1, . . . ,Hr). Then there exists an
r-colouring σ of H such that σ−1(i) is Hi-free for all i ∈ [r]. Thus H is the union of pairwise
edge-disjoint k-graphs J ∈ Ram(n;H2, . . . ,Hr) and J ′ := σ−1(1). But J ′ is H1-free and hence does
not contain a matching of size bv(H1)/2c =: h. A result of Erdős [17] (used here in a weaker form)
implies that, for sufficiently large n,

e(J ′) ≤ (h− 1)

(
n− 1

k − 1

)
.

Thus, for large n,

|Ram(n;H1, . . . ,Hr)| ≤
∑

J∈Ram(n;H2,...,Hr)

(h−1)(n−1
k−1)∑

e(J ′)=0

( (n
k

)
e(J ′)

)

= |Ram(n;H2, . . . ,Hr)|

k(h−1)
n (nk)∑

e(J ′)=0

( (n
k

)
e(J ′)

)
≤ |Ram(n;H2, . . . ,Hr)| · 2δ(

n
k).

Iterating this argument, using (5.8) and the fact that 0 < δ < 1 was arbitrary, we obtain the
required upper bound in the general case. �

In fact Theorem 1.12 can be recovered in a different way, which, to the best of our knowledge,
has not been explicitly stated elsewhere. Let F be a (possibly infinite) family of k-graphs, and let
Forb(n;F) be the set of n-vertex k-graphs which contain no copy of any F ∈ F as a subhypergraph.
The following result of Nagle, Rödl and Schacht [50] asymptotically determines the logarithm of
|Forb(n;F)|. (This generalises the corresponding result of Erdős, Frankl and Rödl [18] for graphs.)
Let

ex(n;F) := max{e(H) : H ∈ Forb(n;F)}.
(So when F = {F} contains a single k-graph, we have ex(n; {F}) = ex(n;F ).)

Theorem 5.12 (Theorem 2.3, [50]). Let k ≥ 2 be a positive integer and F be a (possibly infinite)
family of k-graphs. Then, for all n ∈ N,

|Forb(n;F)| = 2ex(n;F)+o(n
k).

Since G ∈ Ram(n;H1, . . . ,Hr) if and only if G is an n-vertex k-graph without a copy of any
F ∈ Ram(H1, . . . ,Hr) as a subhypergraph, Theorem 5.12 immediately implies Theorem 1.12.

5.6. The resilience of being (H1, . . . ,Hr)-Ramsey. Recall that G
(k)
n,p has vertex set [n], where

each edge lies in
([n]
k

)
and appears with probability p, independently of all other edges. In this section

we apply Theorem 5.11 to prove Theorem 1.7, which determines res(G
(k)
n,p, (H1, . . . ,Hr)-Ramsey) for

given fixed k-graphs H1, . . . ,Hr. Explicitly, res(G
(k)
n,p, (H1, . . . ,Hr)-Ramsey) is the minimum integer

t such that one can remove t edges from G
(k)
n,p to obtain a k-graph H which has an (H1, . . . ,Hr)-free

r-colouring.
Observe that Theorem 1.7 together with (5.3) immediately implies the following corollary.
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Corollary 5.13 (Random Ramsey for hypergraphs). For all positive integers r, k with k ≥ 2 and
k-graphs H1, . . . ,Hr with mk(H1) ≥ . . . ≥ mk(Hr) and ∆1(Hi) ≥ 2 for all i ∈ [r], there exists
C > 0 such that

lim
n→∞

P
[
G(k)
n,p is (H1, . . . ,Hr)-Ramsey

]
= 1 if p > Cn−1/mk(H1).

In the case when mk(H1) = mk(H2), Corollary 5.13 generalises Theorem 1.6 since we do not
require H1 to be strictly k-balanced. Further, Corollary 5.13 resolves (the 1-statement part) of
Conjecture 1.3 in the case when m2(H1) = m2(H2).

Proof of Theorem 1.7. Let 0 < δ < 1 be arbitrary, r, k ∈ N with k ≥ 2, and let H1, . . . ,Hr be
k-graphs as in the statement of the theorem. Given n ∈ N, if p > n−1/mk(H1), then p > n−(k−1)

since ∆1(H1) ≥ 2. Proposition 2.1 implies that, w.h.p.,

(5.9) e(G(k)
n,p) =

(
1± δ

4

)
p

(
n

k

)
.

For brevity, write π := π(H1, . . . ,Hr). We will first prove the upper bound

lim
n→∞

P
[
res(G(k)

n,p, (H1, . . . ,Hr)-Ramsey) ≤ (1− π + δ)e(G(k)
n,p)
]

= 1 if p > n−1/mk(H1).

For this, we must show that the probability of the event that there exists an n-vertex k-graph G ⊆
G

(k)
n,p such that e(G) ≥ (π−δ)e(G(k)

n,p) and G ∈ Ram(n;H1, . . . ,Hr), tends to one as n tends to infin-
ity. This indeed follows: Let n be sufficiently large so that exr(n;H1, . . . ,Hr) ≥ (π − δ/2)

(
n
k

)
. Let

G∗ be an n-vertex non-(H1, . . . ,Hr)-Ramsey k-graph with e(G∗) = exr(n;H1, . . . ,Hr). Then, by

Proposition 2.1, w.h.p. we have e(G∗∩G(k)
n,p) = (π±δ)e(G(k)

n,p), and G∗∩G(k)
n,p ∈ Ram(n;H1, . . . ,Hr),

as required.
For the remainder of the proof, we will focus on the lower bound, namely that there exists C > 0

such that whenever p > Cn−1/mk(H1),

(5.10) P
[
res(G(k)

n,p, (H1, . . . ,Hr)-Ramsey) ≥ (1− π − δ)e(G(k)
n,p)
]
→ 1 as n→∞.

Suppose n is sufficiently large. Apply Theorem 5.11 with parameters r, k, δ/16, (H1, . . . ,Hr) to
obtain D > 0 and for each n ∈ N, a collection Sr and a function f satisfying (i)–(iv). Now choose

C such that 0 < 1/C � 1/D, δ, 1/k, 1/r. Let p ≥ Cn−1/mk(H1).
Since (5.9) holds with high probability, to prove (5.10) holds it suffices to show that the proba-

bility G
(k)
n,p contains a non-(H1, . . . ,Hr)-Ramsey k-graph with at least (π+ δ/2)p

(
n
k

)
edges tends to

zero as n tends to infinity.

Suppose that G
(k)
n,p does contain a non-(H1, . . . ,Hr)-Ramsey k-graph I with at least (π+δ/2)p

(
n
k

)
edges. Then there exist pairwise edge-disjoint k-graphs I1, . . . , Ir such that

⋃
i∈[r] Ii = I and

(I1, . . . , Ir) ∈ Ir(n;H1, . . . ,Hr). Further, there is some S = (S1, . . . , Sr) ∈ Sr such that S ⊆
(I1, . . . , Ir) ⊆ f(S). Thus, G

(k)
n,p must contain (the edges of)

⋃
i∈[r] Si as well as at least (π+δ/4)p

(
n
k

)
edges from (

⋃
i∈[r] f(Si)) \ (

⋃
i∈[r] Si). (Note here we are using that e(

⋃
i∈[r] Si) ≤ δp

(
n
k

)
/4, which

holds by Theorem 5.11(ii) and since 0 < 1/C � 1/D, 1/k, δ.) Writing s := e(
⋃
i∈[r] Si), the

probability G
(k)
n,p contains

⋃
i∈[r] Si is ps. Note that e((

⋃
i∈[r] f(Si)) \ (

⋃
i∈[r] Si)) ≤ (π + δ/8)

(
n
k

)
by

Theorem 5.11(iv)(b) and since n is sufficiently large. So by the first part of Proposition 2.1, the

probability G
(k)
n,p contains at least (π + δ/4)p

(
n
k

)
edges from (

⋃
i∈[r] f(Si)) \ (

⋃
i∈[r] Si) is at most

exp(−δ2p
(
n
k

)
/256) ≤ exp(−δ2pnk/256kk).

Write N := nk−1/mk(H1) and γ := δ2/256kk. Given some integer 0 ≤ s ≤ DN , there are at

most rs
((nk)
s

)
elements (S1, . . . , Sr) ∈ Sr such that e(∪i∈[r]Si) = s. Indeed, this follows since there

are rs ways to partition a set of size s into r classes. (Note we only need to consider s ≤ DN
30



by Theorem 5.11(ii).) Thus, the probability that G
(k)
n,p does contain a non-(H1, . . . ,Hr)-Ramsey

k-graph I with at least (π + δ/2)p
(
n
k

)
edges is at most

DN∑
s=0

rs
((n

k

)
s

)
· ps · e−γnkp ≤ (DN + 1)(rp)DN

( (n
k

)
DN

)
e−γn

kp ≤ (DN + 1)

(
rek+1pnk

DNkk

)DN
e−γn

kp

≤ (DN + 1)

(
rek+1C

Dkk

)DN
e−γCN ≤ eγCN/2e−γCN = e−γCN/2,

which tends to zero as n tends to infinity. This completes the proof. �
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[16] P. Erdős, On a theorem of Rademacher–Turán, Illinois J. Math. 6 (1962), 122–127.
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