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Abstract. We determine the minimum vertex degree that ensures a perfect match-
ing in a 3-uniform hypergraph. More precisely, suppose thatH is a sufficiently large
3-uniform hypergraph whose order n is divisible by 3. If the minimum vertex de-

gree of H is greater than
(

n−1

2

)

−
(

2n/3
2

)

, then H contains a perfect matching. This
bound is tight and answers a question of Hàn, Person and Schacht. More generally,
we show that H contains a matching of size d ≤ n/3 if its minimum vertex degree

is greater than
(

n−1

2

)

−
(

n−d
2

)

, which is also best possible. This extends a result of
Bollobás, Daykin and Erdős.

1. Introduction

A perfect matching in a hypergraph H is a collection of vertex-disjoint edges of
H which cover the vertex set V (H) of H. A theorem of Tutte [20] gives a charac-
terisation of all those graphs which contain a perfect matching. On the other hand,
the decision problem whether an r-uniform hypergraph contains a perfect matching
is NP-complete for r ≥ 3. (See, for example, [7] for complexity results in the area.)
It is natural therefore to seek simple sufficient conditions, such as minimum degree
conditions, that ensure a perfect matching in an r-uniform hypergraph. This has
turned out to be a difficult question: despite considerable attention, the full solu-
tion remains elusive. But the partial results obtained so far have already involved
the development of new techniques and uncovered interesting connections to other
problems.

Given an r-uniform hypergraph H and distinct vertices v1, . . . , vℓ ∈ V (H) (where
1 ≤ ℓ ≤ r − 1) we define dH(v1, . . . , vℓ) to be the number of edges containing each
of v1, . . . , vℓ. The minimum ℓ-degree δℓ(H) of H is the minimum of dH(v1, . . . , vℓ)
over all ℓ-element sets of vertices in H. Of these parameters the two most natural
to consider are the minimum vertex degree δ1(H) and the minimum collective degree
or minimum codegree δr−1(H). Rödl, Ruciński and Szemerédi [17] determined the
minimum codegree that ensures a perfect matching in an r-uniform hypergraph.
This improved bounds given in [10, 16]. An r-partite version was proved by Aharoni,
Georgakopoulos and Sprüssel [1].

Much less is known about minimum vertex degree conditions for perfect matchings
in r-uniform hypergraphs H. Hàn, Person and Schacht [6] showed that the threshold

in the case when r = 3 is (1+ o(1))59
(|H|

2

)

. (Here, |H| denotes the number of vertices
in H.) This improved an earlier bound given by Daykin and Häggkvist [5]. In this
paper we determine the threshold exactly, which answers a question from [6].
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Theorem 1. There exists an n0 ∈ N such that the following holds. Suppose that H
is a 3-uniform hypergraph whose order n ≥ n0 is divisible by 3. If

δ1(H) >

(

n− 1

2

)

−
(

2n/3

2

)

then H has a perfect matching.

Independently, Khan [8] has given a proof of Theorem 1 using different arguments.
The following example shows that the result is best possible: let H∗ be the 3-uniform
hypergraph whose vertex set is partitioned into two vertex classes V and W of sizes
2n/3 + 1 and n/3 − 1 respectively and whose edge set consists precisely of all those
edges with at least one endpoint in W . Then H∗ does not have a perfect matching

and δ1(H) =
(n−1

2

)

−
(2n/3

2

)

.
The example generalises in the obvious way to r-uniform hypergraphs. This leads

to the following conjecture, which is implicit in several earlier papers (see e.g. [6, 11]).
Partial results were proved by Hàn, Person and Schacht [6] as well as Markström and
Ruciński [13].

Conjecture 2. For each integer r ≥ 3 there exists an integer n0 = n0(r) such that
the following holds. Suppose that H is an r-uniform hypergraph whose order n ≥ n0

is divisible by r. If

δ1(H) >

(

n− 1

r − 1

)

−
(

(r − 1)n/r

r − 1

)

,

then H has a perfect matching.

Recently, Khan [9] proved Conjecture 2 in the case when r = 4. It is also natural
to ask about the minimum (vertex) degree which guarantees a matching of given size
d. Bollobás, Daykin and Erdős [3] solved this problem for the case when d is small
compared to the order of H. We state the 3-uniform case of their result here. The
above hypergraph H∗ with W of size d− 1 shows that the minimum degree bound is
best possible.

Theorem 3 (Bollobás, Daykin and Erdős [3]). Let d ∈ N. If H is a 3-uniform
hypergraph on n > 54(d + 1) vertices and

δ1(H) >

(

n− 1

2

)

−
(

n− d

2

)

then H contains a matching of size at least d.

Here we extend this result to the entire range of d. Note that Theorem 4 generalises
Theorem 1, so it suffices to prove Theorem 4.

Theorem 4. There exists an n0 ∈ N such that the following holds. Suppose that H
is a 3-uniform hypergraph on n ≥ n0 vertices, that n/3 ≥ d ∈ N and that

δ1(H) >

(

n− 1

2

)

−
(

n− d

2

)

.

Then H contains a matching of size at least d.
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It would be interesting to obtain analogous results (i.e. minimum degree conditions
which guarantee a matching of size d) for r-uniform hypergraphs and for r-partite
hypergraphs. Some bounds are given in [5]. Further, a 3-partite version of Theorem 1
was recently proved by Lo and Markström [12].

Treglown and Zhao [18, 19] determined the minimum ℓ-degree that ensures a per-
fect matching in an r-uniform hypergraph when r/2 ≤ ℓ ≤ r − 1. (Independently,
Czygrinow and Kamat [4] dealt with the case when r = 4 and ℓ = 2.) Prior to
this, Pikhurko [14] gave an asymptotically exact result. The situation for ℓ-degrees
where 1 < ℓ < r/2 is still open. In [6], Hàn, Person and Schacht provided conditions
on δℓ(H) that ensure a perfect matching in the case when ℓ < r/2. These bounds
were subsequently lowered by Markström and Ruciński [13]. Alon, Frankl, Huang,
Rödl, Ruciński and Sudakov [2] discovered a connection between the minimum ℓ-
degree that forces a perfect matching in an r-uniform hypergraph and the minimum
ℓ-degree that forces a perfect fractional matching. As a consequence of this result they
determined, asymptotically, the minimum ℓ-degree that ensures a perfect matching
in an r-uniform hypergraph for the following values of (r, ℓ): (4, 1), (5, 1), (5, 2), (6, 2)
and (7, 3). See [15] for further results concerning perfect matchings in hypergraphs.

2. Notation

Given a hypergraph H and subsets V1, V2, V3 of its vertex set V (H), we say that
an edge v1v2v3 is of type V1V2V3 if v1 ∈ V1, v2 ∈ V2 and v3 ∈ V3.

Let d ≤ n/3 and let V,W be a partition of a set of n vertices such that |W | = d.
Define Hn,d(V,W ) to be the hypergraph with vertex set V ∪W consisting of all those
edges which have type V VW or V WW . Thus Hn,d(V,W ) has a matching of size d,

δ1(Hn,d(V,W )) =

(

n− 1

2

)

−
(

n− d− 1

2

)

and Hn,d(V,W ) is very close to the extremal hypergraph which shows that the de-
gree condition in Theorem 4 is best possible. V and W are the vertex classes of
Hn,d(V,W ).

Given ε > 0, a 3-uniform hypergraph H on n vertices and a partition V,W of
V (H) with |W | = d, we say that H is ε-close to Hn,d(V,W ) if

|E(Hn,d(V,W )) \E(H)| ≤ εn3.

In this case we also call V and W vertex classes of H. (So H does not have unique
vertex classes.) We say that H is ε-close to Hn,d if there is a partition V,W of V (H)
such that |W | = d and H is ε-close to Hn,d(V,W ).

Given a vertex v of a 3-uniform hypergraph H, we write NH(v) for the neigh-
bourhood of v, i.e. the set of all those (unordered) tuples of vertices which form an
edge together with v. Given two disjoint sets A,B ⊆ V (H), we define the link graph
Lv(A,B) of v with respect to A,B to be the bipartite graph whose vertex classes
are A and B and in which a ∈ A is joined to b ∈ B if and only if ab ∈ NH(v).
Similarly, given a set A ⊆ V (H), we define the link graph Lv(A) of v with respect
to A to be the graph whose vertex set is A and in which a, a′ ∈ A are joined if
and only if aa′ ∈ NH(v). Also, given disjoint sets A,B,C,D,E ⊆ V (H), we write
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Lv(ABCD) for Lv(A,B) ∪ Lv(B,C) ∪ Lv(C,D). We define Lv(ABCDE) similarly.
If M is a matching in H and E,F are two edges in M with v /∈ E,F , we write
Lv(EF ) for Lv(V (E), V (F )). If E1, . . . , E5 are matching edges avoiding v, we define
Lv(E1 . . . E4) and Lv(E1 . . . E5) similarly. If e = uw is an edge in the link graph of
v, then we write ve for the edge vuw of H. A matching in H of size d is called a
d-matching.

Given a set M and k ≥ 2, we write
(M
k

)

for the set of all k-element subsets of M .
Given sets M and M ′, we write MM ′ for the set of all pairs mm′ with m ∈ M and
m′ ∈ M ′.

Given two graphs G and G′, we write G ∼= G′ if they are isomorphic. A bipartite
graph is called balanced if its vertex classes have equal size. By a directed graph we
mean a graph whose edges are directed, but we only allow at most two edges between
any pair of vertices: at most one edge in each direction. We write vw for the edge
directed from v to w. Given disjoint vertex sets V and W of a directed graph, we
write e(V,W ) for the number of all those edges which are directed from some vertex
in V to some vertex in W . A directed graph G is an oriented graph if it has at most
one edge between any pair of vertices (i.e. if G has no directed cycle of length 2).

We will often write 0 < a1 ≪ a2 ≪ a3 to mean that we can choose the constants
a1, a2, a3 from right to left. More precisely, there are increasing functions f and g such
that, given a3, whenever we choose some a2 ≤ f(a3) and a1 ≤ g(a2), all calculations
needed in our proof are valid. Hierarchies with more constants are defined in the
obvious way.

3. Preliminaries and outline of proof

Our approach towards Theorem 4 follows the so-called stability approach: we prove
an approximate version of the desired result which states that the minimum degree
condition implies that either (i) H contains a d-matching or (ii) H is ‘close’ to the
extremal hypergraph. The latter implies that H is ‘close’ to the hypergraph Hn,d

defined in the previous section. This extremal situation (ii) is then dealt with sep-
arately. We do this in Section 4, where we prove Lemma 7. The proof of Lemma 7
makes use of Theorem 3.

The non-extremal case is proved in Section 5. As mentioned earlier, an approxi-
mate version of Theorem 1 was proved in [6]. However, we need to proceed somewhat
differently as the argument in [6] fails to guarantee the ‘closeness’ of H to the ex-
tremal hypergraph in case (ii). (But we do use the same general approach and a
number of ideas from [6].)

We begin by considering a matchingM of maximum size and suppose that |M | < d.
We then carry out a sequence of steps, where in each step we show that we can
either find a larger matching (and thus obtain a contradiction), or show that H is
successively ‘closer’ to Hn,d. Amongst others, the following fact from [6] will be used
to achieve this (see Figure 1 for the definitions of B033, B023, B113).

Fact 5. Let B be a balanced bipartite graph on 6 vertices.

• If e(B) ≥ 7 then B contains a perfect matching.
• If e(B) = 6 then either B contains a perfect matching or B ∼= B033.
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• If e(B) = 5 then either B contains a perfect matching or B ∼= B023, B113.

B023 B033 B113

Figure 1. The graphs B with e(B) ≥ 5 and no perfect matching

We call the vertices of degree 3 in B113 the base vertices of B113 and the edge
between them the base edge of B113.

The proof of the non-extremal case consists of four main steps.

Step 1: We prove that for all but a constant number of vertices x ∈ V (H)\V (M),

almost all pairs EF ∈
(M
2

)

are such that Lx(EF ) ∼= B113. (See Claims 1–6.)
Step 2: We then show that this implies that M must have size ‘close’ to d (see
Claim 7).
Step 3: Using Step 1, we show that there are 10 vertices v1, . . . , v10 ∈ V (H)\V (M),

such that for almost all pairs EF ∈
(M
2

)

not only does Lv1(EF ) = · · · = Lv10(EF ) ∼=
B113 but further, for each such pair EF the same vertex x plays the role of the base
vertex in E (and the analogous statement holds for F also). (See Claim 11 for the
precise statement.)
Step 4: The information obtained in Steps 2 and 3 is then used to conclude that H
is ‘close’ to Hn,d (see Section 5.3).

To see how Fact 5 can be used in Step 1, suppose for example that x1, x2 and
x3 are unmatched vertices, that E and F are edges in M and that the link graphs
Lxi(EF ) are identical (call this graph B). The minimum degree condition implies
that, for almost all unmatched vertices x, we have e(Lx(EF )) ≥ 5. So let us assume
this holds for x1, x2, x3. If B contains a perfect matching, it is easy to see that we
can transform M into a (larger) matching which also covers the xi, a contradiction.
If B ∼= B023, B033, we need to consider link graphs involving more than 2 edges from
M in order to obtain a contradiction. If B = B113, we can use this to prove that we
are ‘closer’ to Hn,d. In particular, note that if H = Hn,d, then in the above example
we have B = B113.

To find a matching which is larger than M , we will often need several vertices
whose link graphs with respect to some set of matching edges are identical (as in
the above example). We can usually achieve this with a simple application of the
pigeonhole principle. But for this to work, we need to be able to assume that the
number of vertices not covered by M is fairly large. This may not be true if e.g. we
are seeking a perfect matching. To overcome this problem, we apply the ‘absorbing
method’ which was first introduced in [17]. The method (as used in [6]) guarantees
the existence of a small matching M∗ which can ‘absorb’ any (very) small set of
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leftover vertices V ′ into a matching covering all of V ′∪V (M∗). (The existence of M∗

is shown using a probabilistic argument.) So if we are seeking e.g. a perfect matching,
it suffices to prove the existence of an almost perfect one outside M∗. In particular,
we can always assume that the set of vertices not covered by M is reasonably large,
as otherwise we are done by the following lemma.

Lemma 6 (Hàn, Person and Schacht [6]). Given any γ > 0 there exists an integer
n0 = n0(γ) such that the following holds. Suppose that H is a 3-uniform hypergraph
on n ≥ n0 vertices such that δ1(H) ≥ (1/2 + 2γ)

(n
2

)

. Then there is a matching M∗

in H of size |M∗| ≤ γ3n/3 such that for every set V ′ ⊆ V (H)\V (M∗) with γ6n ≥
|V ′| ∈ 3Z there is a matching in H covering precisely the vertices in V (M∗) ∪ V ′.

4. Extremal case

The aim of this section is to show that hypergraphs which satisfy the degree con-
dition in Theorem 4 and are close to Hn,d contain a d-matching.

Lemma 7. There exist ε > 0 and n0 ∈ N such that the following holds. Suppose that
H is a 3-uniform hypergraph on n ≥ n0 vertices and d ≤ n/3 is an integer. If

• δ1(H) >
(n−1

2

)

−
(n−d

2

)

and
• H is ε-close to Hn,d,

then H contains a d-matching.

We will first prove the lemma in the case when H is not only close to Hn,d, but
when for every vertex v most of the edges of Hn,d incident to v also lie in H. More
precisely, given α > 0 and a 3-uniform hypergraph H on the same vertex set V (H) as
Hn,d, we say that a vertex v ∈ V (H) is α-bad if |NHn,d

(v)\NH (v)| > αn2. Otherwise

we say that v is α-good. So if v is α-good then all but at most αn2 of the edges
incident to v in Hn,d also lie in H. We will now show that if d ≥ n/150 then any
such H contains a d-matching.

Lemma 8. Let 0 < α < 10−6 and let n, d ∈ N be such that n/150 ≤ d ≤ n/3.
Suppose that H is a 3-uniform hypergraph on the same vertex set as Hn,d and every
vertex of H is α-good. Then H contains a d-matching.

Proof. Let V andW denote the vertex classes ofHn,d of sizes n−d and d respectively.
Consider the largest matching M in H which consists entirely of edges of type V VW .
Let V ′ denote the set of vertices in V uncovered by M . Define W ′ similarly. For a
contradiction we assume that |M | < d. First note that |M | ≥ n/4. Indeed, to see

this consider any vertex w ∈ W ′. Since w is α-good but NH(w)∩
(V ′

2

)

= ∅, it follows
that |V ′| ≤ 2

√
αn. Thus |M | = |V \ V ′|/2 ≥ (n− d− 2

√
αn)/2 ≥ n/4.

Consider v1, v2 ∈ V ′ and w ∈ W ′ where v1 6= v2. Given a pair E1E2 of distinct
matching edges from M , we say that E1E2 is good for v1v2w if there are all possible
edges E in H which take the following form: E has type V VW and contains one
vertex from {v1, v2, w}, one vertex from E1 and one vertex from E2. Note that if E1E2

is good for v1v2w then H has a 3-matching which consists of edges of type V VW
and contains precisely the vertices in E1, E2 and {v1, v2, w}. So if such a pair E1E2

exists, we obtain a matching in H that is larger than M , yielding a contradiction.
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Since |M | ≥ n/4 we have at least
(n/4

2

)

> n2/40 pairs of distinct matching edges

E1, E2 ∈ M . Since v1, v2 and w are α-good there are at most 3αn2 < n2/40 such
pairs E1E2 that are not good for v1v2w. So one such pair must be good for v1v2w, a
contradiction. �

We now use Lemma 8 to prove Lemma 7. Our strategy is to obtain a ‘small’
matching M in H that covers all ‘bad’ vertices in H. We will construct M in stages
so as to ensure that H − V (M) satisfies the hypothesis of Lemma 8. Thus we obtain
a (d− |M |)-matching M ′ of H − V (M), and hence a d-matching M ∪M ′ of H.

Proof of Lemma 7. Let 0 < 1/n0 ≪ ε ≪ ε′ ≪ ε′′ ≪ ε′′′ ≪ 1. By Theorem 3 we
may assume that d ≥ n/100. Suppose that H is as in the statement of the lemma and
let V and W denote the vertex classes of H of sizes n−d and d respectively. Since H
is ε-close to Hn,d, all but at most 3

√
εn vertices in H are

√
ε-good. Let V bad denote

the set of
√
ε-bad vertices in V . Define W bad similarly. So |V bad|, |W bad| ≤ 3

√
εn.

Define c := |W bad|, V1 := V ∪W bad and W1 := W\W bad. Thus a := |V1| = n−d+c
and b := |W1| = d− c. Moreover,

δ1(H[V1]) ≥ δ1(H)−
(

b

2

)

− (a− 1)b >

(

n− 1

2

)

−
(

n− d

2

)

−
(

b

2

)

− (a− 1)b.

But
(n−1

2

)

=
(a−1

2

)

+ (a− 1)b+
(b
2

)

and so

δ1(H[V1]) >

(

a− 1

2

)

−
(

n− d

2

)

=

(

a− 1

2

)

−
(

a− c

2

)

.

Since c ≤ 3
√
εn we can apply Theorem 3 to obtain a matching M1 of size c in H[V1].

Let H1 := H − V (M1) and V2 := V1\V (M1). (Note that if W bad = ∅ then
H1 = H.) So H1 has vertex classes V2 and W1 where |V2| = a−3c. Since H is ε-close
to Hn,d(V,W ) and 3c ≤ 9

√
εn ≪ ε′n we have that H1 is ε′-close to H|H1|,b(V2,W1).

By definition of W1 all vertices in W1 are ε′-good in H1. Furthermore, if a vertex
v ∈ V (H1) is ε′-bad in H1 then v ∈ V2 and v ∈ V bad ∪ W bad. Let V bad

2 denote the
set of such vertices. So |V bad

2 | ≤ 3
√
εn. If V bad

2 = ∅ then we can apply Lemma 8 to
obtain a b-matching M2 in H1. We thus obtain a matching M1 ∪M2 of size b+ c = d
in H . So we may assume that V bad

2 6= ∅.
We say that a vertex v ∈ V bad

2 is useful if there are at least ε′n2 pairs of vertices
v′w ∈ V2W1 such that vv′w is an edge inH1. Clearly we can greedily select a matching
M2 in H1 such that m2 := |M2| ≤ |V bad

2 | where M2 covers all useful vertices and
consists entirely of edges of type V2V2W1. Let H2 := H1 − V (M2), V3 := V2\V (M2)
and W2 := W1\V (M2). Then |V3| = |V2| − 2m2 = a− 3c − 2m2 and |W2| = b−m2.
Note that

δ1(H) >

(

n− 1

2

)

−
(

n− d

2

)

≥ (1− ε)

(

1−
(

1− d

n

)2
)

n2

2

= (1− ε)

(

2d

n
− d2

n2

)

n2

2
= (1− ε)d

(

n− d

2

)

.(1)
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Consider any vertex v ∈ V bad
2 \V (M2). Since v is not useful, it must lie in more than

δ1(H)−n|V (H) \ V (H2)| − ε′n2 −
(|W2|

2

)

(1)

≥ (1− ε)d

(

n− d

2

)

− ε′n2 − ε′n2 − d2

2

≥ d(n− d)− εdn− 2ε′n2 ≥ 2dn

3
− 3ε′n2 ≥ 2ε′n2

edges of H2[V3]. Since |V bad
2 | ≤ 3

√
εn we can greedily select a matching M3 in H2[V3]

of size m3 := |M3| ≤ |V bad
2 | which covers all the vertices in H2 which lie in V bad

2 .
Let H3 := H2 − V (M3) and V4 := V3\V (M3). So H3 has vertex classes V4 and W2

where |V4| = |V3|−3m3 = a−3c−2m2−3m3. Recall that every vertex in V (H1)\V bad
2

is ε′-good in H1. Since V
bad
2 ⊆ V (M2 ∪M3) and |H1| − |H3| = 3(|M2|+ |M3|) ≪ ε′n,

it follows that every vertex of H3 is ε′′-good. So certainly for every vertex w ∈ W2

there are at least |V4||W2|/2 pairs vw′ ∈ V4W2 such that vww′ is an edge in H3. Thus
we can greedily find a matching M4 of size m3 such that each edge in M4 has type
V4W2W2.

Let H4 := H3−V (M4), V5 := V4\V (M4) and W3 := W2\V (M4). So H4 has vertex
classes V5 andW3 of sizes |V5| = |V4|−m3 = a−3c−2m2−4m3 = n−d−2c−2m2−4m3

and |W3| = |W2|−2m3 = b−m2−2m3 = d−c−m2−2m3. Moreover, every vertex of
H4 is ε′′′-good. Thus we can apply Lemma 8 to H4 to obtain a |W3|-matching M5 in
H4. But thenM1∪M2∪M3∪M4∪M5 is a matching of size c+m2+m3+m3+|W3| = d
in H, as desired. �

We remark that the only point in the proof of Theorem 4 where we need the full
strength of the minimum degree condition is when we apply Theorem 3 to find the
matching M1 in the proof of Lemma 7.

5. Proof of Theorem 4

5.1. Preliminaries. We first define constants satisfying

0 < 1/n0 ≪ 1/C ≪ γ′′ ≪ γ′ ≪ γ ≪ ε′ ≪ ε ≪ η′ ≪ η ≪ α′ ≪ α ≪ ρ′ ≪ ρ ≪ τ ≪ 1.

(2)

Let H be a 3-uniform hypergraph on n ≥ n0 vertices such that

δ1(H) >

(

n− 1

2

)

−
(

n− d

2

)

≥ (1− γ′)d(n − d/2),(3)

where d is an integer such that 1 ≤ d ≤ n/3. (Note that the second inequality in
(3) follows from the same argument as (1).) We wish to find a d-matching in H.
Note that Theorem 3 covers the case when d ≤ n/100. So we may assume that
n/100 ≤ d ≤ n/3.

Suppose d ≥ n/3− τn. Since τ ≪ 1, (3) gives us that δ1(H) ≥ (1/2 + 2γ′′)
(n
2

)

. So

by Lemma 6 there is a matching M∗ in H of size |M∗| ≤ (γ′′)3n/3 such that for every
set V ′ ⊆ V (H)\V (M∗) with (γ′′)6n ≥ |V ′| ∈ 3Z there is a matching in H covering
precisely the vertices in V (M∗) ∪ V ′. If n/100 ≤ d < n/3− τn we set M∗ := ∅.
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In both cases we define H ′ := H − V (M∗). (So H ′ = H if n/100 ≤ d < n/3− τn.)
Thus

δ1(H
′) ≥ δ1(H)− γ′n2.(4)

Let M be the largest matching in H ′. Clearly we may assume that |M | < d. Theo-
rem 3 implies that

n/200 ≤ |M | < d.(5)

Let VM := V (M) and V0 := V (H ′)\VM . So |V0| ≤ n−|VM |. If n/100 ≤ d < n/3− τn
then |V0| > n−3d > 3τn. Suppose d ≥ n/3− τn. If |V0| ≤ (γ′′)6n, then by definition
of M∗, there is a matching M ′ in H containing all but at most two vertices from
V (M∗) ∪ V0. But then M ∪M ′ is a matching in H of size ⌊n/3⌋ ≥ d, as desired. So
in both cases we may assume that

(γ′′)6n ≤ |V0| ≤ n− |VM |.(6)

5.2. Finding structure in the link graphs. In this section we show that ‘most’
of our link graphs Lv(EF ) with v ∈ V0 and EF ∈

(M
2

)

are copies of B113 (recall that
B113 was defined after Fact 5).

Claim 1. There does not exist v1v2v3 ∈
(

V0

3

)

and EF ∈
(

M
2

)

such that

• Lv1(EF ) = Lv2(EF ) = Lv3(EF ) and
• Lv1(EF ) contains a perfect matching.

Proof. The proof is identical to the proof of Fact 17 in [6]. We include it here for
completeness. Let E = {x1, x2, x3} and F = {y1, y2, y3} and suppose x1y1, x2y2 and
x3y3 is a perfect matching in Lv1(EF ). Since these edges lie in Lvi(EF ) for each
1 ≤ i ≤ 3 the edges v1x1y1, v2x2y2 and v3x3y3 lie in H ′. Replacing E and F in M
with these edges we obtain a larger matching in H ′, a contradiction. �

We will now use Claim 1 to show that only a constant number of vertices v ∈ V0

have ‘many’ link graphs Lv(EF ) containing perfect matchings.

Claim 2. Let V ′
0 denote the set of all those vertices v ∈ V0 for which there are at least

εn2 pairs EF ∈
(

M
2

)

such that Lv(EF ) contains a perfect matching. Then |V ′
0 | ≤ C.

Proof. Let G be the bipartite graph with vertex classes V ′
0 and

(M
2

)

where {v,EF}
is an edge in G precisely when Lv(EF ) contains a perfect matching. So G contains at

least |V ′
0 |εn2 edges. If |V ′

0 | ≥ C then there is a pair EF ∈
(

M
2

)

such that dG(EF ) ≥
Cε ≥ 3 · 29 (since 1/C ≪ ε). Since there are 29 labelled bipartite graphs with vertex
classes E and F , there are 3 vertices v1, v2, v3 ∈ V ′

0 such that Lv1(EF ) = Lv2(EF ) =
Lv3(EF ) and Lv1(EF ) contains a perfect matching. This contradicts Claim 1, as
required. �
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Claim 3. Let V ′′
0 denote the set of all those vertices v ∈ V0 for which there are at

least εn2 pairs EF ∈
(M
2

)

such that Lv(EF ) ∼= B023, B033. Then |V ′′
0 | ≤ C.

Proof. Suppose for a contradiction that |V ′′
0 | > C. Given any v ∈ V ′′

0 , define an

auxiliary oriented graph Gv as follows: The vertex set ofGv isM and given EF ∈
(M
2

)

there is an edge directed from E to F precisely when Lv(EF ) ∼= B023, B033 where
E is the vertex class that contains the isolated vertex in Lv(EF ). Since v ∈ V ′′

0 , we
have that e(Gv) ≥ εn2.

We call a path E1 . . . E5 of length 4 in Gv suitable if its (directed) edges are
E1E2, E3E2, E3E4 and E5E4. Our first aim is to find at least ε′n5 suitable paths in
Gv. Choose a partition V1, V2 of V (Gv) such that eGv (V1, V2) ≥ e(Gv)/5 ≥ εn2/5.
(To see the existence of such a partition, consider the expected number of edges from
V1 to V2 in a random partition of V (Gv).) Let G′

v denote the undirected bipartite
graph with vertex classes V1 and V2 whose edges are all those edges in Gv that are
oriented from V1 to V2. Since e(G′

v) ≥ εn2/5, G′
v contains a subgraph G′′

v with
δ(G′′

v) ≥ d(G′
v)/2 ≥ εn/5. Thus we can greedily find at least

1

2
· εn
5

(εn

5
− 1
)

. . .
(εn

5
− 4
)

≥ ε′n5

paths of length 4 in G′′
v whose endpoints both lie in V1. By definition of G′′

v , each of
these paths corresponds to a suitable path in Gv .

Consider a suitable path E1 . . . E5 in Gv. So Lv(E2E3), Lv(E3E4) ∼= B023, B033

with the isolated vertex in both graphs lying in E3. Choose edges e1 of Lv(E2E3) and
e2 of Lv(E3E4) such that e1 and e2 are disjoint. Since Lv(E1E2) ∼= B023, B033 and E1

contains the isolated vertex in this graph, there is a 2-matching {e3, e4} in Lv(E1E2)
that is disjoint from e1. Similarly since Lv(E4E5) ∼= B023, B033 and E5 contains
the isolated vertex in this graph, there is a 2-matching {e5, e6} in Lv(E4E5) that is
disjoint from e2. Hence Lv(E1E2E3E4E5) contains a 6-matching {e1, e2, e3, e4, e5, e6}.

Let G be the bipartite graph with vertex classes V ′′
0 and the set (M)5 of all ordered

5-tuples of elements of M where {v,E1E2E3E4E5} is an edge in G precisely when
E1 . . . E5 is a suitable path in Gv. So G contains at least |V ′′

0 |ε′n5 edges.
Since |V ′′

0 | > C there exists E1E2E3E4E5 ∈ (M)5 such that dG(E1E2E3E4E5) ≥
Cε′ ≥ 6·236. Further, there are at most 236 distinct graphs in the collection of all those
graphs Lv(E1E2E3E4E5) for which v ∈ NG(E1E2E3E4E5). Thus there are 6 vertices
v1, . . . , v6 ∈ V ′′

0 such that v1, . . . , v6 ∈ NG(E1E2E3E4E5) and Lv1(E1E2E3E4E5) =
· · · = Lv6(E1E2E3E4E5). Let {x1y1, . . . , x6y6} be a 6-matching in Lv1(E1E2E3E4E5).
So {v1x1y1, . . . , v6x6y6} is a 6-matching in H ′. Replacing the edges E1, . . . , E5 in M
with {v1x1y1, . . . , v6x6y6} we obtain a larger matching, a contradiction. �

Claim 4. Let V ′′′
0 denote the set of all those vertices v ∈ V0 which fail to satisfy

(7) e(Lv(V0, VM )) ≤ (1 +
√

γ′)|V0||M |.
Then |V ′′′

0 | ≤ C.

Proof. Suppose for a contradiction that |V ′′′
0 | > C ≥ 2/γ′. Given an edge E in M ,

we say that E is good for v ∈ V ′′′
0 if at least two vertices in E have degree at least 3
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in Lv(E,V0). For every v ∈ V ′′′
0 , there are at least γ′|M | edges in M which are good

for v. (To see this, suppose there are fewer edges which are good for v. Then

e(Lv(V0, VM )) < (1− γ′)|M |(4 + |V0|) + γ′|M | · 3|V0|
≤ |M ||V0|

(

(1− γ′)(1 + γ′) + 3γ′
)

≤ (1 +
√

γ′)|V0||M |,
a contradiction to the fact that v ∈ V ′′′

0 .) This in turn implies that there are v1, v2 ∈
V ′′′
0 and an edge E in M which is good for both v1 and v2. Then the definition of

‘good’ implies that are disjoint edges e1 ∈ Lv1(E,V0) and e2 ∈ Lv2(E,V0) which do
not contain v1 or v2. Now we can enlarge M by removing E and adding v1e1 and
v2e2. This contradiction to the maximality of M proves the claim. �

Claim 5. Every vertex v ∈ V0\V ′′′
0 satisfies

e(Lv(VM )) ≥ (5− γ)

(|M |
2

)

.

Proof. Suppose v ∈ V0\V ′′′
0 . Then as e(Lv(V0)) = 0

e(Lv(VM ))
(4)

≥ δ1(H)− e(Lv(V0, VM ))− γ′n2

(3),(7)

≥ (1− γ′)d(n − d/2)−
(

1 +
√

γ′
)

|V0||M | − γ′n2.

Now note that the function d(n − d/2) is increasing in d for d ≤ n/3. So

e(Lv(VM )) ≥ (1− γ′)|M |
(

n− |M |
2

)

−
(

1 +
√

γ′
)

(n− 3|M |)|M | − γ′n2

≥
(

n|M | − |M |2
2

− γ′n|M |
)

−
(

n|M | − 3|M |2 +
√

γ′n|M |
)

− γ′n2

(5)

≥ 5|M |2
2

− 400
√

γ′|M |2 ≥ (5− γ)

(|M |
2

)

,

which completes the proof of the claim. �

Claim 6. Let V ′′′′
0 denote the set of all those vertices v ∈ V0\V ′′′

0 for which there

are at least ηn2 pairs EF ∈
(M
2

)

such that Lv(EF ) contains at most 4 edges. Then
|V ′′′′

0 | ≤ 2C.

Proof. Suppose for a contradiction that |V ′′′′
0 | > 2C. Let v ∈ V ′′′′

0 . At most 3|M |
edges vv1v2 in H containing v are such that v1 and v2 lie in the same edge E ∈ M .
Thus Claim 5 implies that

∑

EF∈(M
2
)

e(Lv(EF )) ≥ (5− γ)

(|M |
2

)

− 3|M | ≥ 5

(|M |
2

)

− γn2.(8)

Let c denote the number of pairs EF ∈
(M
2

)

such that Lv(EF ) contains at most 4

edges. Then c ≥ ηn2 and so (8) implies that there are at least η′n2 pairs EF ∈
(M
2

)
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such that Lv(EF ) contains at least 6 edges. Indeed, suppose that this is not the case.
Then

∑

EF∈(M
2
)

e(Lv(EF )) ≤ 4c+ 9η′n2 + 5

[(|M |
2

)

− c

]

= 5

(|M |
2

)

− c+ 9η′n2

< 5

(|M |
2

)

− γn2

since γ ≪ η′ ≪ η. This contradicts (8), as desired.
Recall from Fact 5 that a balanced bipartite graph B on 6 vertices that contains

at least 6 edges either has a perfect matching or B ∼= B033. Thus, given any v ∈ V ′′′′
0

there are at least r ≥ η′n2/2 ≥ εn2 pairs E1F1, . . . , ErFr ∈
(M
2

)

such that either

• Lv(EiFi) contains a perfect matching for all 1 ≤ i ≤ r or,
• Lv(EiFi) ∼= B033 for all 1 ≤ i ≤ r.

So since |V ′′′′
0 | > 2C one of the following holds:

(α1) There are more than C vertices v ∈ V ′′′′
0 for which there are at least εn2 pairs

EF ∈
(

M
2

)

such that Lv(EF ) contains a perfect matching.

(α2) There are more than C vertices v ∈ V ′′′′
0 for which there are at least εn2 pairs

EF ∈
(M
2

)

such that Lv(EF ) ∼= B033.

In either case we get a contradiction: (α1) contradicts Claim 2 and (α2) contradicts
Claim 3. �

Recall from Fact 5 that if B is a balanced bipartite graph on 6 vertices with
e(B) = 5 then either B contains a perfect matching or B ∼= B023, B113. If e(B) ≥ 6
then either B contains a perfect matching or B ∼= B033. Thus Claims 2, 3, 4 and 6
together imply that all vertices v ∈ V0 \ (V ′

0 ∪ V ′′
0 ∪ V ′′′

0 ∪ V ′′′′
0 ) satisfy

(β) Lv(EF ) ∼= B113 for at least
(

|M |
2

)

−2εn2−ηn2 ≥ (1−α′)
(

|M |
2

)

pairs EF ∈
(

M
2

)

.

Let V ∗
0 := V0 \ (V ′

0 ∪ V ′′
0 ∪ V ′′′

0 ∪ V ′′′′
0 ). Thus

|V0 \ V ∗
0 | ≤ 5C.

Moreover, each v ∈ V ∗
0 satisfies

e(Lv(VM )) ≤ 5(1− α′)

(|M |
2

)

+ 9α′

(|M |
2

)

+ 3|M | ≤ 5(1 + α′)

(|M |
2

)

.(9)

Here the term 3|M | accounts for the edges which have both endpoints in the same
matching edge of M .

We can now show that M has almost the required size. (This corresponds to Step 2
in the proof outline.) This will be used in Section 5.3 to prove that H is close to
Hn,d.

Claim 7. |M | > d− αn.

Proof. Assume for a contradiction that |M | ≤ d− αn. Consider any v ∈ V ∗
0 . Then

(10) dH′(v)
(3),(4)

≥ (1− γ′)d(n − d/2) − γ′n2 ≥ d(n − d/2) − 2γ′n2.
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Also e(Lv(V0)) = 0 since M is maximal. Thus

dH′(v) = e(Lv(VM )) + e(Lv(V0, VM ))
(7),(9)

≤ 5(1 + α′)

(|M |
2

)

+ (1 +
√

γ′)|V0||M |

≤ 5(1 + α′)

(|M |
2

)

+
(

|M |(n − 3|M |) +
√

γ′n2
)

≤ |M |(n− |M |/2) +
√
α′n2 < (d− αn)(n− d/2 + αn/2) +

√
α′n2

< d(n− d/2) − 2γ′n2,

a contradiction to (10), as desired. (In the third line we again used that the function
d(n− d/2) is increasing in d for d ≤ n/3.) �

In the next sequence of claims, we will show that there are vertices v1, . . . , v10 ∈ V ∗
0

whose link graphs Lvi(VM ) are very similar to each other (see Claim 11 for the precise
statement). (This corresponds to Step 3 in the proof outline.)

Claim 8. Suppose v1, . . . , v10 ∈ V ∗
0 are distinct vertices such that for some EF ∈

(M
2

)

, Lv1(EF ), . . . , Lv10(EF ) ∼= B113. Then Lv1(EF ) = · · · = Lv10(EF ).

Proof. We suppose for a contradiction that the claim does not hold. Since there are
9 labelled bipartite graphs with vertex classes E and F which are isomorphic to B113,
two of the Lvi(EF ) must be the same. So we may assume that Lv1(EF ) = Lv2(EF )
but Lv1(EF ) 6= Lv3(EF ). Let E = {x1, x2, x3} and F = {y1, y2, y3}. Suppose
E(Lv1(EF )) = E(Lv2(EF )) = {x1y1, x1y2, x1y3, x2y1, x3y1}. (So x1y1 is the base
edge of Lv1(EF ) and Lv2(EF ) as defined after Fact 5.) Since Lv1(EF ) 6= Lv3(EF )
there is an edge e ∈ Lv3(EF )\Lv1(EF ). We may assume e = x3y3. Replacing E and
F with v1x1y2, v2x2y1 and v3x3y3 in M we obtain a larger matching, a contradiction.

�

Choose distinct v1, . . . , v10 ∈ V ∗
0 which will be fixed throughout the remainder of

the proof.

Claim 9. There is a set E of at least (1 − α)|M | matching edges E ∈ M such that
for each E ∈ E there are at least (1− α)|M | edges F ∈ M for which

Lv1(EF ) = · · · = Lv10(EF ) ∼= B113.

Proof. By (β) and Claim 8 there are at least (1− 10α′)
(|M |

2

)

pairs EF ∈
(M
2

)

such
that Lv1(EF ) = · · · = Lv10(EF ) ∼= B113. This in turn immediately implies the claim.

�

Claim 10. For every E ∈ E there is a set FE of at least (1 − 2α)|M | edges in M
such that

(δ1) Lv1(EF ) = · · · = Lv10(EF ) ∼= B113 for each F ∈ FE and
(δ2) in each of the Lv1(EF ) with F ∈ FE the same vertex x plays the role of the

base vertex in E. (Recall that the base vertices of B113 are the vertices of
degree 3.)
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Proof. Since E ∈ E there is a set F ′
E of at least (1 − α)|M | edges in M such that

Lv1(EF ) = · · · = Lv10(EF ) ∼= B113 for each F ∈ F ′
E . Let FE := F ′

E ∩ E . Then
|FE | ≥ (1− 2α)|M | and for each F ∈ FE there are at least (1−α)|M | edges F ′ ∈ M
for which Lv1(FF ′) = · · · = Lv5(FF ′) ∼= B113.

We claim that FE satisfies the claim. Certainly FE satisfies (δ1). Suppose for
a contradiction that there are F1, F2 ∈ FE such that the vertex x1 ∈ E that plays
the role of a base vertex in Lv1(EF1) is different from the vertex x2 ∈ E that plays
the role of a base vertex in Lv1(EF2). Let F ′ ∈ M be such that Lv1(F2F

′) = · · · =
Lv5(F2F

′) ∼= B113, and F ′ 6= E,F1.
Since Lv1(EF1) ∼= B113 and x1 6= x2, there exists a 2-matching {e1, e2} in Lv1(EF1)

that is disjoint from x2. Similarly since Lv1(F2F
′) ∼= B113 there exists a 2-matching

{e3, e4} in Lv1(F2F
′). Since x2 ∈ E is a base vertex in Lv1(EF2), there is an edge e5

from x2 to the vertex in F2 that is uncovered by {e3, e4}. So {e1, e2, e3, e4, e5} is a
5-matching in Lv1(F1EF2F

′). We have chosen F1, F2 and F ′ so that Lv1(F1EF2F
′) =

Lv2(F1EF2F
′) = · · · = Lv5(F1EF2F

′). Thus M ′ := {v1e1, v2e2, v3e3, v4e4, v5e5} is a
5-matching in H ′ that contains only vertices from E∪F ′∪F1∪F2∪{v1, v2, v3, v4, v5}.
Replacing E,F ′, F1 and F2 in M with the edges in M ′ yields a larger matching, a
contradiction. �

Given E ∈ E , we call the unique vertex x ∈ V (E) satisfying (δ2) a bottom vertex.
If y ∈ E is such that y 6= x then we say that y is a top vertex. So each E ∈ E contains
one bottom vertex and two top vertices whereas none of the at most α|M | edges in
M \ E contains a top or bottom vertex.

Claim 11. There are at least (1− 6α)|M |2/2 pairs EF ∈
(

M
2

)

such that

(ε1) Lv1(EF ) = · · · = Lv10(EF ) ∼= B113;
(ε2) both E and F contain a bottom vertex w and z respectively;
(ε3) wz is the base edge of Lv1(EF ).

Proof. Consider the directed graph G whose vertex set is M and in which there is
a directed edge from E to F if E ∈ E and F ∈ FE . Claims 9 and 10 together imply
that G has at least (1− 3α)|M |2 edges and thus at least (1− 6α)|M |2/2 pairs EF of
vertices in G must be joined by a double edge. But each such pair EF satisfies the
claim. �

5.3. Showing that H is
√
ρ-close to Hn,d. We have now collected all the informa-

tion we need for showing that H is close to Hn,d(V,W ), where W will be constructed
from the set of bottom vertices in M . More precisely, let W ′ denote the set of all the
bottom vertices. So Claims 7 and 9 together imply that

(11) d− 2αn ≤ (1− α)|M | ≤ |E| = |W ′| ≤ |M | ≤ d.

Let V ′ denote the set of all the top vertices in H. Thus

(12) 2d− 4αn ≤ 2(1− α)|M | ≤ |V ′| = 2|W ′| ≤ 2d.

Choose a partition V,W of V (H) such that |W | = d, W ′ ⊆ W , V ′ ⊆ V . Note that
since (11) implies that |W \W ′| ≤ 2αn, all but at most 2αn vertices of V0 lie in V .
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Our aim is to show that H is
√
ρ-close to Hn,d(V,W ). Note that showing this proves

Theorem 4 as we can apply Lemma 7 since we chose ρ ≪ 1 in (2).

Claim 12. H does not contain an edge of type V ′V0V0.

Proof. Suppose that the claim is false and let v′vv0 be an edge of H with v′ ∈ V ′

and v, v0 ∈ V0. Let E ∈ E be the matching edge containing v′. Take any F ∈ FE.
Take any 2 vertices from v1, . . . , v10 which are not equal to v0 or v, call them x and
y. Since v′ is a top vertex of E, it follows that Lx(EF ) contains a 2-matching e1, e2
avoiding v′. Note that this is also a 2-matching in Ly(EF ). Now we can enlarge M
by removing E,F and adding v′vv0, xe1 and ye2. This contradicts the maximality
of M and proves the claim. �

Claim 13.

• H contains at least (1− ρ′)|W ′||V ′||V0| edges of type W ′V ′V0.

• H contains at least (1− ρ′)|V0|
(

|W ′|
2

)

edges of type W ′W ′V0.

• H contains at most ρ′|V0|
(|V ′|

2

)

edges of type V ′V ′V0.

Proof. To see the first part of the claim, consider any v ∈ V ∗
0 and any pair w′, v′

with w′ ∈ W ′ and v′ ∈ V ′. Both w′, v′ could lie in the same matching edge from
M , but there are at most 3|M | such pairs. Also, w′, v′ could lie in a pair E,F of
matching edges from M for which either Lv(EF ) 6∼= B113 or which does not satisfy
(ε1)–(ε3) in Claim 11. But (β) and Claim 11 together imply that there are at most√
αn2 such pairs E,F . So suppose next that w′, v′ lie in a pair E,F satisfying

Lv(EF ) ∼= B113 and (ε1)–(ε3). Then Lv(EF ), Lv1(EF ), . . . , Lv9(EF ) ∼= B113 and so
Lv(EF ) = Lv1(EF ) = · · · = Lv9(EF ) by Claim 8. Conditions (ε2) and (ε3) now
imply that w′v′ ∈ E(Lv(W

′, V ′)). So

e(Lv(V
′,W ′)) ≥ |V ′||W ′| − 2

√
αn2 ≥ (1− ρ′/2)|V ′||W ′|.

Summing over all vertices v ∈ V ∗
0 and using that |V0 \V ∗

0 | ≤ 5C implies the first part
of the claim. The remaining parts of the claim can be proved similarly. �

Claim 14. H contains at least |W ′|
(|V0|

2

)

− ρn3 edges of type W ′V0V0.

Proof. Consider any v ∈ V0. By Claim 12 there are no edges in Lv(V (H)) with one
endpoint in V ′ and the other in V0. By (11) there are at most 3α|M |n ≤ 3αn2 edges
in Lv(V (H)) with one endpoint in VM\(V ′ ∪W ′) and the other in V0. Furthermore,
Lv(V0) contains no edges. Thus,

e(Lv(W
′, V0)) ≥ δ1(H

′)− e(Lv(VM ))− 3αn2

(3),(4),(9)

≥ (1− γ′)d

(

n− d

2

)

− γ′n2 − 5(1 + α′)

(|M |
2

)

− 3αn2

(5)

≥ (1− γ′)|M |
(

n− |M |
2

)

− (5 +
√
α)

|M |2
2

≥ |M |(n − 3|M |)−√
α|M |n ≥ |W ′||V0| − ρ′n2.
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As earlier, here we use the fact that the function d(n − d/2) is increasing in d for
d ≤ n/3. Summing over all vertices v ∈ V ∗

0 and using the fact that |V0 \ V ∗
0 | ≤ 5C

now proves the claim. �

Claim 15.

• H contains at least (1− ρ)|W ′|
(

|V ′|
2

)

edges of type W ′V ′V ′.

• H contains at least (1− ρ)|V ′|
(|W ′|

2

)

edges of type W ′W ′V ′.

Proof. First note that the last part of Claim 13 implies that all but at most 2
√
ρ′n

vertices x ∈ V ′ lie in at most
√
ρ′|V ′||V0| edges of type V ′V ′V0. Call such vertices

x useful. Consider any useful x. Then x ∈ E′ for some E′ ∈ E ⊆ M . Further,
since x is a top vertex in E′, certainly there exists an edge F ′ ∈ M such that
Lv1(E

′F ′) = Lv2(E
′F ′) ∼= B113, where x is not a base vertex in Lv1(E

′F ′). So
Lv1(E

′F ′) contains a 2-matching {e1, e2} which avoids x.

Consider any pair EF ∈
(M\{E′,F ′}

2

)

satisfying (ε1)–(ε3). We claim that Lx(EF ) ⊆
Lv1(EF ). Indeed, if not then there exist disjoint edges e3, e4 and e5 such that e3 ∈
E(Lx(EF )) and e4, e5 ∈ E(Lv1(EF )). Since Lv1(E

′F ′) = Lv2(E
′F ′) and since EF

satisfies (ε1) we have that v1e1, v2e2, xe3, v3e4 and v4e5 are edges in H ′. Replacing
E,F,E′, F ′ with v1e1, v2e2, xe3, v3e4 and v4e5 in M yields a larger matching in H ′, a
contradiction. So indeed Lx(EF ) ⊆ Lv1(EF ).

There are at least (1−6α)|M |2/2−2|M | ≥ (1−7α)|M |2/2 pairs EF ∈
(M\{E′,F ′}

2

)

satisfying (ε1)–(ε3). We claim that at most ρ2|M |2/2 of these pairs EF are such
that Lx(EF ) contains fewer than 5 edges. Indeed, suppose not. Since for such EF ,
Lx(EF ) ⊆ Lv1(EF ) ∼= B113, the number of edges of H which contain x and have no
endpoint outside VM is at most

4 · ρ2|M |2/2+ 5 · (1− 7α− ρ2)|M |2/2+ 9 · 7α|M |2/2+ 3|M | ≤ (5+ 30α− ρ2)|M |2/2.
Here the third term accounts for edges between pairs not satisfying (ε1)–(ε3) and the
final term for edges with 2 vertices in the same matching edge from M . Let us now
bound the number of edges containing x which have an endpoint outside VM . There
are at most |W ′|(n − 3|M |) ≤ |M |(n − 3|M |) such edges having an endpoint in W ′

and at most
√
αn2 such edges having an endpoint outside V ′ ∪ W ′ ∪ V0. Since H

has no edge of type V ′V0V0 by Claim 12, the only other such edges consist of x, one
vertex in V ′ and one vertex in V0. But since x is useful the number of such edges is
at most

√
ρ′|V ′||V0|. Thus in total there are at most |M |(n − 3|M |) + 2

√
ρ′n2 edges

which contain x and have an endpoint outside VM . So the degree of x in H is at
most

(5 + 30α− ρ2)|M |2/2 + |M |(n − 3|M |) + 2
√

ρ′n2 ≤ |M |(n − |M |/2) − ρ3n2

≤ d(n − d/2) − ρ3n2
(5),(3)
< δ1(H),

a contradiction. Thus there are at least (1− 7α− ρ2)|M |2/2 pairs EF ∈
(M\{E′,F ′}

2

)

satisfying (ε1)–(ε3) such that Lx(EF ) = Lv1(EF ) ∼= B113. Let P denote the set of
such pairs.
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Now consider any pair w′, v′ with w′ ∈ W ′ and v′ ∈ V ′ \ {x}. Both w′, v′ could
lie in the same matching edge from M , but there are at most 3|M | such pairs. Also,
w′, v′ could lie in a pair E,F of matching edges which does not belong to P. But
there at most 5ρ2|M |2 such pairs w′, v′. So suppose next that w′, v′ lies in a pair E,F
belonging to P. Since Lx(EF ) = Lv1(EF ) ∼= B113 and EF satisfies (ε2) and (ε3) it
follows that w′v′ ∈ E(Lx(EF )). Thus e(Lx(W

′, V ′)) ≥ (1 − 6ρ2)|W ′||V ′|. Summing
over all useful vertices x ∈ V ′ proves the first part of the claim. The second part
follows similarly (the only change is that we consider a pair w′

1, w
′
2 ∈ W ′ in the final

paragraph). �

Claims 13–15 together with (11) and (12) now show that H contains all but at
most

√
ρn3 edges of type WV V and WWV and thus H is

√
ρ-close to Hn,d(V,W ).

Hence H contains a perfect matching by Lemma 7.

Remark. One can also obtain Theorem 4 by proving the result only in the case
when d = ⌊n/3⌋. Indeed, suppose that H is as in the theorem. Let a := ⌊(n−3d)/2⌋.
Obtain a new 3-uniform hypergraph H ′ from H by adding a new vertices to H such
that each of these vertices forms an edge with all pairs of vertices in H ′. It is not

hard to check that δ1(H
′) >

(|H′|−1
2

)

−
(|H′|−⌊|H′|/3⌋

2

)

and so H ′ has a matching M ′

of size ⌊|H ′|/3⌋. One can then show that M ′ contains at least d edges from H, as
desired. (We thank Peter Allen for suggesting this trick.)

However, the proof of Theorem 4 is only slightly simpler in the case when d = ⌊n/3⌋
(we do not need Claims 12–14 in this case) and to show that the above trick works,
one requires some extra calculations.
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