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Introduction

Theorem (Dirac 1952)

G n-vertex graph, δ(G ) ≥ n/2 =⇒ G contains a Hamilton cycle.

The minimum degree condition here is tight.

Also natural to look at analogous question for digraphs.

A digraph has at most two edges between every pair of
vertices; at most one oriented in each direction.
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Introduction

In the setting of digraphs there are different types of Hamilton
cycle and also more than one notion of minimum degree.

Consistently oriented Hamilton cycle: edges oriented cyclically
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The extremal problem

Given a digraph G , the minimum total degree δ(G ) is the
minimum number of edges incident to a vertex.

The minimum semi-degree δ0(G ) is the minimum of the
minimum in- and outdegrees.

Theorem (Ghouila-Houri 1960)

G n-vertex strongly connected digraph, δ(G ) ≥ n =⇒ G
contains a consistently oriented Hamilton cycle.

Corollary

δ0(G ) ≥ n/2 =⇒ G contains a consistently oriented Hamilton
cycle.

Degree conditions here are tight.
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The extremal problem

Antidirected Hamilton cycle: edges alternate direction.

Theorem (DeBiasio and Molla, 2015)

G sufficiently large 2m-vertex digraph, δ0(G ) ≥ m + 1 =⇒ G
contains an antidirected Hamilton cycle.

Minimum semi-degree condition here tight.
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The extremal problem

Theorem (DeBiasio, Kühn, Molla, Osthus and Taylor, 2015)

G sufficiently large n-vertex digraph, δ0(G ) ≥ n/2 =⇒ G
contains every orientation of a Hamilton cycle except perhaps the
antidirected Hamilton cycle.

Minimum semi-degree condition here tight.
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The random digraph problem

binomial random digraph D(n, p): digraph with vertex set [n],
where each of the n(n − 1) possible directed edges is present
with probability p, independently of all other edges.

Theorem (Frieze, 1988)

If p = (log n + ω(1))/n then asymptotically almost surely (a.a.s.)
D(n, p) contains a consistently oriented Hamilton cycle.

If p = (log n − ω(1))/n then a.a.s. D(n, p) contains a vertex
with no in-neighbour or no out-neighbour.

Theorem (Montgomery, 2021+)

Determined threshold for D(n, p) containing a given orientation of
a Hamilton cycle. Threshold can vary from p = log n/2n to
p = log n/n.
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Randomly perturbed digraphs

The model of randomly perturbed (di)graphs was introduced
in 2003 by Bohman, Frieze and Martin.

Given a dense (di)graph G , how many random edges does one
need to add to G so that, asymptotically almost surely, the
resulting (di)graph has a given property?

This model has been studied for a range of properties
including Hamilton cycles; spanning trees; H-factors; Ramsey
properties.
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Randomly perturbed digraphs

Theorem (Bohman, Frieze and Martin, 2003)

∀α > 0, ∃ C = C (α) s.t. if G n-vertex digraph with δ0(G ) ≥ αn,
then G ∪ D(n,C/n) a.a.s. contains a consistently oriented
Hamilton cycle.

Cannot lower the probability here.

The following provides a pancyclicity version of this result.

Theorem (Krivelevich, Kwan, and Sudakov, 2016)

∀α > 0, ∃ C = C (α) s.t. if G n-vertex digraph with δ0(G ) ≥ αn,
then G ∪ D(n,C/n) a.a.s. contains a consistently oriented cycle of
every length between 2 and n.
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Main result

Theorem (Araujo, Balogh, Krueger, Piga and T., 2022+)

∀α > 0, ∃ C = C (α) s.t. if G n-vertex digraph with δ0(G ) ≥ αn,
then G ∪ D(n,C/n) a.a.s. contains every orientation of a cycle of
every possible length.

Note this is a universality result.

Proofs of Bohman–Frieze–Martin and
Krivelevich–Kwan–Sudakov use rotation-extension type
arguments.

This method not so applicable for arbitrary orientations of
Hamilton cycles.

Instead we apply the absorbing method (which comes with its
own challenges for arbitrary orientations).
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Final remarks

We relaxed the minimum semi-degree in our result to a minimum
total degree, for most orientations of a cycle.

Theorem (Araujo, Balogh, Krueger, Piga and T., 2022+)

∀α, η > 0, ∃ C = C (α, η) s.t. if G n-vertex digraph with
δ(G ) ≥ 2αn, then G ∪ D(n,C/n) a.a.s. contains every orientation
of a cycle of every possible length that contains at most (1− η)n
vertices of indegree 1.

It would be interesting to obtain other minimum total degree
results in the setting of randomly perturbed digraphs

For example, for the Tk -factor problem where Tk is the
transitive tournament on k vertices.
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