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ABSTRACT. In a sequence of four papers, we prove the following results (via a
unified approach) for all sufficiently large n:

(i) [1-factorization conjecture] Suppose that n is even and D > 2[n/4] — 1.
Then every D-regular graph G on n vertices has a decomposition into perfect
matchings. Equivalently, x'(G) = D.

(ii) [Hamilton decomposition conjecture] Suppose that D > |n/2|. Then every
D-regular graph G on n vertices has a decomposition into Hamilton cycles
and at most one perfect matching.

(iii) [Optimal packings of Hamilton cycles] Suppose that G is a graph on n vertices
with minimum degree § > n/2. Then G contains at least regg,.,(n,0)/2 >
(n—2)/8 edge-disjoint Hamilton cycles. Here reg,,., (n, d) denotes the degree
of the largest even-regular spanning subgraph one can guarantee in a graph
on n vertices with minimum degree §.

According to Dirac, (i) was first raised in the 1950s. (ii) and the special case
0 = [n/2] of (iii) answer questions of Nash-Williams from 1970. All of the above
bounds are best possible. In the current paper, we prove the above results for the
case when G is close to a complete balanced bipartite graph.
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1. INTRODUCTION

The topic of decomposing a graph into a given collection of edge-disjoint subgraphs
has a long history. Indeed, in 1892, Walecki [19] proved that every complete graph
of odd order has a decomposition into edge-disjoint Hamilton cycles. In a sequence
of four papers, we provide a unified approach towards proving three long-standing
graph decomposition conjectures for all sufficiently large graphs.

1.1. The 1-factorization conjecture. Vizing’s theorem states that for any graph G
of maximum degree A, its edge-chromatic number x/(G) is either A or A + 1. How-
ever, the problem of determining the precise value of x/(G) for an arbitrary graph
G is NP-complete [§]. Thus, it is of interest to determine classes of graphs G that
attain the (trivial) lower bound A — much of the recent book [28] is devoted to the
subject. If G is a regular graph then x'(G) = A(G) precisely when G has a 1-
factorization: a 1-factorization of a graph G consists of a set of edge-disjoint perfect
matchings covering all edges of G. The 1-factorization conjecture states that every
regular graph of sufficiently high degree has a 1-factorization. It was first stated
explicitly by Chetwynd and Hilton [I, 2] (who also proved partial results). However,
they state that according to Dirac, it was already discussed in the 1950s. We prove
the 1-factorization conjecture for sufficiently large graphs.

Theorem 1.1. There exists an ng € N such that the following holds. Let n,D € N
be such that n > ng is even and D > 2[n/4] — 1. Then every D-regular graph G on
n vertices has a 1-factorization. Equivalently, X' (G) = D.
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The bound on the minimum degree in Theorem is best possible. In fact, a
smaller degree bound does not even ensure a single perfect matching. To see this,
suppose first that n = 2 (mod 4). Consider the graph which is the disjoint union
of two cliques of order n/2 (which is odd). If n = 0 (mod 4), consider the graph
obtained from the disjoint union of cliques of orders n/2 —1 and n/2+ 1 (both odd)
by deleting a Hamilton cycle in the larger clique.

Perkovic and Reed [26] proved an approximate version of Theorem (they as-
sumed that D > n/2 4+ en). Recently, this was generalized by Vaughan [29] to
multigraphs of bounded multiplicity, thereby proving an approximate version of a
‘multigraph 1-factorization conjecture’ which was raised by Plantholt and Tipnis [27].
Further related results and problems are discussed in the recent monograph [2§].

1.2. The Hamilton decomposition conjecture. A Hamilton decomposition of a
graph G consists of a set of edge-disjoint Hamilton cycles covering all the edges of G.
A natural extension of this to regular graphs G of odd degree is to ask for a decom-
position into Hamilton cycles and one perfect matching (i.e. one perfect matching
M in G together with a Hamilton decomposition of G — M). Nash-Williams [23], 25]
raised the problem of finding a Hamilton decomposition in an even-regular graph
of sufficiently large degree. The following result completely solves this problem for
large graphs.

Theorem 1.2. There exists an ng € N such that the following holds. Let n,D € N
be such that n > ny and D > |n/2|. Then every D-reqular graph G on n vertices
has a decomposition into Hamilton cycles and at most one perfect matching.

The bound on the degree in Theorem|1.2]is best possible (see Proposition 3.1 in [14]
for a proof of this). Note that Theore does not quite imply Theorem as
the degree threshold in the former result is slightly higher.

Previous results include the following: Nash-Williams [22] showed that the degree
bound in Theorem ensures a single Hamilton cycle. Jackson [9] showed that
one can ensure close to D/2 — n/6 edge-disjoint Hamilton cycles. More recently,
Christofides, Kiithn and Osthus [3] obtained an approximate decomposition under
the assumption that D > n/2 + en. Finally, under the same assumption, Kithn and
Osthus [16] obtained an exact decomposition (as a consequence of the main result
in [I5] on Hamilton decompositions of robustly expanding graphs).

1.3. Packing Hamilton cycles in graphs of large minimum degree. Dirac’s
theorem is best possible in the sense that one cannot lower the minimum degree
condition. Remarkably though, the conclusion can be strengthened considerably:
Nash-Williams [24] proved that every graph G on n vertices with minimum degree
d(G) > n/2 contains |5n/224] edge-disjoint Hamilton cycles. Nash-Williams [24, 23]
25)] raised the question of finding the best possible bound on the number of edge-
disjoint Hamilton cycles in a Dirac graph. This question is answered by Corollary [1.4]
below.

In fact, we answer a more general form of this question: what is the number of
edge-disjoint Hamilton cycles one can guarantee in a graph G of minimum degree §7
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Let reg,,.,(G) be the largest degree of an even-regular spanning subgraph of G.
Then let

regeven(n>5) = min{regeven(G) : |G‘ =n, 6(G> - 5}

Clearly, in general we cannot guarantee more than reg,., (1, 6)/2 edge-disjoint Hamil-
ton cycles in a graph of order n and minimum degree d. The next result shows that
this bound is best possible (if § < n/2, then regg e, (n,d) = 0).

Theorem 1.3. There exists an ng € N such that the following holds. Suppose that
G is a graph on n > ng vertices with minimum degree 6 > n/2. Then G contains at
least regqyen (n,0)/2 edge-disjoint Hamilton cycles.

Kiihn, Lapinskas and Osthus [I1] proved Theorem in the case when G is not
close to one of the extremal graphs for Dirac’s theorem. An approximate version
of Theorem for § > n/2 + en was obtained earlier by Christofides, Kiithn and
Osthus [3]. Hartke and Seacrest [7] gave a simpler argument with improved error
bounds.

The following consequence of Theorem answers the original question of Nash-
Williams.

Corollary 1.4. There exists an ng € N such that the following holds. Suppose that
G is a graph on n > ng vertices with minimum degree § > n/2. Then G contains at
least (n — 2)/8 edge-disjoint Hamilton cycles.

See [14] for an explanation as to why Corollary [1.4] follows from Theorem (1.3 and
for a construction showing the bound on the number of edge-disjoint Hamilton cycles
in Corollary is best possible (the construction is also described in Section .

1.4. Overall structure of the argument. For all three of our main results, we
split the argument according to the structure of the graph G under consideration:

(i) G is close to the complete balanced bipartite graph K, /3 /23
(ii) G is close to the union of two disjoint copies of a clique K, o;

(iii) G is a ‘robust expander’.

Roughly speaking, G is a robust expander if for every set S of vertices, its neigh-
bourhood is at least a little larger than |S|, even if we delete a small proportion
of the edges of G. The main result of [I5] states that every dense regular robust
expander has a Hamilton decomposition. This immediately implies Theorems
and in Case (iii). For Theorem Case (iii) is proved in [I1] using a more
involved argument, but also based on the main result of [I5].

Case (ii) is proved in [14}[12]. The current paper is devoted to the proof of Case (i).
In [14] we derive Theorems and|1.3|from the structural results covering Cases
(i)—(iii).

The arguments in the current paper for Case (i) as well as those in [14] for Case (ii)
make use of an ‘approximate’ decomposition result proved in [4]. In both Case (i)
and Case (ii) we use the main lemma from [I5] (the ‘robust decomposition lemma’)
when transforming this approximate decomposition into an exact one.
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1.5. Statement of the main results of this paper. As mentioned above, the
focus of this paper is to prove Theorems and [I.3] when our graph is close to
the complete balanced bipartite graph K, /2. More precisely, we say that a graph
G on n vertices is e-bipartite if there is a partition S1, S2 of V(G) which satisfies the
following:

e n/2—1<|S,|S2] <n/2+1;

o ¢(51),e(Ss) < en?.
The following result implies Theorems [I.1] and [I.2) in the case when our given graph
is close to K, 25 /2-

Theorem 1.5. There are eox > 0 and ng € N such that the following holds. Suppose
that D > (1/2 — €ex)n and D is even and suppose that G is a D-regular graph on
n > ng vertices which is eex-bipartite. Then G has a Hamilton decomposition.

The next result implies Theoremin the case when our graph is close to K, /3 ,/2-

Theorem 1.6. For each o > 0 there are eex > 0 and ng € N such that the following
holds. Suppose that F' is an eex-bipartite graph on n > ng wvertices with §(F) >
(1/2—eex)n. Suppose that F' has a D-regular spanning subgraph G such that n/100 <
D < (1/2—a)n and D is even. Then F contains D /2 edge-disjoint Hamilton cycles.

Note that Theorem [I.5] implies that the degree bound in Theorems [I.1] and [1.2] is
not tight in the almost bipartite case (indeed, the extremal graph is close to being the
union of two cliques). On the other hand, the extremal construction for Corollary
is close to bipartite (see Section [3.1]for a description). So it turns out that the bound
on the number of edge-disjoint Hamilton cycles in Corollary is best possible in
the almost bipartite case but not when the graph is close to the union of two cliques.

In Section [3] we give an outline of the proofs of Theorems [I.5 and The results
from Sections [] and [5] are used in both the proofs of Theorems and In
Sections [6] and [7] we build up machinery for the proof of Theorem We then
prove Theorem [I.6] in Section [§] and Theorem [I.5]in Section [0

2. NOTATION AND TOOLS

2.1. Notation. Unless stated otherwise, all the graphs and digraphs considered in
this paper are simple and do not contain loops. So in a digraph G, we allow up to two
edges between any two vertices; at most one edge in each direction. Given a graph
or digraph G, we write V(G) for its vertex set, E(G) for its edge set, e(G) := |E(G)|
for the number of its edges and |G| := |V(G)| for the number of its vertices.
Suppose that G is an undirected graph. We write §(G) for the minimum degree
of G and A(G) for its maximum degree. Given a vertex v of G and a set A C V(G),
we write dg(v, A) for the number of neighbours of v in G which lie in A. Given
A,B C V(G), we write Eg(A) for the set of all those edges of G which have both
endvertices in A and Eg(A, B) for the set of all those edges of G which have one
endvertex in A and its other endvertex in B. We also call the edges in Eq(A, B)
AB-edges of G. We let eq(A) := |Eg(A)| and eq(A4, B) := |Eq(A, B)|. We denote
by G[A] the subgraph of G with vertex set A and edge set Eg(A4). If AN B =0,



6 BELA CSABA, DANIELA KUHN, ALLAN LO, DERYK OSTHUS AND ANDREW TREGLOWN

we denote by G[A, B] the bipartite subgraph of G with vertex classes A and B and
edge set Eg(A, B). If A= B we define G[A, B] := G[A]. We often omit the index G
if the graph G is clear from the context. A spanning subgraph H of GG is an r-factor
of G if every vertex has degree r in H.

Given a vertex set V' and two multigraphs G and H with V(G),V(H) C V, we
write G + H for the multigraph whose vertex set is V(G) U V(H) and in which the
multiplicity of zy in G + H is the sum of the multiplicities of xy in G and in H (for
all z,y € V(G)UV(H)). We say that a graph G has a decomposition into Hy, ..., Hy,
if G=Hy+---+ H, and the H; are pairwise edge-disjoint.

If G and H are simple graphs, we write GU H for the (simple) graph whose vertex
set is V(G) U V(H) and whose edge set is E(G) U E(H). Similarly, G N H denotes
the graph whose vertex set is V(G) NV (H) and whose edge set is E(G) N E(H).
We write G — H for the subgraph of G’ which is obtained from G by deleting all the
edges in E(G) N E(H). Given A C V(G), we write G — A for the graph obtained
from G by deleting all vertices in A.

A path system is a graph @ which is the union of vertex-disjoint paths (some of
them might be trivial). We say that P is a path in @ if P is a component of @) and,
abusing the notation, sometimes write P € @ for this.

If G is a digraph, we write xy for an edge directed from z to y. A digraph G is an
oriented graph if there are no x,y € V(G) such that zy,yz € E(G). Unless stated
otherwise, when we refer to paths and cycles in digraphs, we mean directed paths and
cycles, i.e. the edges on these paths/cycles are oriented consistently. If x is a vertex
of a digraph G, then N(J;r(:n) denotes the outneighbourhood of x, i.e. the set of all
those vertices y for which xy € E(G). Similarly, N, (z) denotes the inneighbourhood
of z, i.e. the set of all those vertices y for which yx € E(G). The outdegree of z is
d5(z) == |NJ(z)| and the indegree of x is dg(z) == |Ng(x)|. We write 6(G) and
A(G) for the minimum and maximum degrees of the underlying simple undirected
graph of G respectively.

For a digraph G, whenever A, B C V(G) with ANB = (), we denote by G[A, B] the
bipartite subdigraph of G with vertex classes A and B whose edges are all the edges
of G directed from A to B, and let eg(A, B) denote the number of edges in G[A, B].
We define 6(G[A, B]) to be the minimum degree of the underlying undirected graph
of G[A, B] and define A(G[A, B]) to be the maximum degree of the underlying
undirected graph of G[A, B]. A spanning subdigraph H of G is an r-factor of G if
the outdegree and the indegree of every vertex of H is r.

If P is a path and z,y € V(P), we write Py for the subpath of P whose endver-
tices are z and y. We define x Py similarly if P is a directed path and x precedes y
on P.

In order to simplify the presentation, we omit floors and ceilings and treat large
numbers as integers whenever this does not affect the argument. The constants in
the hierarchies used to state our results have to be chosen from right to left. More
precisely, if we claim that a result holds whenever 0 < 1/n € a < b < ¢ <1
(where n is the order of the graph or digraph), then this means that there are non-
decreasing functions f : (0,1] — (0,1], g : (0,1] — (0,1] and A : (0,1] — (0, 1] such
that the result holds for all 0 < a,b,c¢ < 1 and all n € N with b < f(¢), a < g(b)
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and 1/n < h(a). We will not calculate these functions explicitly. Hierarchies with
more constants are defined in a similar way. We will write a = b £ ¢ as shorthand
forb—c<a<b+e.

2.2. e-regularity. If G = (A, B) is an undirected bipartite graph with vertex classes
A and B, then the density of G is defined as

o eq(A, B)
d(A, B) := AR

For any € > 0, we say that G is e-regular if for any A’ C A and B’ C B with
|A’| > €|A| and |B'| > ¢|B| we have |d(A’, B') — d(A, B)| < e. We say that G is
(e,> d)-regular if it is e-regular and has density d’ for some d’' > d — e.

We say that G is [e, d]-superregular if it is e-regular and dg(a) = (d & €)|B| for
every a € A and dg(b) = (d £ ¢)|A| for every b € B. G is [e,> d]-superregular if it
is [e, d']-superregular for some d' > d.

Given disjoint vertex sets X and Y in a digraph G, recall that G[X, Y] denotes
the bipartite subdigraph of G whose vertex classes are X and Y and whose edges are
all the edges of G directed from X to Y. We often view G[X,Y] as an undirected
bipartite graph. In particular, we say G[X,Y] is e-regular, (¢,> d)-regular, [e,d]-
superregular or [e,> d]-superregular if this holds when G[X,Y] is viewed as an
undirected graph.

We often use the following simple proposition which follows easily from the def-
inition of (super-)regularity. We omit the proof, a similar argument can be found
e.g. in [15].

Proposition 2.1. Suppose that 0 < 1/m < ¢ < d < d < 1. Let G be a bipartite
graph with vertex classes A and B of size m. Suppose that G' is obtained from G by
removing at most d'm vertices from each vertex class and at most d'm edges incident
to each vertex from G. If G is [e, d]-superregular then G’ is [2v/d', d]-superregular.

We will also use the following simple fact.

Fact 2.2. Let € > 0. Suppose that G is a bipartite graph with vertex classes of size
n such that 6(G) > (1 —e)n. Then G is [\/e, 1]-superregular.

2.3. A Chernoff-Hoeffding bound. We will often use the following Chernoff-
Hoeffding bound for binomial and hypergeometric distributions (see e.g. [10, Corol-
lary 2.3 and Theorem 2.10]). Recall that the binomial random variable with pa-
rameters (n,p) is the sum of n independent Bernoulli variables, each taking value 1
with probability p or 0 with probability 1 — p. The hypergeometric random variable
X with parameters (n,m, k) is defined as follows. We let N be a set of size n, fix
S C N of size |S| = m, pick a uniformly random 7" C N of size |T'| = k, then define
X :=|T'NS|. Note that EX = km/n.

Proposition 2.3. Suppose X has binomial or hypergeometric distribution and 0 <
a2

a <3/2. Then P(|X —EX| > aEX) < 2™ 55X,
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3. OVERVIEW OF THE PROOFS OF THEOREMS [1.5] AND [L.6]

Note that, unlike in Theorem[I.5] in Theorem [I.6] we do not require a complete de-
composition of our graph F' into edge-disjoint Hamilton cycles. Therefore, the proof
of Theorem is considerably more involved than the proof of Theorem More-
over, the ideas in the proof of Theorem are all used in the proof of Theorem
too.

3.1. Proof overview for Theorem Let F be a graph on n vertices with
§(F) > (1/2—0(1))n which is close to the balanced bipartite graph K,/ ,, /2. Further,
suppose that G is a D-regular spanning subgraph of F' as in Theorem[1.6] Then there
is a partition A, B of V(F') such that A and B are of roughly equal size and most
edges in F' go between A and B. Our ultimate aim is to construct D /2 edge-disjoint
Hamilton cycles in F'.

Suppose first that, in the graph F', both A and B are independent sets of equal
size. So F' is an almost complete balanced bipartite graph. In this case, the densest
spanning even-regular subgraph G of F' is also almost complete bipartite. This means
that one can extend existing techniques (developed e.g. in [3, [5 [6l [7, 21]) to find
an approximate Hamilton decomposition. This is achieved in [4] and is more than
enough to prove Theorem in this case. (We state the main result from [4] as
Lemma in the current paper.) The real difficulties arise when

(i) F is unbalanced;
(ii) F has vertices having high degree in both A and B (these are called excep-
tional vertices).

To illustrate (i), consider the following example due to Babai (which is the ex-
tremal construction for Corollary . Consider the graph F' on n = 8k + 2 vertices
consisting of one vertex class A of size 4k + 2 containing a perfect matching and no
other edges, one empty vertex class B of size 4k, and all possible edges between A
and B. Thus the minimum degree of F' is 4k + 1 = n/2. Then one can use Tutte’s
factor theorem to show that the largest even-regular spanning subgraph G of F' has
degree D = 2k = (n — 2)/4. Note that to prove Theorem in this case, each of
the D/2 = k Hamilton cycles we find must contain exactly two of the 2k + 1 edges
in A. In this way, we can ‘balance out’ the difference in the vertex class sizes.

More generally we will construct our Hamilton cycles in two steps. In the first
step, we find a path system J which balances out the vertex class sizes (so in the
above example, J would contain two edges in A). Then we extend J into a Hamilton
cycle using only AB-edges in F'. It turns out that the first step is the difficult one.
It is easy to see that a path system J will balance out the sizes of A and B (in the
sense that the number of uncovered vertices in A and B is the same) if and only if

(3.1) es(A) —es(B) = [A] - |B].

Note that any Hamilton cycle also satisfies this identity. So we need to find a set of
D/2 path systems J satisfying (3.1) (where D is the degree of GG). This is achieved
(amongst other things) in Secti and

As indicated above, our aim is to use Lemma [8.1] in order to extend each such J
into a Hamilton cycle. To apply Lemma [8.I] we also need to extend the balancing
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path systems J into ‘balanced exceptional (path) systems’ which contain all the
exceptional vertices from (ii). This is achieved in Section Lemma also
assumes that the path systems are ‘localized’ with respect to a given subpartition
of A, B (i.e. they are induced by a small number of partition classes). Section
prepares the ground for this.

Finding the balanced exceptional systems is extremely difficult if G contains edges
between the set Ag of exceptional vertices in A and the set By of exceptional vertices
in B. So in a preliminary step, we find and remove a small number of edge-disjoint
Hamilton cycles covering all AgBy-edges in Section[dl We put all these steps together
in Section [§] (Sections [6] [] and [J] are only relevant for the proof of Theorem [L.5])

3.2. Proof overview for Theorem The main result of this paper is The-
orem [1.5] Suppose that G is a D-regular graph satisfying the conditions of that
theorem. Using the approach of the previous subsection, one can obtain an approxi-
mate decomposition of G, i.e. a set of edge-disjoint Hamilton cycles covering almost
all edges of G. However, one does not have any control over the ‘leftover’ graph H,
which makes a complete decomposition seem infeasible. This problem was overcome
in [I5] by introducing the concept of a ‘robustly decomposable graph’ G*P. Roughly
speaking, this is a sparse regular graph with the following property: given any very
sparse regular graph H with V(H) = V(G*™P) which is edge-disjoint from G™P,
one can guarantee that G™" U H has a Hamilton decomposition. This leads to the
following strategy to obtain a decomposition of G:

(1) find a (sparse) robustly decomposable graph G™ in G and let G’ denote the
leftover;

(2) find an approximate Hamilton decomposition of G’ and let H denote the
(very sparse) leftover;

(3) find a Hamilton decomposition of G*P U H.

It is of course far from obvious that such a graph G*™P exists. By assumption our
graph G can be partitioned into two classes A and B of almost equal size such that
almost all the edges in G go between A and B. If both A and B are independent sets
of equal size then the ‘robust decomposition lemma’ of [I5] guarantees our desired
subgraph G™P of G. Of course, in general our graph G will contain edges in A and
B. Our aim is therefore to replace such edges with ‘fictive edges’ between A and
B, so that we can apply the robust decomposition lemma (which is introduced in
Section .

More precisely, similarly as in the proof of Theorem we construct a collection
of localized balanced exceptional systems. Together these path systems contain all
the edges in G[A] and G[B]. Again, each balanced exceptional system balances out
the sizes of A and B and covers the exceptional vertices in G (i.e. those vertices
having high degree into both A and B).

By replacing edges of the balanced exceptional systems with fictive edges, we
obtain from G an auxiliary (multi)graph G* which only contains edges between A
and B and which does not contain the exceptional vertices of G. This will allow
us to apply the robust decomposition lemma. In particular this ensures that each
Hamilton cycle obtained in G* contains a collection of fictive edges corresponding to
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a single balanced exceptional system (the set-up of the robust decomposition lemma
does allow for this). Each such Hamilton cycle in G* then corresponds to a Hamilton
cycle in G.

We now give an example of how we introduce fictive edges. Let m be an integer
so that (m — 1)/2 is even. Set m' := (m — 1)/2 and m” := (m + 1)/2. Define the
graph G as follows: Let A and B be disjoint vertex sets of size m. Let A1, A2 be a
partition of A and Bj, By be a partition of B such that |A;| = |B1| = m”. Add all
edges between A and B. Add a matching M; = {e1,..., e, /2} covering precisely
the vertices of Ay and add a matching My = {e},..., €/, /2} covering precisely the
vertices of By. Finally add a vertex v which sends an edge to every vertex in 41U B;.
So G is (m + 1)-regular (and v would be regarded as a exceptional vertex).

Now pair up each edge e; with the edge e,. Write e; = xg;_1x9; and €, = y2i_1Yy2;
for each 1 < i < m//2. Let A1 = {a1,...,an»} and By = {b1,..., by} and write
fi == a;b; for all 1 < i < m”. Obtain G* from G by deleting v together with the edges
in My, U M5 and by adding the following fictive edges: add f; for each 1 < i < m”
and add z;y; for each 1 < j < m/. Then G* is a balanced bipartite (m + 1)-regular
multigraph containing only edges between A and B.

First, note that any Hamilton cycle C* in G* that contains precisely one fictive
edge f; for some 1 < i < m” corresponds to a Hamilton cycle C' in G, where we
replace the fictive edge f; with a;v and b;v. Next, consider any Hamilton cycle C* in
G* that contains precisely three fictive edges; f; for some 1 < i < m” together with
x2j—1Y2j—1 and xa;y2; for some 1 < j < m//2. Further suppose C* traverses the
vertices a;, b, T2j—-1, Y21, T2, Y2 in this order. Then C* corresponds to a Hamilton
cycle C'in G, where we replace the fictive edges with a;v, b;v, e; and ¢} (see Figure|l).
Here the path system J formed by the edges a;v, b;v,e; and e;- is an example of a
balanced exceptional system. The above ideas are formalized in Section [6]

FicUure 1. Transforming the problem of finding a Hamilton cycle in
G into finding a Hamilton cycle in the balanced bipartite graph G*
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We can now summarize the steps leading to proof of Theorem[I.5] In Section[d] we
find and remove a set of edge-disjoint Hamilton cycles covering all edges in G[Ag, By|.
We can then find the localized balanced exceptional systems in Section [5l After this,
we need to extend and combine them into certain path systems and factors (which
contain fictive edges) in Section @ before we can use them as an ‘input’ for the
robust decomposition lemma in Section [7} Finally, all these steps are combined in
Section [0] to prove Theorem

4. ELIMINATING EDGES BETWEEN THE EXCEPTIONAL SETS

Suppose that G is a D-regular graph as in Theorem The purpose of this
section is to prove Corollary Roughly speaking, given K € N, this corollary
states that one can delete a small number of edge-disjoint Hamilton cycles from G
to obtain a spanning subgraph G’ of G and a partition A, Ay, B, By of V(G) such
that (amongst others) the following properties hold:

e almost all edges of G’ join AU Ag to B U By;

e |A| = |B| is divisible by K;

e every vertex in A has almost all its neighbours in B U By and every vertex
in B has almost all its neighbours in A U Ag;

e Ay U By is small and there are no edges between Ag and By in G.

We will call (G, A, Ay, B, By) a framework. (The formal definition of a framework
is stated before Lemma [4.12]) Both A and B will then be split into K clusters of
equal size. Our assumption that G is eex-bipartite easily implies that there is such
a partition A, Ag, B, By which satisfies all these properties apart from the property
that there are no edges between Ay and By. So the main part of this section shows
that we can cover the collection of all edges between Ay and By by a small number
of edge-disjoint Hamilton cycles.

Since Corollary will also be used in the proof of Theorem instead of
working with regular graphs we need to consider so-called balanced graphs. We also
need to find the above Hamilton cycles in the graph F' O G rather than in G itself
(in the proof of Theorem |1.5| we will take F' to be equal to G).

More precisely, suppose that G is a graph and that A’, B’ is a partition of V(G),
where A’ = AgU A, B’ = ByU B and A, Ay, B, By are disjoint. Then we say that G
is D-balanced (with respect to (A, Ao, B, By)) if

(B1) eq(A') —eq(B') = (|A'| — |B')D/2;

(B2) all vertices in Ag U By have degree exactly D.

Proposition below implies that whenever A, Ay, B, By is a partition of the vertex
set of a D-regular graph H, then H is D-balanced with respect to (A, Ay, B, Bp).
Moreover, note that if G is Dg-balanced with respect to (A, Ay, B, By) and H is a
spanning subgraph of G' which is Dg-balanced with respect to (A, Ag, B, By), then
G — H is (Dg — Dp)-balanced with respect to (A, Ao, B, Bp). Furthermore, a graph
G is D-balanced with respect to (A, Ag, B, Bp) if and only if G is D-balanced with
respect to (B, By, A, Ap).
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Proposition 4.1. Let H be a graph and let A’, B" be a partition of V(H). Suppose
that Ag, A is a partition of A" and that By, B is a partition of B' such that |A| = | B].
Suppose that dg(v) = D for every v € AgU By and dy(v) = D’ for everyv € AU B.
Then ey (A’) —ey(B') = (JA| — |B'|)D/2.

Proof. Note that

> du(x,B)=en(A,B)= > duly A).

zeA’ yeB’
Moreover,
2e(A) = > (D—dy(x,B')+> (D'~dy(z, B")) = D|Ag|+D'|A|- ) " dy(z, B')
x€AQ z€A xe A’
and
2ep(B) =Y (D—du(y, A)+> _(D'~du(y, A")) = D|Bo|+D'|B|- Y _ du(y, A').
y€Bg yeEB yeB’
Therefore
2er;(A")—2ep(B') = D(|Ao|—|Bo|)+D'(JA|—|B|) = D(|Ao|—|Bol|) = D(|A'|-|B']),
as desired. O

The following observation states that balancedness is preserved under suitable
modifications of the partition.

Proposition 4.2. Let H be D-balanced with respect to (A, Ay, B, By). Suppose that
Aj), B}, is a partition of AgUBy. Then H is D-balanced with respect to (A, A, B, Bj).

Proof. Observe that the general result follows if we can show that H is D-balanced
with respect to (A, A, B, B), where A, = AgU{v}, Bj = Bo\{v} and v € By. (B2)
is trivially satisfied in this case, so we only need to check (B1) for the new partition.
For this, let A" := Ay U A and B’ := By U B. Now note that (B1) for the original
partition implies that

6H(A6 U A) — 6H(B[/) U B) = eH(A') + dH(’U, Al) - (eH(B') — dH(U, BI))
= (|4 =|B)D/2+ D = (|[Ag U A| - |By U B)D/2.
Thus (B1) holds for the new partition. O

Suppose that G is a graph and A’, B’ is a partition of V(G). For every vertex
v e A" we call dg(v, A") the internal degree of v in G. Similarly, for every vertex
v € B we call dg(v, B') the internal degree of v in G.

Given a graph F' and a spanning subgraph G of F' | we say that (F, G, A, Ay, B, By)
is an (g,¢', K, D)-weak framework if the following holds, where A" := AgU A, B’ :=
ByUB and n := |G| = |F|:

(WF1) A, Ay, B, By forms a partition of V(G) = V(F);
(WF2) G is D-balanced with respect to (A, Ao, B, Bo);
(WF3) eg(A'),eq(B’) < en?;
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(WF4) |A| = |B| is divisible by K. Moreover, a + b < en, where a := |A4p| and
b :=|Bol;

(WF5) all vertices in AU B have internal degree at most e'n in F;

(WF6) any vertex v has internal degree at most dg(v)/2 in G.

Throughout the paper, when referring to internal degrees without mentioning the
partition, we always mean with respect to the partition A’, B’, where A’ = AgU A
and B’ = By U B. Moreover, a and b will always denote |Ao| and | By|.

We say that (F,G, A, Ao, B, By) is an (g,€', K, D)-pre-framework if it satisfies
(WF1)—(WF5). The following observation states that pre-frameworks are preserved
if we remove suitable balanced subgraphs.

Proposition 4.3. Let ¢, > 0 and K, Dg, Dy € N. Let (F,G, A, Ay, B, By) be an
(e,¢', K, Dg)-pre framework. Suppose that H is a Dy-reqular spanning subgraph of
F such that GNH is Dg-balanced with respect to (A, Ao, B, By). Let F' :== F—H and
G :==G—H. Then (F',G', A, Ay, B, By) is an (¢,e', K, Dg — Dy )-pre framework.

Proof. Note that all required properties except possibly (WF2) are not affected by
removing edges. But G’ satisfies (WF2) since GN H is Dy-balanced with respect to
(A, Ay, B, By). ]

Lemma 4.4. Let 0 < 1/n < ¢ < €,1/K < 1 and let D > n/200. Suppose that
F is a graph on n vertices which is e-bipartite and that G is a D-regular spanning
subgraph of F. Then there is a partition A, Ao, B, By of V(G) = V(F) so that
(F,G,A, Ay, B, By) is an (61/375/,K, D)-weak framework.

Proof. Let Si, S5 be a partition of V(F') which is guaranteed by the assumption that
F is e-bipartite. Let S be the set of all those vertices = € Sy with dp(x,S1) > /en
together with all those vertices = € Sy with dp(z, S2) > v/en. Since F is e-bipartite,
it follows that |S| < 4+/en.

Given a partition X,Y of V(F), we say that v € X is bad for X,Y if dg(v, X) >
da(v,Y) and similarly that v € Y is bad for X,Y if dg(v,Y) > dg(v, X). Suppose
that there is a vertex v € S which is bad for S7, S5. Then we move v into the class
which does not currently contain v to obtain a new partition S7, S5. We do not
change the set S. If there is a vertex v’ € S which is bad for S, S5, then again we
move it into the other class.

We repeat this process. After each step, the number of edges in G between the
two classes increases, so this process has to terminate with some partition A’, B’
such that A’ A S; C S and B’ A Sy C S. Clearly, no vertex in S is now bad for A,
B’. Also, for any v € A"\ S we have

(4.1) dg(v, A") < dp(v,A") < dp(v,S1) + |S| < Ven +4ven < e'n
< D/2=dg(v)/2.

Similarly, dg(v, B") < €'n < dg(v)/2 for all v € B"\ S. Altogether this implies
that no vertex is bad for A’, B" and thus (WF6) holds. Also note that eq(A’, B') >
eq(S1,92) > e(G) — 2en?. So

(4.2) eq(A'),eq(B') < 2en?.
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This implies (WF3).

Without loss of generality we may assume that |A’| > |B’|. Let A{, denote the set
of all those vertices v € A" for which dp(v, A’) > ¢'n. Define B, C B’ similarly. We
will choose sets A C A"\ A and Ay O Aj) and sets B C B’ \ B{, and By D B(, such
that |A| = |B| is divisible by K and so that A, Ay and B, By are partitions of A’ and
B’ respectively. We obtain such sets by moving at most ||A"\ Aj| — |B'\ By|| + K
vertices from A’ \ Af to Af and at most [|A"\ Aj| —|B"\ Bj|| + K vertices from
B’ \ Bj to Bj. The choice of A, Ay, B, By is such that (WF1) and (WF5) hold.
Further, since |A| = | B|, Proposition 4.1 implies (WF2).

In order to verify (WF4), it remains to show that a + b = |4y U By| < '/n. But
together with its analogue for the vertices in B’ \ S implies that Ay U B C S.
Thus |Ay| + | Byl < |S| < 4y/en. Moreover, (WF2), and our assumption that
D > n /200 together imply that

|A'| — |B'| = (eq(A") — eq(B"))/(D/2) < 2en?/(D/2) < 800en.
So altogether, we have
a+b< |AyU By +2||[A"\ Ay| — |B"\ By|| + 2K
< dven +2||A] — |B'| - (| 4] - |Bg))| + 2K
< 4\/en + 1600en + 8v/en + 2K < e'/3n.
Thus (WF4) holds. O

Throughout this and the next section, we will often use the following result, which
is a simple consequence of Vizing’s theorem and was first observed by McDiarmid
and independently by de Werra (see e.g. [30]).

Proposition 4.5. Let H be a graph with mazimum degree at most A. Then E(H)
can be decomposed into A+1 edge-disjoint matchings My, ..., Ma11 such that || M;|—
|M;|| <1 foralli,j <A+1.

Our next goal is to cover the edges of G[Ag, By| by edge-disjoint Hamilton cycles.
To do this, we will first decompose G[Ag, By| into a collection of matchings. We
will then extend each such matching into a system of vertex-disjoint paths such that
altogether these paths cover every vertex in G[Ag, Byl, each path has its endvertices
in AU B and the path system is 2-balanced. Since our path system will only contain
a small number of nontrivial paths, we can then extend the path system into a
Hamilton cycle (see Lemma [4.10)).

We will call the path systems we are working with AyBy-path systems. More
precisely, an AgBy-path system (with respect to (A, Ay, B, Bo)) is a path system Q
satisfying the following properties:

e Every vertex in Ag U By is an internal vertex of a path in Q.
e A U B contains the endpoints of each path in ) but no internal vertex of a
path in Q.
The following observation (which motivates the use of the word ‘balanced’) will often
be helpful.
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Proposition 4.6. Let Ay, A, By, B be a partition of a vertex set V.. Then an AgBy-
path system Q with V(Q) C V is 2-balanced with respect to (A, Ay, B, By) if and only
if the number of vertices in A which are endpoints of nontrivial paths in Q) equals
the number of vertices in B which are endpoints of nontrivial paths in Q.

Proof. Note that by definition any AgBy-path system satisfies (B2), so we only
need to consider (B1). Let n4 be the number of vertices in A which are endpoints of
nontrivial paths in @ and define np similarly. Let a := |Ag|, b := |By|, A’ := AU Ay
and B’ := B U By. Since dg(v) = 2 for all v € Ay and since every vertex in A is
either an endpoint of a nontrivial path in @) or has degree zero in ), we have

2eq(A') + eq(A, B') = do(v) =20+ na.
veA’

Sona =2(eq(A’) —a) + eqg(A’, B'), and similarly np = 2(eq(B’) — b) + eq(4’, B').
Therefore, ny = np if and only if 2(eq(A’) — eq(B’) —a+b) = 0 if and only if Q
satisfies (B1), as desired. O

The next observation shows that if we have a suitable path system satisfying (B1),
we can extend it into a path system which also satisfies (B2).

Lemma 4.7. Let 0 < 1/n < a < 1. Let G be a graph on n vertices such that there
is a partition A', B of V(G) which satisfies the following properties:
(i) A= AgU A, B' = ByU B and Ay, A, By, B are disjoint;
(ii) |A| = |B| and a + b < an, where a := |Ap| and b := |By|;
(iii) if v € Ag then dg(v, B) > 4an and if v € By then dg(v, A) > 4an.

Let Q' C G be a path system consisting of at most an nontrivial paths such that AUB
contains no internal vertex of a path in Q' and eq(A’) —eq/(B') = a—b. Then
G contains a 2-balanced AgBo-path system @ (with respect to (A, Ay, B, By)) which
extends Q' and consists of at most 2an nontrivial paths. Furthermore, E(Q)\ E(Q")
consists of AgB- and ABy-edges only.

Proof. Since AU B contains no internal vertex of a path in Q" and since @’ contains
at most an nontrivial paths, it follows that at most 2an vertices in A U B lie on
nontrivial paths in Q’. We will now extend @’ into an AgBy-path system () consisting
of at most a + b + an < 2an nontrivial paths as follows:

o for every vertex v € Ag, we join v to 2 — dg(v) vertices in B;
o for every vertex v € By, we join v to 2 — d¢/(v) vertices in A.

Condition (iii) and the fact that at most 2an vertices in AU B lie on nontrivial paths
in Q' together ensure that we can extend @’ in such a way that the endvertices in
AU B are distinct for different paths in (). Note that eg(A’) —eq(B') = eg/(A") —
eq'(B') = a — b. Therefore, Q is 2-balanced with respect to (A, Ay, B, By). O

The next lemma constructs a small number of 2-balanced AgBg-path systems
covering the edges of G[Ay, By]. Each of these path systems will later be extended
into a Hamilton cycle.
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Lemma 4.8. Let 0 < 1/n < ¢ € ¢,1/K < a < 1. Let F be a graph on n
vertices and let G be a spanning subgraph of F. Suppose that (F,G, A, Ao, B, By) is
an (e,e', K, D)-weak framework with 6(F) > (1/4+ a)n and D > n/200. Then for
some r* < en the graph G contains r* edge-disjoint 2-balanced AyBg-path systems
Q1,...,Qm which satisfy the following properties:

(i) Together Q1,...,Q. cover all edges in G[Ag, Bol;
(ii) For each i < r*, Q; contains at most 2en nontrivial paths;
(iii) For each i < r*, Q; does not contain any edge from G[A, B].

Proof. (WF4) implies that |Ag| 4+ |Bo| < en. Thus, by Proposition [£.5] there exists
a collection Mj,..., M. of r* edge-disjoint matchings in G[Ao, By| that together
cover all the edges in G[Ay, By|, where r* < en.

We may assume that a > b (the case when b > a follows analogously). We
will use edges in G[A'] to extend each M/ into a 2-balanced AyBy-path system.
(WF2) implies that eg(A’) > (a — b)D/2. Since dg(v) = D for all v € Ay U By
by (WF2), (WF5) and (WF6) imply that A(G[A’]) < D/2. Thus Proposition
implies that F(G[A']) can be decomposed into |D/2] + 1 edge-disjoint matchings
May, ..., My pjaj41 such that [[Ma;| — [Ma,l| <1 foralli,j < |D/2]+ 1.

Notice that at least en of the matchings My ; are such that [My ;| > a—0b. Indeed,
otherwise we have that

(a—b)D/2 <eq(A) <en(a—b)+ (a—b—1)(D/2+1—en)
=(a—b)D/24+a—-b—D/2—-1+¢n
<(a—=b)D/2+2en—D/2 < (a—b)D/2,

a contradiction. (The last inequality follows since D > n/200.) In particular, this
implies that G[A’] contains r* edge-disjoint matchings My, ..., M. that each consist
of precisely a — b edges.

For each i < r*, set M; := M/ U M. So for each ¢ < r*, M; is a path system
consisting of at most b+ (a —b) = a < en nontrivial paths such that AU B contains
no internal vertex of a path in M; and eny,(A’) — enr,(B') = epn(A) = a —b.

Suppose for some 0 < r < r* we have already found a collection Qq,...,Q, of r
edge-disjoint 2-balanced AgBg-path systems which satisfy the following properties
for each 7 < r:

(a); Q; contains at most 2en nontrivial paths;

(B)i M; C Qs;

(7)i Qi and M; are edge-disjoint for each j < r* such that i # j;
(0); Q; contains no edge from G[A, B].

(Note that (a)p—(d)o are vacuously true.) Let G’ denote the spanning subgraph of
G obtained from G by deleting the edges lying in Q1 U---UQ,. (WF2), (WF4) and
(WF6) imply that, if v € Ao, dgr(v,B) > D/2 —en — 2r > 4en and if v € By then
der(v, A) > 4en. Thus Lemma [4.7 implies that G’ contains a 2-balanced Ao By-path
system Q,4+1 that satisfies (@),4+1—(8)r+1-
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So we can proceed in this way in order to obtain edge-disjoint 2-balanced AyBy-
path systems Q1,...,Q,« in G such that («);—(d); hold for each ¢ < r*. Note that
(1)—(iii) follow immediately from these conditions, as desired. O

The next lemma (Corollary 5.4 in [I3]) allows us to extend a 2-balanced path
system into a Hamilton cycle. Corollary 5.4 concerns so-called ‘(A, B)-balanced’-
path systems rather than 2-balanced AyBp-path systems. But the latter satisfies the
requirements of the former by Proposition [£.6]

Lemma 4.9. Let 0 < 1/n < ¢/ < a < 1. Let F be a graph and suppose that
Ao, A, By, B is a partition of V(F') such that |A| = |B| = n. Let H be a bipartite
subgraph of F with vertex classes A and B such that 6(H) > (1/2 + a)n. Suppose
that Q is a 2-balanced AyBy-path system with respect to (A, Ag, B, By) in F which
consists of at most €'n nontrivial paths. Then F contains a Hamilton cycle C which
satisfies the following properties:

e QCC;

e E(C)\ E(Q) consists of edges from H.

Now we can apply Lemma to extend a 2-balanced AgBg-path system in a
pre-framework into a Hamilton cycle.

Lemma 4.10. Let0 < 1/n < e < ',1/K < a < 1. Let F be a graph on n vertices
and let G be a spanning subgraph of F. Suppose that (F,G, A, Ay, B, By) is an
(e,¢', K, D)-pre-framework, i.e. it satisfies (WF1)-(WF5). Suppose also that §(F) >
(1/4+ a)n. Let Q be a 2-balanced AgBy-path system with respect to (A, Ao, B, By)
in G which consists of at most €'n nontrivial paths. Then F contains a Hamilton
cycle C' which satisfies the following properties:

(i) QCC;

(ii) E(C)\ E(Q) consists of AB-edges;

(ili) C NG is 2-balanced with respect to (A, Ao, B, Bp).

Proof. Note that (WF4), (WF5) and our assumption that §(F) > (1/4 4+ a)n
together imply that every vertex x € A satisfies

dp(z, B) > dp(z, B') — | Bo| > dp(z) — &'n — |Bo| > (1/4 + a/2)n > (1/2 + a/2)|B|.

Similarly, dp(z,A) > (1/2 + «/2)|A| for all x € B. Thus, §(F[A,B]) > (1/2 +
a/2)|A|l. Applying Lemma with F'[A, B] playing the role of H, we obtain a
Hamilton cycle C in F' that satisfies (i) and (ii). To verify (iii), note that (ii) and
the 2-balancedness of ) together imply that

ecnc(A") —ecna(B') = eq(A') —eq(B') =a—b.

Since every vertex v € Ay U By satisfies deng(v) = dg(v) = 2, (iii) holds. O

We now combine Lemmas 4.8 and to find a collection of edge-disjoint Hamil-
ton cycles covering all the edges in G[Ay, By.
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Lemma 4.11. Let 0 < 1/n < ¢ < ¢/,1/K < a < 1 and let D > n/100. Let
F be a graph on n vertices and let G be a spanning subgraph of F. Suppose that
(F,G, A, Ay, B, By) is an (g,€', K, D)-weak framework with §(F) > (1/4+a)n. Then
for some r* < en the graph F contains edge-disjoint Hamilton cycles C1,...,Cpx
which satisfy the following properties:

(i) Together Cy,...,Cp cover all edges in G[Ap, By);

(ii) (C1U---UCp) NG is 2r*-balanced with respect to (A, Ao, B, By).

Proof. Apply Lemma [4.§] to obtain a collection of r* < en edge-disjoint 2-balanced
AgBy-path systems @1, ..., Q,+ in G which satisfy Lemma (i)f(iii). We will ex-
tend each @; to a Hamilton cycle C;.

Suppose that for some 0 < r < r* we have found a collection Cy,...,C, of r
edge-disjoint Hamilton cycles in F' such that the following holds for each 0 < ¢ < r:
(@); Qi € Cy;

(8)i E(C;)\ E(Q;) consists of AB-edges;

(7): GNC; is 2-balanced with respect to (A, Ag, B, Bo).
(Note that (a)o—(7v)o are vacuously true.) Let H, := C1 U--- U C, (where Hy :=
(V(G),0)). So H, is 2r-regular. Further, since G N C; is 2-balanced for each i < r,
GNH, is 2r-balanced. Let G, := G—H, and F, := F—H,. Since (F,G, A, Ay, B, By)
is an (g,¢’, K, D)-pre-framework, Proposition implies that (F,, G, A, Ao, B, By)
is an (e,&’, K, D — 2r)-pre-framework. Moreover, §(F,) > §(F) —2r > (1/4+ «/2)n.
Lemma [4.8(iii) and (8)1—(5), together imply that @41 lies in G,. Therefore,
Lemma implies that F, contains a Hamilton cycle C,41 which satisfies («),4+1—
(’Y)r-i—l-

So we can proceed in this way in order to obtain r* edge-disjoint Hamilton cycles
Cy,...,Cp+ in F such that for each ¢ < r*, (a);—(7); hold. Note that this implies
that (ii) is satisfied. Further, the choice of @1,...,Q, ensures that (i) holds. O

Given a graph G, we say that (G, A, Ay, B, By) is an (¢,¢’, K, D)-framework if the
following holds, where A" := AgU A, B’ := ByU B and n := |G|:
(FR1) A, Ay, B, By forms a partition of V(G);
(FR2) G is D-balanced with respect to (A, Ao, B, Bo);
(FR3) eq(A),eq(B') < en;
(FR4) |A| = |B] is divisible by K. Moreover, b < a and a+ b < en, where a := |A|

and b := | By|;

(FR5) all vertices in A U B have internal degree at most ¢'n in G;
(FRG6) ¢(G[Ao, By]) = 0
(FR7) all vertices v € V(G) have internal degree at most dg(v)/2 +en in G.
Note that the main differences to a weak framework are (FR6) and the fact that a
weak framework involves an additional graph F'. In particular (FR1)-(FR4) imply
(WF1)-(WF4). Suppose that 1 > ¢, €] > & and that K; divides K. Then note
that every (e,&, K, D)-framework is also an (e1, ¢!, K1, D)-framework.

Lemma 4.12. Let 0 < 1/n < ¢ € ¢]1/K < o < 1 and let D > n/100. Let
F be a graph on n vertices and let G be a spanning subgraph of F. Suppose that
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(F,G, A, Ay, B, By) is an (g,¢', K, D)-weak framework. Suppose also that §(F) >
(1/4+ a)n and |Ap| > |Bg|. Then the following properties hold:
(i) thereis an (e,€’', K, Dgr)-framework (G, A, Ao, B, By) such that G is a span-
ning subgraph of G with Dgr > D — 2en;
(ii) there is a set of (D — D¢r)/2 < en edge-disjoint Hamilton cycles in F — G’
containing all edges of G — G'. In particular, if D is even then D¢ is even.

Proof. Lemma [4.11] implies that there exists some r* < en such that F' contains a
spanning subgraph H satisfying the following properties:
(a) H is 2r*-regular;
(b) H contains all the edges in G[Ag, Byl;
(¢) GN H is 2r*-balanced with respect to (A, Ay, B, By);
(d) H has a decomposition into r* edge-disjoint Hamilton cycles.

Set G’ := G — H. Then (G, A, Ay, B, By) is an (e,¢’, K, D¢ )-framework where
Dg = D — 2r* > D — 2en. Indeed, since (F,G, A, Ag, B, By) is an (g,&', K, D)-
weak framework, (FR1) and (FR3)—(FR5) follow from (WF1) and (WF3)-(WF5).
Further, (FR2) follows from (WF2) and (c) while (FR6) follows from (b). (WF6)
implies that all vertices v € V(G) have internal degree at most dg(v)/2 in G. Thus
all vertices v € V(G’) have internal degree at most dg(v)/2 < (dgr(v) + 2r*)/2 <
de(v)/2 +en in G'. So (FRT) is satisfied. Hence, (i) is satisfied.

Note that by definition of G’, H contains all edges of G — G’. So since r* =
(D — D¢r)/2 < en, (d) implies (ii). O

The following result follows immediately from Lemmas [4.4] and

Corollary 4.13. Let 0 < 1/n < e € ¢* < ¢/, 1/K < a < 1 and let D > n/100.
Suppose that F is an e-bipartite graph on n vertices with §(F) > (1/4+a)n. Suppose
that G is a D-regular spanning subgraph of F'. Then the following properties hold:
(i) there is an (¢*,&', K, Dgr)-framework (G', A, Ao, B, By) such that G’ is a
spanning subgraph of G, Der > D — 2¢'/3n and such that F satisfies (WF5)
(with respect to the partition A, Ay, B, By);
(ii) there is a set of (D — Dgr)/2 < €Y/*n edge-disjoint Hamilton cycles in F — G
containing all edges of G — G'. In particular, if D is even then D¢ is even.

5. FINDING PATH SYSTEMS WHICH COVER ALL THE EDGES WITHIN THE CLASSES

The purpose of this section is to prove Corollary which, given a framework
(G, A, Ay, B, By), guarantees a set C of edge-disjoint Hamilton cycles and a set J
of suitable edge-disjoint 2-balanced AgBg-path systems such that the graph G* ob-
tained from G by deleting the edges in all these Hamilton cycles and path systems
is bipartite with vertex classes A’ and B’ and Ay U By is isolated in G*. Each of the
path systems in 7 will later be extended into a Hamilton cycle by adding suitable
edges between A and B. The path systems in J will need to be ‘localized’ with
respect to a given partition. We prepare the ground for this in the next subsection.

Throughout this section, given sets S,5" C V(G) we often write E(S), E(S,S’),
e(S) and e(S,S") for Eg(S), Ec(S,S’), eq(S) and eq(S, S’) respectively.
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5.1. Choosing the partition and the localized slices. Let K,m € Nand ¢ > 0.
A (K, m,e)-partition of a set V' of vertices is a partition of V into sets Ag, A1,..., A
and By, By, ..., Bk such that |[A;] = |B;| = m for all 1 < ¢ < K and |AgU By| <
e|V|. We often write Vj for Ag U By and think of the vertices in V| as ‘exceptional
vertices’. The sets Ay,..., Ax and By,..., Bg are called clusters of the (K, m,eq)-
partition and Ay, By are called exceptional sets. Unless stated otherwise, when
considering a (K, m,e)-partition P we denote the elements of P by Ay, Ai,..., Ak
and By, Bi,..., Bk as above. Further, we will often write A for A1 U---U Ag and
B for BiU---U Bg.

Suppose that (G, A, Ay, B, By) is an (g,¢’', K, D)-framework with |G| = n and
that €1,e9 > 0. We say that P is a (K, m,¢,¢e1,e2)-partition for G if P satisfies the
following properties:

(P1) P is a (K, m,e)-partition of V(G) such that the exceptional sets Ay and By

in the partition P are the same as the sets Ag, By which are part of the
framework (G, A, Ao, B, By). In particular, m = |A|/K = |B|/K;

(P2) d(v,A;) = (d(v,A) £ en)/K for all 1 <i < K and v € V(G);
(P3) e(A;, Aj) = 2(e(A) £ eomax{n,e(A)})/K% forall 1 <i< j < K;
(P4) e(4;) = (e(A) £ egmax{n,e(A)})/K? forall 1 <i < K;

(P5) e(Ao, A;) = (e(Ag, A) £ egmax{n,e(Ag, A)})/K for all 1 <i < K;

(P6) e(A;, Bj) = (e(A, B) £ 3e2e(A, B))/K? for all 1 < i,j < K;
and the analogous assertions hold if we replace A by B (as well as A; by B; etc.) in
(P2)—(P5).

Our first aim is to show that for every framework we can find such a partition
with suitable parameters (see Lemma. To do this, we need the following lemma.

Lemma 5.1. Suppose that 0 < 1/n < €,61 € g9 € 1/K < 1, that r < 2K, that
Km > n/4 and that r,K,n,m € N. Let G and F be graphs on n wvertices with
V(G) = V(F). Suppose that there is a vertex partition of V(G) into U, Ry, ..., Ry
with the following properties:
. U] =
e §(G[U]) > en or A(G[U]) < en.
o For each j < r we either have dg(u, Rj) < en for allu € U ordg(z,U) > en
forall x € R;.
Then there exists a partition of U into K parts Uy, ..., Uk satisfying the following
properties:
(i) |Uil =m for alli < K.
(ii) dg(v,U;) = (dg(v,U) £ e1n)/K for allv € V(G) and alli < K.
(iii) eq (Ui, Uy) = 2(eq(U) £ eamax{n,eq(U)})/K? for all1 <i#1i < K.
(iv) eq(U
(v) ea(
i)

c(U) = (eq(U) £ eamax{n,eq(U)})/K? for alli < K.
v) eq(Ui, Rj) = (eq(U, Rj) £ eomax{n,eq(U,R;)})/K for alli < K and j <.
(vi) dp(v,U;) = (dp(v,U) £ e1n)/K for allv e V(F) and all i < K.
Proof. Consider an equipartition Uy, ..., Uk of U which is chosen uniformly at
random. So (i) holds by definition. Note that for a given vertex v € V(QG), dg(v, U;)
has the hypergeometric distribution with mean dg(v,U)/K. Soifdg(v,U) > e1n/K,

@
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Proposition implies that

da(v,U) erdg(v,U) e2dg(v,U) 1
P > < —_—— | < —.
< K |77 K )PPk )

Thus we deduce that for all v € V(G) and all i < K,
P (ldg(v,Us) — da(v,U)/K| > e1n/K) < 1/n”.

dG(’Uy UZ) -

Similarly,
P (|dp(v,U;) — dp(v,U)/K| > ein/K) < 1/n>.

So with probability at least 3/4, both (ii) and (vi) are satisfied.

We now consider (iii) and (iv). Fix 4,7/ < K. If i # ¢, let X := eq(U;,Uy). If
i =1, let X := 2eq(U;). For an edge f € E(G[U)), let E¢ denote the event that
f € EU;,Uy). Soif f =xy and i # i/, then
m m
Ul uf-1
Similarly, if f and f’ are disjoint (that is, f and f’ have no common endpoint) and
i # 1, then

(5.1) P(Ef) = 2IP’(ac € UZ')IF’(y e Uy | S UZ) =2

m—1 m-—1 m m

5.2 P(E; | Ef) =2 . <2— . —— =P(Epn).
By (5.1)), if i # 4/, we also have

eq(U) \U| 2\ 2eq(U) 2eq(U)
5.3 E(X)=2 . =1+ — =(1+ 4 .
If f =2y and i =4/, then

m m—1

5.4 P(Ef) =P U; U; U; . .
(5.4) (Ey) = Pla € UDP(y € Uy | 2 € U3) = - ity

So if ¢ = ¢/, similarly to we also obtain P(Ey | Ey) < P(Ey) for disjoint f and
/" and we obtain the same bound as in on E(X) (recall that X = 2eq(U;) in
this case).

Note that if 4 # ¢’ then

Var(X) = > > (P(EfnEp) —P(Ep)P(Es))

feEEU) f'eE(U)

= Y P(Ep) Y (P(Ep|Ep)-P(Ep)

feB() 'eE(U)
Y P(Ef) - 2A(G[U)) 36;2(5) L2A(G[U]) < ea(U)A(G[U)).
feE)

Similarly, if ¢ = ¢ then

Var(X)=4 > Y (P(EfnEp) —P(E)P(Ep)) < ea(U)A(G[U)).
feE) f'eE(U)
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Let a := eq(U)A(G[U]). In both cases, from Chebyshev’s inequality, it follows that

P <\X —E(X)| > \/a/51/2> <ell?,

Suppose that A(G[U]) < en. If we also have have eq(U) < n, then y/a/el/2 <
e < egn/2K2. If eq(U) > n, then v/a/el/?2 < e'/teq(U) < ereq(U) /2K
If we do not have A(G[U]) < en, then our assumptions imply that 6(G[U]) >
en. So A(G[U]) < n < eeq(G[U]) with room to spare. This in turn means that
a/el/?2 < e'teq(U) < e9eq(U)/2K2. So in all cases, we have

(5.5) P <X CE(X)| > 2 max;;(’;G(U)}> <2,

Now note that by (5.3) we have

(5.6)

E(X) - 2€G(U)’ < e2ccl)

K? 2K?

So and together imply that for fixed 4,7’ the bound in (iii) fails with
probability at most e'/2. The analogue holds for the bound in (iv). By summing
over all possible values of 4,7 < K, we have that (iii) and (iv) hold with probability
at least 3/4.

A similar argument shows that for all i+ < K and j < r, we have

eG(Uv Rj) €2 maX{n> eG(Uv RJ)} 1/2
(5.7) P < e > e > <egt=.
Indeed, fix i < K, j < r and let X := eq(U;, R;j). For an edge f € G[U, Rj], let
Ey denote the event that f € E(U;,Rj). Then P(Ef) = m/|U| = 1/K and so
E(X) = eq(U, R;)/K. The remainder of the argument proceeds as in the previous
case (with slightly simpler calculations).

So (v) holds with probability at least 3/4, by summing over all possible values
of i < K and j < r again. So with positive probability, the partition satisfies all
requirements. ]

ec(Ui, Rj) —

Lemma 5.2. Let 0 < 1/n < ¢ K ¢/ € g1 € 2 < 1/K < 1. Suppose that
(G, A, Ay, B, By) is an (e,¢', K, D)-framework with |G| =n and 6(G) > D > n/200.
Suppose that F is a graph with V(F) = V(G). Then there exists a partition P =
{Ao, Al, . ,AK, Bo, Bl, ce ,BK} Of V(G) so that
(i) P is a (K, m,e,e1,e92)-partition for G.
(il) dp(v, 4;) = (dp(v, A) £ e1n)/K and dp(v, B;) = (dp(v, B) £ e1n)/K for all
1<i< K andv e V(Q).

Proof. In order to find the required partitions Aq,...,Ax of A and By,...,Bg
of B we will apply Lemma twice, as follows. In the first application we let
U:= A, Ry := Ay, Ry := By and R3 := B. Note that A(G[U]) < &'n by (FR5) and
dg(u,R;j) < |Rj| <en <é&'nfor all w e U and j = 1,2 by (FR4). Moreover, (FR4)
and (FR7) together imply that dg(z,U) > D/3 > ¢'n for each © € R3 = B. Thus we
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can apply Lemma with & playing the role of € to obtain a partition Uy, ..., Uk
of U. We let A; := Uj for all i < K. Then the A; satisfy (P2)—(P5) and

(5.8) eq(4;,B) = (eq(A,B) X egmax{n,eq(A,B)})/K = (1 £ e9)eq(A,B)/K
Further, Lemma [5.1|vi) implies that

dF(’U, Az) = (dF(U,A) + Eln)/K
forall 1 <i < K and v € V(G).

For the second application of Lemma [5.1] we let U := B, Ry := By, Ry := Ay
and R; :== Aj o forall 3 < j < K +2. As before, A(G[U]) < ¢/n by (FR5) and
dg(u,R;j) < en < ¢'n for all w € U and j = 1,2 by (FR4). Moreover, (FR4) and
(FR7) together imply that dg(z,U) > D/3 > &'n for all 3 < j < K + 2 and each
x € Rj = Aj_>. Thus we can apply Lemma with &’ playing the role of ¢ to
obtain a partition Uy,..., Uk of U. Let B; := U; for all + < K. Then the B; satisfy
(P2)—(P5) with A replaced by B, A; replaced by B;, and so on. Moreover, for all
1<4,5 <K,

ec(Ai, Bj) =
(

eq(Ai, B) £ egmax{n,eq(A;, B)})/K
(1+e2)eq(A, B) £e9(1 +e2)eq(A, B))/ K2
ec(A, B) + 3eseq(A, B)) /K2,

i.e. (P6) holds. Since clearly (P1) holds as well, Ay, A1,...,Ax and By, B1,..., Bk
together form a (K, m, e, 1, e2)-partition for G. Further, Lemma (Vi) implies that

dF(U,BZ') = (dF(U,B) + €1n)/K
forall 1 <i < K and v € V(G). O

B
e
/-\/-\/—\

—~

The next lemma gives a decomposition of G[A'] and G[B’] into suitable smaller
edge-disjoint subgraphs H. {? and H 5 . We say that the graphs H i’? and H 5 guaranteed
by Lemma are localized slices of G. Note that the order of the indices ¢ and j
matters here, i.e. Hi‘;‘- % Hﬁ Also, we allow ¢ = j.

Lemma 5.3. Let 0 < 1/n € e € ¢/ € g1 € g2 < 1/K < 1. Suppose that
(G, A, Aoy, B, By) is an (g,¢', K, D)-framework with |G| = n and D > n/200. Let
Ao, A1,..., A and By, By,...,Bg be a (K,m,e,e1,e9)-partition for G. Then for
all 1 <1i4,5 < K there are graphs HZ-‘;‘» and Hg- with the following properties:
(i) HA is a spanning subgraph of G[Ag, A; U A;] U G[A;, Aj] U G[Ay];
(ii) The sets E(HA) over all 1 < i,j < K form a partition of the edges of G[A'];
(iii) e(H; ) (e(A") + 9eo max{n,e(A)})/K? for all1 <i,j < K;
(iv) eHA(AO,A U A4;) = (e(Ag, A) £ 2eo max{n, e(Ag, A)})/K? for all 1 <i,j <
K;
(v) eHA_(Ai,Aj) = (e(A) £ 2eomax{n,e(A)})/K? for all 1 <i,j < K;
ij
(vi) For all1 <i,j < K and all v € Ay we have dya(v) = dya(v, A; U Aj) +
ij ij
dya(v, Ag) = (d(v, A) &+ 4e1n)/ K2.
ij

The analogous assertions hold if we replace A by B, A; by B;, and so on.
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Proof. In order to construct the graphs H;? we perform the following procedure:

e Initially each H{? is an empty graph with vertex set Ao U A; U A;.

e For all 1 < i < K choose a random partition E(Ap, 4;) into K sets U; of
equal size and let E (H;;‘) = Uj. (If E(Ao, A;) is not divisible by K, first
distribute up to K —1 edges arbitrarily among the U; to achieve divisibility.)

e For all i < K, we add all the edges in F(4;) to HZ.

e For all 4,5 < K with i # j, half of the edges in E(A;, Aj) are added to Hf;
and the other half is added to H J‘-‘,} (the choice of the edges is arbitrary).

e The edges in G[Ay] are distributed equally amongst the HZ‘;‘ (Soe H (Ao) =
e(Ag)/K? £1.)

Clearly, the above procedure ensures that properties (i) and (ii) hold. (P5) implies
(iv) and (P3) and (P4) imply (v).

Consider any v € Ag. To prove (vi), note that we may assume that d(v, A) >
en/K?2 Let X := dya (v, A; U A;). Note that (P2) implies that E(X) = (d(v, 4) &

2e1n)/K? and note that E(X) < n. So the Chernoff-Hoeffding bound for the hyper-
geometric distribution in Proposition implies that

P(|X — E(X)| > e1n/K?) < P(|X — E(X)| > e1E(X)/K?) < 2e STEX)/B3EY < 1 /52,

Since da (v, Ag) < |Ag| < e1n/K?, aunion bound implies the desired result. Finally,
ij
observe that for any a,bq,...,bs > 0, we have

4
Z max{a, b;} <4max{a,by,...,bs} < 4dmax{a,by +---+ bs}.

i=1

So (iii) follows from (iv), (v) and the fact that eya(Ag) = e(A4g)/K? & 1. O
v

Note that the construction implies that if ¢ # j, then H{? will contain edges
between Ay and A; but not between Ag and A;. However, this additional information
is not needed in the subsequent argument.

5.2. Decomposing the localized slices. Suppose that (G, A, Ay, B, Bp) is an
(e,¢', K, D)-framework. Recall that a = |Ag|, b = |By| and @ > b. Since G is
D-balanced by (FR2), we have e¢(A") — e(B’) = (a — b)D/2. So there are an integer
q > —b and a constant 0 < ¢ < 1 such that

(5.9) e(Ay=(a+q+¢)D/2 and e(B')=(b+q+c)D/2.
The aim of this subsection is to prove Lemma [5.6] which guarantees a decomposition

of each localized slice H {;‘- into path systems (which will be extended into AyBy-path

systems in Section i and a sparse (but not too sparse) leftover graph G;‘;.
The following two results will be used in the proof of Lemma

Lemma 5.4. Let 0 < 1/n < a,fB,7 so that v < 1/2. Suppose that G is a graph

on n vertices such that A(G) < an and e(G) > pn. Then G contains a spanning
subgraph H such that e(H) = [(1 —v)e(G)] and A(G — H) < 6yan/5.
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Proof. Let H' be a spanning subgraph of G such that

e A(H') < 6yan/5;

o ¢(H') > ve(G).
To see that such a graph H’ exists, consider a random subgraph of G obtained by
including each edge of G with probability 11/10. Then E(A(H')) < 11yan/10 and
E(e(H')) = 117e(G)/10. Thus applying Proposition we have that, with high
probability, H' is as desired.

Define H to be a spanning subgraph of G such that H 2 G — H' and e(H) =

[(1—7)e(G)]. Then A(G — H) < A(H') < 6yan/5, as required. O

Lemma 5.5. Suppose that G is a graph such that A(G) < D — 2 where D € N s
even. Suppose Ap, A is a partition of V(G) such that dg(x) < D/2—1 for allx € A
and A(G[Ao]) < D/2 — 1. Then G has a decomposition into D /2 edge-disjoint path
systems Py, ..., Pp y such that the following conditions hold:

(i) For each i < D/2, any internal vertex on a path in P; lies in Ay;
(ii) |e(P;) —e(P;)| <1 for alli,j < D/2.

Proof. Let G be a maximal spanning subgraph of G under the constraints that
G[Ao] Q G1 and A(Gl) S D/2—1. Note that G[Ao]UG[A] Q Gl. Set G2 = G—Gl.
So G9 only contains AgA-edges. Further, since A(G) < D — 2, the maximality of Gy
implies that A(G2) < D/2 — 1.

Define an auxiliary graph G’, obtained from G as follows: write Ag = {a1,...,am}-
Add a new vertex set A = {a,...,a,,} to Gy. For each i <m and x € A, we add
an edge between a; and z if and only if a;z is an edge in Go.

Thus G'[Ap U A] is isomorphic to G; and G'[A(, A] is isomorphic to G2. By
construction and since dg(z) < D/2—1 for all x € A, we have that A(G') < D/2—1.
Hence, Propositionimplies that E(G’) can be decomposed into D /2 edge-disjoint
matchings My, ..., Mp o such that [|[M;| —[M;|| <1 for all i, j < D/2.

By identifying each vertex a; € Aj with the corresponding vertex a; € Ay,
My, ..., Mp/y correspond to edge-disjoint subgraphs Pi,. .., Pp/y of G such that

e Pi,..., Pp) together cover all the edges in G;

e |e(P) —e(Pj)| <1foralli,j<D/2
Note that dps,(z) < 1 for each z € V(G’). Thus dp,(z) < 1 for each € A and
dp,(x) < 2 for each x € Ap. This implies that any cycle in P; must lie in G[Ay].
However, M; is a matching and G'[A}] U G'[Ag, Aj] contains no edges. Therefore, P;
contains no cycle, and so F; is a path system such that any internal vertex on a path
in P; lies in Ag. Hence Py, ..., Pp/y satisfy (i) and (ii). O

Lemma 5.6. Let 0 < 1/n K e K&/ K61 K eg K e3 Keyg < 1/K < 1. Suppose
that (G, A, Ao, B, By) is an (e,€', K, D)-framework with |G| = n and D > n/200.
Let Ao, A1,...,Ax and By, Bi,...,Bg be a (K,m,¢e,e1,e9)-partition for G. Let
HZ-? be a localized slice of G as guaranteed by Lemma . Define ¢ and q as in .
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Suppose that t := (1 — 20e4)D/2K? € N. If e(B') > e3n, set t* to be the largest
integer which is at most ct and is divisible by K?. Otherwise, set t* := 0. Define

0 if e(A") < e3n;
ly:=14 a—b if e(A") > e3n but e(B') < e3n;
a+q—+c otherwise
and
0 0 if e(B'") < e3n;
7\ b+qg+c otherwise.
Then Hi? has a decomposition into t edge-disjoint path systems Pi,..., P, and a

spanning subgraph Gf} with the following properties:
(i) For each s <t, any internal vertex on a path in Ps lies in Agy;
(ii) e(P1) = -~ =e(Pr) = [la] and e(Ppr11) = --- = e(P) = [la];

(iii) e(Ps) < /en for every s < t;

(iv) A(Gf}) <13e4D/K2.

The analogous assertion (with £, replaced by C, and Ay replaced by By) holds for
each localized slice Hg of G. Furthermore, [£g] — [ly] = [4a] — |4p] = a —b.
Proof. Note that (5.9) and (FR3) together imply that {,D/2 < (a + g+ ¢)D/2 =
e(A’) < en? and so [¢,] < y/zn. Thus (iii) will follow from (ii). So it remains to
prove (i), (ii) and (iv). We split the proof into three cases.

Case 1. e(4') <e3n

(FR2) and (FR4) imply that e(A") —e(B’) = (a—b)D/2 > 0. So e(B') < e(4’) <
esn. Thus ¢, = £, = 0. Set G{} = H{? and Gf; = Hg Therefore, (iv) is satisfied
as A(H{?) < e(A') < egn < 13e4D/K?. Further, (i) and (ii) are vacuous (i.e. we set
each Ps to be the empty graph on V(G)).

Note that a = b since otherwise a > b and therefore (FR2) implies that e(A’) >
(a—b)D/2 > D/2 > e3n, a contradiction. Hence, [£,]|—[ly] = [la]—[lp] = 0 = a—b.
Case 2. ¢(A') > e3n and e(B’) < esn

Since £, = 0 in this case, we set Gf; = Hg and each P;s to be the empty graph on
V(G). Then as in Case 1, (i), (ii) and (iv) are satisfied with respect to Hg Further,

clearly [€] = [€s] = [fa) — (o] = a —b.
Note that a > b since otherwise ¢ = b and thus e(A’)

contradiction to the case assumptions. Since e(A’) — e(B’)
Lemma [5.3(iii) implies that

e(H{) > (1 —9e2)e(A')/K? — 9ean/K? > (1 — 9e2)(a — b)D/(2K?) — 9eon/K*
(5.10) > (1 —e3)(a—b)D/(2K?) > (a — b)t.
Similarly, Lemma [5.3{iii) implies that
(5.11) e(H;}