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Background

Theorem (Schur 1916)

∀ r ∈ N ∃ n ∈ N s.t. whenever [n] := {1, . . . , n} is r -coloured
=⇒ monochromatic solution to x + y = z.

Given finite A ⊆ N,

S(A) :=

{∑
x∈B

x : B ⊆ A, B 6= ∅

}
.

Theorem (Folkman 1960s)

∀ r , k ∈ N ∃ n = F (k , r) s.t. whenever [n] is r -coloured =⇒ ∃ a
set A ⊂ [n] s.t.

|A| = k;

S(A) ⊆ [n] is monochromatic
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Upper bound to Folkman’s theorem

Theorem (Folkman 1960s)

∀ r , k ∈ N ∃ n = F (k , r) s.t. whenever [n] is r -coloured =⇒ ∃ a
set A ⊂ [n] s.t.

|A| = k;

S(A) ⊆ [n] is monochromatic

Set
F (k) := F (k, 2).

Theorem (Taylor 1980)

F (k) ≤ k3
k.
..
3

(height 2k)
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Lower bounds for Folkman’s theorem

Theorem (Erdős and Spencer 1989)

F (k) ≥ 2(ck
2)/ log k for some absolute constant c > 0.

Question

F (k) ≥ 2ck
2
for some absolute constant c > 0?

Theorem (B.E.N.T.W 2017)

F (k) ≥ 2(2
k−1)/k
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Proof idea

Given any k-set A ⊆ N,

k(k + 1)

2
≤ |S(A)| ≤ 2k − 1.

For example, if A = {1, . . . , k} then |S(A)| = k(k+1)
2 .

If A = {21, . . . , 2k} then |S(A)| = 2k − 1.

If colouring in a ‘random-like’ way, want to deal with A s.t.
S(A) is ‘large’.
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The proof

Theorem (B.E.N.T.W 2017)

F (k) ≥ 2(2
k−1)/k

Proof of theorem:

Let n := b2(2k−1)/kc
2-colour [n] s.t.:

(1) Randomly red/blue colour the odds
(2) Extend to a 2-colouring for [n] s.t. the colour of x different to

2x for all x .

e.g. 3 red, 6 blue, 12 red...

Fix A ⊆ [n] of size k with S(A) ⊆ [n].
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The proof

Claim

P(S(A) monochromatic) ≤ 21−2
k−1

Proof:
b
Case 1: |S(A)| ≤ 2k − 2
b
=⇒ ∃ B1 6= B2 ⊆ A s.t.

∑
x∈B1

x =
∑

x∈B2
x

b
=⇒ May assume B1 ∩ B2 = ∅

b
=⇒ ∃ 2 elements y and 2y in S(A)

b
=⇒ S(A) not monochromatic,

b
i.e. P(S(A) monochromatic) = 0
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The proof

Case 2: |S(A)| = 2k − 1
b

∀ odd m ∈ N, let
Gm := {m, 2m, 4m, . . . } ∩ [n]

Note [n] = G1 ∪ G3 ∪ G5 ∪ . . .

Subclaim: S(A) intersects ≥ 2k−1 of the Gm

To prove subclaim, first suppose there is an odd r ∈ A. Then

|S(A \ {r})| = 2k−1 − 1

Further, ∀ x ∈ S(A \ {r}),

either x odd or x + r odd

So at least (2k−1 − 1) + 1 = 2k−1 odds in S(A) =⇒ subclaim.
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The proof

Case 2: |S(A)| = 2k − 1
b

∀ odd m ∈ N, let
Gm := {m, 2m, 4m, . . . } ∩ [n]

Note [n] = G1 ∪ G3 ∪ G5 ∪ . . .

Subclaim: S(A) intersects ≥ 2k−1 of the Gm

For each x ∈ Gm, colour of x independent of colour of
y ∈ Gm∗ for m 6= m∗.

So

P(S(A) is monochromatic) ≤
(

1

2

)2k−1

× 2 = 21−2
k−1
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The proof

Claim

P(S(A) monochromatic) ≤ 21−2
k−1

Define

X := # sets s.t. |A| = k and S(A) monochromatic

E(X ) ≤
(
n

k

)
21−2

k−1
< 1

=⇒ ∃ a 2-colouring of [n] where X = 0.
b
So

F (k) ≥ n = b2(2k−1)/kc
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