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Abstract. In a sequence of four papers, we prove the following results (via a
unified approach) for all sufficiently large n:

(i) [1-factorization conjecture] Suppose that n is even and D ≥ 2dn/4e − 1.
Then every D-regular graph G on n vertices has a decomposition into perfect
matchings. Equivalently, χ′(G) = D.

(ii) [Hamilton decomposition conjecture] Suppose that D ≥ bn/2c. Then every
D-regular graph G on n vertices has a decomposition into Hamilton cycles
and at most one perfect matching.

(iii) We prove an optimal result on the number of edge-disjoint Hamilton cycles
in a graph of given minimum degree.

According to Dirac, (i) was first raised in the 1950s. (ii) and (iii) answer questions
of Nash-Williams from 1970. The above bounds are best possible. In the current
paper, we show the following: suppose that G is close to a complete balanced
bipartite graph or to the union of two cliques of equal size. If we are given a
suitable set of path systems which cover a set of ‘exceptional’ vertices and edges
of G, then we can extend these path systems into an approximate decomposition
of G into Hamilton cycles (or perfect matchings if appropriate).

1. Introduction

1.1. Background and results. In a sequence of four papers, we develop a uni-
fied approach to prove the following results on Hamilton decompositions and 1-
factorizations. The first of these results confirms the so-called 1-factorization con-
jecture for all sufficiently large graphs. (A 1-factorization of a graph G consists of
a set of edge-disjoint perfect matchings covering all edges of G.) This conjecture
was first stated explicitly by Chetwynd and Hilton [2, 3]. However, they wrote that
according to Dirac, it was already discussed in the 1950s.

Theorem 1.1. There exists an n0 ∈ N such that the following holds. Let n,D ∈ N
be such that n ≥ n0 is even and D ≥ 2dn/4e − 1. Then every D-regular graph G on
n vertices has a 1-factorization. Equivalently, χ′(G) = D.
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The bound on the degree in Theorem 1.1 is best possible. Nash-Williams [13, 14]
raised the related problem of finding a Hamilton decomposition in an even-regular
graph. Here a decomposition of an (even-regular) graph G into Hamilton cycles
consists of a set of edge-disjoint Hamilton cycles covering all edges of G. If G is a
regular graph of odd degree, it is natural to ask for a perfect matching in G together
with a decomposition of the remaining edges into Hamilton cycles.

Theorem 1.2. There exists an n0 ∈ N such that the following holds. Let n,D ∈ N
be such that n ≥ n0 and D ≥ bn/2c. Then every D-regular graph G on n vertices
has a decomposition into Hamilton cycles and at most one perfect matching.

Again, the bound on the degree in Theorem 1.2 is best possible. In particular,
the theorem settles the problem of Nash-Williams for all sufficiently large graphs.

Finally (in combination with [6]), we also prove an optimal result on the number
of edge-disjoint Hamilton cycles one can guarantee in a graph of given minimum
degree, which (as a special case) answers another question of Nash-Williams. For a
detailed discussion of the results and their background we refer to [9].

1.2. Overall structure of the argument. For all of our main results, we split the
argument according to the structure of the graph G under consideration:

(i) G is close to the complete balanced bipartite graph Kn/2,n/2;
(ii) G is close to the union of two disjoint copies of a clique Kn/2;

(iii) G is a ‘robust expander’.

Roughly speaking, G is a robust expander if for every set S of vertices, the neigh-
bourhood of S is at least a little larger than |S|, even if we delete a small proportion
of the vertices and edges of G (see Section 4.3). The main result of [10] states that
every dense regular robust expander has a Hamilton decomposition. This immedi-
ately implies Theorems 1.1 and 1.2 in Case (iii). Case (i) is proved in [4]. Case (ii) is
proved in [7, 9]. Moreover, [9] also includes a more detailed discussion of the overall
structure of the proof.

1.3. Contribution of the current paper. The arguments in [4, 9] make use of an
‘approximate decomposition’ result, which is proved in the current paper: suppose
that G is as in Case (i) or (ii). Suppose also that we are given a suitable set of
path systems which cover a certain set of ‘exceptional’ vertices and edges of G, then
we can extend these path systems into an approximate decomposition of G into
Hamilton cycles (or perfect matchings if appropriate). The precise statements are
given in Lemma 3.2 for Case (i) and Lemma 3.1 for Case (ii).

Roughly speaking, the strategy for the proof of Lemma 3.1 is as follows. By defi-
nition, G contains disjoint sets A and B of size about n/2 which induce two almost
complete graphs. First we reduce the problem of finding an approximate decomposi-
tion of G to that of finding approximate Hamilton decompositions of suitable graphs
G∗A and G∗B. (Here G∗A is an almost complete multigraph with vertex set A which
contains G[A], and G∗B is defined similarly.) Moreover, each Hamilton cycle C in this
approximate decomposition is required to contain a certain path system P . We find
these Hamilton cycles by first extending P into a path system which is ‘balanced’
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with respect to a given blown-up cycle. This balanced path system is extended
into a 1-factor F using edges which wind around the blown-up cycle. Finally, F is
transformed into a Hamilton cycle C using some edges which were set aside earlier.
(In particular, most edges of each Hamilton cycle in our approximate decomposition
wind around a blown-up cycle.) A more detailed sketch is given in Section 5.1. The
argument for the bipartite case (i) is more involved but uses similar ideas (in fact,
some intermediate results are used in both cases).

This paper is organized as follows. After introducing some notation, we state the
main results (Lemmas 3.1 and 3.2) in Section 3. After introducing some tools in
Section 4, we prove Lemma 3.1 in Sections 5–7. We then prove Lemma 3.2 using a
similar approach in the final section.

2. Notation

The digraphs considered in this paper do not contain loops and we allow at most
two edges between any pair of distinct vertices, at most one edge in each direction.
Given a graph or digraph G, we write V (G) for its vertex set, E(G) for its edge set,
e(G) := |E(G)| for the number of edges in G and |G| := |V (G)| for the number of
vertices in G.

If G is a graph and v is a vertex of G, we write NG(v) for the set of all neighbours
of v in G. If A ⊆ V (G), we write dG(v,A) for the number of neighbours of v in G
which lie in A. We write δ(G) for the minimum degree of G, ∆(G) for its maximum
degree and χ′(G) for the edge-chromatic number of G. Given A,B ⊆ V (G), we write
eG(A) for the number of edges of G which have both endvertices in A and eG(A,B)
for the number of AB-edges of G, i.e. for the number of edges of G which have one
endvertex in A and its other endvertex in B. If A∩B = ∅, we denote by G[A,B] the
bipartite subgraph of G whose vertex classes are A and B and whose edges are all
AB-edges of G. We often omit the index G if the graph G is clear from the context.
An AB-path is a path having one endvertex in A and its other endvertex in B. We
often view a matching M as a graph (in which every vertex has degree precisely
one).

If G is a digraph, we write xy for an edge directed from x to y. If xy ∈ E(G),
we say that y is an outneighbour of x and x is an inneighbour of y. We write d+

G(x)

for the outdegree of x (i.e. for the number of outneighbours of x in G) and d−G(x)

for the indegree of x (i.e. for the number of inneighbours of x). We write d+
G(x,A)

for the number of outneighbours of x lying inside A and define d−G(x,A) similarly.
We denote the minimum outdegree of G by δ+(G) and the minimum indegree by
δ−(G). Given A,B ⊆ V (G), an AB-edge is an edge with initial vertex in A and final
vertex in B, and eG(A,B) denotes the number of these edges in G. If A ∩ B = ∅,
we denote by G[A,B] the bipartite subdigraph of G whose vertex classes are A and
B and whose edges are all AB-edges of G. By a bipartite digraph G = G[A,B] we
mean a digraph which only contains AB-edges. A digraph H is a 1-factor of another
digraph G if V (H) = V (G) and every vertex in H has in- and outdegree precisely
one in H.
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Given a vertex set V and two multigraphs G and H with V (G), V (H) ⊆ V , we
write G+H for the multigraph whose vertex set is V (G) ∪ V (H) and in which the
multiplicity of xy in G + H is the sum of the multiplicities of xy in G and in H
(for all x, y ∈ V (G) ∪ V (H)). Similarly, if H := {H1, . . . ,H`} is a set of graphs, we
define G+H := G+H1 + · · ·+H`. We write G−H for the subgraph of G which is
obtained from G by deleting all the edges in E(G) ∩ E(H). We say that a graph G
has a decomposition into H1, . . . ,Hr if G = H1 + · · · + Hr and the Hi are pairwise
edge-disjoint.

A path system is a graph Q which is the union of vertex-disjoint paths (some of
them might be trivial). We say that P is a path in Q if P is a component of Q. A
path sequence is a digraph which is the union of vertex-disjoint directed paths (some
of them might be trivial).

Let V1, . . . , Vk be pairwise disjoint sets of vertices and let C = V1 . . . Vk be a
directed cycle on these sets. We say that an edge xy of a digraph R winds around C
if there is some i such that x ∈ Vi and y ∈ Vi+1. In particular, we say that R winds
around C if all edges of R wind around C.

In order to simplify the presentation, we omit floors and ceilings and treat large
numbers as integers whenever this does not affect the argument. The constants in
the hierarchies used to state our results have to be chosen from right to left. More
precisely, if we claim that a result holds whenever 0 < 1/n� a� b� c ≤ 1 (where
n is the order of the graph), then this means that there are non-decreasing functions
f : (0, 1] → (0, 1], g : (0, 1] → (0, 1] and h : (0, 1] → (0, 1] such that the result
holds for all 0 < a, b, c ≤ 1 and all n ∈ N with b ≤ f(c), a ≤ g(b) and 1/n ≤ h(a).
We will not calculate these functions explicitly. Hierarchies with more constants are
defined in a similar way. Given a, b, c ∈ R, we will write a = b± c as shorthand for
b− c ≤ a ≤ b+ c.

3. Statements of the main results

3.1. Statement for the two cliques case. In this section, we state our approxi-
mate decomposition result in the case when G is a graph which is close to the union
of two disjoint copies of Kn/2. Suppose that A,A0, B,B0 forms a partition of a
vertex set V of size n such that |A| = |B|. Let V0 := A0 ∪ B0. Let A′ := A0 ∪ A
and B′ := B0 ∪ B. V0 will be a small set which consists of ‘exceptional’ vertices.
Below, we will define an ‘exceptional cover’, which is a path system which covers
the vertices in V0. Our aim is to extend such exceptional covers into edge-disjoint
Hamilton cycles (or pairs of edge-disjoint perfect matchings). As an intermediate
step, we will consider ‘exceptional systems’, which are exceptional covers that also
contain an appropriate number of ‘connections’ between A′ and B′.

Our main result (Lemma 3.1) then states the following: suppose that we are
given a graph G so that G[A] and G[B] are almost complete and that we are given
an appropriate set of edge-disjoint exceptional systems. Then we can extend these
exceptional systems into a set of edge-disjoint Hamilton cycles (and possibly perfect
matchings) ofG covering almost all edges ofG[A] andG[B]. Moreover, the additional
edges are all contained in G[A] +G[B].
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More precisely, an exceptional cover J is a graph which satisfies the following
properties:

(EC1) J is a path system with V0 ⊆ V (J) ⊆ V .
(EC2) dJ(v) = 2 for every v ∈ V0 and dJ(v) ≤ 1 for every v ∈ V (J) \ V0.
(EC3) eJ(A), eJ(B) = 0.

We say that J is an exceptional system with parameter ε0, or an ES for short, if J
satisfies the following properties:

(ES1) J is an exceptional cover.
(ES2) One of the following is satisfied:

(HES) The number of AB-paths in J is even and positive. In this case we say
J is a Hamilton exceptional system, or HES for short.

(MES) eJ(A′, B′) = 0. In this case we say J is a matching exceptional system,
or MES for short.

(ES3) J contains at most
√
ε0n AB-paths.

Note that by (EC2) every AB-path in J must be a maximal path in J . Moreover,
the number of AB-paths in J is the number of genuine ‘connections’ between A and
B (and thus between A′ and B′). If we want to extend J into a Hamilton cycle using
only edges induced by A and edges induced by B, this number clearly has to be even
and positive. Hamilton exceptional systems will always be extended into Hamilton
cycles and matching exceptional systems will always be extended into two disjoint
even cycles which together span all vertices (and thus consist of two edge-disjoint
perfect matchings).

We will need to consider exceptional systems which are ‘localized’ in the sense
that their vertices are contained in a small number of clusters of a given partition.
To formalize this, let K,m ∈ N and ε0 > 0. A (K,m, ε0)-partition P of a set V of
vertices is a partition of V into sets A0, A1, . . . , AK and B0, B1, . . . , BK such that
|Ai| = |Bi| = m for all i ≥ 1 and |A0 ∪ B0| ≤ ε0|V |. The sets A1, . . . , AK and
B1, . . . , BK are called clusters of P and A0, B0 are called exceptional sets. We often
write V0 for A0 ∪B0 and think of the vertices in V0 as ‘exceptional vertices’. Unless
stated otherwise, whenever P is a (K,m, ε0)-partition, we will denote the clusters
by A1, . . . , AK and B1, . . . , BK and the exceptional sets by A0 and B0. We will also
write A := A1 ∪ · · · ∪AK , B := B1 ∪ · · · ∪BK , A′ := A0 ∪A and B′ := B0 ∪B.

Given a (K,m, ε0)-partition P and 1 ≤ i, i′ ≤ K, we say that J is an (i, i′)-localized
exceptional system with respect to P (abbreviated as (i, i′)-ES ) if J is an exceptional
system and V (J) ⊆ V0 ∪Ai ∪Bi′ .

Lemma 3.1. Suppose that 0 < 1/n � ε0 � 1/K � ρ � 1 and 0 ≤ µ � 1,
where n,K ∈ N and K is odd. Suppose that G is a graph on n vertices and P is
a (K,m, ε0)-partition of V (G). Furthermore, suppose that the following conditions
hold:

(a) d(v,Ai) = (1− 4µ± 4/K)m and d(w,Bi) = (1− 4µ± 4/K)m for all v ∈ A,
w ∈ B and 1 ≤ i ≤ K.

(b) There is a set J which consists of at most (1/4 − µ − ρ)n edge-disjoint
exceptional systems with parameter ε0 in G.
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(c) J has a partition into K2 sets Ji,i′ (one for all 1 ≤ i, i′ ≤ K) such that each
Ji,i′ consists of precisely |J |/K2 (i, i′)-ES with respect to P.

(d) If J contains matching exceptional systems then |A′| = |B′| is even.

Then G contains |J | edge-disjoint spanning subgraphs H1, . . . ,H|J | which satisfy the
following properties:

• For each Hs there is some Js ∈ J such that Js ⊆ Hs.
• If Js is a Hamilton exceptional system, then Hs is a Hamilton cycle of G.

If Js is a matching exceptional system, then Hs is the edge-disjoint union of
two perfect matchings in G.

3.2. Statement for the bipartite case. We now state an analogous result for the
case when our graph G is close to the complete balanced bipartite graph Kn/2,n/2.
Let P := {A0, A1, . . . , AK , B0, B1, . . . , BK} be a (K,m, ε0)-partition of a set V of
n vertices. Define A,A′, B,B′ as in the previous subsection. We now define the
analogue of an (i, i′)-localized exceptional system for the bipartite case as follows.

Given 1 ≤ i1, i2, i3, i4 ≤ K and ε0 > 0, an (i1, i2, i3, i4)-balanced exceptional system
with respect to P and parameter ε0, or (i1, i2, i3, i4)-BES for short, is a path system
J with V (J) ⊆ A0 ∪ B0 ∪ Ai1 ∪ Ai2 ∪ Bi3 ∪ Bi4 such that the following conditions
hold:

(BES1) dJ(v) = 2 for every vertex v ∈ V0 = A0 ∪ B0 and dJ(v) ≤ 1 for every vertex
v ∈ Ai1 ∪Ai2 ∪Bi3 ∪Bi4 .

(BES2) Every edge of J [A ∪B] is either an Ai1Ai2-edge or a Bi3Bi4-edge.
(BES3) The edges in J cover precisely the same number of vertices in A as in B.
(BES4) e(J) ≤ ε0n.

Note that (BES2) implies that an (i1, i2, i3, i4)-BES does not contain AB-edges.
Furthermore, an (i1, i2, i3, i4)-BES is also, for example, an (i2, i1, i4, i3)-BES. We
sometimes omit the indices i1, i2, i3, i4 and just refer to a balanced exceptional sys-
tem.

We can now state the analogue of Lemma 3.1 for the case when G is close to
Kn/2,n/2.

Lemma 3.2. Suppose that 0 < 1/n � ε0 � 1/K � ρ � 1 and 0 ≤ µ � 1,
where n,K ∈ N and K is even. Suppose that G is a graph on n vertices and P is
a (K,m, ε0)-partition of V (G). Furthermore, suppose that the following conditions
hold:

(a) d(v,Bi) = (1− 4µ± 4/K)m and d(w,Ai) = (1− 4µ± 4/K)m for all v ∈ A,
w ∈ B and 1 ≤ i ≤ K.

(b) There is a set J which consists of at most (1/4−µ−ρ)n edge-disjoint balanced
exceptional systems with parameter ε0 in G.

(c) J has a partition into K4 sets Ji1,i2,i3,i4 (one for all 1 ≤ i1, i2, i3, i4 ≤ K)
such that each Ji1,i2,i3,i4 consists of precisely |J |/K4 (i1, i2, i3, i4)-BES with
respect to P.

(d) For each v ∈ A∪B the number of J ∈ J such that v is incident with an edge
of J is at most 2ε0n.
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Then G contains |J | edge-disjoint Hamilton cycles such that each of these Hamilton
cycles contains some J ∈ J .

4. Useful results

4.1. A Chernoff estimate. We will use the following Chernoff bound for the bino-
mial distribution (see e.g. [5, Corollary 2.3]). Recall that a binomial random variable
with parameters (n, p) is the sum of n independent Bernoulli variables, each taking
value 1 with probability p or 0 with probability 1− p.

Proposition 4.1. Suppose X has binomial distribution and 0 < a < 3/2. Then

P(|X − EX| ≥ aEX) ≤ 2e−
a2

3
EX .

4.2. Regular spanning subgraphs. The following lemma implies that any almost
complete balanced bipartite graph has an approximate decomposition into perfect
matchings. The proof is a straightforward application of the MaxFlowMinCut the-
orem.

Lemma 4.2. Suppose that 0 < 1/m � ε � ρ � 1, that 0 ≤ µ ≤ 1/4 and that
m,µm, ρm ∈ N. Suppose that Γ is a bipartite graph with vertex classes U and V of
size m and with (1 − µ − ε)m ≤ δ(Γ) ≤ ∆(Γ) ≤ (1 − µ + ε)m. Then Γ contains
a spanning (1 − µ − ρ)m-regular subgraph Γ′. In particular, Γ contains at least
(1− µ− ρ)m edge-disjoint perfect matchings.

Proof. We first obtain a directed network N from Γ by adding a source s and a
sink t. We add a directed edge su of capacity (1 − µ − ρ)m for each u ∈ U and a
directed edge vt of capacity (1− µ− ρ)m for each v ∈ V . We give all the edges in Γ
capacity 1 and direct them from U to V .

Our aim is to show that the capacity of any (s, t)-cut is at least (1 − µ − ρ)m2.
By the MaxFlowMinCut theorem this would imply that N admits an integer-valued
flow of value (1− µ− ρ)m2 which by construction of N implies the existence of our
desired subgraph Γ′.

Consider any (s, t)-cut (S, S) where S = {s} ∪ S1 ∪ S2 with S1 ⊆ U and S2 ⊆ V .
Let S1 := U\S1 and S2 := V \S2. The capacity of this cut is

(1− µ− ρ)m(m− |S1|) + e(S1, S2) + (1− µ− ρ)m|S2|

and therefore our aim is to show that

e(S1, S2) ≥ (1− µ− ρ)m(|S1| − |S2|).(4.1)

If |S1| ≤ (1− µ− ρ)m, then

e(S1, S2) ≥ ((1− µ− ε)m− |S2|) |S1|
= (1− µ− ρ)m(|S1| − |S2|) + (ρ− ε)m|S1|+ |S2| ((1− µ− ρ)m− |S1|)
≥ (1− µ− ρ)m(|S1| − |S2|).

Thus, we may assume that |S1| > (1− µ− ρ)m. Note that |S1| − |S2| = |S2| − |S1|.
Therefore, by a similar argument, we may also assume that |S2| > (1−µ− ρ)m and
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so |S2| ≤ (µ+ ρ)m. This implies that

e(S1, S2) ≥
∑
x∈S1

dΓ(x)−
∑
y∈S2

dΓ(y) ≥ (1− µ− ε)m|S1| − (1− µ+ ε)m|S2|

= (1− µ− ρ)m(|S1| − |S2|) + ρm(|S1| − |S2|)− εm(|S1|+ |S2|)
> (1− µ− ρ)m(|S1| − |S2|) + (1− 2µ− 2ρ)ρm2 − (1 + µ+ ρ)εm2

≥ (1− µ− ρ)m(|S1| − |S2|).

(Note that the last inequality follows as ε� ρ� 1 and µ ≤ 1/4.) So indeed (4.1) is
satisfied, as desired. �

4.3. Robust expansion. Given 0 < ν ≤ τ < 1, we say that a digraph G on n
vertices is a robust (ν, τ)-outexpander, if for all S ⊆ V (G) with τn ≤ |S| ≤ (1− τ)n
the number of vertices that have at least νn inneighbours in S is at least |S| + νn.
The following result was derived in [8] as a straightforward consequence of the result
from [11] that every robust outexpander of linear minimum degree has a Hamilton
cycle.

Theorem 4.3. Suppose that 0 < 1/n � γ � ν � τ � η < 1. Let G be a digraph
on n vertices with δ+(G), δ−(G) ≥ ηn which is a robust (ν, τ)-outexpander. Let
y1, . . . , yp be distinct vertices in V (G) with p ≤ γn. Then G contains a directed
Hamilton cycle visiting y1, . . . , yp in this order.

4.4. A regularity concept for sparse graphs. We now formulate a concept of
ε-superregularity which is suitable for ‘sparse’ graphs. Let G be a bipartite graph
with vertex classes U and V , both of size m. Given A ⊆ U and B ⊆ V , we
write d(A,B) := e(A,B)/|A||B| for the density of G between A and B. Given
0 < ε, d, d∗, c < 1, we say that G is (ε, d, d∗, c)-superregular if the following conditions
are satisfied:

(Reg1) Whenever A ⊆ U and B ⊆ V are sets of size at least εm, then d(A,B) =
(1± ε)d.

(Reg2) For all u, u′ ∈ V (G) we have |N(u) ∩N(u′)| ≤ c2m.
(Reg3) ∆(G) ≤ cm.
(Reg4) δ(G) ≥ d∗m.

Note that the above definitions also make sense if G is ‘sparse’ in the sense that
d < ε (which will be the case in our proofs). A bipartite digraph G = G[U, V ] is
(ε, d, d∗, c)-superregular if this holds for the underlying undirected graph of G.

The following observation follows immediately from the definition.

Proposition 4.4. Suppose that 0 < 1/m � d∗, d, ε, ε′, c � 1 and 2ε′ ≤ d∗. Let
G be an (ε, d, d∗, c)-superregular bipartite graph with vertex classes U and V of size
m. Let U ′ ⊆ U and V ′ ⊆ V with |U ′| = |V ′| ≥ (1 − ε′)m. Then G[U ′, V ′] is
(2ε, d, d∗/2, 2c)-superregular.

The following two simple observations were made in [10].
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Proposition 4.5. Suppose that 0 < 1/m� d∗, d, ε, c� 1. Let G be an (ε, d, d∗, c)-
superregular bipartite graph with vertex classes U and V of size m. Suppose that G′

is obtained from G by removing at most ε2dm edges incident to each vertex from G.
Then G′ is (2ε, d, d∗ − ε2d, c)-superregular.

Lemma 4.6. Let 0 < 1/m � ν � τ � d ≤ ε � µ, ζ ≤ 1/2 and let G be an
(ε, d, ζd, d/µ)-superregular bipartite graph with vertex classes U and V of size m.
Let A ⊆ U be such that τm ≤ |A| ≤ (1 − τ)m. Let B ⊆ V be the set of all those
vertices in V which have at least νm neighbours in A. Then |B| ≥ |A|+ νm.

5. Systems and Balanced extensions

5.1. Sketch proof of Lemma 3.1. Roughly speaking, the Hamilton cycles we
find will have the following structure: let A1, . . . , AK ⊆ A and B1, . . . , BK ⊆ B
be the clusters of the (K,m, ε0)-partition P of V (G) given in Lemma 3.1. So K
is odd. Let RA be the complete graph on A1, . . . , AK and RB be the complete
graph on B1, . . . , BK . Since K is odd, Walecki’s theorem [12] implies that RA has
a Hamilton decomposition CA,1, . . . , CA,(K−1)/2, and similarly RB has a Hamilton
decomposition CB,1, . . . , CB,(K−1)/2. Every Hamilton cycle C we construct in G will
have the property that there is a j so that almost all edges of C[A] wind around
CA,j and almost all edges of C[B] wind around CB,j . Below, we describe the main
ideas involved in the construction of the Hamilton cycles in more detail.

As indicated above, the first idea is that we can reduce the problem of finding the
required edge-disjoint Hamilton cycles (and possibly perfect matchings) in G to that
of finding appropriate Hamilton cycles on each of A and B separately. We achieve
this by introducing suitable path systems J∗A and J∗B.

More precisely, let J be a set of edge-disjoint exceptional systems as given in
Lemma 3.1. By deleting some edges if necessary, we may further assume that J is an
edge-decomposition of G−G[A]−G[B]. Thus, in order to prove Lemma 3.1, we have
to find |J | suitable edge-disjoint subgraphs HA,1, . . . ,HA,|J | of G[A] and |J | suitable
edge-disjoint subgraphs HB,1, . . . ,HB,|J | of G[B] such that Hs := HA,s +HB,s + Js
are the desired spanning subgraphs of G. To prove this, for each J ∈ J , we define
two auxiliary subgraphs J∗A and J∗B with the following crucial properties:

(α1) J∗A and J∗B are matchings whose vertices are contained in A and B, respec-
tively;

(α2) the union of any Hamilton cycle C∗A in G[A] + J∗A containing J∗A (in some
suitable order) and any Hamilton cycle C∗B in G[B] + J∗B containing J∗B (in
some suitable order) corresponds to either a Hamilton cycle of G containing
J or to the union of two edge-disjoint perfect matchings of G containing J .

Furthermore, J determines which of the cases in (α2) holds: If J is a Hamilton
exceptional system, then (α2) will give a Hamilton cycle of G, while in the case
when J is a matching exceptional system, (α2) will give the union of two edge-
disjoint perfect matchings of G. So roughly speaking, this allows us to work with
multigraphs G∗A := G[A] +

∑
J∈J J

∗
A and G∗B := G[B] +

∑
J∈J J

∗
B rather than G in

the two steps. Furthermore, the processes of finding Hamilton cycles in G∗A and in
G∗B are independent (see Section 6.1 for more details).
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By symmetry, it suffices to consider G∗A in what follows. The second idea of the
proof is that as an intermediate step, we decompose G∗A into blown-up Hamilton
cycles G∗A,j . Roughly speaking, we will then find an approximate Hamilton decom-
position of each G∗A,j separately.

More precisely, recall that RA denotes the complete graph whose vertex set is
{A1, . . . , AK}. As mentioned above,RA has a Hamilton decomposition CA,1, . . . , CA,(K−1)/2.
We decompose G[A] into edge-disjoint subgraphs GA,1, . . . , GA,(K−1)/2 such that
each GA,j corresponds to the ‘blow-up’ of CA,j , i.e. GA,j [U,W ] = G[U,W ] for
every edge UW ∈ E(CA,j). (The edges of G lying inside one of the clusters
A1, . . . , AK are deleted.) We also partition the set {J∗A : J ∈ J } into (K − 1)/2 sets
J ∗A,1, . . . ,J ∗A,(K−1)/2 of roughly equal size. Set G∗A,j := GA,j +J ∗A,j . Thus in order to

prove Lemma 3.1, we need to find |J ∗A,j | edge-disjoint Hamilton cycles in G∗A,j (for

each j ≤ (K − 1)/2). Since G∗A,j is still close to being a blow-up of the cycle CA,j ,
finding such Hamilton cycles seems feasible.

One complication is that in order to satisfy (α2), we need to ensure that each
Hamilton cycle in G∗A,j contains some J∗A ∈ J ∗A,j (and it must traverse the edges of

J∗A in some given order). To achieve this, we will both orient and order the edges
of J∗A. So we will actually consider an ordered directed matching J∗A,dir instead of

J∗A. (J∗A itself will still be undirected and unordered). We orient the edges of GA,j

such that the resulting oriented graph GA,j,dir is a blow-up of the directed cycle CA,j .
However, J∗A,dir may not be ‘locally balanced with respect to CA,j ’. This means

that it is impossible to extend J∗A,dir into a directed Hamilton cycle using only edges
of GA,j,dir. For example, suppose that GA,j,dir is a blow-up of the directed cycle
A1A2 . . . AK , i.e. each edge of GA,j,dir joins Ai to Ai+1 for some 1 ≤ i ≤ K. If J∗A,dir

is non-empty and V (J∗A,dir) ⊆ A1, then J∗A,dir cannot be extended into a directed
Hamilton cycle using edges of GA,j,dir only. Therefore, each J∗A,dir will first be ex-
tended into a ‘locally balanced path sequence’ PS. PS will have the property that
it can be extended to a Hamilton cycle using only edges of GA,j,dir. We will call the
set BEj consisting of all such PS for all J∗A ∈ J ∗A,j a balanced extension of J ∗A,j . BEj
will be constructed in Section 6.3, using edges from a sparse graph H ′ on A (which
is actually removed from G[A] before defining GA,1, . . . , GA,(K−1)/2).

Finally, we find the required directed Hamilton cycles in GA,j,dir+BEj in Section 7.
We construct these by first extending the path sequences in BEj into (directed)
1-factors, using edges which wind around the blow-up of CA,j . These are then
transformed into Hamilton cycles using a small set of edges set aside earlier (again
the set of these edges winds around the blow-up of CA,j).

5.2. Systems and balanced extensions. As mentioned above, the proof of Lemma 3.1
requires an edge-decomposition and orientation of G[A] and G[B] into blow-ups of
directed cycles as well as ‘balanced extensions’. These are defined in the current
subsection.

Let k,m ∈ N. A (k,m)-equipartition Q of a set V of vertices is a partition of V
into sets V1, . . . , Vk such that |Vi| = m for all i ≤ k. The Vi are called clusters of Q.
(G,Q, C) is a (k,m, µ, ε)-cyclic system if the following properties hold:
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(Sys1) G is a digraph and Q is a (k,m)-equipartition of V (G).
(Sys2) C is a directed Hamilton cycle on Q and G winds around C. Moreover, for

every edge UW of C, we have d+
G(u,W ) = (1− µ± ε)m for every u ∈ U and

d−G(w,U) = (1− µ± ε)m for every w ∈W .

So roughly speaking, such a cyclic system is a blown-up Hamilton cycle.
Let Q be a (k,m)-equipartition of V and let C be a directed Hamilton cycle on Q.

We say that a digraph H with V (H) ⊆ V is locally balanced with respect to C if for
every edge UW of C, the number of edges of H with initial vertex in U equals the
number of edges of H with final vertex in W .

Let M be a directed matching. We say a path sequence PS is a Vi-extension of
M with respect to Q if each edge of M is contained in a distinct directed path in PS
having its final vertex in Vi. LetM := {M1, . . . ,Mq} be a set of directed matchings.
A set BE of path sequences is a balanced extension of M with respect to (Q, C) and
parameters (ε, `) if BE satisfies the following properties:

(BE1) BE consists of q path sequences PS1, . . . , PSq such that V (PSi) ⊆ V for each
i ≤ q, each PSi is locally balanced with respect to C and PS1−M1, . . . , PSq−
Mq are edge-disjoint from each other.

(BE2) Each PSs is a Vis-extension of Ms with respect to Q for some is ≤ k. More-
over, for each i ≤ k there are at most `m/k indices s ≤ q such that is = i.

(BE3) |V (PSs) ∩ Vi| ≤ εm for all i ≤ k and s ≤ q. Moreover, for each i ≤ k, there
are at most `m/k path sequences PSs ∈ BE such that V (PSs) ∩ Vi 6= ∅.

Note that the ‘moreover part’ of (BE3) implies the ‘moreover part’ of (BE2).
Given an ordered directed matching M = {f1, . . . , f`}, we say that a directed

cycle C ′ is consistent with M if C ′ contains M and visits the edges f1, . . . , f` in this
order. The following observation will be useful: suppose that PS is a Vi-extension
of M and let xj be the final vertex of the path in PS containing fj . (So x1, . . . , x`
are distinct vertices of Vi.) Suppose also that C ′ is a directed cycle which contains
PS and visits x1, . . . , x` in this order. Then C ′ is consistent with M .

6. Finding systems and balanced extensions for the two cliques cases

Let G be a graph, let P be a (K,m, ε0)-partition of V (G) and let J be a set of
exceptional systems as given by Lemma 3.1. The aim of this section is to decompose
G[A] +G[B] into (k,m, µ, ε)-cyclic systems and to construct balanced extensions as
described in Section 5.1. First we need to define J∗A,dir and J∗B,dir for each exceptional
system J ∈ J . Recall from Section 5.1 that these are introduced in order to be able
to consider G[A] and G[B] separately (and thus to be able to ignore the exceptional
vertices in V0 = A0 ∪B0).

6.1. Defining the graphs J∗A,dir and J∗B,dir. Let A,A0, B,B0 be a partition of a
vertex set V on n vertices and let J be an exceptional system with parameter ε0.
Since each maximal path in J has endpoints in A∪B and internal vertices in V0, an
exceptional system J naturally induces a matching J∗AB on A∪B. More precisely, if
P1, . . . , P`′ are the non-trivial paths in J and xi, yi are the endpoints of Pi, then we
define J∗AB := {xiyi : i ≤ `′}. Thus eJ∗AB

(A,B) is equal to the number of AB-paths
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A B

A0 B0

(a) J

A B

A0 B0

(b) J∗AB

A B

A0 B0

(c) J∗

Figure 1. The thick lines illustrate the edges of J , J∗AB and J∗,
respectively.

in J . In particular, eJ∗AB
(A,B) is positive and even if J is a Hamilton exceptional

system, while eJ∗AB
(A,B) = 0 if J is a matching exceptional system. Without loss

of generality we may assume that x1y1, . . . , x2`y2` is an enumeration of the edges of
J∗AB[A,B], where xi ∈ A and yi ∈ B. Define

J∗A := J∗AB[A] ∪ {x2i−1x2i : 1 ≤ i ≤ `} and J∗B := J∗AB[B] ∪ {y2iy2i+1 : 1 ≤ i ≤ `}
(with indices considered modulo 2`). Let J∗ := J∗A + J∗B. So J∗ is a matching and
e(J∗) = e(J∗AB). Moreover, by (EC2), (EC3) and (ES3) we have

e(J∗) = e(J∗AB) ≤ |V0|+
√
ε0n.(6.1)

We will call the edges in J∗ fictive edges. Note that if J1 and J2 are two edge-disjoint
exceptional systems, then J∗1 and J∗2 may not be edge-disjoint.

We say that an (undirected) cycle C is consistent with J∗A if C contains J∗A and
(there is an orientation of C which) visits the vertices x1, . . . , x2` in this order. In a
similar way we define when a cycle is consistent with J∗B. The following proposition
is proved in [9]. It is illustrated in Figure 1.

Proposition 6.1. Suppose that A,A0, B,B0 forms a partition of a vertex set V . Let
J be an exceptional system. Let CA and CB be two cycles such that

• CA is a Hamilton cycle on A that is consistent with J∗A;
• CB is a Hamilton cycle on B that is consistent with J∗B.

Then the following assertions hold.

(i) If J is a Hamilton exceptional system, then CA +CB −J∗+J is a Hamilton
cycle on V .

(ii) If J is a matching exceptional system, then CA + CB − J∗ + J is the union
of a Hamilton cycle on A′ and a Hamilton cycle on B′. In particular, if both
|A′| and |B′| are even, then CA+CB−J∗+J is the union of two edge-disjoint
perfect matchings on V .

As mentioned in Section 5.1, we will orient and order the edges of J∗A and J∗B
in a suitable way to obtain J∗A,dir and J∗B,dir. Accordingly, we will actually need
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an oriented version of Proposition 6.1. For this, we first orient the edges of J∗A by
orienting the edge x2i−1x2i from x2i−1 to x2i for all i ≤ ` and the edges of J∗AB[A]
arbitrarily. Next we order these directed edges as f1, . . . , f`A such that fi = x2i−1x2i

for all i ≤ `, where `A := e(J∗A). Define J∗A,dir to be the ordered directed matching

{f1, . . . , f`A}. Similarly, to define J∗B,dir, we first orient the edges of J∗B by orienting

the edge y2iy2i+1 from y2i to y2i+1 for all i ≤ ` and the edges of J∗AB[B] arbitrarily.
Next we order these directed edges as f ′1, . . . , f

′
`B

such that f ′i = y2iy2i+1 for all i ≤ `,
where `B := e(J∗B). Define J∗B,dir to be the ordered directed matching {f ′1, . . . , f ′`B}.
Note that if J is an (i, i′)-ES, then V (J∗A,dir) ⊆ Ai and V (J∗B,dir) ⊆ Bi′ . Recall from
Section 5.2 that a directed cycle CA,dir is consistent with J∗A,dir if CA,dir contains
J∗A,dir and visits the edges f1, . . . , f`A in this order. The following proposition follows
easily from Proposition 6.1.

Proposition 6.2. Suppose that A,A0, B,B0 forms a partition of a vertex set V . Let
J be an exceptional system. Let CA,dir and CB,dir be two directed cycles such that

• CA,dir is a directed Hamilton cycle on A that is consistent with J∗A,dir;
• CB,dir is a directed Hamilton cycle on B that is consistent with J∗B,dir.

Then the following assertions hold, where CA and CB are the undirected cycles ob-
tained from CA,dir and CB,dir by ignoring the directions of all the edges.

(i) If J is a Hamilton exceptional system, then CA +CB −J∗+J is a Hamilton
cycle on V .

(ii) If J is a matching exceptional system, then CA + CB − J∗ + J is the union
of a Hamilton cycle on A′ and a Hamilton cycle on B′. In particular, if both
|A′| and |B′| are even, then CA+CB−J∗+J is the union of two edge-disjoint
perfect matchings on V .

6.2. Finding systems. In this subsection, we will decompose (and orient) G[A] into
cyclic systems (GA,j,dir,QA, CA,j), one for each j ≤ (K − 1)/2. Roughly speaking,
this corresponds to a decomposition into (oriented) blown-up Hamilton cycles. We
will achieve this by considering a Hamilton decomposition of RA, where RA is the
complete graph on {A1, . . . , AK}. So each CA,j corresponds to one of the Hamilton
cycles in this Hamilton decomposition. We will split the set {J∗A,dir : J ∈ J }
into subsets J ∗A,j and assign J ∗A,j to the jth cyclic system. Moreover, for each

j ≤ (K−1)/2, we will also set aside a sparse spanning subgraph HA,j of G[A], which
is removed from G[A] before the decomposition into cyclic systems. HA,j will be
used later on in order to find a balanced extension of J ∗A,j . We proceed similarly for

G[B].

Lemma 6.3. Suppose that 0 < 1/n � ε0 � 1/K � ρ � 1 and 0 ≤ µ � 1,
where n,K ∈ N and K is odd. Suppose that G is a graph on n vertices and P is
a (K,m, ε0)-partition of V (G). Furthermore, suppose that the following conditions
hold:

(a) d(v,Ai) = (1− 4µ± 4/K)m and d(w,Bi) = (1− 4µ± 4/K)m for all v ∈ A,
w ∈ B and 1 ≤ i ≤ K.
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(b) There is a set J which consists of at most (1/4 − µ − ρ)n edge-disjoint
exceptional systems with parameter ε0 in G.

(c) J has a partition into K2 sets Ji,i′ (one for all 1 ≤ i, i′ ≤ K) such that each
Ji,i′ consists of precisely |J |/K2 (i, i′)-ES with respect to P.

(d) If J contains matching exceptional systems then |A′| = |B′| is even.

Then for each 1 ≤ j ≤ (K−1)/2, there is a pair of tuples (GA,j ,QA, CA,j , HA,j ,J ∗A,j)

and (GB,j ,QB, CB,j , HB,j ,J ∗B,j) such that the following assertions hold:

(a1) Each of CA,1, . . . , CA,(K−1)/2 is a directed Hamilton cycle on QA := {A1, . . . , AK}
such that the undirected versions of these Hamilton cycles form a Hamilton
decomposition of the complete graph on QA.

(a2) J ∗A,1, . . . ,J ∗A,(K−1)/2 is a partition of {J∗A,dir : J ∈ J }.
(a3) Each J ∗A,j has a partition into K sets J ∗A,j,i (one for each 1 ≤ i ≤ K) such

that |J ∗A,j,i| ≤ (1−4µ−3ρ)m/K and each J∗A,dir ∈ J ∗A,j,i is an ordered directed

matching with e(J∗A,dir) ≤ 5K
√
ε0m and V (J∗A,dir) ⊆ Ai.

(a4) GA,1, . . . , GA,(K−1)/2, HA,1, . . . ,HA,(K−1)/2 are edge-disjoint subgraphs of G[A].
(a5) HA,j [Ai, Ai′ ] is a 10K

√
ε0m-regular graph for all j ≤ (K − 1)/2 and all

i, i′ ≤ K with i 6= i′.
(a6) For each j ≤ (K−1)/2, there exists an orientation GA,j,dir of GA,j such that

(GA,j,dir,QA, CA,j) is a (K,m, 4µ, 5/K)-cyclic system.
(a7) Analogous statements to (a1)–(a6) hold for CB,j ,J ∗B,j , GB,j , HB,j for all j ≤

(K − 1)/2, with QB := {B1, . . . , BK}.

Proof. Since K is odd, by Walecki’s theorem the complete graph on {A1, . . . , AK}
has a Hamilton decomposition. (a1) follows by orienting the edges of each of these
Hamilton cycles to obtain directed Hamilton cycles CA,1, . . . , CA,(K−1)/2.

For each i, i′ ≤ K, we partition Ji,i′ into (K − 1)/2 sets Ji,i′,j (one for each
j ≤ (K − 1)/2) whose sizes are as equal as possible. Note that if J ∈ Ji,i′,j , then
J is an (i, i′)-ES and so V (J∗A,dir) ⊆ Ai. Since P is a (K,m, ε0)-partition of V (G),

|V0| ≤ ε0n and (1− ε0)n ≤ 2Km. Hence,

e(J∗A,dir) ≤ e(J∗)
(6.1)

≤ |V0|+
√
ε0n ≤ 5

√
ε0Km.

(a2) is satisfied by setting J ∗A,j,i :=
⋃

i′≤K{J∗A,dir : J ∈ Ji,i′,j} and J ∗A,j :=
⋃

i≤K J ∗A,j,i.
Note that

|J ∗A,j,i| ≤
∑
i′≤K

(
2|Ji,i′ |
K − 1

+ 1

)
(c)
=

2|J |
K(K − 1)

+K
(b)

≤ (1/2− 2µ− 2ρ)n

K(K − 1)
+K

≤ (1− 4µ− 3ρ)m/K

as 2Km ≥ (1− ε0)n and 1/n� ε0 � 1/K � ρ. Hence (a3) holds.
For i, i′ ≤ K with i 6= i′, apply Lemma 4.2 with G[Ai, Ai′ ], 4/K, ρ, 4µ playing

the roles of Γ, ε, ρ, µ to obtain a spanning (1 − 4µ − ρ)m-regular subgraph Hi,i′

of G[Ai, Ai′ ]. Since Hi,i′ is a regular bipartite graph and ε0 � 1/K, ρ � 1 and
0 ≤ µ� 1, there exist (K−1)/2 edge-disjoint 10K

√
ε0m-regular spanning subgraphs
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Hi,i′,1, . . . ,Hi,i′,(K−1)/2 of Hi,i′ . Set HA,j :=
∑

1≤i,i′≤K Hi,i′,j for each j ≤ (K−1)/2.

So (a5) holds.
Define GA := G[A] − (HA,1 + · · · + HA,(K−1)/2). Note that, as ε0 � 1/K, (a)

implies that dGA
(v,Ai) = (1 − 4µ ± 5/K)m for all v ∈ A and all i ≤ K. For

each j ≤ (K − 1)/2, let GA,j be the graph on A whose edge set is the union of
GA[Ai, Ai′ ] for each edge AiAi′ ∈ E(CA,j). Define GA,j,dir to be the oriented graph
obtained from GA,j by orienting every edge in GA[Ai, Ai′ ] from Ai to Ai′ (for each
edge AiAi′ ∈ E(CA,j)). Note that (GA,j,dir,QA, CA,j) is a (K,m, 4µ, 5/K)-cyclic
system for each j ≤ (K − 1)/2. Therefore, (a4) and (a6) hold. (a7) can be proved
by a similar argument. �

6.3. Constructing balanced extensions. Let (GA,j ,QA, CA,j , HA,j ,J ∗A,j) be one
of the 5-tuples obtained by Lemma 6.3. The next lemma will be applied to find a
balanced extension of J ∗A,j with respect to (QA, CA,j), using edges of HA,j (after a

suitable orientation of these edges). Consider any J∗A,dir ∈ J ∗A,j,i. Lemma 6.3(a3)

guarantees that V (J∗A,dir) ⊆ Ai, and so J∗A,dir is an Ai-extension of itself. Therefore,
in order to find a balanced extension of J ∗A,j , it is enough to extend each J∗A,dir ∈ J ∗A,j

into a locally balanced path sequence by adding a directed matching which is vertex-
disjoint from J∗A,dir in such a way that (BE3) is satisfied as well.

Lemma 6.4. Suppose that 0 < 1/m � ε � 1 and that m, k ∈ N with k ≥ 3. Let
Q = {V1, . . . , Vk} be a (k,m)-equipartition of a set V of vertices and let C = V1 . . . Vk
be a directed cycle. Suppose that there exist a set M and a graph H on V such that
the following conditions hold:

(i) M can be partitioned into k setsM1, . . . ,Mk such that |Mi| ≤ m/k and each
M ∈ Mi is an ordered directed matching with e(M) ≤ εm and V (M) ⊆ Vi
(for all i ≤ k).

(ii) H[Vi−1, Vi+1] is a 2εm-regular graph for all i ≤ k.

Then there exist an orientation Hdir of H and a balanced extension BE ofM with re-
spect to (Q, C) and parameters (2ε, 3) such that each path sequence in BE is obtained
from some M ∈M by adding edges of Hdir.

Proof. Fix i ≤ k and write Mi := {M1, . . . ,M|Mi|}. We orient each edge
in H[Vi−1, Vi+1] from Vi−1 to Vi+1. By (ii), H[Vi−1, Vi+1] can be decomposed into
2εm perfect matchings. Each perfect matching can be split into 1/2ε matchings,
each containing at least εm edges. Recall from (i) that |Mi| ≤ m/k and e(Mj) ≤
εm for all Mj ∈ Mi. Hence, H[Vi−1, Vi+1] contains |Mi| edge-disjoint matchings
M ′1, . . . ,M

′
|Mi| with e(M ′j) = e(Mj) for all j ≤ |Mi|. Define PSj := Mj ∪M ′j . Note

that PSj is locally balanced with respect to C. Also, PSj is a Vi-extension of Mj

(as Mj ∈Mi and so V (Mj) ⊆ Vi by (i)). Moreover,

|V (PSj) ∩ Vi′ | =


|V (Mj)| = 2e(Mj) ≤ 2εm if i′ = i,

e(Mj) ≤ εm if i′ = i+ 1 or i′ = i− 1,

0 otherwise.

(6.2)
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For each i ≤ k, set PSi := {PS1, . . . , PS|Mi|}. Therefore, BE :=
⋃

i≤k PSi is a

balanced extension of M with respect to (Q, C) and parameters (2ε, 3). Indeed,
(BE3) follows from (6.2). As remarked after the definition of a balanced extension,
this also implies the ‘moreover part’ of (BE2). Hence the lemma follows (by orienting
the remaining edges of H arbitrarily). �

7. Constructing Hamilton cycles via balanced extensions

Recall that a cyclic system can be viewed as a blow-up of a Hamilton cycle.
Given a cyclic system (G,Q, C) and a balanced extension BE of a set M of ordered
directed matchings, our aim is to extend each path sequence in BE into a Hamilton
cycle using edges of G. Moreover, each Hamilton cycle has to be consistent with a
distinct M ∈ M. This is achieved by the following lemma, which is the key step in
proving Lemma 3.1.

Lemma 7.1. Suppose that 0 < 1/m � ε0, ε
′, 1/k � 1/`, ρ ≤ 1, that 0 ≤ µ, ρ � 1

and that m, k, `, q ∈ N with q ≤ (1− µ− ρ)m. Let (G,Q, C) be a (k,m, µ, ε′)-cyclic
system and let M = {M1, . . . ,Mq} be a set of q ordered directed matchings. Suppose
that BE = {PS1, . . . , PSq} is a balanced extension of M with respect to (Q, C) and
parameters (ε0, `) such that for each s ≤ q, Ms ⊆ PSs. Then there exist q Hamilton
cycles C1, . . . , Cq in G+BE such that for all s ≤ q, Cs contains PSs and is consistent
with Ms, and such that C1 − PS1, . . . , Cq − PSq are edge-disjoint subgraphs of G.

Lemma 7.1 will be used both in the two cliques case (i.e. to prove Lemma 3.1)
and in the bipartite case (i.e. to prove Lemma 3.2).

We now give an outline of the proof of Lemma 7.1, where for simplicity we assume
that the path sequences in the balanced extension BE are edge-disjoint from each
other. Our first step is to remove a sparse subdigraph H from G (see Lemma 7.2),
and set G′ := G − H. Next we extend each path sequence in BE into a (directed)
1-factor using edges of G′ such that all these 1-factors are edge-disjoint from each
other (see Lemma 7.3). Finally, we use edges of H to transform the 1-factors into
Hamilton cycles (see Lemma 7.6).

The following lemma enables us to find a suitable sparse subdigraph H of G.
Recall that (ε, d, d∗, c)-superregularity was defined in Section 4.4.

Lemma 7.2. Suppose that 0 < 1/m� ε′ � γ � ε� 1 and 0 ≤ µ� ε. Let G be a
bipartite graph with vertex classes U and W of size m such that d(v) = (1−µ±ε′)m
for all v ∈ V (G). Then there is a spanning subgraph H of G which satisfies the
following properties:

(i) H is (ε, 2γ, γ, 3γ)-superregular.
(ii) Let G′ := G−H. Then dG′(v) = (1− µ± 4γ)m for all v ∈ V (G).

Proof. Note that δ(G) ≥ (1 − µ − ε′)m ≥ (1 − ε3)m as ε′, µ � ε � 1. Thus,
whenever A ⊆ U and B ⊆W are sets of size at least εm, then

eG(A,B) ≥ (|B| − ε3m)|A| ≥ (1− ε2)|A||B|.(7.1)
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Let H be a random subgraph of G which is obtained by including each edge of G
with probability 2γ. (7.1) implies that whenever A ⊆ U and B ⊆W are sets of size
at least εm then

2γ(1− ε2)|A||B| ≤ E(eH(A,B)) ≤ 2γ|A||B|.(7.2)

Further, for all u, u′ ∈ V (H),

E(|NH(u) ∩NH(u′)|) ≤ 4γ2m(7.3)

and

3γm/2 ≤ E(δ(H)),E(∆(H)) ≤ 2γm.(7.4)

Thus, (7.2)–(7.4) together with Proposition 4.1 imply that, with high probability, H
is an (ε, 2γ, γ, 3γ)-superregular pair. Since ∆(H) ≤ 3γm by (Reg3) and ε′ � γ, G′

satisfies (ii). �

7.1. Transforming a balanced extension into 1-factors. The next lemma will
be used to extend each locally balanced path sequence PS belonging to a balanced
extension BE into a (directed) 1-factor using edges from G′. We will select the edges
from G′ in such a way that (apart from the path sequences) the 1-factors obtained
are edge-disjoint.

Lemma 7.3. Suppose that 0 < 1/m � 1/k ≤ ε � ρ, 1/` ≤ 1, that ρ � 1, that
0 ≤ µ ≤ 1/4 and that q,m, k, ` ∈ N with q ≤ (1 − µ − ρ)m. Let (G,Q, C) be a
(k,m, µ, ε)-cyclic system, where C = V1 . . . Vk. Suppose that there exists a set PS of
q path sequences PS1, . . . , PSq satisfying the following conditions:

(i) Each PSs ∈ PS is locally balanced with respect to C.
(ii) |V (PSs) ∩ Vi| ≤ εm for all i ≤ k and s ≤ q. Moreover, for each i ≤ k, there

are at most `m/k PSs such that V (PSs) ∩ Vi 6= ∅.
Then there exist q directed 1-factors F1, . . . , Fq in G + PS such that for all s ≤ q
PSs ⊆ Fs and F1 − PS1, . . . , Fq − PSq are edge-disjoint subgraphs of G.

Proof. By changing the values of ρ, µ and ε slightly, we may assume that ρm, µm ∈
N. For each s ≤ q and each i ≤ k, let V s,−

i (or V s,+
i ) be the set of vertices in Vi with

indegree (or outdegree) one in PSs. Since each PSs is locally balanced with respect

to C, |V s,+
i | = |V s,−

i+1 | ≤ εm for all s ≤ q and all i ≤ k (where the inequality follows
from (ii)). To prove the lemma, it suffices to show that for each i ≤ k, there exist
edge-disjoint directed matchings M1

i , . . . ,M
q
i , so that each M s

i is a perfect matching

in G[Vi \V s,+
i , Vi+1 \V s,−

i+1 ]. The lemma then follows by setting Fs := PSs+
∑

i≤kM
s
i

for each s ≤ q.
Fix any i ≤ k. Without loss of generality (by relabelling the PSs if necessary)

we may assume that there exists an integer s0 such that V s,+
i 6= ∅ for all s ≤ s0

and V s,+
i = ∅ for all s0 < s ≤ q. By (ii), s0 ≤ `m/k. Suppose that for some s
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with 1 ≤ s ≤ s0 we have already found our desired matchings M1
i , . . . ,M

s−1
i in

G[Vi, Vi+1]. Let

V ′i := Vi \ V s,+
i , V ′i+1 := Vi+1 \ V s,−

i+1 and Gs := G[V ′i , V
′
i+1]−

∑
s′<s

M s′
i .

Note that each v ∈ V ′i satisfies

d+
Gs

(v) ≥ d+
G(v, Vi+1)− (|V s,−

i+1 |+ s0) ≥ (1− µ− (2ε+ `/k))m ≥ (1− µ−
√
ε)m

by (Sys2) and the fact that 1/k ≤ ε � 1/`. Similarly, each v ∈ V ′i+1 satisfies

d−Gs
(v) ≥ (1− µ−

√
ε)m. Thus Gs contains a perfect matching M s

i (this follows, for

example, from Hall’s theorem). So we can find edge-disjoint matchings M1
i , . . . ,M

s0
i

in G[Vi, Vi+1].
Let G′ be the subdigraph of G[Vi, Vi+1] obtained by removing all the edges in

M1
i , . . . ,M

s0
i . Since V s,+

i = ∅ for all s0 < s ≤ q (and thus also V s,−
i+1 = ∅ for all

such s), in order to prove the lemma it suffices to find q − s0 edge-disjoint perfect
matchings in G′. Each v ∈ Vi satisfies

d+
G′(v) = d+

G(v, Vi+1)± s0 = d+
G(v, Vi+1)± `m/k = (1− µ±

√
ε)m

by (Sys2) and the fact that 1/k ≤ ε � 1/`. Similarly, each v ∈ Vi+1 satisfies
d−G′(v) = (1 − µ ±

√
ε)m. Set ρ′ := ρ + s0/m. Note that ρ′m ∈ N and ρ ≤ ρ′ ≤

ρ + `/k ≤ 2ρ as 1/k � 1/`, ρ. Hence, ε � ρ′ � 1. Thus we can apply Lemma 4.2
with G′, ρ′,

√
ε playing the roles of Γ, ρ, ε to obtain (1−µ−ρ′)m edge-disjoint perfect

matchings in G′. Since (1−µ−ρ′)m = (1−µ−ρ)m−s0 ≥ q−s0, there exists q−s0

edge-disjoint perfect matchings M s0+1
i , . . . ,M q

i in G′. This completes the proof of
the lemma. �

7.2. Merging cycles to obtain Hamilton cycles. Recall that we have removed
a sparse subdigraph H from G and that G′ = G−H. Our final step in the proof of
Lemma 7.1 is to merge the cycles from each of the 1-factors Fs returned by Lemma 7.3
to obtain edge-disjoint (directed) Hamilton cycles. We will apply Lemma 7.4 to
merge the cycles of each Fs, using the edges in H. However, the Hamilton cycles
obtained in this way might not be consistent with the matching Ms ∈ M that lies
in PSs. Lemma 7.5 is designed to deal with this issue.

Lemma 7.4 was proved in [10] and was first used to construct approximate Hamil-
ton decompositions in [15]. Roughly speaking, it asserts the following: suppose that
we have a 1-factor F where most of the edges wind around a cycle C = V1 . . . Vk.
Suppose also that we have a digraph H which winds around C. (More precisely, H is
the union of superregular pairs H[Vi, Vi+1].) Then we can transform F into a Hamil-
ton cycle C ′ by using a few edges of H. The crucial point is that when applying this
lemma, the edges in C ′ − F can be taken from a small number of the superregular
pairs H[Vi, Vi+1] (i.e. the set J in Lemma 7.4 will be very small compared to k).
In this way, we can transform many 1-factors F into edge-disjoint Hamilton cycles
without using any of the pairs H[Vi, Vi+1] too often. This in turn means that we will
be able to transform all of our 1-factors into edge-disjoint Hamilton cycles by using
the edges of a single sparse graph H.
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Lemma 7.4. Suppose that 0 < 1/m � d′ � ε � d � ζ, 1/t ≤ 1/2. Let V1, . . . , Vk
be pairwise disjoint clusters, each of size m, and let C = V1 . . . Vk be a directed cycle
on these clusters. Let H be a digraph on V1∪· · ·∪Vk and let J ⊆ E(C). For each edge
ViVi+1 ∈ J , let V 1

i ⊆ Vi and V 2
i+1 ⊆ Vi+1 be such that |V 1

i | = |V 2
i+1| ≥ m/100 and

such that H[V 1
i , V

2
i+1] is (ε, d′, ζd′, td′/d)-superregular. Suppose that F is a 1-regular

digraph with V1 ∪ · · · ∪ Vk ⊆ V (F ) such that the following properties hold:

(i) For each edge ViVi+1 ∈ J the digraph F [V 1
i , V

2
i+1] is a perfect matching.

(ii) For each cycle D in F there is some edge ViVi+1 ∈ J such that D contains a
vertex in V 1

i .
(iii) Whenever ViVi+1, VjVj+1 ∈ J are such that J avoids all edges in the segment

Vi+1CVj of C from Vi+1 to Vj, then F contains a path Pij joining some vertex
ui+1 ∈ V 2

i+1 to some vertex u′j ∈ V 1
j such that Pij winds around C.

Then we can obtain a directed cycle on V (F ) from F by replacing F [V 1
i , V

2
i+1] with

a suitable perfect matching in H[V 1
i , V

2
i+1] for each edge ViVi+1 ∈ J .

Lemma 7.5. Suppose that 0 < 1/m � γ � d′ � ε � d � ζ, 1/t ≤ 1/2. Let
V1, . . . , Vk be pairwise disjoint clusters, each of size m, and let C = V1 . . . Vk be
a directed cycle on these clusters. Let 1 ≤ i ≤ k be fixed and let V 1

i ⊆ Vi and
V 2
i+1 ⊆ Vi+1 be such that |V 1

i | = |V 2
i+1| ≥ m/100. Suppose that H = H[V 1

i , V
2
i+1] is

an (ε, d′, ζd′, td′/d)-superregular bipartite digraph. Let X = {x1, . . . , xp} ⊆ V 1
i with

|X| ≤ γm. Suppose that C ′ is a directed cycle with V1 ∪ · · · ∪ Vk ⊆ V (C ′) such that
C ′[V 1

i , V
2
i+1] is a perfect matching. Then we can obtain a directed cycle on V (C ′)

from C ′ that visits the vertices x1, . . . , xp in order by replacing C ′[V 1
i , V

2
i+1] with a

suitable perfect matching in H[V 1
i , V

2
i+1].

Proof. Pick ν and τ such that γ � ν � τ � d′. For every u ∈ V 1
i , starting at

u we move along the cycle C ′ (but in the opposite direction to the orientation of
the edges) and let f(u) be the first vertex on C ′ in V 2

i+1. (Note that f(u) exists

since C ′[V 1
i , V

2
i+1] is a perfect matching. Moreover, f(u) 6= f(v) if u 6= v.) Define

an auxiliary digraph A on V 2
i+1 such that N+

A (f(u)) := N+
H (u). So A is obtained

by identifying each pair (u, f(u)) into one vertex with an edge from (u, f(u)) to
(v, f(v)) if H has an edge from u to f(v). So Lemma 4.6 applied with d′, d/t
playing the roles of d, µ implies that A is a robust (ν, τ)-outexpander. Moreover,
δ+(A), δ−(A) ≥ ζd′|V 2

i+1| = ζd′|A| by (Reg4). Thus Theorem 4.3 implies that A has
a Hamilton cycle visiting f(x1), . . . , f(xp) in order, which clearly corresponds to a
perfect matching M in H with the desired property. �

The above proof idea is actually quite similar to that for Lemma 7.4 itself. We
now apply Lemmas 7.4 and 7.5 to each 1-factor Fs given by Lemma 7.3 and obtain
edge-disjoint Hamilton cycles that are consistent with the Ms.

Lemma 7.6. Suppose that 0 < 1/m� ε0, 1/k � γ � ε� 1, that γ � 1/` ≤ 1 and
that q,m, k, ` ∈ N. Let Q = {V1, . . . , Vk} be a (k,m)-equipartition of a vertex set V
and let C = V1 . . . Vk be a directed cycle. Let M = {M1, . . . ,Mq} be a set of ordered
directed matchings. Suppose that BE = {PS1, . . . , PSq} is a balanced extension of
M with respect to (Q, C) and parameters (ε0, `). Furthermore, suppose that there
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exist 1-regular digraphs F1, . . . , Fq on V such that for each s ≤ q, PSs ⊆ Fs and such
that Fs−PSs winds around C. Let H be a digraph on V which is edge-disjoint from
each of F1−PS1, . . . , Fq−PSq and such that H[Vi, Vi+1] is (ε, 2γ, γ, 3γ)-superregular
for all i ≤ k. Then there exist q Hamilton cycles C1, . . . , Cq in F1 + · · · + Fq + H
such that Cs contains PSs and is consistent with Ms for all s ≤ q and such that
C1 − F1, . . . , Cq − Fq are edge-disjoint subgraphs of H.

Proof. Recall from (BE2) that for each s ≤ q there is some is ≤ k such that PSs
is a Vis-extension of Ms. In particular, Ms ⊆ PSs. Let Is be the set consisting of all
i ≤ k such that Vi ∩ V (PSs) 6= ∅. Since BE is a balanced extension with parameters
(ε0, `), (BE3) implies that for every i ≤ k we have

|{s : i ∈ Is}| ≤ `m/k.(7.5)

For each s ≤ q in turn, we are going to show that there exist Hamilton cycles
C1, . . . , Cs in F1 + · · ·+ Fs +H such that

(as) PSs′ ⊆ Cs′ and Cs′ is consistent with Ms′ for all s′ ≤ s,
(bs) E(Cs′ − Fs′) ⊆

⋃
i∈Is′

E(H[Vi, Vi+1]) for all s′ ≤ s,
(cs) C1 − F1, . . . , Cs − Fs are pairwise edge-disjoint.

So suppose that for some s with 1 ≤ s ≤ q we have already constructed C1, . . . , Cs−1.
We now construct Cs as follows. Let Hs := H −

∑
s′<s(Cs′ − Fs′). Define a new

constant d such that ε� d� 1.
Our first task is to apply Lemma 7.4 to Fs to merge all the cycles in Fs into

a Hamilton cycle using only edges of Hs. For each i ∈ Is, let V −i be the set of

vertices in Vi with indegree one in PSs and let V +
i be the set of vertices in Vi with

outdegree one in PSs. Set V 1
i := Vi\V +

i and V 2
i+1 := Vi+1\V −i+1. Since PSs is locally

balanced, |V +
i | = |V

−
i+1| ≤ ε0m for all i ∈ Is (where the inequality holds by (BE3)).

By (bs−1) and (7.5), Hs[Vi, Vi+1] is obtained from H[Vi, Vi+1] by removing at most
|{s′ < s : i ∈ Is′}| ≤ `m/k ≤ ε2γm edges from each vertex (as 1/k � ε, γ, 1/`). So
by Proposition 4.5, Hs[Vi, Vi+1] is still (2ε, 2γ, γ/2, 3γ)-superregular for each i ∈ Is.
Recall that |Vi \ V 1

i | = |Vi+1 \ V 2
i+1| ≤ ε0m. Hence Hs[V

1
i , V

2
i+1] is (4ε, 2γ, γ/4, 6γ)-

superregular by Proposition 4.4 and thus also (4ε, 2γ, γ/4, 4γ/d)-superregular.
Let Es := {ViVi+1 : i ∈ Is}. Our aim is to apply Lemma 7.4 with Fs, Es, Hs, 4ε,

2γ, 2, 1/8 playing the roles of F , J , H, ε, d′, t, ζ. Our assumption that Fs − PSs
winds around C implies that for each i ∈ Is, Fs[V

1
i , V

2
i+1] is a perfect matching. So

Lemma 7.4(i) holds. Note that every final vertex of a nontrivial path in PSs must lie
in
⋃

i∈Is V
1
i , implying Lemma 7.4(ii). Finally, recall that |V 1

i |, |V 2
i+1| ≥ (1− ε0)m for

all i ∈ Is. Together with our assumption that Fs − PSs winds around C, this easily
implies Lemma 7.4(iii). So we can apply Lemma 7.4 to obtain a Hamilton cycle
C ′s which is constructed from Fs by replacing Fs[V

1
i , V

2
i+1] with a suitable perfect

matching in Hs[V
1
i , V

2
i+1] for each i ∈ Is. In particular, PSs ⊆ C ′s.

Let H ′s := Hs − (C ′s − Fs). Recall that Ms is an ordered directed matching,
say Ms = {e1, . . . , er}, and that PSs is a Vis-extension of Ms. For each j ≤ r,
let Pj be the path in PSs containing ej and let xj denote the final vertex of Pj .
Hence x1, . . . , xr are distinct and lie in V 1

is
. Together with (BE3) this implies that

r ≤ ε0m. Note that H ′s[V
1
is
, V 2

is+1] is obtained from Hs[V
1
is
, V 2

is+1] by removing a
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perfect matching, namely C ′s[V
1
is
, V 2

is+1]. So by Proposition 4.5, H ′s[V
1
is
, V 2

is+1] is still

(8ε, 2γ, γ/8, 4γ/d)-superregular. Apply Lemma 7.5 with C ′s, is, H
′
s[V

1
is
, V 2

is+1], ε0, 8ε,
2γ, 2, 1/16 playing the roles of C ′, i, H, γ, ε, d′, t, ζ to obtain a Hamilton cycle
Cs which visits x1, . . . , xr in this order and is constructed from C ′s by replacing the
perfect matching C ′s[V

1
is
, V 2

is+1] with a suitable perfect matching in H ′s[V
1
is
, V 2

is+1]. In
particular, PSs ⊆ Cs.

Note that E(Cs−Fs) ⊆
⋃

i∈Is E(Hs[Vi, Vi+1]), so (bs) and (cs) hold. Since PSs ⊆
Cs and xj is the final vertex of Pj and since ej ∈ E(Pj), it follows that Cs visits the
edges e1, . . . , er in order. So Cs is consistent with Ms, implying (as). �

Proof of Lemma 7.1. Let Q = {V1, . . . , Vk}. By relabeling the Vi if necessary, we
may assume that C = V1 . . . Vk. Define new constants γ and ε such that ε0, ε

′, 1/k �
γ � ε, ρ, 1/` and µ� ε� 1. For each i ≤ k we apply Lemma 7.2 to (the underlying
undirected graph of) G[Vi, Vi+1] in order to obtain a spanning subdigraph H of G
which satisfies the following properties:

(i′) For each i ≤ k, H[Vi, Vi+1] is (ε, 2γ, γ, 3γ)-superregular.
(ii′) Let G′ := G−H. Then (G′,Q, C) is a (k,m, µ, 4γ)-cyclic system.

Indeed, (ii′) follows easily from Lemma 7.2(ii) and the definition of a (k,m, µ, 4γ)-
cyclic system. Recall that BE = {PS1, . . . , PSq} with Ms ⊆ PSs for all s ≤ q.
Our next aim is to apply Lemma 7.3 with G′, BE , 4γ playing the roles of G, PS, ε
to obtain 1-factors Fs extending the PSs. Note that (BE1) and (BE3) imply that
conditions (i) and (ii) of Lemma 7.3 hold. So we can apply Lemma 7.3 to obtain
q (directed) 1-factors F1, . . . , Fq in G′ + BE such that PSs ⊆ Fs for all s ≤ q and
F1−PS1, . . . , Fq−PSq are edge-disjoint subgraphs of G′. Recall from (ii′) and (Sys2)
that G′ (and thus also Fs − PSs) winds around C. So we can apply Lemma 7.6 to
obtain q Hamilton cycles C1, . . . , Cq in F1 + · · ·+Fq +H such that Cs contains PSs
and is consistent with Ms for all s ≤ q, and such that C1−F1, . . . , Cq −Fq are edge-
disjoint subgraphs of H. Since H and G′ are edge-disjoint, C1 − PS1, . . . , Cq − PSq
are edge-disjoint subgraphs of G. �

We can now put everything together to prove the approximate decomposition
lemma in the two cliques case. First we apply Lemma 6.3 to obtain cyclic systems
and sparse subgraphs HA,j and HB,j . Then we apply Lemma 6.4 to balance out the
exceptional systems into balanced extensions. Next, we apply Lemma 7.1 to A and
B separately to extend the balanced extensions into Hamilton cycles.

Proof of Lemma 3.1. Apply Lemma 6.3 toG,P and J to obtain (for each 1 ≤ j ≤
(K−1)/2) pairs of tuples (GA,j ,QA, CA,j , HA,j ,J ∗A,j) and (GB,j ,QB, CB,j , HB,j ,J ∗B,j)

which satisfy (a1)–(a7). Fix j ≤ (K − 1)/2. Write J ∗A,j = {J∗A,dir,1, . . . , J
∗
A,dir,q},

where

(7.6) q := |J ∗A,j | ≤ (1− 4µ− 3ρ)m

by (a3). We now apply Lemma 6.4 with J ∗A,j ,QA, CA,j , HA,j ,K, 5K
√
ε0 playing

the roles of M,Q, C,H, k, ε to obtain an orientation HA,j,dir of HA,j and a bal-
anced extension BEj of J ∗A,j with respect to (QA, CA,j) and parameters (10K

√
ε0, 3).
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(Note that (a3) and (a5) imply conditions (i) and (ii) of Lemma 6.4.) Write BEj :=
{PS1, . . . , PSq} such that J∗A,dir,s ⊆ PSs for all s ≤ q. So (BE1) implies that PS1 −
J∗A,dir,1, . . . , PSq−J∗A,dir,q are edge-disjoint subgraphs ofHA,j,dir. Since (GA,j,dir,QA, CA,j)

is a (K,m, 4µ, 5/K)-cyclic system by (a6), (7.6) implies that we can apply Lemma 7.1
as follows:

GA,j,dir QA CA,j K J ∗A,j q 4µ 3ρ 10K
√
ε0 5/K 3

plays role of G Q C k M q µ ρ ε0 ε′ `

In this way we obtain q directed Hamilton cycles C ′A,j,1, . . . , C
′
A,j,q in GA,j,dir + BEj

such that C ′A,j,s contains PSs and is consistent with J∗A,dir,s for all s ≤ q. Moreover,

C ′1−J∗A,dir,1, . . . , C
′
q−J∗A,dir,q are edge-disjoint subgraphs of GA,j,dir+HA,j,dir. Repeat

this process for all j ≤ (K − 1)/2.
Write J = {J1, . . . , J|J |}. Recall from (a2) that the J ∗A,1, . . . ,J ∗A,(K−1)/2 parti-

tion {J∗A,dir : J ∈ J }. Therefore, we have obtained |J | directed Hamilton cycles

C ′A,1, . . . , C
′
A,|J | on vertex set A. Moreover, by relabelling the Js if necessary, we

may assume that C ′A,s is consistent with (Js)
∗
A,dir for all s ≤ |J |. Furthermore, (a4)

implies that the undirected versions of C ′A,1 − (J1)∗A,dir, . . . , C
′
A,|J | − (J|J |)

∗
A,dir are

edge-disjoint spanning subgraphs of G[A].
Similarly we obtain directed Hamilton cycles C ′B,1, . . . , C

′
B,|J | on vertex set B so

that (Js)
∗
B,dir ⊆ C ′B,s for all s ≤ |J |. Let Hs be the undirected graph obtained

from C ′A,s +C ′B,s− J∗s + Js by ignoring all the orientations of the edges. Recall that
J1, . . . , J|J | are edge-disjoint exceptional systems and that they are edge-disjoint
from the C ′A,s + C ′B,s − J∗s by (EC3). So H1, . . . ,H|J | are edge-disjoint spanning
subgraphs of G. Finally, Proposition 6.2 implies that H1, . . . ,H|J | are indeed as
desired in Lemma 3.1. �

8. The bipartite case

Roughly speaking, the idea in this case is to reduce the problem of finding the
desired edge-disjoint Hamilton cycles in G to that of finding suitable Hamilton cycles
in an almost complete balanced bipartite graph. This is achieved by considering the
graphs J∗dir, which we define in the next subsection. The main steps are similar
to those in the proof of Lemma 3.1 (in fact, we re-use several of the lemmas, in
particular Lemma 7.1).

We will construct the graphs J∗dir, which are based on balanced exceptional sys-
tems J , in Section 8.1. In Section 8.2 we describe a decomposition of G into blown-up
Hamilton cycles. We will construct balanced extensions in Section 8.3 (this is more
difficult than in the two cliques case). Finally, we obtain the desired Hamilton cycles
using Lemma 7.1 (in the same way as in the two cliques case).

8.1. Defining the graphs J∗dir for the bipartite case. Let P be a (K,m, ε)-
partition of a vertex set V and let J be a balanced exceptional system with respect
to P (as defined in Section 3.2). We construct J∗ in two steps. First we will
construct a matching J∗AB on A∪B and then J∗. Since each maximal path in J has
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A B

A0 B0

(a) J

A B

A0 B0

(b) J∗AB

A B

A0 B0

(c) J∗

Figure 2. The thick lines illustrate the edges of J , J∗AB and J∗,
respectively.

endpoints in A ∪ B and internal vertices in V0 by (BES1), a balanced exceptional
system J naturally induces a matching J∗AB on A ∪B. More precisely, if P1, . . . , P`′

are the non-trivial paths in J and xi, yi are the endpoints of Pi, then we define
J∗AB := {xiyi : i ≤ `′}. Thus J∗AB is a matching by (BES1) and e(J∗AB) ≤ e(J).
Moreover, J∗AB and E(J) cover exactly the same vertices in A. Similarly, they cover
exactly the same vertices in B. So (BES3) implies that e(J∗AB[A]) = e(J∗AB[B]).
We can write E(J∗AB[A]) = {x1x2, . . . , x2s−1x2s}, E(J∗AB[B]) = {y1y2, . . . , y2s−1y2s}
and E(J∗AB[A,B]) = {x2s+1y2s+1, . . . , xs′ys′}, where xi ∈ A and yi ∈ B. Define
J∗ := {xiyi : 1 ≤ i ≤ s′}. Note that

e(J∗) = e(J∗AB) ≤ e(J).(8.1)

All edges of J∗ are called fictive edges. We say that an (undirected) cycle D is
consistent with J∗ if D contains J∗ and (there is an orientation of D which) visits
the vertices x1, y1, x2, . . . , ys′−1, xs′ , ys′ in this order. The following proposition is
proved in [4]. It is illustrated in Figure 2.

Proposition 8.1. Let P be a (K,m, ε)-partition of a vertex set V . Let G be a graph
on V and let J be a balanced exceptional system with respect to P. If J ⊆ G and D
is a Hamilton cycle of G[A ∪B] + J∗ which is consistent with J∗, then D − J∗ + J
is a Hamilton cycle of G.

Again, we will actually need a directed version, which follows immediately from
the above. For this, define J∗dir to be the ordered directed matching {f1, . . . , fs′}
such that fi is a directed edge from xi to yi for all i ≤ s′. So J∗dir consists only
of AB-edges. Similarly to the undirected case, we say that a directed cycle Ddir is
consistent with J∗dir if Ddir contains J∗dir and visits the edges f1, . . . , fs′ in this order.

Proposition 8.2. Let P be a (K,m, ε)-partition of a vertex set V . Let G be a graph
on V and let J be a balanced exceptional system with respect to P such that J ⊆ G.
Suppose that Ddir is a directed Hamilton cycle on A∪B such that Ddir is consistent
with J∗dir. Furthermore, suppose that D − J∗ ⊆ G, where D is the cycle obtained
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from Ddir after ignoring the directions of all edges. Then D− J∗ + J is a Hamilton
cycle of G.

8.2. Finding systems. The following lemma gives a decomposition of an almost
complete bipartite graph G into blown-up Hamilton cycles (together with an associ-
ated decomposition of exceptional systems). Its proof is almost the same as that of
Lemma 6.3, so we omit it here. The only difference is that instead of Walecki’s theo-
rem we use a result of Auerbach and Laskar [1] to decompose the complete bipartite
graph KK,K into Hamilton cycles, where K is even.

Lemma 8.3. Suppose that 0 < 1/n � ε0 � 1/K � ρ � 1 and 0 ≤ µ � 1,
where n,K ∈ N and K is even. Suppose that G is a graph on n vertices and P =
{A0, A1, . . . , AK , B0, B1, . . . , BK} is a (K,m, ε0)-partition of V (G). Furthermore,
suppose that the following conditions hold:

(a) d(v,Bi) = (1− 4µ± 4/K)m and d(w,Ai) = (1− 4µ± 4/K)m for all v ∈ A,
w ∈ B and 1 ≤ i ≤ K.

(b) There is a set J which consists of at most (1/4 − µ − ρ)n edge-disjoint
exceptional systems with parameter ε0 in G.

(c) J has a partition into K4 sets Ji1,i2,i3,i4 (one for all 1 ≤ i1, i2, i3, i4 ≤ K)
such that each Ji1,i2,i3,i4 consists of precisely |J |/K4 (i1, i2, i3, i4)-BES with
respect to P.

Then for each 1 ≤ j ≤ K/2, there is a tuple (Gj ,Q, Cj , Hj ,Jj) such that the following
assertions hold, where Q := {A1, . . . , AK , B1, . . . , BK}:

(a1) Each of C1, . . . , CK/2 is a directed Hamilton cycle on Q such that the undi-
rected versions of these cycles form a Hamilton decomposition of the complete
bipartite graph whose vertex classes are {A1, . . . , AK} and {B1, . . . , BK}.

(a2) J1, . . . ,JK/2 is a partition of J .

(a3) Each Jj has a partition into K4 sets Jj,i1,i2,i3,i4 (one for all 1 ≤ i1, i2, i3, i4 ≤
K) such that Jj,i1,i2,i3,i4 consists of (i1, i2, i3, i4)-BES with respect to P and
|Jj,i1,i2,i3,i4 | ≤ (1− 4µ− 3ρ)m/K4.

(a4) G1, . . . , GK/2, H1, . . . ,HK/2 are edge-disjoint subgraphs of G[A,B].
(a5) Hj [Ai, Bi′ ] is a (11K + 248/K)ε0m-regular graph for all j ≤ K/2 and all

i, i′ ≤ K.
(a6) For each j ≤ K/2, there exists an orientation Gj,dir of Gj such that (Gj,dir,Q, Cj)

is a (2K,m, 4µ, 5/K)-cyclic system.

8.3. Constructing balanced extensions. Let P = {A0, A1, . . . , AK , B0, B1, . . . , BK}
be a (K,m, ε)-partition of a vertex set V , let Q := {A1, . . . , AK , B1, . . . , BK} and let
C = A1B1A2B2 . . . AKBK be a directed cycle. Given a set J of balanced exceptional
systems with respect to P, we write J ∗dir := {J∗dir : J ∈ J }. So J ∗dir is a set of ordered
directed matchings and thus it makes sense to construct a balanced extension of J ∗dir
with respect to (Q, C). (Recall that balanced extensions were defined in Section 5.2.)

Now consider any of the tuples (Gj ,Q, Cj , Hj ,Jj) guaranteed by Lemma 8.3. We
will apply the following lemma to find a balanced extension of (Jj)∗dir with respect
to (Q, Cj), using edges of Hj (after a suitable orientation of these edges). So the
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lemma is a bipartite analogue of Lemma 6.4. However, the proof is more involved
than in the two cliques case.

Lemma 8.4. Suppose that 0 < 1/n � ε � 1/K � 1, where n,K ∈ N. Let P =
{A0, A1, . . . , AK , B0, B1, . . . , BK} be a (K,m, ε)-partition of a set V of n vertices.
Let Q := {A1, . . . , AK , B1, . . . , BK} and let C := A1B1A2B2 . . . AKBK be a directed
cycle. Suppose that there exist a set J of edge-disjoint balanced exceptional systems
with respect to P and parameter ε and a graph H such that the following conditions
hold:

(i) J can be partitioned into K4 sets Ji1,i2,i3,i4 (one for all 1 ≤ i1, i2, i3, i4 ≤
K) such that Ji1,i2,i3,i4 consists of (i1, i2, i3, i4)-BES with respect to P and
|Ji1,i2,i3,i4 | ≤ m/K4.

(ii) For each v ∈ A∪B the number of all those J ∈ J for which v is incident to
an edge in J is at most 2εn.

(iii) H[Ai, Bi′ ] is a (11K + 248/K)εm-regular graph for all i, i′ ≤ K.

Then there exist an orientation Hdir of H and a balanced extension BE of J ∗dir with
respect to (Q, C) and parameters (12εK, 12) such that each path sequence in BE is
obtained from some J∗dir ∈ J ∗dir by adding edges of Hdir.

The proof proceeds roughly as follows. Consider any J ∈ Ji1,i2,i3,i4 . We extend
J∗dir into a locally balanced path sequence in two steps. For this, recall that J∗dir
consists only of edges from Ai1 ∪ Ai2 to Bi3 ∪ Bi4 . In the first step, we construct a
path sequence PS that is an Ai1-extension of J∗dir by adding suitable Bi3Ai1- and
Bi4Ai1-edges from H to J∗dir. In the second step, we locally balance PS in such a
way that (BE1)–(BE3) are satisfied.

Proof. First we decompose H into H ′ and H ′′ such that H ′[Ai, Bi′ ] is a 11εKm-
regular graph for all i, i′ ≤ K and H ′′ := H −H ′. Hence H ′′[Ai, Bi′ ] is a 248εm/K-
regular graph for all i, i′ ≤ K.

Write J := {J1, . . . , J|J |}. For each s ≤ |J |, we will extend J∗s,dir := (Js)
∗
dir into

a path sequence PSs satisfying the following conditions:

(αs) Suppose that Js ∈ Ji1,i2,i3,i4 . Then PSs is an Ai1-extension of J∗s,dir consisting

of precisely e(J∗s ) vertex-disjoint directed paths of length two.
(βs) V (PSs) = V (J∗s,dir) ∪A′s, where A′s ⊆ Ai1 \ V (J∗s,dir) and |A′s| = e(J∗s ).

(γs) PSs−J∗s,dir is a matching of size e(J∗s ) from B′s to A′s, where B′s := V (J∗s,dir)∩
(Bi3 ∪Bi4).

(δs) Let Ms be the set of undirected edges obtained from PSs−J∗s,dir after ignoring

all the orientations. Then M1, . . . ,Ms are edge-disjoint matchings in H ′.
(εs) PSs consists only of edges from Ai1 ∪ Ai2 to Bi3 ∪ Bi4 , and from Bi3 ∪ Bi4

to Ai1 .

Note that (βs) and (γs) together imply (εs). Suppose that for some s with 1 ≤ s ≤
|J | we have already constructed PS1, . . . , PSs−1. We will now construct PSs as
follows. Let i1, i2, i3, i4 be such that Js ∈ Ji1,i2,i3,i4 and let H ′s := H ′ − (M1 + · · ·+
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Ms−1). (BES4) implies that

e(J∗s,dir) = e(J∗s )
(8.1)

≤ e(Js) ≤ εn ≤ 3εKm and |V (J∗s,dir) ∩Ai1 | ≤ 3εKm.(8.2)

Consider any s′ < s. Recall from the definition of J∗s′,dir that V (J∗s′,dir) is the set of

all those vertices in A∪B which are covered by edges of Js′ . Together with (βs′) and
(γs′) this implies that a vertex v ∈ B is covered by Ms′ if and only if v is incident to
an edge of Js′ . Together with (ii) this in turn implies that for all v ∈ B we have

dH′s(v,Ai1) ≥ dH′(v,Ai1)−
∑
s′<s

dMs′ (v) ≥ 11Kεm− 2εn ≥ 11Kεm− 5Kεm

(8.2)

≥ |V (J∗s,dir) ∩Ai1 |+ e(J∗s ).

Note that e(J∗s ) = |V (J∗s,dir)∩(Bi3∪Bi4)| = |B′s|. So we can greedily find a matching

Ms of size e(J∗s ) in H ′s[Ai1 \ V (J∗s,dir), B
′
s] (which therefore covers all vertices in B′s).

Orient all edges of Ms from B′s to Ai1 and call the resulting directed matching Ms,dir.
Set

PSs := J∗s,dir +Ms,dir.

Note that PSs consists of precisely e(J∗s ) directed paths of length two whose final
vertices lie in Ai1 , so (αs)–(εs) hold by our construction. This shows that we can
obtain path sequences PS1, . . . , PS|J | satisfying (αs)–(εs) for all s ≤ |J |.

The following claim provides us with a ‘reservoir’ of edges which we will use to
balance out the edges of each PSs and thus extend each PSs into a path sequence
PS′s which is locally balanced with respect to C.

Claim. H ′′ contains |J | subgraphs H ′′1 , . . . ,H
′′
|J | satisfying the following properties

for all s ≤ |J | and all i, i′ ≤ K:

(a1) If PSs contains an AiBi′-edge, then H ′′s contains a matching between Ai′ and
Bi of size 30εKm.

(a2) If PSs contains a BiAi′-edge, then H ′′s contains a matching between Ai+1

and Bi′−1 of size 30εKm.
(a3) H ′′1 , . . . ,H

′′
|J | are edge-disjoint and for all s ≤ |J | the matchings guaranteed

by (a1) and (a2) are edge-disjoint.

So if PSs contains both an AiBi′-edge and a Bi′−1Ai+1-edge, then H ′′s contains a
matching between Ai′ and Bi of size 60εKm.

To prove the claim, first recall that H ′′[Ai, Bi′ ] is a 248εm/K-regular graph for all
i, i′ ≤ K. So H ′′[Ai, Bi′ ] can be decomposed into 248εm/K perfect matchings. Each
perfect matching can be split into 1/(31εK) matchings, each of size at least 30εKm.
Therefore H ′′[Ai, Bi′ ] contains 8m/K2 edge-disjoint matchings, each of size at least
30εKm. (i) and (εs) together imply that for any i, i′ ≤ K, the number of PSs
containing an AiBi′-edge is at most∑

(i1,i2,i3,i4) : i∈{i1,i2}, i′∈{i3,i4}

|Ji1,i2,i3,i4 | ≤ 4m/K2.
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Recall that H ′′[Ai′ , Bi] contains 8m/K2 edge-disjoint matchings, each of size at least
30εm. Thus we can assign a distinct matching in H ′′[Ai′ , Bi] of size 30εm to each PSs
that contains an AiBi′-edge. Additionally, we can also assign a distinct matching in
H ′′[Ai+1, Bi′−1] of size 30εm to each PSs that contains a BiAi′-edge. For all s ≤ |J |,
let H ′′s be the union of all those matchings assigned to PSs. Then H ′′1 , . . . ,H

′′
|J | are

as desired in the claim.

For each s ≤ |J |, we will now add suitable edges from H ′′s to PSs in order to
obtain a path sequence PS′s which is locally balanced with respect to C. So fix
s ≤ |J | and let e1, . . . , e` denote the edges of PSs. Note that ` = 2e(J∗s ) ≤ 6Kεm
by (γs) and (8.2). For each r ≤ `, we will find a directed edge fr satisfying the
following conditions:

(b1) If er is an AiBi′-edge, then fr is an Ai′Bi-edge.
(b2) If er is a BiAi′-edge, then fr is a Bi′−1Ai+1-edge.
(b3) The undirected version of {f1, . . . , f`} is a matching in H ′′s and vertex-disjoint

from V (PSs).

Suppose that for some r ≤ ` we have already constructed f1, . . . , fr−1. Suppose
that er is an AiBi′-edge. (The argument for the other case is similar.) By (a1),
H ′′s [Ai′ , Bi] contains a matching of size 30Kεm. Note by (αs) and (b3) that

|V (PSs ∪ {f1, . . . , fr−1})| ≤ 3e(J∗s ) + 2(r − 1) < 5` ≤ 30Kεm.

Hence there exists an edge inH ′′s [Ai′ , Bi] that is vertex-disjoint from PSs∪{f1, . . . , fr−1}.
Orient one such edge from Ai′ to Bi and call it fr. In this way, we can construct
f1, . . . , f` satisfying (b1)–(b3).

Let PS′s be digraph obtained from PSs by adding all the edges f1, . . . , f`. Note
that PS′s is a locally balanced path sequence with respect to C. (Indeed, PS′s is
locally balanced since {er, fr} is locally balanced for each r ≤ `.) Let i1, i2, i3, i4 be
such that J ∈ Ji1,i2,i3,i4 . Then the following properties hold:

(c1) PS′s is an Ai1-extension of J∗s,dir.

(c2) |V (PS′s) ∩Ai|, |V (PS′s) ∩Bi| ≤ 12εKm for all i ≤ K.
(c3) If V (PS′s) ∩Ai 6= ∅, then i ∈ {i1, i2, i3, i4, i3 + 1, i4 + 1}.
(c4) If V (PS′s) ∩Bi 6= ∅, then i ∈ {i1 − 1, i1, i2, i3, i4}.

Indeed, (c1) is implied by (αs) and the definition of PS′s. Since e(PS′s) = 2e(PSs) =
4e(J∗s ), (c2) holds by (8.2). Finally, (c3) and (c4) are implied by (εs), (b1) and (b2)
as Js ∈ Ji1,i2,i3,i4 .

Note that PS′1−J∗1,dir, . . . , PS
′
|J |−J

∗
|J |,dir are pairwise edge-disjoint and let BE :=

{PS′1, . . . , PS′|J |}. We claim that BE is a balanced extension of J ∗dir with respect to

(Q, C) and parameters (12εK, 12). To see this, recall thatQ = {A1, . . . , AK , B1, . . . , BK}
is a (2K,m)-equipartition of V ′ := V \ (A0∪B0). Clearly, (BE1) holds with V ′ play-
ing the role of V . (c3) and (i) imply that for every i ≤ K there are at most 6m/K
PS′s ∈ BE such that V (PS′s) ∩ Ai 6= ∅. A similar statement also holds for each Bi.
So together with (c2), this implies (BE3), where 2K plays the role of k in (BE3).
As remarked after the definition of a balanced extension, this implies the ‘moreover
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part’ of (BE2). So (BE2) holds too. Therefore BE is a balanced extension, so the
lemma follows (by orienting the remaining edges of H arbitrarily). �

Proof of Lemma 3.2. Apply Lemma 8.3 to obtain tuples (Gj ,Q, Cj , Hj ,Jj) for
all j ≤ K/2 satisfying (a1)–(a6). Fix j ≤ K/2 and write Jj := {Jj,1 . . . , Jj,|Jj |}.
Next, apply Lemma 8.4 with Jj , Cj , Hj , ε0 playing the roles of J , C,H, ε to obtain
an orientation Hj,dir of Hj and a balanced extension BEj of Jj with respect to
(Q, Cj) and parameters (12ε0K, 12). (Note that (a3) and (a5) imply conditions (i)
and (iii) of Lemma 8.4. Condition (ii) follows from Lemma 3.2(d).) So we can write
BEj := {PSj,1 . . . , PSj,|Jj |} such that (Jj,s)

∗
dir ⊆ PSj,s for all s ≤ |Jj |. Each path

sequence in BEj is obtained from some (Jj,s)
∗
dir by adding edges of Hj,dir. Since

(Gj,dir,Q, Cj) is a (2K,m, 4µ, 5/K)-cyclic system by Lemma 8.3(a6), we can apply
Lemma 7.1 as follows:

Gj,dir Q Cj 2K J ∗j,dir |Jj | 4µ 3ρ 12ε0K 5/K 12

plays role of G Q C k M q µ ρ ε0 ε′ `

This gives us |Jj | directed Hamilton cycles C ′j,1, . . . , C
′
j,|Jj | in Gj,dir +BEj such that

each C ′j,s contains PSj,s and is consistent with (Jj,s)
∗
dir. Moreover, (a4) implies that

C ′j,1 − (Jj,1)∗dir, . . . , C
′
j,|Jj | − (Jj,|Jj |)

∗
dir are edge-disjoint subgraphs of Gj,dir + Hj,dir.

Repeat this process for all j ≤ K/2.
Recall from Lemma 8.3(a2) that J1, . . . ,JK/2 is a partition of J . Thus we have

obtained |J | directed Hamilton cycles C ′1, . . . , C
′
|J | on A ∪ B such that each C ′s is

consistent with (Js)
∗
dir for some Js ∈ J (and Js 6= Js′ whenever s 6= s′). Let Hs be

the undirected graph obtained from C ′s − J∗s + Js by ignoring all the orientations
of the edges. Since J1, . . . , J|J | are edge-disjoint exceptional systems, H1, . . . ,H|J |
are edge-disjoint spanning subgraphs of G. Finally, Proposition 8.2 implies that
H1, . . . ,H|J | are indeed as desired in Lemma 3.2. �
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