MONOCHROMATIC TRIANGLES IN THREE-COLOURED GRAPHS
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ABSTRACT. In 1959, Goodman [8] determined the minimum number of monochromatic triangles
in a complete graph whose edge set is 2-coloured. Goodman [9] also raised the question of proving
analogous results for complete graphs whose edge sets are coloured with more than two colours. In
this paper, for n sufficiently large, we determine the minimum number of monochromatic triangles
in a 3-coloured copy of K,. Moreover, we characterise those 3-coloured copies of K, that contain
the minimum number of monochromatic triangles.

1. INTRODUCTION

The Ramsey number Ri(G) of a graph G is the minimum n € N such that every k-colouring of
K,, contains a monochromatic copy of G. (In this paper we say a graph K is k-coloured if we have
coloured the edge set of K using k colours. Note that the edge colouring need not be proper.) A
famous theorem of Ramsey [16] asserts that Ry (G) exists for all graphs G and all k € N.

In light of this, it is also natural to consider the so-called Ramsey multiplicity of a graph: Let
k,n € N and let G be a graph. The Ramsey multiplicity My(G,n) of G is the minimum number of
monochromatic copies of G over all k-colourings of K,,. (Here, we are counting unlabelled copies
of GG in the sense that we count the number of distinct monochromatic subgraphs of K,, that are
isomorphic to G.) In the case when k = 2 we simply write M (G, n). The following classical result
of Goodman [8] from 1959 gives the precise value of M (K3, n).

Theorem 1 (Goodman [8]). Let n € N. Then

nin—2)(n—4)/24 if n is even;
M(K3,n) =< n(n—1)(n—>5)/24 ifn=1 mod 4;
(n+1)(n—3)(n—4)/24 ifn=3 mod 4.

A graph G is k-common if My(G,n) asymptotically equals, as n tends to infinity, the expected
number of monochromatic copies of G in a random k-colouring of K,,. Erdés [5] conjectured that
K, is 2-common for every r € N. Note that Theorem 1 implies that this conjecture is true for
r = 3. However, Thomason [21, 22] disproved the conjecture in the case when r = 4. Further,
Jagger, Stovicek, and Thomason [12] proved that any graph G that contains Ky is not 2-common.
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FIGURE 1. G, (11) and another element of Gy,

Recently, Cummings and Young [4] proved that graphs G that contain K3 are not 3-common. The
introductions of [4] and [11] give more detailed overviews of k-common graphs.

The best known general lower bound on M (K,,n) was proved by Conlon [3]. Some general
bounds on My (K,,n) are given in [6]. See [2] for a (somewhat outdated) survey on Ramsey
multiplicities.

The problem of obtaining a 3-coloured analogue of Goodman’s theorem also has a long history.
In fact, it is not entirely clear when this problem was first raised. In 1985, Goodman [9] simply
refers to it as “an old and difficult problem”. Prior to this, Giraud [7] proved that, for sufficiently
large n, Ms(Ksz,n) > 4(3)/115. Wallis [23] showed that Ms(K3,17) < 5 and then, together with
Sane [19], proved that M3(K3,17) = 5. (Greenwood and Gleason [10] proved that R3(K3) = 17,
therefore, M3(K3,16) = 0.)

The focus of this paper is to give the exact value of M3(K3,n) for sufficiently large n, thereby
yielding a 3-coloured analogue of Goodman’s theorem. Moreover, we characterise those 3-coloured
copies of K,, that contain exactly M3(K3,n) monochromatic triangles.

Given n € N we define a special collection of 3-coloured complete graphs on n vertices, G, as
follows:

e Consider the (unique) 2-coloured copy K of K5 on [5] without a monochromatic triangle.
Replace the vertices of K with disjoint vertex classes Vi,..., Vs such that ||V;| — |V;]| < 1
forall 1 <4, <5and [Vi|+ -+ |Vs| =n. Forall 1 <i+# j <5, add all possible edges
between V; and V; using the colour of 75 in K. For each 1 <7 <5, add all possible edges
inside V; in a third colour. Denote the resulting complete 3-coloured graph by Ges(n) (see
Figure 1).

o G, consists of Gz (n) together with all graphs obtained from Gz (n) by recolouring a (possi-
bly empty) matching M; ; in Geg(n)[Vi, V;] with the third colour for all 1 < # j <5, such
that the recolouring does not introduce any new monochromatic triangles (see Figure 1).

Notice that the graphs in G, only contain monochromatic triangles of one colour. The following
is our main result.

Theorem 2. There exists an ng € N such that the following holds. Suppose G is a complete 3-
coloured graph on n > ng vertices which contains the smallest number of monochromatic triangles
amongst all complete 3-coloured graphs on n vertices. Then G is a graph from G,.
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Corollary 3. There exists an ng € N such that the following holds. Suppose n > ng and write
n =5m +r where m,r € N such that 0 < r < 4. Then

M;(K3,n) = r(m;— 1) +(5-7) (g‘)

The proof of Theorem 2 uses Razborov’s method of flag algebras [17] together with a probabilistic
argument.

Goodman [9] also raised the question of establishing k-coloured analogues of Theorem 1 for k& > 4.
Let K > 3 and n € N. Fox [6] gave an upper bound on My(K3,n) by considering the following
graphs: Set m := Rj_1(K3) — 1. Consider a (kK — 1)-coloured copy K of K, on [m] without a
monochromatic triangle. Replace the vertices of K with disjoint vertex classes Vi,...,V,, such
that [|[Vi| = V|| < 1foralll <i4,j <mand [Vi|+- -+ |V =n. Foralll <i# j < m,
add all possible edges between V; and Vj using the colour of ij in K. For each 1 <7 < m, add
all possible edges to V; using a kth colour. Denote the resulting complete k-coloured graph by
Gez(n, k). (Thus, Gez(n) = Gez(n,3).)

Question 4. Let £ > 4 and n € N be sufficiently large. Is My (K3,n) equal to the number of
monochromatic triangles in Geg(n, k)?

2. NOTATION

We will make the convention that the set of colours used in a k-colouring of the edges of a graph is
[k]. In the case of a 3-colouring we will generally refer to the colours 1, 2 and 3 as “red”, “blue” and
“green”. When H and H' are two k-coloured graphs, an isomorphism between them is a function
f: V(H) = V(H') which is a graph isomorphism and respects the colouring. Two k-coloured
graphs H and H' are isomorphic (H = H') if and only if there is an isomorphism between them.

Given r € N, we denote the complete graph on r vertices by K, and define R(r,r) := Ra(K;).
Given k and c¢ € [k], we define K[ to be the k-coloured complete graph in which every edge of K,
is given the colour c. We define K" to be {K[ : ¢ € [k]}, that is to say the set of monochromatic
K,’s. Suppose G is a k-coloured graph and let v € V(G) and i € [k]. Then we will use N;(v) to
denote the set of vertices in G that receive an edge of colour i from v.

For a graph G and a vertex set V' C V(G), we denote by G[V] the subgraph of G induced by V.
Given vy, ..., vy, € V(G) we write G[vy, ..., vy] for G[{v1,...,vy}], and for disjoint subsets V' and
W of V(G) we denote by G[V, W] the bipartite graph with vertex classes V and W whose edge set
consists of those edges between V and W in G. When G is a k-coloured graph, we view G[V] as a
k-coloured graph with the edge colouring inherited from G, and do likewise for Gy, ..., v, and
for G[V, W].

Throughout the paper, we write, for example, 0 < v < 7 < 1 to mean that we can choose the
constants v, 7, n from right to left. More precisely, there are increasing functions f and ¢ such that,
given 71, whenever we choose some 7 < f(n) and v < g(7), all calculations needed in our proof
are valid. Hierarchies with more constants are defined in the obvious way. Finally, the set of all
k-subsets of a set A is denoted by [A]*.

In the proof of Theorem 2 we will omit floors and ceilings whenever this does not affect the
argument.

3. GRAPH DENSITIES

From this point on we are exclusively concerned with 3-colourings, mostly colourings of complete
graphs. Suppose H and G are 3-coloured complete graphs where |H| < |G|. Let d(H,G) denote
3



FIGURE 2. Representative elements of H(2,1,0), H(1,1,1) and #H(0,2,1).

the number of sets V € [V(G)]#! such that G[V] = H, and define the density of H in G as
d(H,G
p(H,G) = (IT\)
(1)
This quantity has a natural probabilistic interpretation, namely it is the probability that if we
choose a set V € [V(G)]H| uniformly at random then V induces an isomorphic copy of H.
When H is a family of 3-coloured complete graphs H of some fixed size k with k& < |G|, we define

p(H,G) = Z p(H, G)a
HeH

that is to say the probability that a random V € [V(G)]* induces a coloured graph isomorphic
to an element of H. In the sequel we generally write “H’ is an H” as an abbreviation for “H’ is
isomorphic to some H € H”, “G contains an H” as an abbreviation for “G contains an induced
isomorphic copy of an element of H”, and “an ‘H in G” for “an induced copy of some element of H
in G”.

For n > |H| we let p™®(H,n) be the minimum value of p(H,G) over all 3-coloured complete
graphs G on n vertices. When H is a family of 3-coloured complete graphs H of some fixed size
k < n, we let p™»(#,n) be the minimum value of p(H, G) over all 3-coloured complete graphs G
on n vertices.

We now define a certain class H of “bad” 3-coloured complete graphs on 4 vertices. As motivation,
we note that we are defining a set of 3-coloured graphs H such that maxgeg, p(H,G) — 0 with
increasing n.

Let H(i,j,k) be the class of 3-coloured complete graphs on 4 vertices with a monochromatic
triangle, i extra edges of that same colour, and j and &k edges of the other colours, respectively
(withi+j+ k=3, j > k). Define H := H(2,1,0) UH(1,1,1) UH(0,2,1).

The following result about graph densities will be used in the proof of Theorem 2. It provides an
(asymptotically) optimal lower bound on the density of monochromatic triangles, and also asserts
that copies of colourings from the class H are rare in any colouring that comes close enough to
achieving this bound. The proof is given in Section 4.

Proposition 5. For all € > 0 there is ng such that for all 3-coloured complete graphs G on at least
ng vertices:

(1) p(K3,G) > 0.04 — ¢.

(2) If p(K3,G) < 0.04, then p(H,G) < ¢.

4. FLAG ALGEBRAS

In this section we use the method of flag algebras due to Razborov [17] to prove Proposition 5.
The flag machinery described in subsections 4.1 and 4.2 is due to Razborov, as is the idea of using
semidefinite programming for search of valid inequalities using this framework.
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4.1. Some background. We start by describing how the main concepts of the general theory of
flag algebras look in the case of 3-coloured complete graphs. Let M; be the set of isomorphism
classes of 3-coloured complete graphs on [ vertices. It is helpful to know |M;| for small values of [;
computing this value is a classical enumeration problem [20], in particular |M;| = 1,1, 3,10, 66, 792
for 1 =0,1,2,3,4,5.

A type o is a 3-coloured complete graph whose underlying set is of the form [k] = {1,2,...,k} for
some k, where we write |o| = k. A o-flag is a 3-coloured complete graph which contains a labelled
copy of o, or more formally a pair (M,6) where M is a 3-coloured complete graph and 6 is an
injective map from [k] to V(M) that respects the edge-colouring of 0. Two o-flags are isomorphic
if there is an isomorphism that respects the labelling. More formally, f is a flag isomorphism from
(M, 61) to (Ma,09) if f: V(M;) — V(Ms) is an isomorphism of coloured graphs and o o 6; = 6s.

We denote by F; the set of isomorphism classes of o-flags with [ vertices. Note that if 0 is the
empty type then ]:lo = M. The flags of most interest to us are the elements of F] for various o
with |o| = 3; it is easy to see that if |o| = 3 then |F]| = 27.

The notion of graph density described in the preceding section extends to o-flags in a straight-
forward way. Given o-flags F' € F7 and G € F7, for m > [, we define p(F,G) to be the density
of isomorphic copies of F' in G. More formally let G = (M, 0), choose uniformly at random a set
V € [V(M))! such that V contains im(#), and define p(F,G) to be the probability that (M[V],6)
is isomorphic (as a o-flag) to F'. By convention we will set p(F,G) = 0 in case m < [.

It is routine to see that if | <m <n, F' € /7 and H € F then

(1) p(F H) = Z p(F,G)p(G, H).
GeFg,

This chain rule plays a central role in the theory.

More generally, given flags F; € FT for 1 <i<nand G = (M,0) € FJ, where m > > . 1l; —
(n —1)|o|, we define a “joint density” p(Fi,..., F,;G). This is the probability that if we choose
an n-tuple (Vy,...,V,) of subsets of V(M) uniformly at random, subject to the conditions V; €
[V(M))l and V; NV =im(0) for i # j, then (M[V;],0) is isomorphic to F; for all i.

A sequence (G,) of o-flags is said to be increasing if the number of vertices in G,, tends to
infinity, and convergent if the sequence of densities (p(F,G,)) converges for every o-flag F. A
routine argument along the lines of the Bolzano-Weierstrass theorem shows that every increasing
sequence has a convergent subsequence. If (G,,) is convergent then we can define a map ® on o-flags
by setting ®(F') = limy, 00 p(F, Gp). We note that when F' € F and [ < m, it follows readily from
equation (1) that

(2) ®(F) = ) p(F.G)P(G).

GeFg,

Equation (2) suggests that in some sense “F' =} . 7, p(F, G)G”, and the definition of the flag
algebra A” makes this precise. We define 7, = J,, 77, let RFZ be the real vector space consisting
of finite formal linear combinations of elements of 77, and then define A% to be the quotient of
RFZ, by the subspace K generated by all elements of the form F'— 3%~ Fe p(F,G)G. We will not
be distinguishing between a flag F', its isomorphism class [F] € F?, the element 1[F] € RFZ and
the element 1[F] + K7 € A°.

If @ is the map on o-flags induced by a convergent sequence as above, then ® extends by linearity
to a map ¢ : RFZ — R. The linear map ® vanishes on K by equation (2), and hence induces a
linear map ® : A — R. So far A7 is only a real vector space; we make it into an R-algebra by
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defining a product as follows. Let Fy € Fj7, Fy € Ff, let m > 1y + 1o — |o|, and define

Fy-Fy= Y p(F, Py G)G.
GeFg,

This can be shown [17, Lemma 2.4] to give a well-defined multiplication operation on .A? indepen-
dent of the choice of m, and it can also be shown [17, Theorem 3.3 part a that if & : A7 — R
is induced by a convergent sequence then ®(F} - Fy) = ®(F;)P(F3), that is ® is an algebra ho-
momorphism from A% to R. The converse is also true [17, Theorem 3.3 part b]: if ® is such a
homomorphism and ®(F) > 0 for all o-flags F', then there exists an increasing and convergent
sequence (Gy,) such that ®(F) = lim, p(F, Gy,) for all flags F.

Following Razborov we let Hom™ (A, R) be the set of homomorphisms induced by convergent
sequences of o-flags, and define a preordering on A% by stipulating that A < B if and only if
P(A) < ®(B) for all ® € Hom™* (A, R).

4.2. Averaging and lower bounds. The algebra A has an identity element 1, = (o,1id,), and
it is easy to see that ®(19) = 1 for all ® € Hom™" (A%, R). Accordingly we will identify the real
number 7 and the element r1,. With this convention, the task of finding asymptotic lower bounds
for quantities like the density of monochromatic triangles amounts to proving inequalities of the
form “F > r in A% for some sum of O-flags F and real number . We will prove that

Kf}ed + Kl?lue + Kgreen > 0.04.

Given a o-flag F' = (M, 0), we let F|o = M. We define [F], = ¢,(F)M, where ¢,(F) is the
probability that a random injective function @ from [|o|] to V(M) gives a o-flag (M, 0) and this
flag is isomorphic to F. This map on o-flags extends to a linear map from A% to A°.

A key fact is that for every type o and every A € A%, we have the inequality

(3) [A%], >0,

where A2 = A - A. We will ultimately prove our desired lower bound by adding many inequalities
of this form for various types o and elements A of A°.

Inequality (3) can be proved by elementary means; roughly speaking we average the square of
the number of copies of F' containing a particular copy of o over all such copies and discard terms
of low order. It can also be proved [17, Theorem 3.14] using the notion of random homomorphism
discussed below in subsection 4.4.

We will prove that ngd + Kli:’lue + K;’Teen > 0.04 by proving an equation of the form
(4) Kfed + Kg)lue + Kgreen —0.04 - Z[[LZZ]]W = Z A M,
i

where the o;’s are types, L; € A%, the M}’s are 3-coloured complete graphs and A\ > 0 for all k.
Equation (4) clearly implies that K2 , 4+ Kj .+ K3..., > 0.04, which is the translation of claim 1
in Proposition 5 into the flag language.

Since there are increasing sequences of 3-coloured complete graphs in which the density of
monochromatic triangles approaches 0.04, there are ® € Hom™ (A% R) such that ®(K3 ;, + K3, +

blue
Kg’mm) = 0.04. For any such ® we must have

(i) ®([L?],,) = 0 for all i,
(ii) A = 0 for all k such that ®(My) > 0, and
(i) ®(Mj) = 0 for all k such that Ay > 0.

The last of these points is the key to proving the second claim in Proposition 5. We will verify that
for all H € ‘H, H is a linear combination of M}y’s such that Ap > 0. It follows that for all such H,
®(H) =0 for any ® with ®(K3 ,+ K}, .+ K3...,) = 0.04. This assertion is exactly the translation

e blue green
into flag language of claim 2 in Proposition 5.
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4.3. Proof of Proposition 5. To prove Proposition 5 we need to specify ten types, several hundred
flags, and ten 27 x 27 matrices. Rather than attempting to render the details of the proof in print,
we have chosen to describe its structure here and make all the data available online, together with
programs which can be used to verify them.

Let o be a type and let Lq,...,L; € A%, where each L; is a real linear combination of a fixed set
of o-flags Fy,..., F,. By standard facts in linear algebra,

ij

for some n X n positive semidefinite symmetric matrix ), and conversely any expression of the form
> ; Qi F; - F; for a positive semidefinite @ is a sum of squares.

In our case we will have ten types 7, for 1 <r < 10, each with |7.| = 3. The types are chosen to
include representative elements of each isomorphism class of 3-coloured triangles.

For each type 7, we will have a complete list FT],..., Fj. of the 7,-flags on 4 vertices. In line
with the discussion in subsection 4.2, we will specify for each r an 27 x 27 symmetric matrix Q"
and will actually prove an equation of the form

(5) sz}ed + Kl?lue + Kgreen —0.04 — Z[[QT:I]O-T‘ = Z >‘/€Mk;
r

where Q, = Zij Q%F{F;’, each matrix Q" is positive semidefinite, and each coefficient A\ is non-
negative. The matrices Q" will have rational entries, so the whole computation can be done exactly
using rational arithmetic.

By the definition of flag multiplication, each product Fy"-F can be written as a linear combination
of elements of Fy", so each term ) [Q,]s, is a linear combination of elements of Ms. The 3-
coloured complete graphs M} appearing in equation (5) will be the 792 elements of M5. Below we
write “g(A, B)” for “the coefficient of B in the expansion of A”.

Given the coefficient matrices Q", we must first verify that they are positive semidefinite (a
routine calculation). We must then expand the left hand side of equation (5) in the form ) A\; My,
and check that A\p > 0 for all k. Clearly

Ap = p(KEedv Mk’) + p(Kglue? Mk’) + P(Kgreem Mk‘) —0.04 — Z Q([[QT]]UM Mk)’
T

and

4([Qrlors My) =D Qiia([F] - F oy, My),
ij
so the main computational task in verifying the proof is to compute the coefficients ¢([F] -
F]r]]UM Mk)

A useful lemma of Razborov gives a probabilistic interpretation of q([F] - F]T]]UT,Mk) which
obviates the need to compute F - F] and [F] - F]],, before computing ¢([£] - F}]s,, My). The
lemma states that for any type 7, any 7-flags K7 and K5 and any m which is large enough to
express [K; - K2]; as a linear combination of elements of M,,, the coefficient ¢([K; - K2], L) of
L € M,, is the probability that choosing a random injection 8 from V' (7) to V(L) and then random
sets X and Y of the appropriate size with X N'Y = im(0) gives flags (L[X],0) and (L[Y], ) such
that (L[X],#) is isomorphic to K7 and (L[Y],#) is isomorphic to K3. The proof is straightforward.

To complete the proof of Proposition 5, we must now compute the coefficients Ay and verify that
for all k

(i) Ax = 0;

(ii) For all H € H, if p(H, M) > 0 then \; > 0.
7



The data for the proof and a Maple worksheet which verifies it can be found online at the URL
http://www.math.cmu.edu/users/jcumming/ckpsty. Further, the version of this paper on the
arxiv has an appendix with the data for the proof.

4.4. Semidefinite programming. The proof described in the preceding section was obtained
using semidefinite programming. In our case we fixed the types 7. and flags F| 7, and set up a

semidefinite programming problem where the unknowns are the matrices (Q',..., Q%) and the
goal is to maximise a lower bound for K2 ,+ K, + Kg’reen. Using the CSDP and SDPA solvers,

we produced a proof of a lower bound of the form 0.04 — & where ¢ is about 1076,

We now needed to perturb the coefficients in our matrices Q)" to achieve the optimal value 0.04 for
the lower bound. This was not completely trivial, because (as we already mentioned at the end of
subsection 4.2) there are many constraints that must be satisfied by any choice of Q"’s that achieves
the optimal bound. Some of them are related to so-called random homomorphisms from [17, Section
3.2] as explained in [18, Section 4]. If ® € Hom™* (A% R) and o is a type such that (viewing o as
an element of A%) ®(c) > 0, then we may use ® to construct a certain probability measure on
Hom™ (A%, R), which we may view (using probabilistic language) as a random homomorphism ®°.
One of the properties of ®7 is that for any F' € A7 the expected value of ®7(F) is given by the

formula $([FL)
o o
B =51,
So, we can view the inequality [F?], > 0 as an averaging argument analogous to the Cauchy-
Schwartz theorem [17, Theorem 3.14].

Let @, be one of the quadratic forms appearing in a proof of the optimal bound and let @), =
>, m2 where each my, is a linear combination of the flags F/". Recall from subsection 4.2 that if ®
is such that ®(K7,;+ K. + Koyeen) = 0.04, then ®([Q,]7,) = 0 for all r. If ®([Q,],) = 0, then it
holds with probability one that ®™(my) = 0. This yields that all eigenvectors of @, corresponding
to non-zero eigenvalues must lie in a certain linear space.

However, in our case we could not derive enough relations of this kind from the known extremal
®. At this point we inspected our numerical data, in particular we analysed the eigenvectors
corresponding to the very small eigenvalues and we guessed additional relations to complete the
proof. Oleg Pikhurko [15] offered us the following explanation of the origin of these relations. It
is possible to alter the known extremal ® in such a way that some values of ®™ change O(¢)
but the density of monochromatic triangles changes only O(e®). This yields that ®™ (my) =
O(e%/?) with probability one which further restricts the linear space containing all eigenvectors of
@, corresponding to non-zero eigenvalues.

5. PROOF OF THEOREM 2

5.1. Finding a standard subgraph of G. Define constants €, e1, €2, €3, €4, €5, €6, €7, €8, €9, €10 and
integers ng, n1,ny such that ng and ¢ satisfy the assertion of Proposition 5 and

6) 0<l/npkek]l/n K1 Kea<Ke3K1/ne ey ey KepgKer Keg<Keg<Kep <K 1.

Let G be a 3-coloured complete graph on n > ng vertices with p(K?, G) minimised. We may assume
the three colours used are red, green and blue. Note that, by the minimality of G, p(K3,G) <
(K3, Ger(n)) < 0.04. Since n > ng, Proposition 5 implies that p(K3,G) > 0.04—¢ and p(H, G) < .
Let us call an induced subgraph G’ C G e1-standard if
(i) p(K3,G") <0.04 +eq;
(i) p(H,G') = 0.
Now we randomly pick n; vertices from G to induce a subgraph G’.
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Claim 1. P(G' is e1-standard) > 1 — es.

Proof. Since 1/n1 < €1, Proposition 5 implies that p™® (K3, n1) > 0.04—e?. Thus, Z := p(K3,G’)—
(0.04 — £2) > 0. Note that E(Z) < &2 since p(K3, G) < 0.04. Hence, by Markov’s inequality,

3

P(Z>e)< ==¢

€1
and therefore
P(p(K3,G') <0.04+¢1) > 1 —e1.
By Markov’s inequality,

2
P <p(7-[, Q) < ;) >1—e9/2.
2
Note that (6) implies that 2¢("}!) /e2 < 1. Thus, the claim follows. O

In the next two subsections we will build up structure in our e;-standard subgraphs G’, thereby
obtaining that each such G’ has ‘similar’ structure to Gez(nq).

5.2. Properties of maximal monochromatic cliques in G’. Consider any e;-standard sub-
graph G’ of G on n; vertices. Let X be the set of maximal monochromatic cliques of order at
least 4 in G'. So a clique X7 in X’ cannot strictly contain another clique Xo € X. However, X
may contain cliques that intersect each other. Since n; is sufficiently large, G’ contains a K* by
Ramsey’s theorem. Thus, |X| > 1.

Claim 2. Let X € X and y € V(G')\V(X). All but one of the edges zy with € V(X)) have the
same colour, which is different from the colour of X. The remaining edge is either of that same
colour or of the colour of X.

Proof. Assume X is coloured red. By definition of X', we cannot have that all edges between X
and y are red. This implies that at most one such edge is red (else G’ contains an H(2,1,0), a
contradiction to (ii)). This in turn implies that there does not exist both green and blue edges
between X and y (else G’ contains an #H(0,2,1)). The claim now follows. O

Claim 3. Suppose X1, Xo € X have different colours. Then X; and X5 are vertex-disjoint.

Proof. Since X and Xo have different colours, |V (X1) NV (X2)| < 1. Suppose for a contradiction
there exists a vertex z € V(X1)NV(X2). Suppose X7 is red and Xj is blue. For each z; € X; — =z,
since z1z is red, Claim 2 implies that all but at most one of the edges from z; to X» are red. Thus,
there exists distinct 2/, 2" € X7 — x and 2" € X5 — x such that 2’2" and z”2" are red. But since
xaz” is blue, G'[z, 2, 2", 2] is an H(2,1,0), a contradiction to (ii). O

Claim 4.

(a) If X;1,Xs € X have different colours, then there is a vertex v; € V(X;) and a vertex
vy € V(X2) such that all edges between X; — v; and X3 — v9 have the same colour, and
this colour is different from the colours of X7 and Xs.

(b) If X1, X5 € X have the same colour, then either X; and X, share exactly one vertex v, and
all edges between X; — v and X9 — v have a common colour, or X; and X5 are disjoint,
there is a (possibly empty) matching of the colour of X; and Xs between X; and Xs, and
all other edges between X; and X, have the same colour, different from the colour of X3
and Xo.



Proof. If X1,Xs € X have different colours, then by Claim 3, X; and X5 are vertex-disjoint.
Suppose X is red and X» is blue. Firstly, note that there does not exist distinct z}, 2] € X; and
xh,xly € Xy such that both 2z} and 2z are blue. Indeed, if such edges exist then by Claim 2,
xjzfy and xfxh are red. Again by Claim 2, this implies that every edge from 2, to X; — 2/ is blue
and every edge from zf to X; — ) is blue. Let a,b € X7 — {],2]}. Then G'[a,b,x%,24] is an
H(2,1,0), a contradiction.

An identical argument implies that there does not exist distinct 2}, 2] € X1 and 24,24 € Xo
such that both z 2/, and z7z} are red. By Claim 2 this implies that there exists at most one vertex
v1 € X; such that v; sends at least one red edge to X5 and there exists at most one vertex v € Xy
such that vs sends at least one blue edge to X;. This implies that all the edges from X; — v to
X9 — v9 are green, and so (a) is satisfied.

Suppose X1, X2 € X have the same colour, red say. Notice that |V(X1) N V(X2)| < 1, since
otherwise a vertex in V' (X7)\V(X2) would send at least two red edges to Xo, a contradiction to
Claim 2. If |[V(X1) NV (X3)| = 1 then it is easy to see that, by Claim 2, the first part of (b) holds.

If X1 and X» are disjoint, then by Claim 2, no vertex in X; sends more than one red edge to
X5 and no vertex in Xy sends more than one red edge to X;. Thus, the red edges between X7 and
X9 form a (possibly empty) matching. Applying Claim 2 again shows that the second part of (b)
holds. O

5.3. Properties of the clique graph. We now define a new 3-coloured complete graph F which
we refer to as the clique graph. The vertex set of F' consists of the elements of X together with
the vertices in Y where Y C V(@) is the set of vertices in G’ not contained in any of the cliques
in X. If z,y € Y then, in F, we colour zy with the colour of xy in G. If X1, Xo € X then, in F,
we colour the edge X1 Xo with the colour of the majority of the edges between X; and X, in G.
(Note that this colour is well-defined by Claim 4.) Finally, given a vertex y € Y and X € X, in F’
we colour the edge yX with the colour of the majority of the edges between y and X in G. (This
colour is well-defined by Claim 2.)

Claim 5. No K2 in F contains a vertex X € X. Moreover, F' contains no K*.

Proof. The first part of the claim follows from Claim 2 since otherwise there would be an H(2,1,0)
in G/, a contradiction to (ii). The second part of the claim follows from the first part together with
the definition of Y. 0

For every clique X € X, the edges in F' leaving X must have different colours from X. Thus, we
have |X|+|Y| < 35. Indeed, otherwise each X in X is incident to 18 edges of the same colour in F.
But then, since R(4,4) = 18, F contains a K* or a K2 containing X, a contradiction to Claim 5. If
|X| < 4, then p(K3,G") > 4(“"17;4)/%)/(@) > 0.04 + €1, a contradiction to (i). Thus, |X| > 5.

If there are three cliques in X of one colour, and another clique in X of a different colour, then it
is easy to see by Claim 4 that there must be a monochromatic triangle between these four cliques, a
contradiction to Claim 5. Similarly, we cannot have two cliques in & of one colour, and also cliques
in X of the other two colours. Therefore, all cliques in X must have the same colour, say red.

If |X| > 6, then again F[X] contains a K3, a contradiction. So |X| = 5. Further, Y = (), since
otherwise F[X U {y}] is 2-coloured and thus contains a K (for all y € Y).

Claim 6. Let X = {X1,..., X5}. The following properties hold:
(a1) (1 —e3)% <X < (1+4e3)% forall 1 <i <5;
(a2) E(F) is 2-coloured with green and blue and consists of a green 5-cycle and a blue 5-cycle.
We may assume that X1 X9 X3X,X5X is a green cycle and X1 X3X5X2 XX is a blue cycle;
(a3) Either the cliques in X are vertex-disjoint or there exists a unique vertex w that lies in each
clique in X (and w is the only vertex which lies is more than one clique in X).

10



Proof. Every clique in X' contains at least (1 —e3)%" vertices as otherwise

p(K3,G") > <<(1 _53)7151> +4<(1 +€§/4)%1)> /(7;1> Q004+ e,

A similar calculation shows that every clique in X' contains at most (1+e¢3)%- vertices. Every clique
in X is red, thus E(F') is 2-coloured with green and blue. Since F' does not contain a monochromatic
triangle, F' must satisfy (a2).

Suppose two of the cliques, say X; and X5, share a vertex w. As X;X3 is blue and X5X3 is
green, Claim 2 implies that, for every vertex v € X3 the edge vw € E(G) can be neither blue nor
green, so it has to be red. But this implies that w € X3. By similar arguments, w € X4 N Xs.
Thus, (a3) holds. O

5.4. Obtaining structure in G from G’. Our next task is to find a special set V' C V(G) such
that G[V'] has ‘similar’ structure to Gez(ns).

Claim 7. There exists a set V/ C V(G) such that the following properties hold:

(Br) V'] = na;
(B2) V' has a partition into non-empty sets C1, Co, C3, Cy, C5 such that

||g;|‘ >1—¢ggforall 1 <izj<5,

all edges inside the C; have the same colour, say red,

all edges between C; and C;y1 are green,

all edges between C; and Cj12 are blue (here indices are computed modulo 5);

(B3) If we uniformly at random choose two vertices u,v € V(G), then with probability greater

than 1 — €5, the set V' U {u, v} satisfies (82) as well.

Proof. Consider any e;-standard subgraph G’ of G on ny vertices. Randomly select a set W C
V(G') of size ny. Then with probability more than 1 — &3, W satisfies (£2). This follows from
Claims 4 and 6. For example, by applying a Chernoff-type bound for the hypergeometric distribu-
tion (see e.g. [13, Theorem 2.10]), () implies that with probability greater than 1 — &}, the first
two conditions in (f2) hold. Further, note that the probability that W contains the special vertex
w from (ag) (if it exists) is na/ny < &4 by (6).

Randomly select a set W’ C V(G) of size ng. One can view this procedure as first randomly
selecting a set W C V(G) of size ny, then randomly selecting a set W' C W” of size na. By
Claim 1, with probability at least 1 — ey, G[W"] is e1-standard.

Together, this implies that with probability greater than (1 — e2)(1 —&3) > 1 — 3 a randomly
chosen set W’ C V(G) of size ny satisfies (82). Similarly, with probability greater than 1 — &% a
randomly chosen set W' C V(G) of size ng + 2 satisfies (f2).

Consider all pairs (V’, {u, v}) such that {u,v}, V' C V(G) and |V’| = ng. (Note here we allow for
V' N {u,v} # 0.) With probability greater than 1 — 3¢, a randomly selected such pair (V’, {u,v})
has the property that both V' and V' U {u,v} are e1-standard. Since 3% < 5, this implies that
there exists a set V' C V(QG) satistfying (81)—(f5s3). O

Let V' be as in Claim 7. Set
Ey:={uv € E(G) : V' U{u,v} does not satisfy (32)}.
Then |Eg| < e5n? by (B3). Let
Vo :={v € V(G) : v is incident to at least egn edges in Ep}.
Then |Vp| < ggn since €5 < g¢. For each 1 < i <5 define

Fi:={veV(G)\ W :vw is red for all w € C;}.
11



Note that V(G) = Vo U F1 U Fy» U F3 U Fy U F5. Further, notice that the F; are disjoint. (Indeed, if
there is a vertex x € F; N F} for some 7 # j then all edges incident to x are in Ey. But then z € Vj,
a contradiction.)

Claim 8. For all 1 <1 <5,
(I —er)n/5 < | < (1+e7)n/5.
Proof. Suppose |F;| < (1 —e7)n/5 for some 1 <14 < 5. By definition of the Fj and (/33), there are

at most e5n? edges in F} that are not red (for each 1 < j <5). Thus, in each F}, there are at most
esn® triples that do not form a red triangle. Hence, there are at least

(1E1) 4 a(VONCRURNAY g (1=erfs) (@5t fSmcan) g

3 3 3 3
(6)
> (0.04+ 1) <§>
red triangles in GG, a contradiction. The upper bound follows similarly. O

For each v € V(G) and 1 < i < 5, let r;(v) := |Npea(v) N Fy|, bi(v) := |Npe(v) N F;| and
9i(v) := [Ngreen(v) N Fi|. On the basis of these quantities, we define another partition of V(G) as
follows. For each 1 <i <5, set

ri(v) > 0.199n,

gi+1(v) >0.199n,

Vii=RveV(G): bita(v) >0.199n,
bitz(v) > 0.199n, and

gi+4(v) > 0.199n

Claim 9. For each 1 <i <5, F; CVj.

Proof. Given any v € F;, v is incident to at most egn edges in Ey. Thus, there are at most egn
vertices in F; that v does not send a red edge to. Hence, Claim 8 implies that r;(v) > 0.199n.
Similar arguments give g;1+1(v), bi+2(v), bi+3(v), gita(v) > 0.199n. O

Set V* :=V(G)\ (ViUVaUV3UVLUV5). Let E* be the set of edges zy in G[V;UVaUV3UV,U V)
such that x € V; and y € Vj for some 1 <4,j <5 and so that the colour of xy differs from that of
the edges between C; and Cj.

Claim 10. For each 1 <i <5, G[V}] is a red clique.

Proof. Claims 8 and 9 imply that (1 —e7)n/5 < |Vi| < (14 4e7)n/5 for all 1 <14 < 5. Suppose for
a contradiction that there is a blue edge vw with v, w € V;. Recolouring vw red creates at most
[V*| + |Vi] + (0.004 + £7/5)n < 0.205n

new red triangles. (The (0.004 4 €7/5)n term counts the maximum number of red edges a vertex
in V; can send to Vo U V3 UV, U V;.) On the other hand, the recolouring destroys at least

|F5| 4+ |F4| — 2(0.002 + 2¢7/5)n > 0.395n
blue triangles, contradicting the minimality of G. U
Claim 11. E* C Ey.

Proof. Suppose xy € E* where x € V; and y € V; for some 1 < 4,5 < 5. The colour of zy differs
from that of the edges between C; and C;. But Claim 10 implies that x only sends red edges to C;
and y only sends red edges to C;. Thus, xy € Ej. O

Claim 12. V* = ).
12



Proof. Suppose that v € V*. We count the number of monochromatic triangles ¢, containing v and
two vertices from outside of V*. First, if we were to recolour all edges from v to the smallest V;
red, from v to V41 U Viyyq green, and from v to Vi1 U V;13 blue, then we would get at most

(";') + B < (Lan) + | Eo| < (0.02 + £5)n?

monochromatic triangles containing v and two vertices from outside of V*, and at most |[V*|n < egn?
new triangles containing v and another vertex from V*. Thus, the minimality of G implies that

(7) ty < (0.02 + &5 + g¢)n?
Recall our notation 7;(v), g;(v), b;(v). Note that
®) ty > 0.5(r1(v)% + r2(0)? + 73(v)? + 14 (v)* + 15(0)?)
+ 91(v)g2(v) + 92(v)g3(v) + g3(v)ga(v) + g4(v)g5(v) + g5(v) g1 (v)
+ b1(0)b3(v) + b2(v)ba(v) 4 b3(v)bs5(v) + ba(v)b1(v) + bs(v)b2(v)
- 2€5n2.

where the last term occurs since (”g’)) > 0.57“1-2 —n foreach 1 <i <5 and as |E*| < esn’.
Our next task is to find a lower bound on

9) 0.5(r1(v)? + 72(v)? + r3(v)? + 14(v)* + 75(0)?) + V172 + Y2v3 + V374 + VY5 + BN
+ 5183 + 8284 + 8385 + BaB1 + Bs B2

under the assumptions that 7;, 8; > 0 are integers and |F;| = r;(v) +; + 5; for all 1 <i < 5. (Note
that finding a lower bound on (9) gives us a lower bound on the right hand side of (8) and thus a
lower bound on the value of t,.) Notice that there is a choice of the values of the 7; and 3; which
minimise the value of (9) and which satisfy 7, = 0 or 5; = 0 for all 1 <4 < 5. (For example, if
there is a choice of the values of the 7; and ; which minimise the value of (9) but with ;1,51 > 0
then this implies that v + 75 = f3 + 54. We can thus obtain another ‘minimal’ choice of the ~;
and f; by resetting v; = 0 and 1 = |Fi| — r1(v).)

Consider such a choice of the «; and B;. So at least three of the «; equal 0 or at least three of
the ; equal 0. Assume that 51 = B2 = 0. Thus,

(10) 0.5r1(v)2 + 0.573(v)? + Y172 > (0.02 — £5)n?
since r1(v) +y1,72(v) + 2 > (1 — e7)n/5. If 43 = 45 = 0, then similarly
0.573(v)% 4 0.5r75(v)? + B305 > (0.02 — eg)n?

Together with (8) this implies that ¢, > (0.04 — 2egn? — 2e5)n?, a contradiction to (7). So B3 =0
or 5 = 0. Assume that 83 = 0. Thus, as before we have that

(11) 0.5r9(v)? + 0.5r3(v)% + 723 > (0.02 — e8)n?
Hence, (10) and (11) imply that (9) is bounded below by
(0.04 — 2eg)n? — 0.5r5(v)>.
In all other cases we obtain that (9) is bounded below by
(0.04 — 2eg)n® — 057,/ (v)?
for some 1 < j' < 5. In particular, together with (8) this implies that

ty > (0.04 — 2e8)n? — 0.5 (v)* — 250
13



for some 1 < j' < 5. Thus, (7) implies that 7 (v) > (0.2 — e9)n for some 1 < j/ < 5. This in turn
implies that v lies in at least ((0'2;59)”) —|E*| > (0.02 — g9)n? red triangles in G. Note that (7)
also implies that r;(v) < ejon for all i € [5] \ {j'}.

We may assume that j' = 1. Suppose that for some j, g;(v) > 0.0001n and bj(v) > 0.0001n. Let
{i1,12,i3} = [5] \ {1, }. It is easy to see that this implies that there are at least

(0.0001n)? — | E*|

green or blue monochromatic triangles containing v and vertices from V;, V;,, V;, and V;,. Therefore,
ty > (0.02 — g9)n? + (0.0001n)? — | E*|, a contradiction to (7).

Thus, for every i € {2,3,4,5}, either g;(v) < 0.0001n or b;(v) < 0.0001n. If ba(v) > 0.0001n then
it is easy to see that bs(v), bs(v) < 0.0001n (else we get (0.0001n)% — | E*| blue triangles containing
v, a contradiction). So g4(v),g5(v) > 0.19n. This implies that there are at least (0.19n)% — |E*|
green triangles containing v, a contradiction. Thus, ba(v) < 0.0001n. Similar arguments imply
that g3(v), ba(v), g5(v) < 0.0001n. This implies that v € V4, a contradiction. So indeed V* = (), as
desired. O

By Claims 10 and 12, V(G) can be partitioned into 5 monochromatic cliques of the same colour.
A straightforward calculation yields that the graphs in G,, are precisely those 3-coloured complete
graphs on n vertices that minimise the number of monochromatic triangles among all 3-coloured
complete graphs whose vertex set can be partitioned into 5 monochromatic cliques of the same
colour. Thus, G € G, as desired.
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APPENDIX

In this appendix we give the data for the proof of Proposition 5.

We will describe the types,models and flags which we use by “adjacency matrices”. Our conven-
tion is that the numbers 1, 2 and 3 correspond to the colours red, blue and green respectively. If
o is a type of size k then o is described by a symmetric k x k& matrix in which the (i, j) entry is
the number corresponding to the colour of the edge ¢j for ¢ # j, and is zero for ¢ = j. Similarly if
M is a model with v(M) = n then we enumerate the vertices as vy, ... vy, and describe M by an
n x n matrix in which the (7, j) entry is the number corresponding to the colour of the edge v;v;
for i # j, and is zero for ¢ = j.

When o is a type of size k and F = (M, 0) is a o-flag then we can enumerate the vertices of M
so that 0(i) = v; for 1 < i < k. It follows that the matrix of M contains the matrix of o in the first
k many rows and columns. In particular when k£ = 3 and n = 4, which is the only case of interest
for us here, we may completely describe the o-flag F' by specifying ¢ and a row vector v of length
3 containing the (4,1), (4,2) and (4, 3) entries of M; we will denote the corresponding o-flag as
“UU” .

There are ten types of size 3 up to isomorphism, all of which are used. For each type o; we list
the 27 o;-flags on 4 vertices as F ]’L We then list the ten matrices Q.

0 1 1 0 1 1 0 1 1 0o 1 2
o1 = 1 0 1 ,02 = 1 0 2 ,03 = 1 0 3 ,04 = 1 0 2 s
L1 1 0 | L1 2 0 | L1 3 0 | L2 2 0 |
o 1 27 o 1 37 o 2 27 o 2 27
os=|1 0 3 |,06=|1 0 3 |,07=|2 0 2 |,08=|2 0 3|,
L2 3 0 | |3 3 0 | L2 2 0 | L2 3 0 |
0 2 3 0 3 3
oo=1|2 0 3 |,000=|3 0 3
3 3 0 3 3 0

Fl=[1,1,10,,Fy =[1,1,2]0,, Fy = [1,2,1]0y, Fy = [2,1,1]0,, Fa = [1,1,3]0,, Fg = [1,3,1]0,
F7 =[3,1,1]0), Fs = [1,2,2)0,, Fy = [2,1,2]0,, Fio = [2,2, 16y, Fiy = [1,2,3]0,, Fip = [1,3,2]5,
F113 = [2»1»3]611F114 = [2»3»1]611F115 =3 172]011F116 = [312=1}a1’F117 = [113=3}a1’F118 =3 1»3101
Fio = 3,3, 10y, Fao = 2,2, 200y, Fyy = [2,2,3l0y, Fop = 2,3, 210y, Faz = 3,2, 206y, Fpy = [2,3,3],
Fys = [3,2,3]0y, Fag = [3,3, 200y, Far = 3,3,3loy, FY = [1,1,1]0,, F3 = [1,1,2]05, F5 = [1,2,1],
F7 =[1,1,3]0,, Fo = [1,3, 10y, Fg = [1,2,2]0y, F2 = [1,2,3]0,, Fa = [1,3,2]0y. Fy = [1,3,3]0y
Fio = (2,1, 10y, Ffy = [2,1,2]0y, Fio = (2,2, 10y, Fis = [2,1,3]0y, Fry = (2,3, ey, Fis = (2,2, 2]0y
Fio = [2,2,3]0y, Fi7 = [2,3,2005, Fis = [2,3,3]05, Fig = [3,1,1]ay, Fag = [3, 1, 200y, 3, = [3,2,1]0,
Fiy = [3,1,3l0y, Fay = [3,3, 10y, Fay = [3.2,2]0y, Fas = 3,2, 3]0y, Fag = [3,3, 2]y, Far = [3,3, 3]0y
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FY = [1,1,10g, Fs = [1,1,2]04, Fy = [1,2,1]0g, F3 = [1,1,3]0q, Fo = [1,3,1]0g. Fg = [1,2,2]0g
F7 = [1,2,3]05, F§ = [1,3, 2005, Fy = [1,3,3]a5, Fip = [2,1, 1oy, Fiy = [2,1, 2005, Fip = (2,2, 1]0y
Fiy = [2,1,3]0g, Fyy = (2,3, 1oy, Fis = [2,2, 205, Fig = [2,2,3]ag, Fiy = (2,3, 205, Fis = [2,3, 3]0,
Fio = [3,1,1]0g, Fan = [3,1,2]0g, F3y = [3,2, 1oy, Fap = [3,1,3]0g, Fos = [3,3, 1oy, Fay = [3,2,2]0y
F3s = 13,2,3]oy, Fas = [3,3,2)0g, Fay = [3,3,3loy, Fy = [1,1,1]0,, F5 = [1,1,2]5,, F5 = [1,1,3]s,
Ff=[1,2,10,, Fo = [2,1,1]0,. Fo = [1,2,2]0,, Fs = [2,1,2]0,, Fa = [1,2,3]04, Fy = [2,1,3]0,
F140 = [1,3,1]54,F141 = [3,1,1}54,F142 =[1,3,2 oy F13 =[3, 1»2]64’F14 = [1,3,3]64,F15 =[3, 1,3]64

4 4 4 4 4 4
Fay = [3,2,2]0y, Fas = [2,3,3]04s Fay = [3.2,3]0,, Fas = 3,3, oy, Fag = (3,3, 2]y, For = [3,3, 3]0y
FP = (1,1, 10g, Fy = [1,1,2]05, F5 = [1,1,3l0g, Fy = [1,2,1]0, Fs = [1,2, 20y, Fg = [1,2, 3]0y
5 5 5 5
= [25 1, 1]051F80 = [173’ 1]55,F9 = [17 3, 2]057F10 = [17 313]057F11 = [2’ 172]057F12 = [2’ 1, 3]05

]
]
4 4 4 4 4 4
Fig =(2,2,1]0,, F17 = [2,2,2]04, Fig = [2,2,3]04, Fig = [2,3,1]0y, Fog = [3,2, 10y, Foy = [2,3,2]0,
]
]

F153 = [3»171]65’Fi54 = [3,1,2}55,Ff5 = [371»3}65’Fi56 = [2,2,1]55,Fi57 = [212,2105’Fi58 = [212,3]05
Fo = (2,3, 105, Fa0 = [2,3, 205, F51 = 2,3, 305, Fay = [3,2, 1oy, Fas = [3,2, 2005, F5y = [3,2,3]og
Fgs = (3,3, oy, Fig = [3,3,2]05. F3y = [3,3,8]e5, FY = (1,1, 11a6,F§ =11, 20, F = [1,2, 106
FP =1[2,1,1]04, FS = [1,1,3]0g. Fs = [1,2,2]0q, Fr = [2,1,2]04, Fs = [1,2,3]0g. Fy = [2,1,3]0g
Foy = (1,3, 106, FYy = [3,1, 1o, Fis = [1,3,2]0g, Fis = [3,1,2]0g, Fry = [1,3,8]og, Frs = [3, 1, 3]og

Fgy = (32,2005, Fa3 = [2,3,3]06, F5y = [3,2,3log, Fas = 3,3, Log, Fog = [3,3, 206, Fyy = [3,3,3]og
F7 (1,1, oq, Fy = [1,1,2]0,, Fy =[1,2,10,, Fy = [2,1,1]0,, Fy = [1,1,3]0,, Fg = [1,3,1]5,
=[3,1, 1]077F87 = [17272]071Fg7 =2, 172],,7,F170 =[2,2, 1]077F171 = [17273]077F172 = [17372]07

F173 = [27173]077F174 = [27371}077F175 =3, 172}077F176 = [31271]077F177 = [11373]a7vF178 =3, 1»3]07

F179 = [37371]677F270 = [27272]077F271 = [21273]077F272 = [21372]077F273 = [31272]077F274 = [213»3]07
FJo =13,2,3]0,, Fog = (3,3, 2]y, Fay = [:’),3,:),]”7,1!718 =[1,1, 1](,8,}«“28 =[1,1 2]68,F§ = 11,2, 1]0g

]
]
Frs = (2,2, 106, Fir = [2,2,2]0g. Fis = [2,2,3]og, Fry = 2,3, Uog, Fao = [3,2, og, Fa1 = (2,3, 2]0g
]
]

Fy =[2,1,10g, Fo = [1,1,3]0g. Fg = [1,3, 1og, Fy = [3,1, 1oy, Fs = [1,2,2]0g. Fy = [2,1,2]0g

F180 = [27271]0‘8’F181 = [17273}0‘871?182 = [173 20’87 13 = [1 3 3]“87F14 = [2 1 3]087F15 = [2 3 1]"8

F282 = [27372]Ugang3 = [2»373}68aF284 =103,2,2 ogs 25 =103,2 3]087 26 =[3,3, 2]037 27 =1[3,3, 3]6*3
Fy = [1,1,10q, Fy = [1,1,2]0g. Fy = [1,2,1]0g, Fy = [2,1, 1]0g, Fy = [1,1,3]0g. Fy = [1,3, 1]0g
= 8,1, 1og, Fg = [1,2,2]0g, F§ = [2,1,2]0g, F1o = 2,2, Uog, F1; = [1,2,30g, Fiz = [2,1,3]0g
Fiy = [1,3,2l0g, Fyy = [3,1,2]0g, Fis = (2,3, og, Fig = 3,2, log, Fir = [1,3, 3]0, Fis = [3,1, 3]0
Fo = [8,3,1]0g, F30 = [2,2,2]0q, F51 = 2,2, S]UQ,FZ% = 2,3, 2109,F§3 =[3,2,2l09, oy = [2,3, 3]0y
F25 =03,2, 3]59,F =[3,3, 2]69,F27 =13,3,3l0q, F1° = [1 Loy, Fo [1 1, 2]C,10,F3 = [1 2,10y,
3,1, 1010, F3’ = [1,2,2]0y0, Fo * = [2,1,2]0y,
=12,1,3]0y,, Fiy = [2,3,1

]
]
F186 = [37172]<rgaF187 = [3»271}68aF188 =[3,1,3]og, F 19 =[3,3,1og, F 20 =[2,2, 24, F 21 =[2,2,3]0g
]
]

= 21, oy, P20 = [1,1, 8]y, FL = [1,3, 11010, -
10
Fl() = [2’ 2, 1]0107 Fll = [172’3]010’F12 = [1’3: 21010’ Fls [ }510, F15 = [37 1a2]01o
10 10 10 10 10
Fig =[3,2,164, Fir = [1,3,3l019: F1g = [3,1,3l01, F1g = 3,3, 1]010,F20 =1[2,2,2]5,¢, Foy =[2,2,3]0q,
5 = ]

10 10 10 10 10
Fyy = [2,3,2]010,F23 = [3’2’2]010’Fz4 = [2,3,3]010,F2 = 37273]010’F26 =[3,3, 2610fF27 = [37353]010
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