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Abstract

We apply the graph container method to prove a number of counting results for the Boolean
lattice P(n). In particular, we:

(i) Give a partial answer to a question of Sapozhenko estimating the number of t error cor-
recting codes in P(n), and we also give an upper bound on the number of transportation
codes;

(ii) Provide an alternative proof of Kleitman’s theorem on the number of antichains in P(n)
and give a two-coloured analogue;

(iii) Give an asymptotic formula for the number of (p, q)-tilted Sperner families in P(n);

(iv) Prove a random version of Katona’s t-intersection theorem.

In each case, to apply the container method, we first prove corresponding supersaturation results.
We also give a construction which disproves two conjectures of Ilinca and Kahn on maximal
independent sets and antichains in the Boolean lattice. A number of open questions are also
given.

1 Introduction

Many problems in combinatorics and other areas can be rephrased into questions about independent
sets in (hyper)graphs. For example, Sperner’s theorem [41] states that the largest antichain in the
power set of [n], P(n) has size

(
n
bn/2c

)
. (P(n) is also refered to as the Boolean lattice.) Let G be the

graph with vertex set P(n) and where A and B are adjacent if A ⊂ B or B ⊂ A. Then equivalently,
Sperner’s theorem states that the largest independent set in G has size

(
n
bn/2c

)
.

So-called container results have emerged as powerful tools for attacking problems which reduce
to counting independent sets in (hyper)graphs. Roughly speaking, container results typically state
that the independent sets of a given (hyper)graph H lie only in a ‘small’ number of subsets of the
vertex set of H (referred to as containers), where each of these containers is an ‘almost independent
set’. The graph container method dates back to work of Kleitman and Winston [30, 31] from more
than 30 years ago. Indeed, they constructed a relatively simple algorithm that can be used to
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produce graph container results. This algorithm will be the starting point for proving the container
results of this paper; we give a more detailed overview of the method in Section 3. An excellent
recent survey of Samotij [38] gives several applications of this method to a range of problems in
combinatorics and number theory.

The container method has also been recently generalised to hypergraphs of higher uniformity.
Perhaps the first applications of the hypergraph container method appeared in [7]. Balogh, Morris
and Samotij [5] and independently Saxton and Thomason [40] developed general container theorems
for hypergraphs whose edge distribution satisfies certain boundedness conditions. These results
have been used to tackle a range of important problems including questions arising in combinatorial
number theory, Ramsey theory, positional games, list colourings of graphs and H-free graphs.

In this paper we provide several new short applications of the graph container method to
counting problems in the Boolean lattice. In Section 4 we asymptotically determine the number of
(p, q)-tilted Sperner families in P(n). In Section 5 we give an upper bound on the number of t error
correcting codes, thereby giving a partial answer to a question of Sapozhenko [39], and an upper
bound on the number of so-called 2-(n, k, d)-codes. Katona’s intersection theorem [25] determines
the largest t-intersecting family in P(n). In Section 6 we prove a random analogue of this result. We
also prove counting versions of generalisations of Sperner’s theorem: we give an alternative proof
of a famous result of Kleitman [29] that gives an asymptotic formula for the number of antichains
in P(n) (see Section 7.1). We then prove a two-coloured generalisation of this result in Section 7.2.
Some open problems are raised in Section 7.3. Finally, in Section 8 we give a construction which
disproves two conjectures of Ilinca and Kahn [23] on maximal independent sets and antichains in
the Boolean lattice.

Section 3 describes the general algorithm used for producing our graph container results. After
this, each of the sections are self-contained and so can be read separately. However, there are two
important themes which run throughout the paper and which we are keen to publicise. Firstly,
for the proof of each of our container theorems, the key step is to apply various supersaturation
results. Roughly speaking, such results state that if a vertex set S in some auxiliary graph G is
significantly bigger than the size of the largest independent set, then G[S] contains many edges.
Secondly, in some cases we need to apply a multi-stage version of the Kleitman–Winston algorithm
(and apply more than one supersaturation result). We explain this in more detail in Section 3.

2 Notation and preliminaries

For a given n ∈ N, write [n] := {1, . . . , n}. Denote Sn the set of all permutations of [n]. Given a
set X we write P(X) for the set of all subsets of X. Given k ∈ N, we write

(
X
≤k
)

to denote the set

of all subsets of X of size at most k and define
(
X
k

)
and

(
X
≥k
)

analogously. Given n ∈ N, we write,

for example,
(
n
≥k
)

:=
(
n
k

)
+
(
n
k+1

)
+ · · · +

(
n
n

)
. We say two sets A, B are comparable if A ⊂ B or

B ⊂ A.
Given a graph G we write NG(x) for the neighbourhood of a vertex x ∈ V (G) and set degG(x) :=

|NG(x)|. We write ∆(G) for the maximum degree of G.
Throughout the paper we omit floors and ceilings where the argument is unaffected. We write

0 < α� β � γ to mean that we can choose the constants α, β, γ from right to left. More precisely,
there are increasing functions f and g such that, given γ, whenever we choose β ≤ f(γ) and
α ≤ g(β), all calculations needed in our proof are valid. Hierarchies of other lengths are defined in
the obvious way.
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The following well known bounds for binomial coefficients will be useful later on.

Fact 2.1. (
n

n/2

)
∼
√

2

πn
2n.

Fact 2.2. If k = (n+ c
√
n)/2 where c = o(n1/6) then(

n

k

)
∼
(
n

n/2

)
e−(c2/2).

Fact 2.3. For any n, k ∈ N, (
n

k

)
≤
(e · n

k

)k
.

3 The graph container algorithm

For each of our problems, we will prove and then apply a container result. We will first introduce
some auxiliary graph G. For example, to prove Kleitman’s theorem on antichains in the Boolean
lattice, we will define G to have vertex set P(n) where distinct A and B are adjacent if they are
comparable. Most of our container results then take the following general structure: Let Imax

denote the size of the largest independent set in G. Then there is a collection F of subsets of V (G)
such that:

(i) |F| = 2o(|Imax|);

(ii) Every independent set I in G lies in some F ∈ F ;

(iii) |F | ≤ (1 + o(1))|Imax| for each F ∈ F .

We refer to the elements of F as containers. In some cases, when we only have an upper bound D
on |Imax|, we in fact have D instead of |Imax| in (i) and (iii). Typically the container result will then
immediately imply our desired counting theorem. For example, in the case of Kleitman’s theorem,
since independent sets in G correspond to antichains in P(n), we have that |Imax| =

(
n
bn/2c

)
. Thus,

(i)–(iii) imply that there are 2
(1+o(1))( n

bn/2c) antichains in P(n), as desired.
To prove each of our container results we will apply the following algorithm of Kleitman and

Winston [30, 31].

The graph container algorithm. Let V := V (G), n := |V | and fix an arbitrary total order
v1, . . . , vn of V and some ∆ > 0. Let I be an independent set in G. Set G0 := G and S := ∅. In
Step i of the algorithm we do the following:

(a) Let u be the vertex of maximum degree in Gi−1 (ties are broken here by our fixed total
ordering);

(b) If u /∈ I then define Gi := Gi−1 \ {u} and move to Step i+ 1;

(c) If u ∈ I and degGi−1
(u) ≥ ∆ then add u to S; define Gi := Gi−1 \ ({u} ∪NG(u)) and move

to Step i+ 1;
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(d) If u ∈ I and degGi−1
(u) < ∆ then define f(S) := V (Gi) and terminate.

Note that I ⊆ S ∪ f(S). We sometimes refer to ∆ as the parameter of the algorithm.
The algorithm produces a function f :

(
V

≤|V |/∆
)
→ P(V ). Indeed, the algorithm ensures that

|S| ≤ |V |/∆ and that f is well-defined.
Let F denote the collection of sets S ∪ f(S) for each S ∈

(
V

≤|V |/∆
)
. By construction (ii) is

satisfied. There are
(

V
≤|V |/∆

)
containers in F . Thus, if one chooses ∆ sufficiently large we can

ensure that (i) is satisfied. At the end of the algorithm, Gi has maximum degree less than ∆, so
is ‘sparse’. In a standard application of the algorithm, we then apply a supersaturation result to
ensure that (iii) holds: roughly speaking, since Gi is sparse it cannot be too much bigger than the
largest independent set in G. Hence, Gi and so S ∪ f(S) is not too big.

In some cases though, the value of ∆ required to ensure that (i) holds is not small enough
to immediately ensure (iii) also holds. That is, ∆(Gi) ≤ ∆ may not imply that (iii) holds. In
this case we have to analyse the algorithm more carefully. Roughly speaking, the idea is to first
apply the algorithm with some relatively large parameter ∆′. This will ensure (i) holds and by
applying a supersaturation result the graph Gi is not too big (though perhaps much bigger than
(1+o(1))|Imax|). We then continue the algorithm with a new, much smaller parameter ∆ to ensure
at the end of this process Gi is much sparser and so (via another supersaturation result) (iii) is
satisfied. We will use this multi-stage approach in Section 5. This idea was first used only very
recently in [6] to prove a random analogue of Sperner’s theorem. We remark that when applying
this approach in Section 5, we will not explicitly state it in this way (we only state the parameter
∆ explicitly and then split the analysis of the algorithm in two), but the method described above
is (implicitly) precisely what is happening.

4 Tilted Sperner families

Let P(n) denote the power set of [n], ordered by inclusion. A subset A ⊆ P(n) is an antichain if for

any A,B ∈ A with A ⊆ B we have A = B. So
([n]
k

)
is an antichain for any 0 ≤ k ≤ n. A celebrated

theorem of Sperner [41] states that in fact no antichain in P(n) has size larger than
(

n
bn/2c

)
.

Given A,B ⊆ [n] the subcube of P(n) spanned by A and B consists of all subsets of A∪B that
contain A∩B. Kalai (see [32]) observed that A is an antichain precisely if it does not contain A and
B such that, in the subcube of P(n) spanned by A and B, A is the top point and B is the bottom
point. He asked what happens if one ‘tilts’ this condition. That is, for some p, q ∈ N we forbid A
to be p/(p+ q) of the way up this subcube and B to be q/(p+ q) of the way up this subcube. More
precisely, we say that A ⊆ P(n) is a (p, q)-tilted Sperner family if A does not contain distinct A,B
such that q|A \B| = p|B \A|. So the case when p 6= 0, q = 0 corresponds to antichains.

Let p, q ∈ N be coprime with p < q. Leader and Long [32] proved that the largest (p, q)-tilted
Sperner family in P(n) has size (q−p+o(1))

(
n
n/2

)
, where the lower bound is obtained by considering

the union of the q − p middle layers of the Boolean lattice (see [32] for an explanation of this).
In 1897, Dedekind [14] raised the question of how many antichains there are in P(n). This was

famously resolved asymptotically by Kleitman [29] who proved that there are in fact 2
(1+o(1))( n

n/2)

antichains. In this section we prove an analogue of this result for (p, q)-tilted Sperner families.

Theorem 4.1. Let p, q ∈ N be coprime with p < q. Then there are

2
(q−p+o(1))( n

n/2)
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(p, q)-tilted Sperner families in P(n).

To prove Theorem 4.1 we will apply the following supersaturation version of the Leader–Long
theorem [32]. The proof applies the same averaging argument strategy used in [32].

Lemma 4.2. Let p, q ∈ N be coprime with p < q. Given any ε > 0, there exist δ > 0 and n0 ∈ N
such that the following holds. Suppose that n ≥ n0 and A ⊆ P(n) such that |A| ≥ (q − p+ ε)

(
n
n/2

)
.

Then there are at least δ
(
n
n/2

)
np+q pairs A,B ∈ A such that q|A \B| = p|B \A|.

We remark that the conclusion of Lemma 4.2 is actually somewhat stronger than what is needed
in the application to the proof of Theorem 4.1. Indeed, for our application instead of δ

(
n
n/2

)
np+q

such pairs, having only δn2n would be sufficient.

Proof. Given ε > 0, define δ > 0 and C, n0 ∈ N such that

0 < 1/n0 < δ � 1/C � ε, 1/p, 1/q.

Let n ≥ n0 and A ⊆ P(n) such that |A| ≥ (q − p+ ε)
(
n
n/2

)
.

Let Ai denote the set of A ∈ A with |A| = i. Since 1/n0 � 1/C � ε,∑
i≥n/2+C

√
n

(
n

i

)
+

∑
i≤n/2−C

√
n

(
n

i

)
≤ ε

2

(
n

n/2

)
.

Thus, we may assume that |A| ≥ (q − p+ ε/2)
(
n
n/2

)
and every A ∈ A satisfies n/2−C

√
n ≤ |A| ≤

n/2 + C
√
n.

For simplicity we may assume that n = (p + q)m for some m ∈ N (the other cases follow
identically). Clearly there exists k ∈ [0, q − p− 1] such that∑

i≡k mod (q−p)

|Ai| ≥
(

1 +
ε

2(q − p)

)(
n

n/2

)
. (4.1)

Define k′ ∈ [0, q − p− 1] so that k′ ≡ k − pm mod (q − p).
Pick a random ordering of [n] that we denote by (a1, . . . , aqm, b1, . . . , bpm) (this can be viewed as

a permutation of [n]). Given this ordering, define Ci := {aj : j ∈ [qi+ k′]}∪ {bj′ : j′ ∈ [pi+ 1, pm]}
and set C := {Ci : i ∈ [0,m− 1]}. Notice that for every i < j we have |Ci| = pm+ k′ + (q− p)i ≡ k
mod (q − p) and p|Cj\Ci| = q|Ci\Cj |. Further, for each i ≡ k mod (q − p) where pm + k′ ≤
n/2− C

√
n ≤ i ≤ n/2 + C

√
n ≤ qm+ k′, there is precisely one set Ci′ in C of size i.

Consider the random variable X := |A ∩ C|. Let i ≡ k mod (q − p) where n/2 − C
√
n ≤ i ≤

n/2 +C
√
n, and set i′ so that i = pm+ k′+ (q− p)i′. Note that each set B ∈

(
[n]
i

)
is equally likely

to be Ci′ , therefore P[B ∈ C] = 1

(ni)
. So

EX =
∑

i≡k mod (q−p)

|Ai|(
n
i

) ≥ ∑
i≡k mod (q−p)

|Ai|(
n
n/2

) (4.1)

≥ 1 +
ε

2(q − p)
. (4.2)

Consider any permutation π ∈ Sn. Write π as (a′1, . . . , a
′
qm, b

′
1, . . . , b

′
pm). Define Cπ,i := {a′j :

j ∈ [qi + k′]} ∪ {b′j′ : j′ ∈ [pi + 1, pm]} and set Cπ := {Cπ,i : i ∈ [0,m − 1]}. So the set C is simply
Cπ for a randomly selected permutation π. Set α(π) := |A ∩ Cπ|. Thus,

EX =
1

n!

∑
π∈Sn

α(π).
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Together with (4.2) this implies that∑
π∈Sn

(
α(π)

2

)
≥
∑
π∈Sn

(α(π)− 1) ≥ εn!

2(q − p)
. (4.3)

We say a pair A,B ∈ A is good if there is some permutation π such that A,B ∈ Cπ. That
is, A = Cπ,i and B = Cπ,j for some i, j and π ∈ Sn. In this case, since A,B ∈ A, we have
n/2− C

√
n ≤ |Cπ,i|, |Cπ,j | ≤ n/2 + C

√
n. Further, by definition of Cπ:

(i) |A ∩B| ≥ n/2− (2p+ 1)C
√
n;

(ii) q|A \B| = p|B \A| or p|A \B| = q|B \A|.

(By relabeling A,B we may assume that q|A \ B| = p|B \ A|.) Moreover, if A,B is good, the
definition of the Cπ implies that there are precisely

|A ∩B|!|A \B|!|B \A|!|A ∪B|! (4.4)

permutations π such that A,B ∈ Cπ. Additionally, the following conditions hold:

• |A ∩B|, |A ∪B| ≤ n/2 + C
√
n;

• p ≤ |A \B|
(i)

≤ (2p+ 2)C
√
n;

• q ≤ |B \A|
(i)

≤ (2p+ 2)C
√
n.

Under these constraints, an upper bound on (4.4) is

p!q!(n/2 + C
√
n)!(n/2− C

√
n− p− q)!.

Together with (4.3) this implies that there are at least

εn!

2(q − p)
× 1

p!q!(n/2 + C
√
n)!(n/2− C

√
n− p− q)!

≥ εn!

2(q − p)
× δ1/2np+q

(n/2)!(n/2!)
≥ δ
(
n

n/2

)
np+q

good pairs A,B ∈ A. (In the last inequality we apply Fact 2.2.) Since each such pair satisfies (ii),
this completes the proof.

Lemma 4.2 can now be applied to prove the following container lemma which immediately
implies Theorem 4.1.

Lemma 4.3. Let p, q ∈ N be coprime with p < q. There is a collection F ⊆ P(n) with the following
properties:

(i) |F| = 2
o(1)( n

n/2);

(ii) If A ⊆ P(n) is a (p, q)-tilted Sperner family, then A is contained in some member of F ;

(iii) |F | ≤ (q − p+ o(1))
(
n
n/2

)
for every F ∈ F .
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Proof. Let ε > 0 and let δ, n0 be as in Lemma 4.2. Let n ≥ n0. Define G to be the graph with
vertex set P(n) in which distinct sets A and B are adjacent if and only if p|A \ B| = q|B \ A| or
q|A \ B| = p|B \ A|. Thus a (p, q)-tilted Sperner family in P(n) is precisely an independent set in
G.

Claim 4.4. There exists a function f :
( V (G)
≤2n/δn

)
→
( V (G)

≤(q−p+ε)( n
n/2)

)
such that, for any independent

set I in G, there is a subset S ⊆ I where S ∈
( V (G)
≤2n/δn

)
and I ⊆ S ∪ f(S).

To prove the claim, fix an arbitrary total order v1, . . . , v2n on the vertices of V (G). Given any
independent set I in G, define G0 := G, and take S to be initially empty. We add vertices to S
through the following iterative process: At Step i, let u be the maximum degree vertex of Gi−1 (with
ties broken by our fixed total order). If u /∈ I then define Gi := Gi−1\{u}, and proceed to Step i+1.
Alternatively, if u ∈ I and degGi−1

(u) ≥ δn then add u to S, define Gi := Gi−1 \ ({u} ∪ NG(u)),
and proceed to Step i + 1. Finally, if u ∈ I and degGi−1

(u) < δn, then set f(S) := V (Gi) and
terminate.

Observe that for any independent set I in G the process defined ensures that S ⊆ I where
|S| ≤ 2n/δn and I ⊆ S ∪ f(S). Further, at the end of the process we know that ∆(Gi) < δn and so
e(Gi) < δn2n < δ

(
n
n/2

)
np+q. Hence, Lemma 4.2 implies that |f(S)| = |V (Gi)| ≤ (q − p+ ε)

(
n
n/2

)
.

To complete the claim we must show that f is well-defined. That is, we must check that if the
process described above yields the same set S when applied to independent sets I and I ′, then it
should also yield the same set f(S). However, this is a consequence of the fact that we always chose
u to be the vertex of I of maximum degree in Gi−1. Thus, the claim is proven.

Define F to be the collection of all the sets S ∪ f(S) for every S ∈
( V (G)
≤2n/δn

)
. Then (i) and (ii)

hold and |F | ≤ (q − p+ ε)
(
n
n/2

)
+ 2n/δn ≤ (q − p+ 2ε)

(
n
n/2

)
for every F ∈ F , as desired.

5 The number of t error correcting codes and 2-(n, k, d)-codes

5.1 Counting t error correcting codes: Sapozhenko’s question

The Hamming distance d(A,B) between two sets A,B ⊆ [n] is defined as

d(A,B) := |A\B|+ |B\A|.

In this section we will view a subset A of [n] as a string of length n over the alphabet {0, 1} where
the ith entry of the string is 1 precisely when i ∈ A. In this setting, the Hamming distance between
A and B can be rewritten as

d(A,B) = |{1 ≤ i ≤ n : Ai 6= Bi}|,

where for example, Ai denotes the ith term in the string A. The Hamming ball of radius r around
a set A ⊆ [n] is defined as

B(A, r) := {X ⊆ [n] : d(A,X) ≤ r}.

Given a family C ⊂ P(n), we say C is a distance d code if the Hamming distance between any two
distinct members of C is at least d. Moreover C is said to be a t error correcting code if there exists
a decoding function Dec : {0, 1}n → C such that for every X ∈ {0, 1}n and A ∈ C with d(X,A) ≤ t
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we have Dec(X) = A. Recall that C is t error correcting if and only if for every pair A,B ∈ C we
have d(A,B) ≥ 2t + 1. So t error correcting codes are precisely distance 2t + 1 codes, i.e. codes
where the Hamming balls {B(A, t) : A ∈ C} are disjoint. Since most communication channels are
subject to channel noise, which can cause errors in the transmission of messages, the additional
redundancy given by error correcting codes plays a crucial role in ensuring that the receiver can
recover the original message. Given the widespread usage of such codes in digital communications,
natural question to ask is how many t error correcting codes there are in total, i.e. estimate the
size of

|{C ⊆ P(n) : C is t error correcting}|.
This problem was first raised by Sapozhenko [39]. We wish to bound the number of t error

correcting codes of length n and alphabet {0, 1}. An upper bound for the size of such a code is given
by the Hamming bound, which gives an important limitation on the efficiency of error correcting
codes. Let V (n, t) be the volume of a Hamming ball of radius t in [n], so V (n, t) =

∑t
k=0

(
n
k

)
.

Then the Hamming bound states that if C is t error correcting, since the Hamming balls of radius
t centered at the members of C have to be disjoint, we have

|C| ≤ 2n

V (n, t)
.

If C attains equality in the Hamming bound, we say C is a perfect code. Perfect codes are
precisely those for which the Hamming balls centered at the codewords fill up the entire space
{0, 1}n without overlap. The trivial perfect codes are codes consisting of a single codeword (when
t = n), or the whole of {0, 1}n (when t = 0), and repetition codes where the same substring is
repeated an odd number of times. The non-trivial perfect codes over prime-power alphabets must
have the same parameters as the so-called Hamming codes or the Golay codes (see [42]).

Let H(n, t) := 2n

V (n,t) . Since every subset of a t error correcting code is also t error correcting, if

C is t error correcting then the number of t error correcting codes is at least 2|C|. In particular, if
the parameters n, t are such that a perfect code exists, then the number of t error correcting codes
is at least 2H(n,t). Our first goal is to prove a corresponding upper bound:

Theorem 5.1. Let t = t(n) � 3

√
n

log2 n
. Then the number of t error correcting codes is at most

2H(n,t)(1+o(1)).

The range of t given in Theorem 5.1 is probably not optimal - indeed our guess is that the
conclusion of Theorem 5.1 should hold whenever t� n

logn . However, a heuristic argument suggests
that if t� n

logn the conclusion of Theorem 5.1 may fail. Indeed, suppose one could partition {0, 1}n

into disjoint copies of balls of radius t + 1, obtaining roughly t
nH(n, t) balls. From each ball we

can pick one element, that is either the centre of the ball or an element at distance one from the
centre, giving n + 1 choices for each ball. Every family we obtain like this is a t error correcting
code, and we have roughly n

t
n
H(n,t) � 2H(n,t) such families.

Our overarching proof strategy is similar to the one used in the previous section. However, now
we will employ a two phase strategy to construct our containers and as such we require two different
supersaturation results. The first states that if |C| is slightly bigger than H(n, t) then it contains
many bad pairs, i.e. pairs at distance less than 2t+ 1. Let W (t, d) be the size of the intersection of
two Hamming balls of radius t in n, the centers being distance d apart. So W (t, 1) ≥W (t, d) for all
d ≥ 2, and W (t, 1) = 2V (n − 1, t − 1). The key observation is that the volume of the intersection
of two balls is significantly smaller than the volume of a single ball.
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Lemma 5.2. Let C ⊂ P(n). If |C| ≥ H(n, t) + x then there are at least x n2t pairs A,B ∈ C that
have Hamming distance at most 2t.

Proof. For X ∈ {0, 1}n, let KX := {A ∈ C : d(A,X) ≤ t}. For k ∈ N set Sk := {X ∈ {0, 1}n :
|KX | = k}. Then

∑
k k|Sk| = |C|V (n, t) ≥ 2n + xV (n, t). So the number of pairs in C of distance

at most 2t is at least

1

W (t, 1)

∑
k

|Sk|
(
k

2

)
≥ 1

W (t, 1)

∑
k

|Sk|(k − 1) ≥ x · V (n, t)

W (t, 1)
= x · V (n, t)

2V (n− 1, t− 1)
≥ x n

2t
.

Our next supersaturation lemma considers sets of size at least 2H(n, t). Consider the graph G
with V (G) = P(n), where two distinct vertices A,B are connected by an edge of colour d(A,B) if
they form a bad pair, i.e. their Hamming distance is at most 2t. Define

α :=
n

10tH(n, t)
.

Lemma 5.3. Let C ⊂ P(n). If |C| ≥ 2H(n, t), then there is an A ∈ C such that its degree in G[C]
is at least α|C|.

Proof. Let Ei denote the number of pairs of vertices connected by an edge of colour i in G[C] for
all i = 1, . . . , 2t, and let E :=

∑
iEi. Define KX as in the proof of Lemma 5.2. Note that

2t∑
k=1

W (t, k)Ek =
∑

X∈{0,1}n

(
|KX |

2

)
(5.1)

since both terms count the number of pairs (X, (A,B)) where X ∈ {0, 1}n, A,B ∈ C and d(X,A),
d(X,B) ≤ t. The average value of KX over all X ∈ {0, 1}n is |C|V (n, t)/2n. Thus,∑

X∈{0,1}n

(
|KX |

2

)
≥ 2n

(
|C|V (n, t)/2n

2

)
. (5.2)

Combining (5.1) and (5.2), since |C|V (n, t)/2n ≥ 2, we have that

2t∑
k=1

W (t, k)Ek ≥
|C|2V (n, t)2

10 · 2n
.

As W (t, k) ≤W (t, 1) = 2V (n− 1, t− 1) ≤ 2t
n V (n, t), we have that

E ≥ |C|
2V (n, t)n

20t2n

and the result follows.

Given these two supersaturation results, we are now ready to prove the following container
lemma which immediately implies Theorem 5.1.

9



Lemma 5.4. Let t = t(n)� 3

√
n

log2 n
. There is a collection F ⊆ P(n) with the following properties:

(i) |F| = 2o(H(n,t));

(ii) If C ⊆ P(n) is a t error correcting code, then C is contained in some member of F ;

(iii) |F | ≤ (1 + o(1))H(n, t) for every F ∈ F .

Proof. Let 0 < ε < 1 and let n be sufficiently large. Let G be the graph with vertex set P(n) in
which distinct sets A and B are adjacent if and only if their Hamming distance is at most 2t. Thus
a t error correcting code in P(n) is precisely an independent set in G.

Claim 5.5. There exists a function f :
( V (G)

≤εH(n,t)
t logn

)
→
( V (G)
≤(1+ε)H(n,t)

)
such that, for any independent

set I in G, there is a subset S ⊆ I where S ∈
( V (G)

≤εH(n,t)
t logn

)
and I ⊆ S ∪ f(S).

To prove the claim, fix an arbitrary total order v1, . . . , v2n on the vertices of V (G). Given
any independent set I in G, define G0 := G, and take S to be initially empty. We add vertices
to S through the following iterative process: At Step i, let u be the maximum degree vertex of
Gi−1 (with ties broken by our fixed total order). If u /∈ I then define Gi := Gi−1 \ {u}, and
proceed to Step i + 1. Alternatively, if u ∈ I and degGi−1

(u) ≥ εn/4t then add u to S, define
Gi := Gi−1 \ ({u} ∪NG(u)), and proceed to Step i + 1. Finally, if u ∈ I and degGi−1

(u) < εn/4t,
then set f(S) := V (Gi) and terminate.

Observe that for any independent set I in G the process defined ensures that S ⊆ I and
I ⊆ S ∪ f(S). Further, at the end of the process we know that ∆(Gi) < εn/4t and so e(Gi) <
|V (Gi)|εn/4t. Hence, Lemma 5.2 implies that |f(S)| = |V (Gi)| ≤ (1 + ε)H(n, t). Moreover it is
easy to see that f is well-defined.

To complete the proof of the claim, it remains to prove that |S| ≤ εH(n, t)/(t log n). We will
distinguish two stages in the above algorithm, according to the size of V (Gi). Let S1 denote the set
of vertices u ∈ S that were added to S in some Step i of the algorithm where |V (Gi−1)| ≥ 2H(n, t).
Set S2 := S \ S1. So there is some k such that, up to and including Step k, every vertex added to
S lies in S1, and every vertex added to S after Step k lies in S2.

By Lemma 5.3, for every i ≤ k, at Step i we remove at least an α proportion of the vertices
from Gi−1 to obtain Gi. Thus, |S1| = k and (1 − α)k2n ≤ 2H(n, t). Note that α → 0 as n → ∞,
so as n is sufficiently large we have that α ≤ 10 log(1/(1− α)). Therefore,

|S1| ≤
log
(

2n

2H(n,t)

)
log
(

1
1−α

) ≤ 10
log V (n, t)

α
≤ 5000

tH(n, t)

n
t log(n/t) ≤ ε

2

H(n, t)

t log n
.

Note that in the last inequality we use that t� 3

√
n

log2 n
.

After Step k we remove at least εn/4t vertices at each step, so we have

|S2| ≤
8tH(n, t)

εn
≤ ε

2

H(n, t)

t log n
.

Hence,

|S| = |S1|+ |S2| ≤ ε
H(n, t)

t log n
,

10



as required. This finishes the proof of the claim.

Define F to be the collection of all the sets S ∪ f(S) for every S ∈
( V (G)

≤εH(n,t)
t logn

)
. Then (ii) clearly

holds. Further,

|F| ≤
(

2n

≤ εH(n,t)
t logn

)
≤ 2

2ε
H(n,t)
t logn

log(tV (n,t) log(n)/ε) ≤ 2
2ε
H(n,t)
t logn

(2t logn+log t+log logn+log 1
ε

) ≤ 25εH(n,t)

and |F | ≤ (1 + 2ε)H(n, t) for all F ∈ F . Since 0 < ε < 1 was arbitrary, this proves the lemma.

5.2 Counting 2-(n, k, d)-codes

In this subsection, all pairs of sets considered are unordered. Let us now turn our attention to the
space Y of pairs of disjoint k-subsets of [n] (for some fixed 0 < k ≤ n/2). Given two pairs (A1, A2),
(B1, B2) ∈ Y, the transportation distance, or Enomoto–Katona distance is defined by

d((A1, A2), (B1, B2)) := min{|A1 \B1|+ |A2 \B2|, |A1 \B2|+ |A2 \B1|}.

For convenience, throughout this subsection we will write distance when we mean transportation
distance. The notion of transportation distance has been widely studied (also in a more general
setting for metric spaces). See for example [43] and the introduction of [9] for background on the
topic.

We say that a collection C ⊆ Y is a 2-(n, k, d)-code if the distance between any two elements of C
is at least d. Write C(n, k, d) for the maximum size of a 2-(n, k, d)-code. Brightwell and Katona [10]
proved that

C(n, k, d) ≤ 1

2

n(n− 1) · . . . · (n− 2k + d)(
k(k − 1) · . . . · dd+1

2 e
) (
k(k − 1) · . . . · bd+1

2 c
) =: H(n, k, d). (5.3)

Recently the value of C(n, k, d) has been determined for many values of (n, k, d) (see [9, 12]). As
an example, we have equality or are ‘close’ to equality in (5.3) when k ≥ 2, d = 2k − 1 and for
certain (congruency) classes of n (see [12]). Further, the bound in (5.3) is asymptotically sharp for
fixed k, d and n→∞ (see [9]). Our goal in this subsection is to prove the following upper bound
on the number of 2-(n, k, d)-codes.

Theorem 5.6. Suppose that k = k(n) ≤ n/2 and t = t(n) � 3

√
k

log2 n
then the number of 2-

(n, k, 2t+ 1)-codes is at most 2H(n,k,2t+1)(1+o(1)).

Similarly to Theorem 5.1, we believe that the correct range of t in Theorem 5.6 should be
t� k

logn .
Given a pair (A,B) ∈ Y, let P ((A,B), u) denote the family of pairs (U, V ) where |U | = |V | = u

and U ⊆ A, V ⊆ B or vice versa. Then |P ((A,B), u)| =
(
k
u

)2
. Let Z(u) be the space of pairs of

disjoint sets of size u in [n]. So |Z(u)| = 1
2

(
n
u

)(
n−u
u

)
and note that Y = Z(k). We will refer to

P ((A,B), k − t) as the ball of radius t around (A,B). In particular, for any (A1, B1), (A2, B2) in
Y, if P ((A1, B1), k − t) and P ((A2, B2), k − t) intersect, then d((A1, A2), (B1, B2)) ≤ 2t.

The proof strategy for Theorem 5.6 is extremely close to that of Theorem 5.1. The following
supersaturation lemma is an analogue of Lemma 5.2.
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Lemma 5.7. Let C ⊆ Y. If |C| ≥ H(n, k, 2t+1)+x then there are at least xk/t pairs (A1, B1), (A2, B2) ∈
C at distance at most 2t.

Proof. Note that

∑
(A,B)∈C

|P ((A,B), k − t)| ≥
(

k

k − t

)2

(H(n, k, 2t+ 1) + x) =
1

2

(
n

k − t

)(
n− k + t

k − t

)
+ x

(
k

k − t

)2

= |Z(k − t)|+ x

(
k

k − t

)2

. (5.4)

LetW (k−t, d) denote the largest possible intersection of two balls P ((A1, B1), k−t) and P ((A2, B2), k−
t), amongst all (A1, B1), (A2, B2) ∈ Y with d((A1, B1), (A2, B2)) = d. This is maximised when
A1 = A2 and |B1 ∩ B2| = k − 1, so W (k − t, d) ≤ W (k − t, 1) for all d ≥ 2. Now W (k − t, 1) =(
k
k−t
)(
k−1
k−t
)

=
(
k
k−t
)2(k−1

t−1

)
/
(
k
t

)
. Combining this with (5.4) we see that there are at least

x

(
k

t

)
/

(
k − 1

t− 1

)
= xk/t

pairs (A1, B1), (A2, B2) ∈ C such that P ((A1, B1), k− t) and P ((A2, B2), k− t) intersect. Note that
each such pair (A1, B1), (A2, B2) ∈ C have distance at most 2t, as desired.

Consider the graph G with V (G) = Y, two vertices (A1, B1), (A2, B2) being connected by an
edge of colour d((A1, B1), (A2, B2)) if they form a bad pair, i.e. their transportation distance is at
most 2t. Define the constant α by

α :=
k

10tH(n, k, 2t+ 1)
.

Lemma 5.8. Let C ⊂ Y. If |C| ≥ 2H(n, k, 2t+ 1), then there is a vertex (A1, B1) ∈ C such that its
degree in G[C] is at least α|C|.

Proof. One can prove the lemma by arguing in a similar way to the proof of Lemma 5.3. Now
though given X ∈ Z(k − t) we take KX := {(A,B) ∈ C : X ∈ P ((A,B), k − t)} and Si := {X ∈
Z(k− t) : |KX | = i}. By arguing as in Lemma 5.3 and using that |Z(k− t)| = H(n, k, 2t+ 1)

(
k
k−t
)2

we have that the number E of edges in G[C] satisfies

E ≥ |Z(k − t)|
W (k − t, 1)

(
|C|/H(n, k, 2t+ 1)

2

)
≥ |C|2 k

20tH(n, k, 2t+ 1)

and the result follows. (In the last inequality we use that W (k − t, 1) =
(
k
k−t
)2(k−1

t−1

)
/
(
k
t

)
.)

The following container lemma immediately implies Theorem 5.6; its proof follows the same
approach used in the proof of Lemma 5.4.

Lemma 5.9. Let k = k(n) ≤ n/2 and t = t(n)� 3

√
k

log2 n
. There is a collection F of subsets of Y

with the following properties:

(i) |F| = 2o(H(n,k,2t+1));

12



(ii) If C ⊆ Y is a 2-(n, k, 2t+ 1)-code, then C is contained in some member of F ;

(iii) |F | ≤ (1 + o(1))H(n, k, 2t+ 1) for every F ∈ F .

Proof. Let 0 < ε < 1 and let n be sufficiently large. Let G be the graph defined before Lemma 5.8.

Claim 5.10. There exists a function f :
( V (G)

≤ εH(n,k,2t+1)
t logn

)
→
( V (G)
≤(1+ε)H(n,k,2t+1)

)
such that, for any

independent set I in G, there is a subset S ⊆ I where S ∈
( V (G)

≤ εH(n,k,2t+1)
t logn

)
and I ⊆ S ∪ f(S).

To prove the claim we argue as in Claim 5.5 except that we now apply the graph container
algorithm with parameter εk/2t instead of εn/4t. That is, at Step i if u /∈ I then set Gi = Gi−1\{u};
if u ∈ I and degGi−1

(u) ≥ εk/2t we add u to S, define Gi := Gi−1 \ ({u} ∪ NG(u)); if u ∈ I and
degGi−1

(u) < εk/2t, set f(S) := V (Gi) and terminate.
As before we have that for any independent set I in G the process defined ensures that S ⊆ I

and I ⊆ S ∪ f(S). Further, at the end of the process we know that ∆(Gi) < εk/2t and so
e(Gi) < |V (Gi)|εk/2t. Hence, Lemma 5.7 implies that |f(S)| = |V (Gi)| ≤ (1 + ε)H(n, k, 2t + 1).
Moreover f is well-defined.

To complete the proof of the claim, it remains to prove that |S| ≤ εH(n, k, 2t+ 1)/(t log n). As
in Claim 5.5 we distinguish two stages in the above algorithm, according to the size of V (Gi). Let
S1 denote the set of vertices u ∈ S that were added to S in some Step i of the algorithm where
|V (Gi−1)| ≥ 2H(n, k, 2t+ 1). Set S2 := S \ S1. So there is some k such that, up to and including
Step k, every vertex added to S lies in S1, and every vertex added to S after Step k lies in S2.

By Lemma 5.8, for every i ≤ k, at Step i we remove at least an α proportion of the vertices
from Gi−1 to obtain Gi. Thus, |S1| = k and (1 − α)k|Y| ≤ 2H(n, k, 2t + 1). Note that α → 0 as
n→∞, so as n is sufficiently large we have that α ≤ 10 log(1/(1− α)). Therefore,

|S1| ≤
log
(

|Y|
2H(n,k,2t+1)

)
log
(

1
1−α

) ≤ 10
log
(

(n−2k+2t)...(n−2k+1)
2(t!)2

)
α

≤ 5000
tH(n, k, 2t+ 1) log

(
n
t

)
k

≤ 10000
t2 log n

k
H(n, k, 2t+ 1) <

ε

2

H(n, k, 2t+ 1)

t log n
.

In the first inequality we used that |Y| =
(
n
k

)(
n−k
k

)
/2 and in the last inequality we use that t �

3

√
k

log2 n
.

After Step k we remove at least εk/2t vertices at each step, so we have

|S2| ≤
2H(n, k, 2t+ 1)

εk
2t

=
4t

εk
H(n, k, 2t+ 1) ≤ ε

2

H(n, k, 2t+ 1)

t log n
.

Hence,

|S| = |S1|+ |S2| ≤ ε
H(n, k, 2t+ 1)

t log n
,

as required. This finishes the proof of the claim.
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Define F to be the collection of all the sets S ∪ f(S) for every S ∈
( V (G)

≤εH(n,k,2t+1)
t logn

)
. Then (ii)

clearly holds. Further,

|F| ≤
( 1

2

(
n
k

)(
n−k
k

)
≤ εH(n,k,2t+1)

t logn

)
≤ 2

2ε
H(n,k,2t+1)

t logn
log

(
(nt)

2
t log(n)/ε

)
≤ 2

10ε
H(n,k,2t+1)

t logn
(t logn+log t+log logn+log 1

ε
)

≤ 220εH(n,k,2t+1),

and |F | ≤ (1 + 2ε)H(n, k, 2t + 1) for all F ∈ F . Since 0 < ε < 1 was arbitrary, this proves the
lemma.

6 A random version of Katona’s intersection theorem

A family A ⊆ P(n) is t-intersecting if |A ∩ B| ≥ t for all A,B ∈ A. In the case when t = 1 we
simply say that A is intersecting. Two of the most fundamental results in extremal set theory
concern t-intersecting sets. The cornerstone theorem of Erdős–Ko–Rado states that for every k, t
there exists an n0 = n0(k, t) such that if n ≥ n0 then the largest t-intersecting k-uniform family
is the trivial family, i.e., there is a t-element set which is contained in each of the sets. The other
fundamental theorem is Katona’s intersection theorem [25], which determines the size K(n, t) of
the largest t-intersecting (not necessarily uniform) family in P(n): it states that

K(n, t) =

{(
n

≥(n+t)/2

)
if 2|(n+ t);

2
(

n−1
≥(n+t−1)/2

)
otherwise.

In the case when n + t is even,
( [n]
≥(n+t)/2

)
is a t-intersecting set of size K(n, t). When n + t is

odd,
( [n]
≥(n+t+1)/2

)
∪
( [n−1]

(n+t−1)/2

)
is a t-intersecting set of size K(n, t). Notice that if t = o(

√
n) then

K(n, t) ∼ 2n−1.
Beginning with the work of Balogh, Bohman and Mubayi [3], the problem of developing a

‘random’ version of the Erdős–Ko–Rado theorem has received significant attention (see [3, 4, 20,
21, 22]). In this section, we raise the analogous question for Katona’s intersection theorem. More
precisely, let P(n, p) be the set obtained from P(n) by selecting elements randomly with probability
p and independently of all other choices.

Question 6.1. Suppose that n ∈ N, t = t(n) ∈ N and write K := K(n, t). For which values of p do
we have that, with high probability, the largest t-intersecting family in P(n, p) has size (1+o(1))pK?

The model P(n, p) was first investigated by Rényi [36] who determined the probability threshold
for the property that P(n, p) is not itself an antichain, thereby answering a question of Erdős. More
recently, a random version of Sperner’s theorem for P(n, p) was obtained independently by Balogh,
Mycroft and Treglown [6] and by Collares Neto and Morris [13].

In this section we give a precise answer to Question 6.1 in the case when t = o(
√
n). For

intersecting families (i.e. for the t = 1 case), this question has also been resolved independently
by Mubayi and Wang [35]. Clearly the conclusion of Question 6.1 is not satisfied if p < C/2n for
any constant C > 0. The next result implies that the conclusion of Question 6.1 is not satisfied for
p = 2−Ω(

√
n logn) and t = o(

√
n).
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Theorem 6.2. Let p = 2−Ω(
√
n logn) where p ≥ ω(n)/2n for some function ω(n) → ∞ as n → ∞,

and let t = o(
√
n). Then there exists a constant ε > 0 such that, with high probability, the largest

t-intersecting family in P(n, p) has size at least (1
2 + ε)2np.

Proof. The choice of p and t implies that there exists a constant a > 0 such that p < 2−a
√
n logn

and t < a
100

√
n for n sufficiently large. Define ε so that 0 < ε� a.

Let A denote the set of elements A of P(n) that satisfy n/2 − a
√
n/2 ≤ |A| ≤ n/2 − a

√
n/4

and |A ∩ [n/2]| ≥ n/4 + t/2. The latter condition implies that A is a t-intersecting family.

Claim 6.3. |A| ≥ 4ε2n.

The claim holds since

|A| =
a
√
n/2∑

s=a
√
n/4

n/4−t/2−s∑
k=0

(
n/2

n/4 + t/2 + k

)(
n/2

n/4− t/2− s− k

)

≥ a
√
n

4

a
√
n∑

k=0

(
n/2

n/4 + t/2 + k

)(
n/2

n/4− t/2− a
√
n/2− k

)
≥ a
√
n

4
· a
√
n

(
n/2

n/4 + 2a
√
n

)(
n/2

n/4− 2a
√
n

)
≥ 4ε2n,

where the last inequality follows by applying Facts 2.1 and 2.2 and since ε� a.

Write Aex :=
( [n]
≥n/2+t/2

)
. So Aex is a t-intersecting set. Since t = o(

√
n) note that |Aex| ≥

(1/2− ε/2)2n. As p ≥ ω(n)/2n, by the Chernoff bound for the binomial distribution, we have that,
with high probability, P(n, p) contains at least (1/2− ε)p2n elements from Aex. Denote this set by
Aex,p. We will show that, with high probability, we can add a significant number of elements from
A to Aex,p to obtain a t-intersecting set in P(n, p) of size at least (1

2 + ε)2np.

Consider any A ∈ A. The number of elements B ∈
( [n]
≥n/2

)
with |A ∩B| < t is

t−1∑
k=0

(
|A|
k

)(
n− |A|
≥ n/2− k

)
≤
(
|A|
t− 1

) t−1∑
k=0

(
n− |A|
≥ n/2− k

)
≤
(
n/2− a

√
n/4

t− 1

) t−1∑
k=0

(
n/2 + a

√
n/2

≥ n/2− k

)

=

(
n/2− a

√
n/4

t− 1

) t−1∑
k=0

(
n/2 + a

√
n/2

≤ a
√
n/2 + k

)
≤ 2

(
n/2− a

√
n/4

t− 1

)(
n/2 + a

√
n/2

a
√
n/2 + t

)
.

Further,

2

(
n/2− a

√
n/4

t− 1

)(
n/2 + a

√
n/2

a
√
n/2 + t

)
≤ nt

(
3
√
n

a

)0.55a
√
n

≤ 20.6a
√
n logn,

where in the first inequality we use that t < a
√
n/100 and apply Fact 2.3.

Let Ap denote the set of elements A ∈ A that lie in P(n, p) and where Aex,p ∪ {A} is a t-
intersecting set. Thus, the probability that A ∈ A lies in Ap is at least

p(1− p)20.6a
√
n logn

.
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By X denote the size of the family Ap. By Claim 6.3,

E(X) ≥ 4ε2np(1− p)20.6a
√
n logn ≥ 4εp2n(1− p20.6a

√
n logn) ≥ 4εp2n(1− 2−0.4a

√
n logn) ≥ 3εp2n,

where the last inequality follows since n is sufficiently large.
Write A = {A1, . . . , Am} and X =

∑m
i=1Xi where Xi = 1 if Ai ∈ Ap and Xi = 0 otherwise.

Note that the random variables Xi, Xj are not independent if and only if there is some B ∈ Aex

such that |B∩Ai|, |B∩Aj | < t. In this case, |B| ≥ n/2 and so |Ai∪Aj | ≤ n/2+2t ≤ n/2+a
√
n/50.

Further, |Ai|, |Aj | ≥ n/2−a
√
n/2 and thus |Ai\Aj |, |Aj \Ai| ≤ a

√
n. So given a fixed i, the number

of Xjs that are not independent with Xi is at most(
n

≤ a
√
n

)(
|Ai|
≤ a
√
n

)
≤ 2

(
n

a
√
n

)2

≤ 2

(
e
√
n

a

)2a
√
n

< 210a
√
n logn.

Write i ∼ j to mean that Xi and Xj are not independent. By abusing notation let us also write
Ai to denote the event that Ai ∈ Ap. Consider

∆ :=
∑
i∼j

P(Ai∩Aj).

For Ai, Aj ∈ Ap we require that Ai, Aj ∈ P(n, p) and so P(Ai∩Aj) ≤ p2. Therefore,

∆ ≤
m∑
i=1

210a
√
n lognp2 ≤ 2n210a

√
n lognp2.

In particular, ∆ = o(E(X)2). Thus, by applying Corollary 4.3.4 from [2] (Chebyshev’s inequality)
we have that, with high probability, X ≥ 2εp2n.

Note that Ap ∪ Aex,p is a t-intersecting set in P(n, p) and, with high probability, it has size at
least (1/2 + ε)p2n, as required.

By arguing precisely as in the proof of Theorem 6.2 we in fact obtain the following result for
t = O(

√
n).

Theorem 6.4. Given any constant C > 0, there is a constant ε > 0 such that the following
holds. Let p < 2−100C

√
n logn where p ≥ ω(n)/2n for some function ω(n) → ∞ as n → ∞, and let

t ≤ C
√
n. Write K := K(n, t). Then there exists a constant ε > 0 such that, with high probability,

the largest t-intersecting family in P(n, p) has size at least (1 + ε)pK.

The following result together with Theorem 6.2 resolves Question 6.1 for t = o(
√
n).

Theorem 6.5. If p = 2−o(
√
n logn) and t = o(

√
n) then with high probability the largest t-intersecting

family in P(n, p) has size (1
2 + o(1))2np.

Proof. Note that for this range of t, with high probability, the size of the largest t-intersecting
family in P(n, p) is at least (1

2 + o(1))2np. Hence to prove the theorem, it suffices to show that the
largest intersecting family in P(n, p) has size at most (1

2 + o(1))2np. That is, it suffices to prove
the upper bound in the theorem for t = 1, since for any t ≥ 2 any t-intersecting family is also
1-intersecting (i.e. intersecting).

16



Fix any δ > 0 and define 0 < ε � γ � δ. We will show that with high probability the largest
intersecting family in P(n, p) has size at most (1

2 + δ)2np.
The first step in the proof is to create a collection of containers that house all intersecting

families. Define the graph G on vertex set P(n) where distinct A,B are adjacent in G precisely if
A ∩B = ∅. In order to bound the size of the containers, we require a supersaturation result.

Claim 6.6. If F ⊆ P(n) where |F| ≥
∑n

k=n
2
−C
√
n

(
n
k

)
for some constant C > 0, then e(G[F ]) ≥

2n+ C
20

√
n logn and so ∆(G[F ]) ≥ 2

C
20

√
n logn.

A result of Frankl [18] and Ahlswede [1] implies that, given |F|, the number of edges in G[F ]
is minimised if F consists of the top layers of P(n), and possibly one partial layer. That is, there
are no A,B ⊆ [n] with |A| < |B| and A ∈ F but B /∈ F .

Hence we may assume that F consists of the top n
2 +C

√
n+ 1 layers of P(n). We will estimate

the degrees of vertices in the lowest C
√
n/2 layers of F . The total number of vertices in these

layers is at least δ12n, where δ1 > 0 is a constant dependent only on C. The degree of each vertex
v in these layers is bounded below by

degG[F ](v) ≥
(
n/2 + (C/2)

√
n

n/2− (C/2)
√
n

)
≥ 2(C

√
n logn)/10.

Thus, the number of edges in G[F ] is at least δ12n2(C
√
n logn)/10/2 ≥ 2n+ C

20

√
n logn, thereby proving

the claim.

By applying the graph container algorithm to G with parameter 2ε
√
n logn, Claim 6.6 implies

that there is a function f :
( V (G)

≤2n−ε
√
n logn

)
→
( V (G)
≤(1/2+γ)2n

)
such that, for any independent set I in G,

there is a subset S ⊆ I where S ∈
( V (G)

≤2n−ε
√
n logn

)
and I ⊆ S ∪ f(S). Note here we used that

n∑
k=n

2
−20ε

√
n

(
n

k

)
≤
(

1

2
+ γ

)
2n.

Let F be the collection of all sets S ∪ f(S) for all S ∈
( V (G)

≤2n−ε
√
n logn

)
. So |F | ≤ (1/2 + 2γ)2n for

every F ∈ F . Further, Fact 2.3 implies that

log |F| ≤ log

 ∑
a≤2n−ε

√
n logn

(
2n

a

) ≤ log

(
2

(
e2n

2n−ε
√
n logn

)2n−ε
√
n logn

)

≤ n2n−ε
√
n logn ≤ 2n−

ε
2

√
n logn. (6.1)

Given any F ∈ F , by the Chernoff bound for the binomial distribution we have that

P
(
|F ∩ P(n, p)| ≥ (1/2 + 4γ)2np

)
≤ 2e−γ

22np/2. (6.2)

Thus, (6.1), (6.2) and the choice of p imply that with high probability |F ∩P(n, p)| ≤ (1/2 + δ)2np
for all F ∈ F . Since every intersecting family in P(n) lies in some F ∈ F , the theorem now
follows.
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7 Sperner’s theorem revisited

7.1 Counting antichains in P(n)

Sperner’s theorem [41] states that the largest antichain in P(n) has size
(

n
bn/2c

)
. It was Dedekind

[14] in 1897 who first attempted to find the total number A(n) of distinct antichains in P(n).

Since every subset of an antichain is an antichain itself, it follows that 2( n
bn/2c) ≤ A(n). The

following result of Kleitman determines A(n) up to an error term in the exponent.

Theorem 7.1 (Kleitman [29]). The number of antichains in P(n) is 2( n
bn/2c)(1+o(1))

.

For further details on the history of this, and similar questions, we refer the reader to the brilliant
survey by Saks [37]. Our first goal in this section is to give an alternative proof of Theorem 7.1
using the container method. We will apply the following supersaturation result of Kleitman [28].

Theorem 7.2 (Kleitman [28]). Let A ⊆ P(n) with |A| ≥
(

n
bn/2c

)
+ x. Then A contains at least

(bn/2c+ 1)x pairs A,B with A ⊂ B.

For x ≤
(

n
bn/2c+1

)
, Theorem 7.2 is easily seen to be optimal, by taking a full middle layer and any

x sets on the layer above. Our proof of this supersaturation theorem will make use of the existence
of a symmetric chain decomposition (or SCD) of P(n), given first by de Bruijn, Tengbergen and
Kruyswijk [11]. An SCD X is a partition of P(n) into symmetric chains, i.e. chains that for some
k ≤ n/2 consist of precisely one set of each size i between k and n− k. The proof we give is very
similar to the proof of a more general result from [15].

Proof of Theorem 7.2. Without loss of generality we may assume that ∅, [n] /∈ A. Given any SCD
Z we say that Z contains a bad pair A,B if A,B ∈ A and there exists a chain X ∈ Z such that
A,B ∈ X. Note that Z is a partition of P(n) into

(
n
bn/2c

)
chains, hence by the pigeonhole principle

Z contains at least x bad pairs.
Fix some SCD X . Each permutation π ∈ Sn induces a permutation on the subsets of [n]

and hence on collections of subsets of [n]. In particular, π(X ) is a SCD. We will pick a random
permutation π ∈ Sn and estimate the number of bad pairs contained in π(X ).

Let P denote the set of ordered pairs A,B ∈ A where A ⊂ B. Consider any (A,B) ∈ P. If
|B| ≥ bn/2c + 1 define δA(B) := {S ⊂ [n] : S ⊂ B, |S| = |A|}. Otherwise define δA(B) := {S ⊂
[n] : A ⊂ S, |S| = |B|}. Since A,B /∈ {∅, [n]}, in both cases we have |δA(B)| ≥

(bn/2c+1
bn/2c

)
.

If |B| ≥ bn/2c+1, the probability that there is a chain X ∈ π(X ) with S,B ∈ X is the same for
all S ∈ δA(B). So the probability that there is a chain X ∈ π(X ) with A,B ∈ X is at most 1

bn/2c+1 .

Similarly if |B| ≤ bn/2c, the probability that there is a chain X ∈ π(X ) with A,B ∈ X is at most
1

bn/2c+1 . Thus, the expected number of bad pairs in π(X ) is at most |P|/(bn/2c+ 1). On the other

hand, as π(X ) is a SCD there are at least x bad pairs in π(X ). Hence, |P| ≥ (bn/2c+ 1)x, as
desired.

Now Theorem 7.1 follows from an easy application of the container method.

Proof of Theorem 7.1. Let ε > 0 and let G be the graph with vertex set P(n) where A and B
are adjacent precisely if A ⊂ B or B ⊂ A. By applying the graph container algorithm to G with

parameter εn/10, Theorem 7.2 implies that we obtain a function f :
( V (G)
≤10·2n/εn

)
→
( V (G)

≤(1+ε)( n
bn/2c)

)

18



such that, for any independent set I in G, there is a subset S ⊆ I where S ∈
( V (G)
≤10·2n/εn

)
and

I ⊆ S ∪ f(S).

Let F be the collection of all sets S ∪ f(S) for all S ∈
( V (G)
≤10·2n/εn

)
. Then

|F| ≤
(

2n

≤ 102n

εn

)
≤ 220 2n

εn
logn = 2

o
(
( n
bn/2c)

)
.

Further, every antichain is an independent set in G and therefore lies in some element of F and
|F | ≤ (1 + 2ε)

(
n
bn/2c

)
for every F ∈ F . The existence of F immediately proves the theorem.

Let F ⊆ P(n), and for i ∈ [n], let Bi denote the number of comparable pairs A,B ∈ F with
|B\A| = i and let B≥i := Bi +Bi+1 + . . .+Bn. Then by arguing as in the proof of Theorem 7.2 we
get the following proposition. We include it because we strongly suspect it will have applications.

Proposition 7.3. Let n,N, x ∈ N. Suppose F ⊆ P(n) where |F| =
(
n
n/2

)
+ x and for all A ∈ F

we have N ≤ |A| ≤ n−N . Then

B≥N(bn/2c+dN/2e
N

) +
N−1∑
k=1

Bk(bn/2c+dk/2e
k

) ≥ x.
7.2 A two-coloured generalisation of Theorem 7.1

Now we turn our attention to a two-coloured generalisation of Sperner’s theorem, which was dis-
covered independently by Katona [26] and Kleitman [27]. Given a (two-)colouring of [n], we say
that a pair of sets A,B ∈ P(n) is comparable with monochromatic difference if A ⊂ B, and the
difference B\A is monochromatic.

Theorem 7.4 (Katona [26], Kleitman [27]). Let A ⊆ P(n), and let R∪W be a partition of [n] (i.e.
a two-colouring of [n] using colours Red and White). If A does not contain a pair of sets which are
comparable with monochromatic difference then |A| ≤

(
n
bn/2c

)
.

Note that setting R = ∅ in Theorem 7.4 gives the classical Sperner theorem. We will consider the
following question: given the partition R∪W , how many families are there without two comparable
sets whose difference is monochromatic? Alternatively, how many families are there for which there
exists a partition R ∪W such that there are no comparable pairs with monochromatic difference?
(The answers to these two questions are at most a factor of 2n apart.) To answer this question
using the container method, first we need a supersaturation result.

Lemma 7.5. Let ε > 0 and n be sufficiently large. Given a partition R ∪W = [n] and a family

F ⊂ P(n) of size |F| ≥ (1 + ε)
(
n
n/2

)
, there are at least ε

(
n
n/2

)
n3/4

4 comparable pairs A,B ∈ F with
monochromatic difference.

We note that the factor n3/4/4 is far from optimal and indeed the proof below can easily be
strengthened to some function of the form n1−o(1) instead of the n3/4. The number of such pairs is
probably at least ε

(
n
n/2

) (
bn2 c+ 1

)
(if n > 5). We could not prove this, but fortunately this weaker

result suffices to prove the counting theorem later (in fact one could replace the n3/4 by anything
bigger than c

√
n log n and the calculations would still go through, with a worse o(1) error term in

the final result).
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Proof of Lemma 7.5. Suppose first that |R| ≤ n3/4. For each S ⊆ R, let FS := {A ⊆ W : A ∪ S ∈
F}. Given any pair of sets A,B with A ⊂ B and A,B ∈ FS we can find a comparable pair
A ∪ S,B ∪ S in F with monochromatic difference. Thus, Theorem 7.2 implies that the number of
comparable pairs in F with monochromatic difference is at least∑

S⊆R

(
|FS | −

(
n− |R|

(n− |R|)/2

))(
n− |R|

2
+ 1

)
≥
(

(1 + ε)

(
n

n/2

)
− 2|R|

(
n− |R|

(n− |R|)/2

))
n

3

≥
(

(1 + ε)

(
n

n/2

)
−
(

1 +
ε

2

)( n

n/2

))
n

3
= ε

(
n

n/2

)
n

6
,

as required. Note that in the penultimate inequality we used Fact 2.1 and that |R| = o(n).
We may therefore assume that |R| ≥ n3/4 and |W | ≥ n3/4. Remove all monochromatic elements

of F , and all those elements of F that contain the entire set R or the entire set W as subsets. The
number of such sets is at most ε

2

(
n
n/2

)
. Following the original proof of Theorem 7.4, let BW and

BR be SCDs of P(W ) and P(R). Let the group G = S|W | × S|R| act on R ∪W in the natural way,
permuting the elements in the two sets. From now on for simplicity we shall refer to comparable
pairs in F with monochromatic difference simply as bad pairs. We say that the pair of SCDs BR,
BW contains the bad pair (A,B) if there exist chains X ∈ BR and Y ∈ BW such that Y contains
(A ∩W,B ∩W ) and X contains (A ∩R,B ∩R).

Let x := ε
2

(
n
n/2

)
. We first show that every pair of SCDs contains at least x bad pairs. This

follows instantly from the original proof of Theorem 7.4: suppose on the contrary, we could find a
pair of SCDs BR and BW and a family A ⊂ F of size |A| =

(
n
n/2

)
+ 1 such that the pair BR,BW

does not contain any bad pairs from A. If a pair of chains (X,Y ) ∈ BR×BW does not contain any
bad pairs, then the number of sets A such that Y contains A∩W and X contains A∩R is at most
min{|X|, |Y |}. So if X1 ⊂ . . . ⊂ Xt is a chain in BR and Y1 ⊂ . . . ⊂ Ys is a chain in BW then A
contains at most min{s, t} sets of the form Xi ∪ Yj , which is also the number of sets of this form
having size exactly bn/2c. Hence

∑
X∈BR,Y ∈BW min{|X|, |Y |} =

(
n
n/2

)
because both sides count the

number of subsets of [n] of size bn/2c. Thus for every subfamily A ⊆ F with |A| =
(
n
n/2

)
+ 1 there

exists a pair of chains X ∈ BR, Y ∈ BW containing a bad pair from A, and the claim follows.
Choose a random element π ∈ G. We claim the probability that π(BR,BW ) contains a given

bad pair is at most 2/n3/4. To see this, let (A,B) be a bad pair. Without loss of generality we
may assume A ⊂ B and B\A ⊆ R. This implies that B ∩W = A ∩W , and since A 6= B we have
A ∩ R 6= B ∩ R. The probability that (A,B) is contained in the pair π(BR,BW ) of SCDs is equal
to the probability that (A ∩ R,B ∩ R) is contained in πR(BR) (where πR denotes the restriction
of π to the set R). We removed the monochromatic elements of F and those that contain R,
hence A ∩ R,B ∩ R /∈ {∅, R}. Hence, defining δA(B) and applying the shadow argument as in
the proof of Theorem 7.2, we get that the probability that π(BR,BW ) contains (A,B) is at most
max{2/|R|, 2/|W |} ≤ 2/n3/4, as claimed. Putting the last two paragraphs together, we obtain that

there are at least ε
(
n
n/2

)
n3/4

4 bad pairs, as required.

Now a simple application of the container method, exactly as in the proof of Theorem 7.1, yields
a counting version of Theorem 7.4.

Theorem 7.6. The number of families F for which there exists a colouring R∪W = [n] such that

there is no comparable pair A,B ∈ F with monochromatic difference is 2( n
n/2)(1+o(1))

.
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Proof. Fix a colouring R,W with R∪W = [n], and define a graph G on vertex set P(n) where two
comparable sets are adjacent if their difference is monochromatic. Hence families without compa-
rable pairs with monochromatic difference correspond to independent sets in G. Arguing precisely
as in the proof of Theorem 7.1, we find that the number of independent sets, and hence the number

of families without comparable sets with monochromatic difference, is 2( n
n/2)(1+o(1))

. There are 2n

possible colourings to start with, hence the number of families for which there exists a colouring

avoiding comparable sets with monochromatic difference is 2n · 2( n
n/2)(1+o(1))

= 2( n
n/2)(1+o(1))

as
required.

7.3 Bollobás’s inequality and open questions

We next consider a generalisation of Sperner’s theorem due to Bollobás [8]. We say that a family
F ⊆ P(N) × P(N) is an intersecting set-pair system (ISP-system) with parameters (n,N) if F =
{(Aj , Bj) : 1 ≤ j ≤ m} and the following hold:

(1) Aj ∩Bj = ∅ for all j,

(2) Aj ∩Bk 6= ∅ for all j 6= k, and

(3) |Aj |+ |Bj | ≤ n for all j.

Theorem 7.7. If F is an ISP-system with parameters (n,N) then |F| ≤
(
n
n/2

)
and this bound is

attained whenever N ≥ n.

We wish to prove that the number of ISP-systems with parameters (n,N) is 2
(1+o(1))( n

n/2), where
the o(1) term goes to zero as n tends to infinity. However, if N is too large then we cannot possibly
hope for such a theorem, hence we need an upper bound for N for this to be true.

The first step towards a counting theorem is a supersaturation result - suppose |F| =
(
n
n/2

)
+x, F

satisfies (1) and (3), and prove that there are many pairs (i, j) such that the pairs (Ai, Bi), (Aj , Bj)
do not satisfy (2). Following the standard proof of Theorem 7.7, one might want to define the ball
around (A,B) as the set of permutations of [N ] where all the elements of A come before all the
elements of B. Then, if we could show that the intersection of any two balls is much smaller than
the volume of the ball itself, supersaturation would be immediate (see Lemma 5.2). Unfortunately,
the intersection of two balls need not be very small - and in fact we were not able to establish
supersaturation in this case.

Conjecture 7.8 (Supersaturation for ISP-systems). Suppose F ⊂ P(N) × P(N) of size |F| =(
n
n/2

)
+x, satisfying (1) and (3) above. Then there are at least

(
bn2 c+ 1

)
x pairs (Ai, Bi), (Aj , Bj) ∈

F not satisfying (2).

There are two notable special cases of the above conjecture. The first is when we add the
constraint |Ai| = |Bi| = n/2 for all i. The second is when we require n = N , that is, Ai, Bi ⊆ [n]
for all i. Quite surprisingly, we were not even able to establish either one of these special cases of
the conjecture!

We note that once the above (or a similar) conjecture is established, a counting theorem bound-
ing the number of ISP-systems follows from a straightforward application of the container method.

Modifying Lovász’s proof [33] of Bollobás’s inequality, Frankl [19] and later Kalai [24] obtained
a stronger (‘skew’-)version of Theorem 7.7. To finish off this section we will try to attack this
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generalisation. This is only to illustrate that supersaturation for such theorems does not always
hold.

Theorem 7.9 (Skew-Bollobás inequality). Let F = {(A1, B1), . . . , (Am, Bm)} be an ordered family
of ordered pairs of sets satisfying the following:

(i) |Ai| ≤ a and |Bi| ≤ b for 1 ≤ i ≤ m;

(ii) Ai ∩Bi = ∅ for 1 ≤ i ≤ m;

(iii) 1 ≤ i < j ≤ m implies Ai ∩Bj 6= ∅.

Then m ≤
(
a+b
a

)
.

We now show a construction that shows that supersaturation does not occur in the case of the
skew-Bollobás inequality.

Construction 7.10. Let n be even and let a = b = n/2. Define

F1 := {(A,B) : A ⊂ {2, 3, . . . , n}, |A| = n/2, B = {2, 3, . . . , n+ 1}\A}

and
F2 := {(A,B) : A ⊂ [n], |A| = n/2, B = [n]\A}.

Let F be the ordered family starting with all elements of F1 and then all elements of F2. Then
|F| =

(
n
n/2

)
+
(
n−1
n/2

)
= 3

2

(
n
n/2

)
, yet F only contains

(
n−1
n/2

)
= 1

2

(
n
n/2

)
pairs that do not satisfy (iii).

Hence attempting to obtain a counting version of Theorem 7.9 using a straightforward application
of the container method is not possible: indeed, suppose we aim for a collection of containers of size
(1 + ε)

(
n
n/2

)
. Suppose for simplicity (and this would make our life much easier!) we are satisfied

with counting families that are contained in F1 ∪F2. Then by Construction 7.10 the biggest ∆ we
could possibly take is 1! Unfortunately the size of the set S is then roughly

(
n
n/2

)
/2 and hence the

number of containers will be essentially the same as the trivial bound , i.e.

|C| ≈ c
(3

2

(
n
n/2

)(
n
n/2

) ) ≈ 2
1.38( n

n/2) � 2
(1+o(1))( n

n/2).

Hence the straightforward way of applying the method does not yield good results.

Throughout this paper we have seen several instances of the following theme:

The presence of supersaturation usually implies strong counting theorems.

It is natural to ask about the converse:

Does the absence of supersaturation imply in general that we cannot
hope for strong counting theorems?
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Due to insufficient evidence we do not dare to say that this is true in general. There are,
however, many instances in which the answer is affirmative - we direct the reader to the several
papers on enumerating H-free graphs for a fixed bipartite H [7, 31, 34]. The skew-Bollobás Theorem
(Theorem 7.9) is another example where the answer to this question is positive.

Observation 7.11. One might hope that the number of families in P(n+1)×P(n+1) that satisfy

(i)–(iii) of Theorem 7.9 (with a = b = n/2) is 2
(1+o(1))( n

n/2). Failure of supersaturation is a bad

sign - and indeed, the number of such families is at least 2
1.29( n

n/2).

Proof. Consider the families F1,F2 defined in Construction 7.10. Write F2 = F ′2 ∪ F ′′2 , where
F ′2 = {(A,B) : A ⊂ {2, 3, . . . , n}, |A| = n/2, B = [n]\A} and F ′′2 = {(A,B) : A ⊂ [n], 1 ∈ A, |A| =
n/2, B = [n]\A}. Note that for each A ⊆ {2, 3, . . . , n}, there is precisely one pair (B1, B2) such
that (A,B1) ∈ F1 and (A,B2) ∈ F ′2. Hence the elements of F1 and F ′2 can be paired up with each
other: two pairs get paired up if their first sets are the same - call these the bad pairs.

Consider any ordered subfamily G of F that consists of any subfamily of F ′′2 , plus any subfamily
of F1∪F ′2 containing at most one element of each bad pair (and where the ordering of G is inherited
by the ordering of F). Then G satisfies (i)–(iii) from Theorem 7.9. The number of ways to choose

the subfamily of F ′′2 is 2
1
2( n
n/2), and the number of ways to choose an appropriate subfamily of

F1 ∪ F ′2 is 3
1
2( n
n/2), and the result follows.

What about the number of families in P(n)×P(n) if we let a, b ≤ n/2? Are there any natural
constraints to the above theorem under which supersaturation does happen? There are lots of open
questions in this area to explore.

8 Counting maximal independent sets and antichains in the Boolean
lattice

Most of this paper dealt with finding α(n), the number of families in P(n) satisfying some given
property. We applied different variations of the container method to obtain asymptotics for logα(n).
The reader might be curious whether it is possible to obtain precise asymptotics for α(n) using these
(or different) methods. In general though this seems to be a much more difficult task. For example,
in the problem we consider below, it is difficult to even make a firm guess on the asymptotics.

For a graph G, we say an independent set I of G is maximal if for any v ∈ V (G) \ I, we
have that I ∪ {v} is not independent. Let mis(G) denote the number of maximal independent
sets in G. Most of the problems discussed below have their origins in [16]. Let Bn,k be the

graph on vertex set
([n]
k

)
∪
( [n]
k+1

)
, and edges given by inclusion. Ilinca and Kahn [23] proved that

log2 mis(Bn,k) = (1 + o(1))
(
n−1
k

)
. They also made the following sharp conjecture.

Conjecture 8.1 (Ilinca and Kahn [23]).

mis(Bn,k) = (1 + o(1))n2(n−1
k ),

where the o(1) term goes to 0 as n→∞.

The natural lower bound in Conjecture 8.1 follows by defining for each i ∈ [n] an induced
matching Mi in Bn,k of size

(
n−1
k

)
where the edges of the matching are of the form (B,B ∪ i) for
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B ∈
([n]\{i}

k

)
. Each of the 2|Mi| sets containing precisely one vertex from each edge in Mi extends to

a maximal independent set, and each extension is different. This produces 2(n−1
k ) distinct maximal

independent sets. By considering eachMi for i ∈ [n] we obtain a list of n2(n−1
k ) maximal independent

sets, containing not too many repetitions.
It turns out however, that this construction can be tweaked to obtain significantly more maximal

independent sets.

Proposition 8.2. If |k − n/2| ≤
√
n then

mis(Bn,k) = Ω
(
n3/22(n−1

k )
)
.

Proof strategy: We say a triple T = (B, r, s) is good if r, s ∈ [n], B ∈
([n]
k

)
, 1, r /∈ B, r 6= 1 and

s ∈ B. For each good triple T we will construct a collection f(T ) of independent sets in Bn,k with

|f(T )| = 2(n−1
k )−n+1.

For each good triple T we will extend all elements of f(T ) to a maximal independent set in an
arbitrary way. We will show that every maximal independent set in Bn,k is obtained at most twice
in this way. The number of good triples is Ω

((
n−1
k

)
n2
)
, hence a simple calculation will complete

the proof.

Proof. For a set C with i /∈ C and j ∈ C, let Ci := C ∪ {i} and Cj := C \ {j}. We define, for

example, Ci,kj analogously (assuming i, k /∈ C and j ∈ C). Let M be the induced matching in Bn,k
of size

(
n−1
k−1

)
given by M := {(C,C1) : 1 /∈ C, |C| = k}.

Given a good triple T = (B, r, s), let U(T ) := {C : |C| = k + 1, B1
s ⊂ C} and D(T ) := {C :

|C| = k,C ⊂ Br}. Let e := (B,B1) and f := (Br
s , B

1,r
s ); notice these are two edges of M . Note

that |U(T )| = n− k and |D(T )| = k+ 1. Every vertex of D(T )∪U(T ) is incident to precisely one
edge of M . Moreover the only two edges that are simultaneously incident to one vertex in D(T )
and one vertex in U(T ) are e and f . The collection of independent sets f(T ) is defined as follows.

• Let Br and B1
s be elements of the independent set.

• If an edge of M is not incident to any vertex in D(T ) ∪U(T ) then put exactly one endpoint
of that edge into the independent set.

• If an edge of M is incident to precisely one vertex of D(T ) ∪ U(T ), choose the other vertex
of this edge.

Note that this gives us
(
n−1
k−1

)
− (n− k)− k + 1 free choices, hence |f(T )| = 2(n−1

k )−n+1 as claimed.
Every such set constructed is independent. Indeed, this follows since M is an induced matching,
there is no edge between Br and B1

s , and there is no edge between Br or B1
s and another vertex in

the set. Let F be the union of the f(T )s over all good triples.
Every such constructed independent set contains precisely one vertex from each edge in M

except for precisely two edges (e, f from above). These two edges lie in a unique 6-cycle in Bn,k
(e, f together with B1

s and Br), hence given any I ∈ F , there are precisely two good triples giving
rise to this I. Specifically, if I ∈ F arises from a good triple T = (B, r, s), the only other good
triple that ‘produces’ I is T ′ = (Br

s , s, r).
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Moreover, if I, I ′ ∈ F where I 6= I ′ then I and I ′ lie in different maximal independent sets in
Bn,k. Hence a maximal independent set of Bn,k is counted twice by |F| if it intersects M in |M |− 2
vertices, and not counted otherwise.

The number of good triples is(
n− 1

k

)
k(n− k − 1) = Ω

(
2n√
n
n2

)
= Ω

(
n3/22n

)
,

and the result follows.

In the above argument we started with a good triple and modified the independent sets from
the Ilinca–Kahn construction along a 6-cycle determined by the triple. But we can get a better
lower bound by starting out with a collection S of N > 1 good triples, as long as the sets in the
triples are sufficiently far apart (Hamming distance at least 20, say) so that the modifications do
not interfere with each other. Each maximal independent set is then counted at most 2N times,
and as long as N is not too large the number of choices for the N triples is at least( n

10

)2N
((n−1

k−1

)
N

)
≥
( n

10

)2N
(

2n

C1N
√
n

)N
≥ 2nN

(
n3/2N−1C2

)N
,

for some absolute constants C1, C2 > 0. Each good triple decreases the number of free choices on
edges of M by at most n, hence costing us a factor of 2n. So by setting N = n3/2C2/2 we conclude
the following result, which is an exponential improvement over Proposition 8.2:

Proposition 8.3. There exists an absolute constant C > 0 such that whenever k, n are such that
|k − n/2| ≤

√
n then

mis(Bn,k) ≥ 2(n−1
k−1)+Cn3/2

.

We do not have any reason to believe that Proposition 8.3 gives the correct order of magnitude
of mis(Bn,k); It would be extremely interesting to determine this. However, we suspect this may
be very difficult.

Finally we note that the above result also disproves another conjecture from [23]. Write
ma(P(n)) for the number of maximal antichains in P(n). Ilinca and Kahn [23] conjectured that

ma(P(n)) = Θ
(
n2( n−1

bn/2c)
)

. However, since ma(P(n)) ≥ mis(Bn,k) for all k, Proposition 8.3 dis-

proves this conjecture.
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