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vértanúk tere 1. Hungary

E-mail address: bcsaba@math.u-szeged.hu

School of Mathematics University of Birmingham Edgbaston Birm-
ingham B15 2TT UK

E-mail address: d.kuhn@bham.ac.uk

School of Mathematics University of Birmingham Edgbaston Birm-
ingham B15 2TT UK

E-mail address: s.a.lo@bham.ac.uk

School of Mathematics University of Birmingham Edgbaston Birm-
ingham B15 2TT UK

E-mail address: d.osthus@bham.ac.uk

School of Mathematics University of Birmingham Edgbaston Birm-
ingham B15 2TT UK

E-mail address: a.treglown@bham.ac.uk





Contents

Chapter 1. Introduction 1
1.1. Introduction 1
1.2. Notation 5
1.3. Derivation of Theorems 1.1.1, 1.1.3, 1.1.4 from the Main Structural

Results 6
1.4. Tools 10

Chapter 2. The two cliques case 15
2.1. Overview of the Proofs of Theorems 1.3.3 and 1.3.9 15
2.2. Partitions and Frameworks 18
2.3. Exceptional Systems and (K,m, ε0)-Partitions 21
2.4. Schemes and Exceptional Schemes 24
2.5. Proof of Theorem 1.3.9 27
2.6. Eliminating the Edges inside A0 and B0 32
2.7. Constructing Localized Exceptional Systems 38
2.8. Special Factors and Exceptional Factors 42
2.9. The Robust Decomposition Lemma 50
2.10. Proof of Theorem 1.3.3 56

Chapter 3. Exceptional systems for the two cliques case 69
3.1. Proof of Lemma 2.7.1 69
3.2. Non-critical Case with e(A′, B′) ≥ D. 70
3.3. Critical Case with e(A′, B′) ≥ D 80
3.4. The Case when e(A′, B′) < D 91

Chapter 4. The bipartite case 93
4.1. Overview of the Proofs of Theorems 1.3.5 and 1.3.8 93
4.2. Eliminating Edges between the Exceptional Sets 96
4.3. Finding Path Systems which Cover All the Edges within the Classes 104
4.4. Special Factors and Balanced Exceptional Factors 119
4.5. The Robust Decomposition Lemma 127
4.6. Proof of Theorem 1.3.8 132
4.7. Proof of Theorem 1.3.5 134

Chapter 5. Approximate decompositions 141
5.1. Useful Results 141
5.2. Systems and Balanced Extensions 143
5.3. Finding Systems and Balanced Extensions for the Two Cliques Case 145
5.4. Constructing Hamilton Cycles via Balanced Extensions 149
5.5. The Bipartite Case 155

iii



iv CONTENTS

Acknowledgement 160

Bibliography 161



Abstract

In this paper we prove the following results (via a unified approach) for all
sufficiently large n:

(i) [1-factorization conjecture] Suppose that n is even and D ≥ 2dn/4e − 1.
Then every D-regular graph G on n vertices has a decomposition into
perfect matchings. Equivalently, χ′(G) = D.

(ii) [Hamilton decomposition conjecture] Suppose that D ≥ bn/2c. Then every
D-regular graph G on n vertices has a decomposition into Hamilton cycles
and at most one perfect matching.

(iii) [Optimal packings of Hamilton cycles] Suppose that G is a graph on
n vertices with minimum degree δ ≥ n/2. Then G contains at least
regeven(n, δ)/2 ≥ (n−2)/8 edge-disjoint Hamilton cycles. Here regeven(n, δ)
denotes the degree of the largest even-regular spanning subgraph one can
guarantee in a graph on n vertices with minimum degree δ.

(i) was first explicitly stated by Chetwynd and Hilton. (ii) and the special case
δ = dn/2e of (iii) answer questions of Nash-Williams from 1970. All of the above
bounds are best possible.
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CHAPTER 1

Introduction

1.1. Introduction

In this paper we provide a unified approach towards proving three long-standing
conjectures for all sufficiently large graphs. Firstly, the 1-factorization conjecture,
which can be formulated as an edge-colouring problem; secondly, the Hamilton
decomposition conjecture, which provides a far-reaching generalization of Walecki’s
result [26] that every complete graph of odd order has a Hamilton decomposition
and thirdly, a best possible result on packing edge-disjoint Hamilton cycles in Dirac
graphs. The latter two problems were raised by Nash-Williams [28, 29, 30] in 1970.

1.1.1. The 1-factorization Conjecture. Vizing’s theorem states that for
any graph G of maximum degree ∆, its edge-chromatic number χ′(G) is either ∆
or ∆ + 1. However, the problem of determining the precise value of χ′(G) for an
arbitrary graph G is NP-complete [12]. Thus, it is of interest to determine classes
of graphs G that attain the (trivial) lower bound ∆ – much of the recent book [34]
is devoted to the subject. For regular graphs G, χ′(G) = ∆(G) is equivalent to
the existence of a 1-factorization: a 1-factorization of a graph G consists of a set
of edge-disjoint perfect matchings covering all edges of G. The long-standing 1-
factorization conjecture states that every regular graph of sufficiently high degree
has a 1-factorization. It was first stated explicitly by Chetwynd and Hilton [3, 5]
(who also proved partial results). However, they state that according to Dirac, it
was already discussed in the 1950s. Here we prove the conjecture for large graphs.

Theorem 1.1.1. There exists an n0 ∈ N such that the following holds. Let
n,D ∈ N be such that n ≥ n0 is even and D ≥ 2dn/4e − 1. Then every D-regular
graph G on n vertices has a 1-factorization. Equivalently, χ′(G) = D.

The bound on the minimum degree in Theorem 1.1.1 is best possible. To see
this, suppose first that n = 2 (mod 4). Consider the graph which is the disjoint
union of two cliques of order n/2 (which is odd). If n = 0 (mod 4), consider the
graph obtained from the disjoint union of cliques of orders n/2 − 1 and n/2 + 1
(both odd) by deleting a Hamilton cycle in the larger clique.

Note that Theorem 1.1.1 implies that for every regular graph G on an even
number of vertices, either G or its complement has a 1-factorization. Also, The-
orem 1.1.1 has an interpretation in terms of scheduling round-robin tournaments
(where n players play all of each other in n − 1 rounds): one can schedule the
first half of the rounds arbitrarily before one needs to plan the remainder of the
tournament.

The best previous result towards Theorem 1.1.1 is due to Perkovic and Reed [32],
who proved an approximate version, i.e. they assumed that D ≥ n/2 + εn. This
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2 1. INTRODUCTION

was generalized by Vaughan [35] to multigraphs of bounded multiplicity. In-
deed, he proved an approximate form of the following multigraph version of the
1-factorization conjecture which was raised by Plantholt and Tipnis [33]: Let G be
a regular multigraph of even order n with multiplicity at most r. If the degree of
G is at least rn/2 then G is 1-factorizable.

In 1986, Chetwynd and Hilton [4] made the following ‘overfull subgraph’ con-
jecture. Roughly speaking, this says that a dense graph satisfies χ′(G) = ∆(G)
unless there is a trivial obstruction in the form of a dense subgraph H on an
odd number of vertices. Formally, we say that a subgraph H of G is overfull if
e(H) > ∆(G)b|H|/2c (note this requires |H| to be odd).

Conjecture 1.1.2. A graph G on n vertices with ∆(G) ≥ n/3 satisfies χ′(G) =
∆(G) if and only if G contains no overfull subgraph.

It is easy to see that this generalizes the 1-factorization conjecture (see e.g. [2]
for the details). The overfull subgraph conjecture is still wide open – partial results
are discussed in [34], which also discusses further results and questions related to
the 1-factorization conjecture.

1.1.2. The Hamilton Decomposition Conjecture. Rather than asking
for a 1-factorization, Nash-Williams [28, 30] raised the more difficult problem of
finding a Hamilton decomposition in an even-regular graph. Here, a Hamilton de-
composition of a graph G consists of a set of edge-disjoint Hamilton cycles covering
all edges of G. A natural extension of this to regular graphs G of odd degree is
to ask for a decomposition into Hamilton cycles and one perfect matching (i.e. one
perfect matching M in G together with a Hamilton decomposition of G−M). The
following result solves the problem of Nash-Williams for all large graphs.

Theorem 1.1.3. There exists an n0 ∈ N such that the following holds. Let
n,D ∈ N be such that n ≥ n0 and D ≥ bn/2c. Then every D-regular graph G
on n vertices has a decomposition into Hamilton cycles and at most one perfect
matching.

Again, the bound on the degree in Theorem 1.1.3 is best possible. Indeed,
Proposition 1.3.1 shows that a smaller degree bound would not even ensure con-
nectivity. Previous results include the following: Nash-Williams [27] showed that
the degree bound in Theorem 1.1.3 ensures a single Hamilton cycle. Jackson [13]
showed that one can ensure close to D/2 − n/6 edge-disjoint Hamilton cycles.
Christofides, Kühn and Osthus [6] obtained an approximate decomposition un-
der the assumption that D ≥ n/2 + εn. Under the same assumption, Kühn and
Osthus [22] obtained an exact decomposition (as a consequence of the main result
in [21] on Hamilton decompositions of robustly expanding graphs).

Note that Theorem 1.1.3 does not quite imply Theorem 1.1.1, as the degree
threshold in the former result is slightly higher.

A natural question is whether one can extend Theorem 1.1.3 to sparser (quasi)-
random graphs. Indeed, for random regular graphs of bounded degree this was
proved by Kim and Wormald [16] and for (quasi-)random regular graphs of linear
degree this was proved in [22] as a consequence of the main result in [21]. However,
the intermediate range remains open.

1.1.3. Packing Hamilton Cycles in Graphs of Large Minimum De-
gree. Although Dirac’s theorem is best possible in the sense that the minimum
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degree condition δ ≥ n/2 is best possible, the conclusion can be strengthened con-
siderably: a remarkable result of Nash-Williams [29] states that every graph G
on n vertices with minimum degree δ(G) ≥ n/2 contains b5n/224c edge-disjoint
Hamilton cycles. He raised the question of finding the best possible bound, which
we answer in Corollary 1.1.5 below.

We actually answer a more general form of this question: what is the number
of edge-disjoint Hamilton cycles one can guarantee in a graph G of minimum degree
δ?

A natural upper bound is obtained by considering the largest degree of an
even-regular spanning subgraph of G. Let regeven(G) be the largest degree of an
even-regular spanning subgraph of G. Then let

regeven(n, δ) := min{regeven(G) : |G| = n, δ(G) = δ}.
Clearly, in general we cannot guarantee more than regeven(n, δ)/2 edge-disjoint
Hamilton cycles in a graph of order n and minimum degree δ. The next result
shows that this bound is best possible (if δ < n/2, then regeven(n, δ) = 0).

Theorem 1.1.4. There exists an n0 ∈ N such that the following holds. Suppose
that G is a graph on n ≥ n0 vertices with minimum degree δ ≥ n/2. Then G
contains at least regeven(n, δ)/2 edge-disjoint Hamilton cycles.

The main result of Kühn, Lapinskas and Osthus [19] proves Theorem 1.1.4
unless G is close to one of the extremal graphs for Dirac’s theorem. This will
allow us to restrict our attention to the latter situation (i.e. when G is close to the
complete balanced bipartite graph or close to the union of two disjoint copies of a
clique).

An approximate version of Theorem 1.1.4 for δ ≥ n/2+εn was obtained earlier
by Christofides, Kühn and Osthus [6]. Hartke and Seacrest [11] gave a simpler
argument with improved error bounds.

Precise estimates for regeven(n, δ) (which yield either one or two possible values
for any n, δ) are proved in [6, 10] using Tutte’s theorem: Suppose that n, δ ∈ N
and n/2 ≤ δ < n. Then the bounds in [10] imply that

(1.1.1)
δ +

√
n(2δ − n) + 8

2
− ε ≤ regeven(n, δ) ≤ δ +

√
n(2δ − n)

2
+ 1,

where 0 < ε ≤ 2 is chosen to make the left hand side of (1.1.1) an even integer.
Note that (1.1.1) determines regeven(n, n/2) exactly (the upper bound in this case
was already proved by Katerinis [15]). Moreover, (1.1.1) implies that if δ ≥ n/2
then regeven(n, δ) ≥ (n − 2)/4. So we obtain the following immediate corollary of
Theorem 1.1.4, which answers a question of Nash-Williams [28, 29, 30].

Corollary 1.1.5. There exists an n0 ∈ N such that the following holds. Sup-
pose that G is a graph on n ≥ n0 vertices with minimum degree δ ≥ n/2. Then G
contains at least (n− 2)/8 edge-disjoint Hamilton cycles.

The following construction (which is based on a construction of Babai, see [28])
shows that the bound in Corollary 1.1.5 is best possible for n = 8k+2, where k ∈ N.
Consider the graph G consisting of one empty vertex class A of size 4k, one vertex
class B of size 4k + 2 containing a perfect matching and no other edges, and all
possible edges between A and B. Thus G has order n = 8k + 2 and minimum
degree 4k + 1 = n/2. Any Hamilton cycle in G must contain at least two edges
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of the perfect matching in B, so G contains at most b|B|/4c = k = (n − 2)/8
edge-disjoint Hamilton cycles. The lower bound on regeven(n, δ) in (1.1.1) follows
from a generalization of this construction.

The following conjecture from [19] would be a common generalization of both
Theorems 1.1.3 and 1.1.4 (apart from the fact that the degree threshold in The-
orem 1.1.3 is slightly lower). It would provide a result which is best possible for
every graph G (rather than the class of graphs with minimum degree at least δ).

Conjecture 1.1.6. Suppose that G is a graph on n vertices with minimum
degree δ(G) ≥ n/2. Then G contains regeven(G)/2 edge-disjoint Hamilton cycles.

For δ ≥ (2 −
√

2 + ε)n, this conjecture was proved in [22], based on the main
result of [21]. Recently, Ferber, Krivelevich and Sudakov [7] were able to obtain
an approximate version of Conjecture 1.1.6, i.e. a set of (1 − ε)regeven(G)/2 edge-
disjoint Hamilton cycles under the assumption that δ(G) ≥ (1+ε)n/2. It also makes
sense to consider a directed version of Conjecture 1.1.6. Some related questions for
digraphs are discussed in [22].

It is natural to ask for which other graphs one can obtain similar results. One
such instance is the binomial random graph Gn,p: for any p, asymptotically almost
surely it contains bδ(Gn,p)/2c edge-disjoint Hamilton cycles, which is clearly opti-
mal. This follows from the main result of Krivelevich and Samotij [18] combined
with that of Knox, Kühn and Osthus [17] (which builds on a number of previous
results). The problem of packing edge-disjoint Hamilton cycles in hypergraphs has
been considered in [8]. Further questions in the area are discussed in the recent
survey [23].

1.1.4. Overall Structure of the Argument. For all three of our main re-
sults, we split the argument according to the structure of the graph G under con-
sideration:

(i) G is close to the complete balanced bipartite graph Kn/2,n/2;
(ii) G is close to the union of two disjoint copies of a clique Kn/2;
(iii) G is a ‘robust expander’.

Roughly speaking, G is a robust expander if for every set S of vertices, its neigh-
bourhood is at least a little larger than |S|, even if we delete a small proportion
of the vertices and edges of G. The main result of [21] states that every dense
regular robust expander has a Hamilton decomposition (see Theorem 1.3.4). This
immediately implies Theorems 1.1.1 and 1.1.3 in Case (iii). For Theorem 1.1.4,
Case (iii) is proved in [19] using a more involved argument, but also based on the
main result of [21] (see Theorem 1.3.7).

Case (i) is proved in Chapter 4 whilst Chapter 2 tackles Case (ii). We defer
the proof of some of the key lemmas needed for Case (ii) until Chapter 3. (These
lemmas provide a suitable decomposition of the set of ‘exceptional edges’ – these
include the edges between the two almost complete graphs induced by G.) Case (ii)
is by far the hardest case for Theorems 1.1.1 and 1.1.3, as the extremal examples are
all close to the union of two cliques. On the other hand, the proof of Theorem 1.1.4
is comparatively simple in this case, as for this result, the extremal construction is
close to the complete balanced bipartite graph.

The arguments in Cases (i) and (ii) make use of an ‘approximate’ decomposition
result. We defer the proof of this result until Chapter 5. The arguments for both
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(i) and (ii) use the main lemma from [21] (the ‘robust decomposition lemma’) when
transforming this approximate decomposition into an exact one.

In Section 1.3, we derive Theorems 1.1.1, 1.1.3 and 1.1.4 from the structural
results covering Cases (i)–(iii).

The main proof in [21] (but not the proof of the robust decomposition lemma)
makes use of Szemerédi’s regularity lemma. So due to Case (iii) the bounds on n0

in our results are very large (of tower type). However, the case of Theorem 1.1.1
when both δ ≥ n/2 and (iii) hold was proved by Perkovic and Reed [32] using
‘elementary’ methods, i.e. with a much better bound on n0. Since the arguments
for Cases (i) and (ii) do not rely on the regularity lemma, this means that if we
assume that δ ≥ n/2, we get much better bounds on n0 in our 1-factorization result
(Theorem 1.1.1).

1.2. Notation

Unless stated otherwise, all the graphs and digraphs considered in this paper
are simple and do not contain loops. So in a digraph G, we allow up to two edges
between any two vertices, at most one edge in each direction. Given a graph or
digraph G, we write V (G) for its vertex set, E(G) for its edge set, e(G) := |E(G)|
for the number of edges in G and |G| := |V (G)| for the number of vertices in G.
We denote the complement of G by G.

Suppose that G is an undirected graph. We write δ(G) for the minimum degree
of G, ∆(G) for its maximum degree and χ′(G) for the edge-chromatic number of G.
Given a vertex v of G, we write NG(v) for the set of all neighbours of v in G. Given
a set A ⊆ V (G), we write dG(v,A) for the number of neighbours of v in G which
lie in A. Given A,B ⊆ V (G), we write EG(A) for the set of edges of G which
have both endvertices in A and EG(A,B) for the set of edges of G which have one
endvertex in A and its other endvertex in B. We also call the edges in EG(A,B)
AB-edges of G. We let eG(A) := |EG(A)| and eG(A,B) := |EG(A,B)|. We denote
by G[A] the subgraph of G with vertex set A and edge set EG(A). If A ∩ B = ∅,
we denote by G[A,B] the bipartite subgraph of G with vertex classes A and B and
edge set EG(A,B). If A = B we define G[A,B] := G[A]. We often omit the index
G if the graph G is clear from the context. An AB-path in G is a path with one
endpoint in A and the other in B. A spanning subgraph H of G is an r-factor of
G if the degree of every vertex of H is r.

Given a vertex set V and two multigraphs G and H with V (G), V (H) ⊆ V , we
write G+H for the multigraph whose vertex set is V (G)∪ V (H) and in which the
multiplicity of xy in G + H is the sum of the multiplicities of xy in G and in H
(for all x, y ∈ V (G) ∪ V (H)). Similarly, if H := {H1, . . . ,H`} is a set of graphs,
we define G + H := G + H1 + · · · + H`. If G and H are simple graphs, we write
G∪H for the (simple) graph whose vertex set is V (G)∪ V (H) and whose edge set
is E(G) ∪E(H). We write G−H for the subgraph of G which is obtained from G
by deleting all the edges in E(G) ∩ E(H). Given A ⊆ V (G), we write G − A for
the graph obtained from G by deleting all vertices in A.

We say that a graph or digraph G has a decomposition into H1, . . . ,Hr if
G = H1 + · · ·+Hr and the Hi are pairwise edge-disjoint.

A path system is a graph Q which is the union of vertex-disjoint paths (some
of them might be trivial). We say that P is a path in Q if P is a component of Q
and, abusing the notation, sometimes write P ∈ Q for this. A path sequence is a
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digraph which is the union of vertex-disjoint directed paths (some of them might
be trivial). We often view a matching M as a graph (in which every vertex has
degree precisely one).

If G is a digraph, we write xy for an edge directed from x to y. If xy ∈ E(G),
we say that y is an outneighbour of x and x is an inneighbour of y. A digraph G
is an oriented graph if there are no x, y ∈ V (G) such that xy, yx ∈ E(G). Unless
stated otherwise, when we refer to paths and cycles in digraphs, we mean directed
paths and cycles, i.e. the edges on these paths/cycles are oriented consistently. If x
is a vertex of a digraph G, then N+

G (x) denotes the outneighbourhood of x, i.e. the

set of all those vertices y for which xy ∈ E(G). Similarly, N−G (x) denotes the
inneighbourhood of x, i.e. the set of all those vertices y for which yx ∈ E(G). The
outdegree of x is d+

G(x) := |N+
G (x)| and the indegree of x is d−G(x) := |N−G (x)|.

We write d+
G(x,A) for the number of outneighbours of x lying inside A and define

d−G(x,A) similarly. We denote the minimum outdegree of G by δ+(G) and the
minimum indegree by δ−(G). We write δ(G) and ∆(G) for the minimum and
maximum degrees of the underlying simple undirected graph of G respectively.

Given a digraph G and A,B ⊆ V (G), an AB-edge is an edge with initial
vertex in A and final vertex in B, and eG(A,B) denotes the number of these edges
in G. If A ∩ B = ∅, we denote by G[A,B] the bipartite subdigraph of G whose
vertex classes are A and B and whose edges are all AB-edges of G. By a bipartite
digraph G = G[A,B] we mean a digraph which only contains AB-edges. A spanning
subdigraph H of G is an r-factor of G if the outdegree and the indegree of every
vertex of H is r.

If P is a path and x, y ∈ V (P ), we write xPy for the subpath of P whose
endvertices are x and y. We define xPy similarly if P is a directed path and x
precedes y on P .

Let V1, . . . , Vk be pairwise disjoint sets of vertices and let C = V1 . . . Vk be a
directed cycle on these sets. We say that an edge xy of a digraph R winds around
C if there is some i such that x ∈ Vi and y ∈ Vi+1. In particular, we say that R
winds around C if all edges of R wind around C.

In order to simplify the presentation, we omit floors and ceilings and treat large
numbers as integers whenever this does not affect the argument. The constants in
the hierarchies used to state our results have to be chosen from right to left. More
precisely, if we claim that a result holds whenever 0 < 1/n � a � b � c ≤ 1
(where n is the order of the graph or digraph), then this means that there are non-
decreasing functions f : (0, 1]→ (0, 1], g : (0, 1]→ (0, 1] and h : (0, 1]→ (0, 1] such
that the result holds for all 0 < a, b, c ≤ 1 and all n ∈ N with b ≤ f(c), a ≤ g(b)
and 1/n ≤ h(a). We will not calculate these functions explicitly. Hierarchies with
more constants are defined in a similar way. We will write a = b± c as shorthand
for b− c ≤ a ≤ b+ c.

1.3. Derivation of Theorems 1.1.1, 1.1.3, 1.1.4 from the Main
Structural Results

In this section, we combine the main auxiliary results of this paper (together
with results from [22] and [19]) to derive Theorems 1.1.1, 1.1.3 and 1.1.4. Before
this, we first show that the bound on the minimum degree in Theorem 1.1.3 is best
possible.
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Proposition 1.3.1. For every n ≥ 6, let D∗ := bn/2c − 1. Unless both D∗

and n are odd, there is a disconnected D∗-regular graph G on n vertices. If both
D∗ and n are odd, there is a disconnected (D∗ − 1)-regular graph G on n vertices.

Note that if both D∗ and n are odd, no D∗-regular graph exists.

Proof. If n is even, take G to be the disjoint union of two cliques of order n/2.
Suppose that n is odd and D∗ is even. This implies n = 3 (mod 4). Let G be
the graph obtained from the disjoint union of cliques of orders bn/2c and dn/2e by
deleting a perfect matching in the bigger clique. Finally, suppose that n and D∗

are both odd. This implies that n = 1 (mod 4). In this case, take G to be the
graph obtained from the disjoint union of cliques of orders bn/2c− 1 and dn/2e+ 1
by deleting a 3-factor in the bigger clique. �

1.3.1. Deriving Theorems 1.1.1 and 1.1.3. As indicated in Section 1.1, in
the proofs of our main results we will distinguish the cases when our given graph
G is close to the union of two disjoint copies of Kn/2, close to a complete bipartite
graph Kn/2,n/2 or a robust expander. We will start by defining these concepts.

We say that a graph G on n vertices is ε-close to the union of two disjoint copies
of Kn/2 if there exists A ⊆ V (G) with |A| = bn/2c and such that e(A, V (G) \A) ≤
εn2. We say that G is ε-close to Kn/2,n/2 if there exists A ⊆ V (G) with |A| = bn/2c
and such that e(A) ≤ εn2. We say that G is ε-bipartite if there exists A ⊆ V (G)
with |A| = bn/2c such that e(A), e(V (G) \A) ≤ εn2. So every ε-bipartite graph is
ε-close to Kn/2,n/2. Conversely, if 1/n� ε and G is a regular graph on n vertices
which ε-close to Kn/2,n/2, then G is 2ε-bipartite.

Given 0 < ν ≤ τ < 1, we say that a graph G on n vertices is a robust (ν, τ)-
expander, if for all S ⊆ V (G) with τn ≤ |S| ≤ (1− τ)n the number of vertices that
have at least νn neighbours in S is at least |S|+ νn.

The following observation from [19] implies that we can split the proofs of
Theorems 1.1.1 and 1.1.3 into three cases.

Lemma 1.3.2. Suppose that 0 < 1/n� κ� ν � τ, ε < 1. Let G be a graph on
n vertices of minimum degree δ := δ(G) ≥ (1/2− κ)n. Then G satisfies one of the
following properties:

(i) G is ε-close to Kn/2,n/2;
(ii) G is ε-close to the union of two disjoint copies of Kn/2;

(iii) G is a robust (ν, τ)-expander.

Recall that in Chapter 2 we prove Theorems 1.1.1 and 1.1.3 in Case (ii) when
our given graph G is ε-close to the union of two disjoint copies of Kn/2. The
following result is sufficiently general to imply both Theorems 1.1.1 and 1.1.3 in
this case. We will prove it in Section 2.10.

Theorem 1.3.3. For every εex > 0 there exists an n0 ∈ N such that the fol-
lowing holds for all n ≥ n0. Suppose that D ≥ n − 2bn/4c − 1 and that G is a
D-regular graph on n vertices which is εex-close to the union of two disjoint copies
of Kn/2. Let F be the size of a minimum cut in G. Then G can be decomposed into
bmin{D,F}/2c Hamilton cycles and D − 2bmin{D,F}/2c perfect matchings.

Note that Theorem 1.3.3 provides structural insight into the extremal graphs
for Theorem 1.1.3 – they are those with a cut of size less than D.
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Throughout this paper, we will use the following fact.

(1.3.1) n− 2bn/4c − 1 =


n/2− 1 if n = 0 (mod 4),

(n− 1)/2 if n = 1 (mod 4),

n/2 if n = 2 (mod 4),

(n+ 1)/2 if n = 3 (mod 4).

The next result from [22] (derived from the main result of [21]) shows that
every even-regular robust expander of linear degree has a Hamilton decomposition.
It will be used to prove Theorems 1.1.1 and 1.1.3 in the case when our given graph
G is a robust expander.

Theorem 1.3.4. For every α > 0 there exists τ > 0 such that for every ν > 0
there exists n0 = n0(α, ν, τ) for which the following holds. Suppose that

(i) G is an r-regular graph on n ≥ n0 vertices, where r ≥ αn is even;
(ii) G is a robust (ν, τ)-expander.

Then G has a Hamilton decomposition.

The following result implies Theorems 1.1.1 and 1.1.3 in the case when our
given graph is ε-close to Kn/2,n/2. Note that unlike the case when G is ε-close to
the union of two disjoint copies of Kn/2, we have room to spare in the lower bound
on D.

Theorem 1.3.5. There are εex > 0 and n0 ∈ N such that the following holds.
Let n ≥ n0 and suppose that D ≥ (1/2−εex)n is even. Suppose that G is a D-regular
graph on n vertices which is εex-bipartite. Then G has a Hamilton decomposition.

Theorem 1.3.5 is one of the two main results proven in Chapter 4. The following
result is an easy consequence of Tutte’s theorem and gives the degree threshold for
a single perfect matching in a regular graph. Note the condition on D is the same
as in Theorem 1.1.1.

Proposition 1.3.6. Suppose that D ≥ 2dn/4e − 1 and n is even. Then every
D-regular graph G on n vertices has a perfect matching.

Proof. If D ≥ n/2 then G has a Hamilton cycle (and thus a perfect matching) by
Dirac’s theorem. So we may assume that D = n/2 − 1 and so n = 0 (mod 4). In
this case, we will use Tutte’s theorem which states that a graph G has a perfect
matching if for every set S ⊆ V (G) the graph G−S has at most |S| odd components
(i.e. components on an odd number of vertices). The latter condition holds if |S| ≤ 1
and if |S| ≥ n/2.

If |S| = n/2 − 1 and G − S has more than |S| odd components, then G − S
consists of isolated vertices. But this implies that each vertex outside S is joined
to all vertices in S, contradicting the (n/2− 1)-regularity of G.

If 2 ≤ |S| ≤ n/2−2, then every component ofG−S has at least n/2−|S| vertices
and so G−S has at most b(n−|S|)/(n/2−|S|)c components. But b(n−|S|)/(n/2−
|S|)c ≤ |S| unless n = 8 and |S| = 2. (Indeed, note that (n−|S|)/(n/2−|S|) ≤ |S| if
and only if n+|S|2−(n/2+1)|S| ≤ 0. The latter holds for |S| = 3 and |S| = n/2−2,
and so for all values in between. The case |S| = 2 can be checked separately.) If
n = 8 and |S| = 2, it is easy to see that G− S has at most two odd components.

�
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Proof of Theorem 1.1.1. Let τ = τ(1/3) be the constant returned by
Theorem 1.3.4 for α := 1/3. Choose n0 ∈ N and constants ν, εex such that
1/n0 � ν � τ, εex and εex � 1. Let n ≥ n0 and let G be a D-regular graph
as in Theorem 1.1.1. Lemma 1.3.2 implies that G satisfies one of the following
properties:

(i) G is εex-close to Kn/2,n/2;
(ii) G is εex-close to the union of two disjoint copies of Kn/2;
(iii) G is a robust (ν, τ)-expander.

If (i) holds and D is even, then as observed at the beginning of this subsection, this
implies that G is 2εex-bipartite. So Theorem 1.3.5 implies that G has a Hamilton
decomposition and thus also a 1-factorization (as n is even and so every Hamilton
cycle can be decomposed into two perfect matchings). Suppose that (i) holds and
D is odd. Then Proposition 1.3.6 implies that G contains a perfect matching M .
Now G−M is still εex-close to Kn/2,n/2 and so Theorem 1.3.5 implies that G−M
has a Hamilton decomposition. Thus G has a 1-factorization. If (ii) holds, then
Theorem 1.3.3 and (1.3.1) imply that G has a 1-factorization. If (iii) holds and
D is odd, we use Proposition 1.3.6 to choose a perfect matching M in G and let
G′ := G −M . If D is even, let G′ := G. In both cases, G′ −M is still a robust
(ν/2, τ)-expander. So Theorem 1.3.4 gives a Hamilton decomposition of G′. So G
has a 1-factorization. �

The proof of Theorem 1.1.3 is similar to that of Theorem 1.1.1.

Proof of Theorem 1.1.3. Choose n0 ∈ N and constants τ, ν, εex as in the proof
of Theorem 1.1.1. Let n ≥ n0 and let G be a D-regular graph as in Theorem 1.1.3.
As before, Lemma 1.3.2 implies that G satisfies one of (i)–(iii). Suppose first that
(i) holds. If D is odd, n must be even and so D ≥ n/2. Choose a perfect matching
M in G (e.g. by applying Dirac’s theorem) and let G′ := G−M . If D is even, let
G′ := G. Note that in both cases G′ is εex-close to Kn/2,n/2 and so 2εex-bipartite.
Thus Theorem 1.3.5 implies that G′ has a Hamilton decomposition.

Suppose next that (ii) holds. Note that by (1.3.1), D ≥ n− 2bn/4c − 1 unless
n = 3 (mod 4) and D = bn/2c. But the latter would mean that both n and
D are odd, which is impossible. So the conditions of Theorem 1.3.3 are satisfied.
Moreover, since D ≥ bn/2c, Proposition 2.2.1(ii) implies that the size of a minimum
cut in G is at least D. Thus Theorem 1.3.3 implies that G has a decomposition
into Hamilton cycles and at most one perfect matching.

Finally, suppose that (iii) holds. If D is odd (and thus n is even), we can apply
Proposition 1.3.6 again to find a perfect matching M in G and let G′ := G −M .
If D is even, let G′ := G. In both cases, G′ is still a robust (ν/2, τ)-expander. So
Theorem 1.3.4 gives a Hamilton decomposition of G′. �

1.3.2. Deriving Theorem 1.1.4. The derivation of Theorem 1.1.4 is similar
to that of the previous two results. We will replace the use of Lemma 1.3.2 and
Theorem 1.3.4 with the following result, which is an immediate consequence of the
two main results in [19].

Theorem 1.3.7. For every εex > 0 there exists an n0 ∈ N such that the follow-
ing holds. Suppose that G is a graph on n ≥ n0 vertices with δ(G) ≥ n/2. Then G
satisfies one of the following properties:
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(i) G is εex-close to Kn/2,n/2;
(ii) G is εex-close to the union of two disjoint copies of Kn/2;
(iii) G contains regeven(n, δ)/2 edge-disjoint Hamilton cycles.

To deal with the near-bipartite case (i), we will apply the following result which
we prove in Chapter 4.

Theorem 1.3.8. For each α > 0 there are εex > 0 and n0 ∈ N such that the
following holds. Suppose that F is an εex-bipartite graph on n ≥ n0 vertices with
δ(F ) ≥ (1/2 − εex)n. Suppose that F has a D-regular spanning subgraph G such
that n/100 ≤ D ≤ (1/2 − α)n and D is even. Then F contains D/2 edge-disjoint
Hamilton cycles.

The next result immediately implies Theorem 1.1.4 in Case (ii) when G is ε-
close to the union of two disjoint copies of Kn/2. We will prove it in Chapter 2
(Section 2.5). Since G is far from extremal in this case, we obtain almost twice as
many edge-disjoint Hamilton cycles as needed for Theorem 1.1.4.

Theorem 1.3.9. For every ε > 0, there exist εex > 0 and n0 ∈ N such that
the following holds. Suppose n ≥ n0 and G is a graph on n vertices such that G
is εex-close to the union of two disjoint copies of Kn/2 and such that δ(G) ≥ n/2.
Then G has at least (1/4− ε)n edge-disjoint Hamilton cycles.

We will also use the following well-known result of Petersen.

Theorem 1.3.10. Every regular graph of positive even degree contains a 2-
factor.

Proof of Theorem 1.1.4. Choose n0 ∈ N and εex such that 1/n0 � εex � 1.
In particular, we choose εex ≤ ε1

ex(1/12), where ε1
ex(1/12) is the constant returned

by Theorem 1.3.9 for ε := 1/12, as well as εex ≤ ε2
ex(1/6)/2, where ε2

ex(1/6) is the
constant returned by Theorem 1.3.8 for α := 1/6. Let G be a graph on n ≥ n0

vertices with δ := δ(G) ≥ n/2. Theorem 1.3.7 implies that we may assume that G
satisfies either (i) or (ii). Note that in both cases it follows that δ(G) ≤ (1/2+5εex)n.
So (1.1.1) implies that n/5 ≤ regeven(n, δ) ≤ 3n/10.

Suppose first that (i) holds. As mentioned above, this implies that G is 2εex-
bipartite. Let G′ be a D-regular spanning subgraph of G such that D is even and
D ≥ regeven(n, δ). Petersen’s theorem (Theorem 1.3.10) implies that by successively
deleting 2-factors of G′, if necessary, we may in addition assume that D ≤ n/3.
Then Theorem 1.3.8 (applied with α := 1/6) implies that G contains at least
D/2 ≥ regeven(n, δ)/2 edge-disjoint Hamilton cycles.

Finally suppose that (ii) holds. Then Theorem 1.3.9 (applied with ε := 1/12)
implies that G contains n/6 ≥ regeven(n, δ)/2 edge-disjoint Hamilton cycles. �

1.4. Tools

1.4.1. ε-regularity. If G = (A,B) is an undirected bipartite graph with ver-
tex classes A and B, then the density of G is defined as

d(A,B) :=
eG(A,B)

|A||B| .
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For any ε > 0, we say that G is ε-regular if for any A′ ⊆ A and B′ ⊆ B with
|A′| ≥ ε|A| and |B′| ≥ ε|B| we have |d(A′, B′) − d(A,B)| < ε. We say that G is
(ε,≥ d)-regular if it is ε-regular and has density d′ for some d′ ≥ d− ε.

We say that G is [ε, d]-superregular if it is ε-regular and dG(a) = (d± ε)|B| for
every a ∈ A and dG(b) = (d± ε)|A| for every b ∈ B. G is [ε,≥ d]-superregular if it
is [ε, d′]-superregular for some d′ ≥ d.

Given disjoint vertex sets X and Y in a digraph G, recall that G[X,Y ] denotes
the bipartite subdigraph of G whose vertex classes are X and Y and whose edges
are all the edges of G directed from X to Y . We often view G[X,Y ] as an undirected
bipartite graph. In particular, we say G[X,Y ] is ε-regular, (ε,≥ d)-regular, [ε, d]-
superregular or [ε,≥ d]-superregular if this holds when G[X,Y ] is viewed as an
undirected graph.

The following proposition states that the graph obtained from a superregular
pair by removing a small number of edges at every vertex is still superregular (with
slightly worse parameters). We omit the proof which follows straightforwardly from
the definition of superregularity. A similar argument is for example included in [21].

Proposition 1.4.1. Suppose that 0 < 1/m � ε ≤ d′ � d ≤ 1. Let G be a
bipartite graph with vertex classes A and B of size m. Suppose that G′ is obtained
from G by removing at most d′m vertices from each vertex class and at most d′m
edges incident to each vertex from G. If G is [ε, d]-superregular then G′ is [2

√
d′, d]-

superregular.

We will also use the following well-known observation, which easily follows from
Hall’s theorem and the definition of [ε, d]-superregularity.

Proposition 1.4.2. Suppose that 0 < 1/m � ε � d ≤ 1. Suppose that G is
an [ε, d]-superregular bipartite graph with vertex classes of size m. Then G contains
a perfect matching.

We will also apply the following simple fact.

Fact 1.4.3. Let ε > 0. Suppose that G is a bipartite graph with vertex classes
of size n such that δ(G) ≥ (1− ε)n. Then G is [

√
ε, 1]-superregular.

1.4.2. A Chernoff-Hoeffding Bound. We will often use the following Cher-
noff-Hoeffding bound for binomial and hypergeometric distributions (see e.g. [14,
Corollary 2.3 and Theorem 2.10]). Recall that the binomial random variable with
parameters (n, p) is the sum of n independent Bernoulli variables, each taking value
1 with probability p or 0 with probability 1−p. The hypergeometric random variable
X with parameters (n,m, k) is defined as follows. We let N be a set of size n, fix
S ⊆ N of size |S| = m, pick a uniformly random T ⊆ N of size |T | = k, then define
X := |T ∩ S|. Note that EX = km/n.

Proposition 1.4.4. Suppose X has binomial or hypergeometric distribution

and 0 < a < 3/2. Then P(|X − EX| ≥ aEX) ≤ 2e−a
2EX/3.

1.4.3. Other Useful Results. We will need the following fact, which is a
simple consequence of Vizing’s theorem and was first observed by McDiarmid and
independently by de Werra (see e.g. [37]).

Proposition 1.4.5. Let G be a graph with χ′(G) ≤ m. Then G has a decom-
position into m matchings M1, . . . ,Mm with |e(Mi)− e(Mj)| ≤ 1 for all i, j ≤ m.
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It is also useful to state Proposition 1.4.5 in the following alternative form.

Corollary 1.4.6. Let H be a graph with maximum degree at most ∆. Then
E(H) can be decomposed into ∆ + 1 edge-disjoint matchings M1, . . . ,M∆+1 such
that |e(Mi)− e(Mj)| ≤ 1 for all i, j ≤ ∆ + 1.

The following partition result will also be useful.

Lemma 1.4.7. Suppose that 0 < 1/n � ε, ε1 � ε2 � 1/K � 1, that r ≤ 2K,
that Km ≥ n/4 and that r,K, n,m ∈ N. Let G and F be graphs on n vertices with
V (G) = V (F ). Suppose that there is a vertex partition of V (G) into U,R1, . . . , Rr
with the following properties:

• |U | = Km.
• δ(G[U ]) ≥ εn or ∆(G[U ]) ≤ εn.
• For each j ≤ r we either have dG(u,Rj) ≤ εn for all u ∈ U or dG(x, U) ≥
εn for all x ∈ Rj.

Then there exists a partition of U into K parts U1, . . . , UK satisfying the following
properties:

(i) |Ui| = m for all i ≤ K.
(ii) dG(v, Ui) = (dG(v, U)± ε1n)/K for all v ∈ V (G) and all i ≤ K.

(iii) eG(Ui, Ui′) = 2(eG(U)± ε2 max{n, eG(U)})/K2 for all 1 ≤ i 6= i′ ≤ K.
(iv) eG(Ui) = (eG(U)± ε2 max{n, eG(U)})/K2 for all i ≤ K.
(v) eG(Ui, Rj) = (eG(U,Rj) ± ε2 max{n, eG(U,Rj)})/K for all i ≤ K and

j ≤ r.
(vi) dF (v, Ui) = (dF (v, U)± ε1n)/K for all v ∈ V (F ) and all i ≤ K.

Proof. Consider an equipartition U1, . . . , UK of U which is chosen uniformly at
random. So (i) holds by definition. Note that for a given vertex v ∈ V (G), dG(v, Ui)
has the hypergeometric distribution with mean dG(v, U)/K. So if dG(v, U) ≥
ε1n/K, Proposition 1.4.4 implies that

P
(∣∣∣∣dG(v, Ui)−

dG(v, U)

K

∣∣∣∣ ≥ ε1dG(v, U)

K

)
≤ 2 exp

(
−ε

2
1dG(v, U)

3K

)
≤ 1

n2
.

Thus we deduce that for all v ∈ V (G) and all i ≤ K,

P (|dG(v, Ui)− dG(v, U)/K| ≥ ε1n/K) ≤ 1/n2.

Similarly,

P (|dF (v, Ui)− dF (v, U)/K| ≥ ε1n/K) ≤ 1/n2.

So with probability at least 3/4, both (ii) and (vi) are satisfied.
We now consider (iii) and (iv). Fix i, i′ ≤ K. If i 6= i′, let X := eG(Ui, Ui′). If

i = i′, let X := 2eG(Ui). For an edge f ∈ E(G[U ]), let Ef denote the event that
f ∈ E(Ui, Ui′). So if f = xy and i 6= i′, then

(1.4.1) P(Ef ) = 2P(x ∈ Ui)P(y ∈ Ui′ | x ∈ Ui) = 2
m

|U | ·
m

|U | − 1
.

Similarly, if f and f ′ are disjoint (that is, f and f ′ have no common endpoint) and
i 6= i′, then

(1.4.2) P(Ef ′ | Ef ) = 2
m− 1

|U | − 2
· m− 1

|U | − 3
≤ 2

m

|U | ·
m

|U | − 1
= P(Ef ′).
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By (1.4.1), if i 6= i′, we also have

(1.4.3) E(X) = 2
eG(U)

K2
· |U ||U | − 1

=

(
1± 2

|U |

)
2eG(U)

K2
= (1± ε2/4)

2eG(U)

K2
.

If f = xy and i = i′, then

(1.4.4) P(Ef ) = P(x ∈ Ui)P(y ∈ Ui | x ∈ Ui) =
m

|U | ·
m− 1

|U | − 1
.

So if i = i′, similarly to (1.4.2) we also obtain P(Ef ′ | Ef ) ≤ P(Ef ) for disjoint f and
f ′ and we obtain the same bound as in (1.4.3) on E(X) (recall that X = 2eG(Ui)
in this case).

Note that if i 6= i′ then

Var(X) =
∑

f∈E(U)

∑
f ′∈E(U)

(P(Ef ∩ Ef ′)− P(Ef )P(Ef ′))

=
∑

f∈E(U)

P(Ef )
∑

f ′∈E(U)

(P(Ef ′ | Ef )− P(Ef ′))

(1.4.2)

≤
∑

f∈E(U)

P(Ef ) · 2∆(G[U ])
(1.4.3)

≤ 3eG(U)

K2
· 2∆(G[U ])

≤ eG(U)∆(G[U ]).

Similarly, if i = i′ then

Var(X) = 4
∑

f∈E(U)

∑
f ′∈E(U)

(P(Ef ∩ Ef ′)− P(Ef )P(Ef ′)) ≤ eG(U)∆(G[U ]).

Let a := eG(U)∆(G[U ]). In both cases, from Chebyshev’s inequality, it follows that

P
(
|X − E(X)| ≥

√
a/ε1/2

)
≤ ε1/2.

Suppose that ∆(G[U ]) ≤ εn. If we also have have eG(U) ≤ n, then
√
a/ε1/2 ≤

ε1/4n ≤ ε2n/2K
2. If eG(U) ≥ n, then

√
a/ε1/2 ≤ ε1/4eG(U) ≤ ε2eG(U)/2K2.

If we do not have ∆(G[U ]) ≤ εn, then our assumptions imply that δ(G[U ]) ≥
εn. So ∆(G[U ]) ≤ n ≤ εeG(G[U ]) with room to spare. This in turn means that√
a/ε1/2 ≤ ε1/4eG(U) ≤ ε2eG(U)/2K2. So in all cases, we have

P
(
|X − E(X)| ≥ ε2 max{n, eG(U)}

2K2

)
≤ ε1/2.(1.4.5)

Now note that by (1.4.3) we have

(1.4.6)

∣∣∣∣E(X)− 2eG(U)

K2

∣∣∣∣ ≤ ε2eG(U)

2K2
.

So (1.4.5) and (1.4.6) together imply that for fixed i, i′ the bound in (iii) fails with
probability at most ε1/2. The analogue holds for the bound in (iv). By summing
over all possible values of i, i′ ≤ K, we have that (iii) and (iv) hold with probability
at least 3/4.

A similar argument shows that for all i ≤ K and j ≤ r, we have

(1.4.7) P
(∣∣∣∣eG(Ui, Rj)−

eG(U,Rj)

K

∣∣∣∣ ≥ ε2 max{n, eG(U,Rj)}
K

)
≤ ε1/2.
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Indeed, fix i ≤ K, j ≤ r and let X := eG(Ui, Rj). For an edge f ∈ G[U,Rj ], let
Ef denote the event that f ∈ E(Ui, Rj). Then P(Ef ) = m/|U | = 1/K and so
E(X) = eG(U,Rj)/K. The remainder of the argument proceeds as in the previous
case (with slightly simpler calculations).

So (v) holds with probability at least 3/4, by summing over all possible values
of i ≤ K and j ≤ r again. So with positive probability, the partition satisfies all
requirements. �



CHAPTER 2

The two cliques case

This chapter is concerned with proving Theorems 1.1.1, 1.1.3 and 1.1.4 in the
case when our graph is close to the union of two disjoint copies of a clique Kn/2

(Case (ii)). More precisely, we prove Theorem 1.3.9 (i.e. Case (ii) of Theorem 1.1.4)
and Theorem 1.3.3, which is a common generalization of Case (ii) of Theorems 1.1.1
and 1.1.3. In Section 2.1, we give a sketch of the arguments for the ‘two cliques’
Case (ii) (i.e. the proofs of Theorems 1.3.3 and 1.3.9). Sections 2.2–2.4 (and part
of Section 2.5) are common to the proofs of both Theorems 1.3.3 and 1.3.9. Theo-
rem 1.3.9 is proved in Section 2.5. All the subsequent sections of this chapter are
devoted to the proof of Theorem 1.3.3.

In this chapter (and Chapter 3) it is convenient to view matchings as graphs
(in which every vertex has degree precisely one).

2.1. Overview of the Proofs of Theorems 1.3.3 and 1.3.9

The proof of Theorem 1.3.9 is much simpler than that of Theorems 1.3.3 (mainly
because its assertion leaves some leeway – one could probably find a slightly larger
set of edge-disjoint Hamilton cycles than guaranteed by Theorem 1.3.9). Moreover,
the ideas used in the former all appear in the proof of the latter too.

2.1.1. Proof Overview for Theorem 1.3.9. Let G be a graph on n vertices
with δ(G) ≥ n/2 which is close to being the union of two disjoint cliques. So there
is a vertex partition of G into sets A and B of roughly equal size so that G[A]
and G[B] are almost complete. Our aim is to construct almost n/4 edge-disjoint
Hamilton cycles.

Several techniques have recently been developed which yield approximate de-
compositions of dense (almost) regular graphs, i.e. a set of Hamilton cycles covering
almost all the edges (see e.g. [6, 7, 9, 24, 31]). This leads to the following idea:
replace G[A] and G[B] by multigraphs GA and GB so that any suitable pair of
Hamilton cycles CA and CB of GA and GB respectively corresponds to a single
Hamilton cycle C in the original graph G. We will construct GA and GB by delet-
ing some edges of G and introducing some ‘fictive edges’. (The introduction of
these fictive edges is the reason why GA and GB are multigraphs.)

We next explain the key concept of these ‘fictive edges’. The following graph G
provides an instructive example: suppose that n = 0 (mod 4). Let G be obtained
from two disjoint cliques induced by sets A and B of size n/2 by adding a perfect
matching M between A and B. Note that G is n/2-regular. Now pair up the edges
of M into n/4 pairs (ei, ei+1) for i = 1, 3, . . . , n/2− 1. Write ei =: xiyi with xi ∈ A
and yi ∈ B. Next let GA be the multigraph obtained from G[A] by adding all the
edges xixi+1, where i is odd. Similarly, let GB be obtained from G[B] by adding all
the edges yiyi+1, where i is odd. We call the edges xixi+1 and yiyi+1 fictive edges.

15
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Note that GA and GB are regular multigraphs. Now pair off the fictive edges in
GA with those in GB , i.e. xixi+1 is paired off with yiyi+1. Suppose that CA is a
Hamilton cycle in GA which contains xixi+1 (and no other fictive edges) and CB is
a Hamilton cycle in GB which contains yiyi+1 (and no other fictive edges). Then
together, CA and CB correspond to a Hamilton cycle C in the original graph G
(where fictive edges are replaced by the corresponding matching edges in M again).

So we have reduced the problem of finding many edge-disjoint Hamilton cycles
in G to that of finding many edge-disjoint Hamilton cycles in the almost complete
graph GA (and GB), with the additional requirement that each such Hamilton
cycle contains a unique fictive edge. This can be achieved via the ‘approximate
decomposition result’ (see Lemma 2.5.4 which is proved in Chapter 5).

Additional difficulties arise from ‘exceptional’ vertices, namely those which have
high degree into both A and B. (It is easy to see that there cannot be too many
of these vertices.) Fictive edges also provide a natural way of ‘eliminating’ these
exceptional vertices. Suppose for example that G′ is obtained from the graph G
above by adding a vertex a so that a is adjacent to half of the vertices in A and
half of the vertices in B. (Note that δ(G′) is a little smaller than |G′|/2, but
G′ is similar to graphs actually occurring in the proof.) Then we can pair off the
neighbours of a into pairs within A and introduce a fictive edge fi between each pair
of neighbours. We also introduce fictive edges fi between pairs of neighbours of a
in B. Without loss of generality, we have fictive edges f1, f3, . . . , fn/2−1 (and recall
that |G′| = n+1). So we have V (G′A) = A and V (G′B) = B again. We then require
each pair of Hamilton cycles CA, CB of G′A and G′B to contain xixi+1, yiyi+1 and a
fictive edge fi (which may lie in A or B) where i is odd, see Figure 2.1.1. Then CA
and CB together correspond to a Hamilton cycle C in G′ again. The subgraph J of
G′ which corresponds to three such fictive edges xixi+1, yiyi+1 and fi of C is called
a ‘Hamilton exceptional system’. J will always be a path system. So in general, we
will first find a sufficient number of edge-disjoint Hamilton exceptional systems J .
Then we apply Lemma 2.5.4 to find edge-disjoint Hamilton cycles in G′A and G′B ,
where each pair of cycles contains a suitable set J∗ of fictive edges (corresponding
to some Hamilton exceptional system J).

For Lemma 2.5.4, we need each of the Hamilton exceptional systems J to
be ‘localized’: given a partition of A and B into clusters, the endpoints of the
corresponding set J∗ of fictive edges need to be contained in a single cluster of A
and of B. The fact that the Hamilton exceptional systems need to be localized is one
reason for treating exceptional vertices differently from the others by introducing
fictive edges for them.

2.1.2. Proof Overview for Theorem 1.3.3. The main result of this chapter
is Theorem 1.3.3. Suppose that G is a D-regular graph satisfying the conditions of
that theorem.

Using the approach of the previous subsection, one can obtain an approximate
decomposition of G, i.e. a set of edge-disjoint Hamilton cycles covering almost all
edges of G. However, one does not have any control over the ‘leftover’ graph H,
which makes a complete decomposition seem infeasible. This problem was over-
come in [21] by introducing the concept of a ‘robustly decomposable graph’ Grob.
Roughly speaking, this is a sparse regular graph with the following property: given
any very sparse regular graph H with V (H) = V (Grob) which is edge-disjoint from
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A B

a

xi

xi+1

yi

yi+1

fi

CA CB

Figure 2.1.1. Transforming the problem of finding a Hamilton
cycle on V (G′) into finding two Hamilton cycles CA and CB on A
and B respectively.

Grob, one can guarantee that Grob ∪H has a Hamilton decomposition. This leads
to a natural (and very general) strategy to obtain a decomposition of G:

(1) find a (sparse) robustly decomposable graph Grob in G and let G′ denote
the leftover;

(2) find an approximate Hamilton decomposition of G′ and let H denote the
(very sparse) leftover;

(3) find a Hamilton decomposition of Grob ∪H.

It is of course far from clear that one can always find such a graph Grob. The main
‘robust decomposition lemma’ of [21] guarantees such a graph Grob in any regular
robustly expanding graph of linear degree. Since G is close to the disjoint union
of two cliques, we are of course not in this situation. However, a regular almost
complete graph is certainly a robust expander, i.e. our assumptions imply that G
is close to being the disjoint union of two regular robustly expanding graphs GA
and GB , with vertex sets A and B.

So very roughly, the strategy is to apply the robust decomposition lemma of [21]
to GA and GB separately, to obtain a Hamilton decomposition of both GA and GB .
Now we pair up Hamilton cycles of GA and GB in this decomposition, so that each
such pair corresponds to a single Hamilton cycle of G and so that all edges of G
are covered. It turns out that we can achieve this as in the proof of Theorem 1.3.9:
we replace all edges of G between A and B by suitable ‘fictive edges’ in GA and
GB . We then need to ensure that each Hamilton cycle in GA and GB contains a
suitable set of fictive edges – and the set-up of the robust decomposition lemma
does allow for this.

One significant difficulty compared to the proof of Theorem 1.3.9 is that this
time we need a decomposition of all the ‘exceptional’ edges (i.e. those between
A and B and those incident to the exceptional vertices) into Hamilton exceptional
systems. The nature of the decomposition depends on the structure of the bipartite
subgraph G[A′, B′] of G, where A′ is obtained from A by including some subset A0

of the exceptional vertices, and B′ is obtained from B by including the remaining
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set B0 of exceptional vertices. We say that G is ‘critical’ if many edges of G[A′, B′]
are incident to very few (exceptional) vertices. In our decomposition into Hamilton
exceptional systems, we will need to distinguish between the critical and non-critical
case (when in addition G[A′, B′] contains many edges) and the case when G[A′, B′]
contains only a few edges. The lemmas guaranteeing this decomposition are stated
and discussed in Section 2.7, but their proofs are deferred until Chapter 3.

Finding these localized Hamilton exceptional systems becomes more feasible if
we can assume that there are no edges with both endpoints in the exceptional set
A0 or both endpoints in B0. So in Section 2.6, we find and remove a set of edge-
disjoint Hamilton cycles covering all edges in G[A0] and G[B0]. We can then find the
localized Hamilton exceptional systems in Section 2.7. After this, we need to extend
and combine them into certain path systems and factors in Section 2.8, before we
can use them as an ‘input’ for the robust decomposition lemma in Section 2.9.
Finally, all these steps are combined in Section 2.10 to prove Theorem 1.3.3.

2.2. Partitions and Frameworks

2.2.1. Edges between Partition Classes. Let A′, B′ be a partition of the
vertex set of a graph G. The aim of this subsection is to give some useful bounds
on the number eG(A′, B′) of edges between A′ and B′ in G.

Proposition 2.2.1. Let G be a graph on n vertices with δ(G) ≥ D. Let A′, B′

be a partition of V (G). Then the following properties hold:

(i) eG(A′, B′) ≥ (D − |B′|+ 1)|B′|.
(ii) If D ≥ n − 2bn/4c − 1, then eG(A′, B′) ≥ D unless n = 0 (mod 4),

D = n/2− 1 and |A′| = |B′| = n/2.

Proof. Since δ(G) ≥ D we have d(v,A′) ≥ D − |B′| + 1 for all v ∈ B′ and so
eG(A′, B′) ≥ (D − |B′| + 1)|B′|, which implies (i). (ii) follows from (1.3.1) and
(i). �

Proposition 2.2.2. Let G be a D-regular graph on n vertices together with a
vertex partition A′, B′. Then

(i) eG(A′, B′) is odd if and only if both |A′| and D are odd.

(ii) eG(A′, B′) = eG(A′) + eG(B′) + (2D+2−n)n
4 − (|A′|−|B′|)2

4 .

Proof. Note that eG(A′, B′) =
∑
v∈A′ d(v,B′) =

∑
v∈A′(D− d(v,A′)) = |A′|D−

2eG(A′). Hence (i) follows.
For (ii), note that

eG(A′) =

(|A′|
2

)
− eG(A′) =

(|A′|
2

)
− 1

2
(D|A′| − eG(A′, B′)) ,

and similarly eG(B′) =
(|B′|

2

)
− (D|B′| − eG(A′, B′)) /2. Since |A′| + |B′| = n it

follows that

eG(A′, B′) = eG(A′) + eG(B′)− 1

2

(
|A′|2 + |B′|2 − n (D + 1)

)
= eG(A′) + eG(B′) +

(2D + 2− n)n

4
− (|A′| − |B′|)2

4
,

as required. �
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Proposition 2.2.3. Let G be a D-regular graph on n vertices with D ≥ bn/2c.
Let A′, B′ be a partition of V (G) with |A′|, |B′| ≥ D/2 and ∆(G[A′, B′]) ≤ D/2.
Then

eG−U (A′, B′) ≥
{
D − 28 if D ≥ n/2,

D/2− 28 if D = (n− 1)/2

for every U ⊆ V (G) with |U | ≤ 3.

Proof. Without loss of generality, we may assume that |A′| ≥ |B′|. Set
G′ := G[A′, B′]. If |B′| ≤ D − 4, then e(G′) ≥ (D − |B′| + 1)|B′| ≥ 5D/2 by
Proposition 2.2.1(i). Since ∆(G′) ≤ D/2 we have e(G′ − U) ≥ e(G′)− 3D/2 ≥ D.
Thus we may assume that |B′| ≥ D − 3. For every v ∈ B′, we have

dG′(v) = dG(v,A′) = D − dG(v,B′) = D − (|B′| − dG(v,B′)− 1) ≤ dG(v,B′) + 4,

and similarly dG′(v) ≤ dG(v,A′) + 4 for all v ∈ A′. Thus∑
u∈U

dG′(u) ≤ 12 +
∑

u∈U∩A′
dG(u,A′) +

∑
u∈U∩B′

dG(u,B′)

≤ 15 + eG(A′) + eG(B′).(2.2.1)

Note that |A′| − |B′| ≤ 7 since |A′| ≥ |B′| ≥ D − 3 ≥ bn/2c − 3. By Proposi-
tion 2.2.2(ii), we have

e(G′ − U) ≥ e(G′)−
∑
u∈U

dG′(u)

≥ eG(A′) + eG(B′) +
(2D + 2− n)n

4
− (|A′| − |B′|)2

4
−
∑
u∈U

dG′(u)

(2.2.1)

≥ (2D + 2− n)n

4
− (|A′| − |B′|)2

4
− 15 ≥ (2D + 2− n)n

4
− 28.

Hence the proposition follows. �

The following result is an analogue of Proposition 2.2.3 for the case when G is
(n/2− 1)-regular with n = 0 (mod 4) and |A′| = n/2 = |B′|.

Proposition 2.2.4. Let G be an (n/2 − 1)-regular graph on n vertices with
n = 0 (mod 4). Let A′, B′ be a partition of V (G) with |A′| = n/2 = |B′|. Then

eG(A′ \X,B′) ≥ eG(X,B′)− |X|(|X| − 1)

for every vertex set X ⊆ A′. Moreover, ∆(G[A′, B′]) ≤ eG(A′, B′)/2.

Proof. For every v ∈ A′, we have

dG(v,B′) = n/2− 1− dG(v,A′) = |A′| − 1− dG(v,A′) = dG(v,A′).

By summing over all v ∈ A′ we obtain

eG(A′, B′) = 2eG(A′) ≥ 2

(∑
x∈X

dG(x,A′)−
(|X|

2

))
= 2

∑
x∈X

dG(x,B′)− |X|(|X| − 1)

= 2eG(X,B′)− |X|(|X| − 1).
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Therefore,

eG(A′ \X,B′) = eG(A′, B′)− eG(X,B′) ≥ eG(X,B′)− |X|(|X| − 1).

In particular, this implies that for each vertex x ∈ A′ we have eG(A′ \ {x}, B′) ≥
eG({x}, B′) = dG(x,B′) and so 2dG(x,B′) ≤ eG(A′, B′). By symmetry, for any
y ∈ B′ we have 2d(y,A′) ≤ eG(A′, B′). Therefore, ∆(G[A′, B′]) ≤ eG(A′, B′)/2.

�

2.2.2. Frameworks. Throughout this chapter, we will consider partitions
into sets A and B of equal size (which induce ‘near-cliques’) as well as ‘excep-
tional sets’ A0 and B0. The following definition formalizes this. Given a graph G,
we say that (G,A,A0, B,B0) is an (ε0,K)-framework if the following holds, where
A′ := A0 ∪A, B′ := B0 ∪B and n := |V (G)|:

(FR1) A,A0, B,B0 forms a partition of V (G).
(FR2) e(A′, B′) ≤ ε0n

2.
(FR3) |A| = |B| is divisible by K, |A0| ≥ |B0| and |A0|+ |B0| ≤ ε0n.
(FR4) If v ∈ A then d(v,B′) < ε0n and if v ∈ B then d(v,A′) < ε0n.

We often write V0 for A0 ∪ B0 and think of the vertices in V0 as ‘exceptional
vertices’. Also, whenever (G,A,A0, B,B0) is an (ε0,K)-framework, we will write
A′ := A0 ∪A, B′ := B0 ∪B.

Proposition 2.2.5. Let 0 < 1/n� εex, 1/K � 1 and εex � ε0 � 1. Let G be
a graph on n vertices with δ(G) = D ≥ n−2bn/4c−1 that is εex-close to the union
of two disjoint copies of Kn/2. Then there is a partition A,A0, B,B0 of V (G) such
that (G,A,A0, B,B0) is an (ε0,K)-framework, d(v,A′) ≥ d(v)/2 for all v ∈ A′ and
d(v,B′) ≥ d(v)/2 for all v ∈ B′.
Proof. Write ε := εex. Since G is ε-close to the union of two disjoint copies
of Kn/2, there exists a partition A′′, B′′ of V (G) such that |A′′| = bn/2c and

e(A′′, B′′) ≤ εn2. If there exists a vertex v ∈ A′′ such that d(v,A′′) < d(v,B′′),
then we move v to B′′. We still denote the vertex classes thus obtained by A′′

and B′′. Similarly, if there exists a vertex v ∈ B′′ such that d(v,B′′) < d(v,A′′),
then we move v to A′′. We repeat this process until d(v,A′′) ≥ d(v,B′′) for all
v ∈ A′′ and d(v,B′′) ≥ d(v,A′′) for all v ∈ B′′. Note that this process must
terminate since at each step the value of e(A′′, B′′) decreases. Let A′, B′ denote
the resulting partition. By relabeling the classes if necessary we may assume that
|A′| ≥ |B′|. By construction, e(A′, B′) ≤ e(A′′, B′′) ≤ εn2 and so (FR2) holds.
Suppose that |B′| < (1− 5ε)n/2. Then at some stage in the process we have that
|B′′| = (1− 5ε)n/2. But then by Proposition 2.2.1(i),

e(A′′, B′′) ≥ (D − |B′′|+ 1)|B′′| > εn2,

a contradiction to the definition of ε-closeness (as the number of edges between the
partition classes has not increased while moving the vertices). Hence, |A′| ≥ |B′| ≥
(1− 5ε)n/2. Let B′0 be the set of vertices v in B′ such that d(v,A′) ≥ √εn. Since√
εn|B′0| ≤ e(A′, B′) ≤ εn2 we have |B′0| ≤

√
εn. Note that

|B′| − |B′0| ≥ (1− 5ε)n/2−√εn ≥ (1− 3
√
ε)n/2.(2.2.2)

Similarly, let A′0 be the set of vertices v in A′ such that d(v,B′) ≥ √εn. Thus,
|A′0| ≤

√
εn and |A′| − |A′0| ≥ n/2 − |A′0| ≥ (1 − 2

√
ε)n/2. Let m be the largest

integer such that Km ≤ |A′| − |A′0|, |B′| − |B′0|. Let A and B be Km-subsets of
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A′ \ A′0 and B′ \ B′0 respectively. Set A0 := A′ \ A and B0 := B′ \ B. Note that
(2.2.2) and its analogue for A′ together imply that |A0|+ |B0| ≤ 3

√
εn+2K ≤ ε0n.

Therefore, (G,A,A0, B,B0) is an (ε0,K)-framework. �

2.3. Exceptional Systems and (K,m, ε0)-Partitions

The definitions and observations in this section will enable us to ‘reduce’ the
problem of finding Hamilton cycles in G to that of finding suitable pairs CA, CB
of cycles with V (CA) = A and V (CB) = B. In particular, they will enable us to
‘ignore’ the exceptional set V0 = A0 ∪ B0. Roughly speaking, for each Hamilton
cycle we seek, we find a certain path system J covering V0 (called an exceptional
system). From this, we derive a set J∗ of edges whose endvertices lie in A ∪ B by
replacing paths of J with ‘fictive edges’ in a suitable way. We can then work with
J∗ instead of J when constructing our Hamilton cycles (see Proposition 2.3.1 and
the explanation preceding it).

Suppose that A,A0, B,B0 forms a partition of a vertex set V of size n such
that |A| = |B|. Let V0 := A0∪B0. An exceptional cover J is a graph which satisfies
the following properties:

(EC1) J is a path system with V0 ⊆ V (J) ⊆ V .
(EC2) dJ(v) = 2 for every v ∈ V0 and dJ(v) ≤ 1 for every v ∈ V (J) \ V0.
(EC3) eJ(A), eJ(B) = 0.

We say that J is an exceptional system with parameter ε0, or an ES for short, if J
satisfies the following properties:

(ES1) J is an exceptional cover.
(ES2) One of the following is satisfied:

(HES) The number of AB-paths in J is even and positive. In this case we
say J is a Hamilton exceptional system, or HES for short.

(MES) eJ(A′, B′) = 0. In this case we say J is a matching exceptional
system, or MES for short.

(ES3) J contains at most
√
ε0n AB-paths.

Note that by definition, every AB-path in J is maximal. So the number of AB-
paths in J is the number of genuine ‘connections’ between A and B (and thus
between A′ and B′). If we want to extend J into a Hamilton cycle using only
edges induced by A and edges induced by B, this number clearly has to be even
and positive. Hamilton exceptional systems will always be extended into Hamilton
cycles and matching exceptional systems will always be extended into two disjoint
even cycles which together span all vertices (and thus consist of two edge-disjoint
perfect matchings).

Since each maximal path in J has endpoints in A ∪ B and internal vertices in
V0, an exceptional system J naturally induces a matching J∗AB on A ∪ B. More
precisely, if P1, . . . , P`′ are the non-trivial paths in J and xi, yi are the endpoints
of Pi, then we define J∗AB := {xiyi : i ≤ `′}. Thus eJ∗AB

(A,B) is equal to the
number of AB-paths in J . In particular, if J is a matching exceptional system,
then eJ∗AB

(A,B) = 0.
Let x1y1, . . . , x2`y2` be a fixed enumeration of the edges of J∗AB [A,B] with

xi ∈ A and yi ∈ B. Define

J∗A := J∗AB [A] ∪ {x2i−1x2i : 1 ≤ i ≤ `} and J∗B := J∗AB [B] ∪ {y2iy2i+1 : 1 ≤ i ≤ `}
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(a) J
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(b) J∗
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Figure 2.3.1. The thick lines illustrate the edges of J , J∗AB and
J∗ respectively.

(with indices considered modulo 2`). Let J∗ := J∗A + J∗B , see Figure 2.3.1. Note
that J∗ is the union of one matching induced by A and another on B, and e(J∗) =
e(J∗AB). Moreover, by (EC2) we have

(2.3.1) e(J∗) = e(J∗AB) ≤ |V0|+ eJ(A′, B′) ≤ 2
√
ε0n.

We will call the edges in J∗ fictive edges. Note that if J1 and J2 are two edge-
disjoint exceptional systems, then J∗1 and J∗2 may not be edge-disjoint. However,
we will always view fictive edges as being distinct from each other and from the
edges in other graphs. So in particular, whenever J1 and J2 are two exceptional
systems, we will view J∗1 and J∗2 as being edge-disjoint.

We say that a path P is consistent with J∗A if P contains J∗A and (there is an
orientation of P which) visits the vertices x1, . . . , x2` in this order. A path P is
consistent with J∗B if P contains J∗B and visits the vertices y2, . . . , y2`, y1 in this
order. In a similar way we define when a cycle is consistent with J∗A or J∗B .

The next result shows that if J is a Hamilton exceptional system and CA, CB
are two Hamilton cycles on A and B respectively which are consistent with J∗A and
J∗B , then the graph obtained from CA + CB by replacing J∗ = J∗A + J∗B with J
is a Hamilton cycle on V which contains J , see Figure 2.3.1. When choosing our
Hamilton cycles, this property will enable us ignore all the vertices in V0 and to
consider the (almost complete) graphs induced by A and by B instead. Similarly,
if J is a matching exceptional system and both |A′| and |B′| are even, then the
graph obtained from CA +CB by replacing J∗ with J is the edge-disjoint union of
two perfect matchings on V .

Proposition 2.3.1. Suppose that A,A0, B,B0 forms a partition of a vertex set
V . Let J be an exceptional system. Let CA and CB be two cycles such that

• CA is a Hamilton cycle on A that is consistent with J∗A;
• CB is a Hamilton cycle on B that is consistent with J∗B.

Then the following assertions hold.

(i) If J is a Hamilton exceptional system, then CA+CB−J∗+J is a Hamilton
cycle on V .

(ii) If J is a matching exceptional system, then CA+CB−J∗+J is the union
of a Hamilton cycle on A′ and a Hamilton cycle on B′. In particular, if
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both |A′| and |B′| are even, then CA + CB − J∗ + J is the union of two
edge-disjoint perfect matchings on V .

Proof. Suppose that J is a Hamilton exceptional system. Let x1y1, . . . , x2`y2` be
an enumeration of the edges of J∗AB [A,B] with xi ∈ A and yi ∈ B and such that
J∗A = J∗AB [A]∪{x2i−1x2i : 1 ≤ i ≤ `} and J∗B = J∗AB [B]∪{y2iy2i+1 : 1 ≤ i ≤ `}. Let
PA1 , . . . , P

A
` be the paths in CA−{x2i−1x2i : 1 ≤ i ≤ `}. Since CA is consistent with

J∗A, we may assume that PAi is a path from x2i−2 to x2i−1 for all i ≤ `. Similarly,
let PB1 , . . . , P

B
` be the paths in CB −{y2iy2i+1 : 1 ≤ i ≤ `}. Again, we may assume

that PBi is a path from y2i−1 to y2i for all i ≤ `. Define C∗ to be the 2-regular
graph on A∪B obtained from concatenating PA1 , x1y1, P

B
1 , y2x2, P

A
2 , x3y3, . . . , P

B
`

and y2`x2`. Together with (HES), the construction implies that C∗ is a Hamilton
cycle on A ∪ B and C∗ = CA + CB − J∗ + J∗AB . Thus C := C∗ − J∗AB + J is a
Hamilton cycle on V . Since C = CA + CB − J∗ + J , (i) holds.

The proof of (ii) is similar to that of (i). Indeed, the previous argument shows
that C∗ is the union of a Hamilton cycle on A and a Hamilton cycle on B. (MES)
now implies that C is the union of a Hamilton cycle on A′ and one on B′. �

In general, we construct an exceptional system by first choosing an exceptional
system candidate (defined below) and then extending it to an exceptional system.
More precisely, suppose that A,A0, B,B0 forms a partition of a vertex set V . Let
V0 := A0∪B0. A graph F is called an exceptional system candidate with parameter
ε0, or an ESC for short, if F satisfies the following properties:

(ESC1) F is a path system with V0 ⊆ V (F ) ⊆ V and such that eF (A), eF (B) = 0.
(ESC2) dF (v) ≤ 2 for all v ∈ V0 and dF (v) = 1 for all v ∈ V (F ) \ V0.
(ESC3) eF (A′, B′) ≤ √ε0n/2. In particular, |V (F ) ∩ A|, |V (F ) ∩ B| ≤ 2|V0| +√

ε0n/2.
(ESC4) One of the following holds:

(HESC) Let b(F ) be the number of maximal paths in F with one endpoint in
A′ and the other in B′. Then b(F ) is even and b(F ) > 0. In this case
we say that F is a Hamilton exceptional system candidate, or HESC
for short.

(MESC) eF (A′, B′) = 0. In this case, F is called a matching exceptional
system candidate or MESC for short.

Note that if dF (v) = 2 for all v ∈ V0, then F is an exceptional system. Also,
if F is a Hamilton exceptional system candidate with e(F ) = 2, then F consists
of two independent A′B′-edges. Moreover, note that (EC2) allows an exceptional
cover J (and so also an exceptional system J) to contain vertices in A ∪ B which
are isolated in J . However, (ESC2) does not allow for this in an exceptional system
candidate F .

Similarly to condition (HES), in (HESC) the parameter b(F ) counts the number
of ‘connections’ between A′ and B′. In order to extend a Hamilton exceptional
system candidate into a Hamilton cycle without using any additional A′B′-edges,
it is clearly necessary that b(F ) is positive and even.

The next result shows that we can extend an exceptional system candidate
into an exceptional system by adding suitable A0A- and B0B-edges. In the proof
of Lemma 2.6.1 we will use that if G is a D-regular graph with D ≥ n/100 (say) and
(G,A,A0, B,B0) is an (ε0,K)-framework with ∆(G[A′, B′]) ≤ D/2, then conditions
(i) and (ii) below are satisfied.



24 2. THE TWO CLIQUES CASE

Lemma 2.3.2. Suppose that 0 < 1/n � ε0 � 1 and that n ∈ N. Let G be a
graph on n vertices so that

(i) A,A0, B,B0 forms a partition of V (G) with |A0 ∪B0| ≤ ε0n.
(ii) d(v,A) ≥ √ε0n for all v ∈ A0 and d(v,B) ≥ √ε0n for all v ∈ B0.

Let F be an exceptional system candidate with parameter ε0. Then there exists an
exceptional system J with parameter ε0 such that F ⊆ J ⊆ G + F and such that
every edge of J − F lies in G[A0, A] + G[B0, B]. Moreover, if F is a Hamilton
exceptional system candidate, then J is a Hamilton exceptional system. Otherwise
J is a matching exceptional system.

Proof. For each vertex v ∈ A0, we select 2−dF (v) edges uv inG with u ∈ A\V (F ).
Since dG(v,A) ≥ √ε0n ≥ |V (F )∩A|+ 2|V0| by (ESC3), these edges can be chosen
such that they have no common endpoint in A. Similarly, for each vertex v ∈ B0,
we select 2−dF (v) edges uv in G with u ∈ B \V (F ). Again, these edges are chosen
such that they have no common endpoint in B. Let J be the graph obtained from
F by adding all these edges. Note that J is an exceptional cover such that every
edge of J − F lies in G[A0, A] + G[B0, B]. Furthermore, the number of AB-paths
in J is at most eF (A′, B′) ≤ √ε0n/2.

Suppose F is a Hamilton exceptional system candidate with parameter ε0. Our
construction of J implies that the number of AB-paths in J equals b(F ). So (HES)
follows from (HESC). Now suppose F is a matching exceptional system candidate.
Then (MES) is satisfied since eJ(A′, B′) = eF (A′, B′) = 0 by (MESC). This proves
the lemma. �

Let K,m ∈ N and ε0 > 0. A (K,m, ε0)-partition P of a set V of vertices
is a partition of V into sets A0, A1, . . . , AK and B0, B1, . . . , BK such that |Ai| =
|Bi| = m for all i ≥ 1 and |A0 ∪B0| ≤ ε0|V |. The sets A1, . . . , AK and B1, . . . , BK
are called clusters of P and A0, B0 are called exceptional sets. We often write
V0 for A0 ∪ B0 and think of the vertices in V0 as ‘exceptional vertices’. Unless
stated otherwise, whenever P is a (K,m, ε0)-partition, we will denote the clusters
by A1, . . . , AK and B1, . . . , BK and the exceptional sets by A0 and B0. We will
also write A := A1 ∪ · · · ∪ AK , B := B1 ∪ · · · ∪BK , A′ := A0 ∪ A1 ∪ · · · ∪ AK and
B′ := B0 ∪B1 ∪ · · · ∪BK .

Given a (K,m, ε0)-partition P and 1 ≤ i, i′ ≤ K, we say that J is an (i, i′)-
localized Hamilton exceptional system (abbreviated as (i, i′)-HES ) if J is a Hamilton
exceptional system and V (J) ⊆ V0 ∪Ai ∪Bi′ . In a similar way, we define

• (i, i′)-localized matching exceptional systems ((i, i′)-MES ),
• (i, i′)-localized exceptional systems ((i, i′)-ES ),
• (i, i′)-localized Hamilton exceptional system candidates ((i, i′)-HESC ),
• (i, i′)-localized matching exceptional system candidates ((i, i′)-MESC ),
• (i, i′)-localized exceptional system candidates ((i, i′)-ESC ).

To make clear with which partition we are working, we sometimes also say that J
is an (i, i′)-localized Hamilton exceptional system with respect to P etc.

2.4. Schemes and Exceptional Schemes

It will often be convenient to consider the ‘exceptional’ and ‘non-exceptional’
part of a graph G separately. For this, we introduce a ‘scheme’ (which corresponds
to the non-exceptional part and also incorporates a refined partition of G) and an
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‘exceptional scheme’ (which corresponds to the exceptional part and also incorpo-
rates a refined partition of G).

Given a graph G and a partition P of a vertex set V , we call (G,P) a (K,m, ε0,
ε)-scheme if the following properties hold:

(Sch1) P is a (K,m, ε0)-partition of V .
(Sch2) V (G) = A ∪B and eG(A,B) = 0.
(Sch3) For all 1 ≤ i ≤ K and all v ∈ A we have d(v,Ai) ≥ (1 − ε)m. Similarly,

for all 1 ≤ i ≤ K and all v ∈ B we have d(v,Bi) ≥ (1− ε)m.

The next proposition shows that if (G,P) is a scheme and G′ is obtained from G
by removing a small number of edges at each vertex, then (G′,P) is also a scheme
with slightly worse parameters. Its proof is immediate from the definition of a
scheme.

Proposition 2.4.1. Suppose that 0 < 1/m � ε, ε′ � 1 and that K,m ∈ N.
Let (G,P) be a (K,m, ε0, ε)-scheme. Let G′ be a spanning subgraph of G such that
∆(G−G′) ≤ ε′m. Then (G′,P) is a (K,m, ε0, ε+ ε′)-scheme.

Given a graph G on n vertices and a partition P of V (G) we call (G,P) a
(K,m, ε0, ε)-exceptional scheme if the following properties are satisfied:

(ESch1) P is a (K,m, ε0)-partition of V (G).
(ESch2) e(A), e(B) = 0.
(ESch3) If v ∈ A then d(v,B′) < ε0n and if v ∈ B then d(v,A′) < ε0n.
(ESch4) For all v ∈ V (G) and all 1 ≤ i ≤ K we have d(v,Ai) = (d(v,A)± εn)/K

and d(v,Bi) = (d(v,B)± εn)/K.
(ESch5) For all 1 ≤ i, i′ ≤ K we have

e(A0, Ai) = (e(A0, A)± εmax{e(A0, A), n})/K,
e(B0, Ai) = (e(B0, A)± εmax{e(B0, A), n})/K,
e(A0, Bi) = (e(A0, B)± εmax{e(A0, B), n})/K,
e(B0, Bi) = (e(B0, B)± εmax{e(B0, B), n})/K,
e(Ai, Bi′) = (e(A,B)± εmax{e(A,B), n})/K2.

Suppose that (G,A,A0, B,B0) is an (ε0,K)-framework. The next lemma shows
that there is a refinement of the vertex partition A,A0, B,B0 of V (G) into a
(K,m, ε0)-partition P such that (G[A] + G[B],P) is a scheme and (G − G[A] −
G[B],P) is an exceptional scheme.

Lemma 2.4.2. Suppose that 0 < 1/n� ε0 � 1/K � 1, that ε0 � ε1 ≤ ε2 � 1,
that 1/n � µ � ε2 and that n,K,m ∈ N. Let G be a graph on n vertices such
that δ(G) ≥ (1− µ)n/2. Let (G,A,A0, B,B0) be an (ε0,K)-framework with |A| =
|B| = Km. Then there are partitions A1, . . . , AK of A and B1, . . . , BK of B which
satisfy the following properties:

(i) The partition P formed by A0, B0 and all these 2K clusters is a (K,m, ε0)-
partition of V (G).

(ii) (G[A] +G[B],P) is a (K,m, ε0, ε2)-scheme.
(iii) (G−G[A]−G[B],P) is a (K,m, ε0, ε1)-exceptional scheme.
(iv) For all v ∈ V (G) and all 1 ≤ i ≤ K we have dG(v,Ai) = (dG(v,A) ±

ε0n)/K and dG(v,Bi) = (dG(v,B)± ε0n)/K.
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Proof. Define a new constant ε′1 such that ε0 � ε′1 � ε1, 1/K. In order to
find the required partitions A1, . . . , AK of A and B1, . . . , BK of B we will apply
Lemma 1.4.7 twice, as follows.

In our first application of Lemma 1.4.7 we let F := G, U := A and let A0, B0, B
play the roles of R1, R2, R3. Note that δ(G[A]) ≥ δ(G) − |A0| − ε0n ≥ ε0n (with
room to spare) by (FR3), (FR4) and that d(a,Rj) ≤ |Rj | ≤ ε0n for all a ∈ A and
j = 1, 2 by (FR3). Moreover, (FR4) implies that d(a,R3) ≤ d(a,B′) ≤ ε0n for all
a ∈ A. Thus we can apply Lemma 1.4.7 with ε0, ε0 and ε′1 playing the roles of ε, ε1

and ε2 to obtain a partition of A into K clusters A1, . . . , AK , each of size m. Then
by Lemma 1.4.7(ii) for all v ∈ V (G) and all 1 ≤ i ≤ K we have

(2.4.1) dG(v,Ai) = (dG(v,A)± ε0n)/K.

Moreover, Lemma 1.4.7(v) implies that the first two equalities in (ESch5) hold with
respect to ε′1 (for G and thus also for G−G[A]−G[B]). Furthermore,

(2.4.2) eG(Ai, B) = (eG(A,B)± ε′1 max{n, eG(A,B)})/K.
For the second application of Lemma 1.4.7 we let F := G, U := B and letB0, A0, A1,
. . . , AK play the roles of R1, . . . , RK+2. As before, δ(G[B]) ≥ ε0n by (FR3), (FR4)
and d(b, Rj) ≤ |Rj | ≤ ε0n for all b ∈ B and j = 1, 2 by (FR3). Moreover, (FR4)
implies that d(b, Rj) ≤ d(b, A′) ≤ ε0n for all b ∈ B and all j = 3, . . . ,K + 2. Thus
we can apply Lemma 1.4.7 with ε0, ε0 and ε′1 playing the roles of ε, ε1 and ε2 to
obtain a partition of B into K clusters B1, . . . , BK , each of size m. Similarly as
before one can show that for all v ∈ V (G) and all 1 ≤ i ≤ K we have

(2.4.3) dG(v,Bi) = (dG(v,B)± ε0n)/K,

and that the third and the fourth equalities in (ESch5) hold with respect to ε′1 (for
G and thus also for G−G[A]−G[B]). Moreover, Lemma 1.4.7(v) implies that for
all 1 ≤ i′ ≤ K we have

eG(Ai, Bi′) = (eG(Ai, B)± ε′1 max{n, eG(Ai, B)})/K
(2.4.2)

=
eG(A,B)± ε′1 max{n, eG(A,B)} ±Kε′1 max{n, eG(Ai, B)}

K2

= (eG(A,B)± ε1 max{n, eG(A,B)})/K2,

i.e. the last equality in (ESch5) holds too. Let P be the partition formed by
A0, A1, . . . , AK and B0, B1, . . . , BK . Then (i) holds.

Let us now verify (ii). Clearly (G[A] +G[B],P) satisfies (Sch1) and (Sch2). In
order to check (Sch3), let G1 := G[A] + G[B] and note that for all v ∈ A and all
1 ≤ i ≤ K we have

dG1
(v,Ai) = dG(v,Ai)

(2.4.1)

≥ (dG(v,A)− ε0n)/K
(FR4)

≥ (δ(G)− |A0| − 2ε0n)/K

(FR3)

≥ ((1− µ)n/2− 3ε0n)/K ≥ (1− ε2)m.

Similarly one can use (2.4.3) to show that dG1
(v,Bi) ≥ (1− ε2)m for all v ∈ B and

all 1 ≤ i ≤ K. This implies (Sch3) and thus (ii).
Note that (iv) follows from (2.4.1) and (2.4.3). Thus it remains to check (iii).

Clearly (G−G[A]−G[B],P) satisfies (ESch1), (ESch2) and we have already ver-
ified (ESch5). (ESch3) follows from (FR4) and (ESch4) follows from (2.4.1) and
(2.4.3). �
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2.5. Proof of Theorem 1.3.9

An important tool in the proof of Theorem 1.3.9 is Lemma 2.5.4, which guar-
antees an ‘approximate’ Hamilton decomposition of a graph G, provided that G is
close to the union of two disjoint copies of Kn/2. This yields the required num-
ber of Hamilton cycles for Theorem 1.3.9. As an ‘input’, Lemma 2.5.4 requires an
appropriate number of localized Hamilton exceptional systems.

To find these, we proceed as follows: the next lemma (Lemma 2.5.1) guaran-
tees many edge-disjoint Hamilton exceptional systems in a given framework. We
will apply it to ‘localized subgraphs’ (obtained from Lemma 2.5.2) of the original
graph to ensure that the exceptional systems guaranteed by Lemma 2.5.1 are also
localized. These can then be used as the required input for Lemma 2.5.4.

Lemma 2.5.1. Suppose that 0 < 1/n � ε0 � ε � α � 1 and that n, αn ∈
N. Let G be a graph on n vertices. Suppose that (G,A,A0, B,B0) is an (ε0,K)-
framework which satisfies the following conditions:

(a) eG(A′, B′) ≥ 2(α+ ε)n.
(b) eG−v(A

′, B′) ≥ αn for all v ∈ A0 ∪B0.
(c) d(v) ≥ 2(α+ ε)n for all v ∈ A0 ∪B0.
(d) d(v,A′) ≥ d(v,B′)− εn for all v ∈ A0 and d(v,B′) ≥ d(v,A′)− εn for all

v ∈ B0.

Then there exist αn edge-disjoint Hamilton exceptional systems with parameter ε0

in G.

Proof. First we will find αn edge-disjoint matchings of size 2 in G[A′, B′]. If
∆(G[A′, B′]) ≤ (α + ε/2)n, then by (a) and Proposition 1.4.5 we can find such
matchings. So suppose that ∆(G[A′, B′]) ≥ (α + ε/2)n and let v be a vertex such
that dG[A′,B′](v) ≥ (α + ε/2)n. Thus v ∈ A0 ∪ B0 by (FR4). By (b) there are αn
edges e1, . . . , eαn in G[A′, B′] − v. Since dG[A′,B′](v) ≥ (α + ε/2)n, for each es in
turn we can find an edge e′s incident to v in G[A′, B′] such that e′s is vertex-disjoint
from es and such that the e′s are distinct for different indices s ≤ αn. Then the
matchings consisting of es and e′s are as required. Thus in both cases we can find
edge-disjoint matchings M1, . . . ,Mαn of size 2 in G[A′, B′].

Our aim is to extend each Ms into a Hamilton exceptional system Js such that
all these Js are pairwise edge-disjoint. Initially, we set Fs := Ms for all s ≤ αn.
So each Fs is a Hamilton exceptional system candidate. For each v ∈ V0 in turn,
we are going to assign at most two edges joining v to A∪B to each of F1, . . . , Fαn
in such a way that now each Fs is a Hamilton exceptional system candidate with
dFs

(v) = 2. Thus after we have carried out these assignments for all v ∈ V0, every
Fs will be a Hamilton exceptional system with parameter ε0.

So consider any v ∈ V0. Without loss of generality we may assume that v ∈ A0.
Moreover, by relabelling the Fs if necessary, we may assume that there exists an
integer 0 ≤ r ≤ αn such that dFs

(v) = 1 for all s ≤ r and dFs
(v) = 0 for r < s ≤ αn.

For each s ≤ r our aim is to assign some edge vws between v and A to Fs such that
ws /∈ V (Fs) and such that the vertices ws are distinct for different s ≤ r. To check
that such an assignment of edges is possible, note that |V (Fs) ∩ A|, |V (Fs) ∩B| ≤
2|V0|+ 2 ≤ 3ε0n. Together with (c) and (d) this implies that

d(v,A) ≥ d(v,A′)− |A0| ≥ (α+ ε/2− ε0)n > r + |V (Fs) ∩A|.
Thus for all s ≤ r we can assign an edge vws to Fs as required.
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It remains to assign two edges at v to each of Fr+1, . . . , Fαn. We will do this
for each s = r + 1, . . . , αn in turn and for each such s we will either assign two
edges between v and A to Fs or two edges between v and B. (This will ensure that
we still have b(Fs) = 2, where b(Fs) is the number of vertex-disjoint A′B′-paths
in the path system Fs.) So suppose that for some r < s ≤ αn we have already
assigned two edges at v to each of Fr+1, . . . , Fs−1. Set Gs := G − ∑αn

s′=1 Fs′ .
The fact that v has degree at most two in each Fs′ and (c) together imply that
dGs(v) ≥ dG(v)− 2αn ≥ 10ε0n. So either dGs(v,A′) ≥ 5ε0n or dGs(v,B′) ≥ 5ε0n.
If the former holds then

dGs
(v,A) ≥ dGs

(v,A′)− |A0| ≥ 4ε0n ≥ |V (Fs) ∩A|+ 2

and so we can assign two edges vw and vw′ of Gs to Fs such that w,w′ ∈ A\V (Fs).
Similarly if dGs(v,B′) ≥ 5ε0n then we can assign two edges vw and vw′ in Gs to
Fs such that w,w′ ∈ B \ V (Fs). This shows that to each of Fr+1, . . . , Fαn we can
assign two suitable edges at v.

Let J1, . . . , Jαn be the graphs obtained after carrying out these assignments
for all v ∈ V0. Then the Js are pairwise edge-disjoint and it is easy to check that
each Js is a Hamilton exceptional system with parameter ε0. (Note that (ES2) and
(ES3) hold since b(Js) = 2 and so the number of AB-paths is two.) �

The next lemma guarantees a decomposition of an exceptional scheme (G,P)
into suitable ‘localized slices’ G(i, i′) whose edges are induced by A0, B0 and two
clusters of P. We will use it again in Chapter 3.

Lemma 2.5.2. Suppose that 0 < 1/n � ε0 � ε � 1/K � 1 and that
n,K,m ∈ N. Let (G,P) be a (K,m, ε0, ε)-exceptional scheme with |G| = n and
eG(A0), eG(B0) = 0. Then G can be decomposed into edge-disjoint spanning sub-
graphs H(i, i′) and H ′(i, i′) of G (for all i, i′ ≤ K) such that the following properties
hold, where G(i, i′) := H(i, i′) +H ′(i, i′):

(a1) Each H(i, i′) contains only A0Ai-edges and B0Bi′-edges.
(a2) All edges of H ′(i, i′) lie in G[A0 ∪Ai, B0 ∪Bi′ ].
(a3) e(H ′(i, i′)) = (eG(A′, B′)± 4εmax{n, eG(A′, B′)})/K2.
(a4) dH′(i,i′)(v) = (dG[A′,B′](v)± 2εn)/K2 for all v ∈ V0.

(a5) dG(i,i′)(v) = (dG(v)± 4εn)/K2 for all v ∈ V0.

Proof. First we decompose G into K2 ‘random’ edge-disjoint spanning subgraphs
G(i, i′) (one for all i, i′ ≤ K) as follows:

• Initially set V (G(i, i′)) := V (G) and E(G(i, i′)) := ∅ for all i, i′ ≤ K.
• Add all the AiBi′-edges of G to G(i, i′).
• Choose a partition of E(A0, B0) into K2 sets Ui,i′ (one for all i, i′ ≤ K)

whose sizes are as equal as possible. Add the edges in Ui,i′ to G(i, i′).
• For all i ≤ K, choose a random partition of E(A0, Ai) into K sets U ′i′ of

equal size (one for each i′ ≤ K) and add the edges in U ′i′ to G(i, i′). (If
e(A0, Ai) is not divisible by K, first distribute up to K−1 edges arbitrarily
among the U ′i′ to achieve divisibility.) For all i′ ≤ K proceed similarly to
distribute each edge in E(B0, Bi′) to G(i, i′) for some i ≤ K.

• For all i′ ≤ K, choose a random partition of E(A0, Bi′) into K sets U ′′i
of equal size (one for each i ≤ K) and add the edges in U ′′i to G(i, i′).
(If e(A0, Bi′) is not divisible by K, first distribute up to K − 1 edges
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arbitrarily among the U ′′i to achieve divisibility.) For all i ≤ K proceed
similarly to distribute each edge in E(B0, Ai) to G(i, i′) for some i′ ≤ K.

Thus every edge of G is added to precisely one of the subgraphs G(i, i′). Set
H(i, i′) := G(i, i′)[A′] + G(i, i′)[B′] and H ′(i, i′) := G(i, i′)[A′, B′]. So conditions
(a1) and (a2) hold. Fix any i, i′ ≤ K and set H := H(i, i′) and H ′ := H ′(i, i′). To
verify (a3), note that

e(H ′) = eH′(Ai, Bi′) + eH′(A0, B0) + eH′(A0, Bi′) + eH′(B0, Ai)

= eG(Ai, Bi′) + eG(A0, B0)/K2 + eG(A0, Bi′)/K + eG(B0, Ai)/K ± 3

=
eG(A,B) + eG(A0, B0) + eG(A0, B) + eG(B0, A)± 3εmax{eG(A′, B′), n}

K2
± 3

=
eG(A′, B′)± 4εmax{eG(A′, B′), n}

K2
.

Here the third equality follows from (ESch5).
To prove (a4), suppose first that v ∈ A0. If dG(v,Bi′) ≤ εn/K2 then clearly

0 ≤ dH′(i,i′)(v) ≤ εn/K2 + |V0| ≤ 2εn/K2. Further by (ESch4) we have dG(v,B) ≤
KdG(v,Bi′) + εn = εn/K + εn. So dG(v,B′) ≤ 2εn. Together this shows that (a4)
is satisfied.

So assume that dG(v,Bi′) ≥ εn/K2. Proposition 1.4.4 implies that with prob-

ability at least 1− e−
√
n (with room to spare) we have

(2.5.1) dG(i,i′)(v,Bi′) = (dG(v,Bi′)± εn/2K)/K
(ESch4)

= (dG(v,B)± 3εn/2)/K2.

Since

dH′(i,i′)(v) = dG(i,i′)(v,Bi′) + dG(i,i′)(v,B0) = dG(i,i′)(v,Bi′)± ε0n

(2.5.1)
= (dG(v,B′)± 2εn)/K2,

it follows that v satisfies (a4). The argument for the case when v ∈ B0 is similar.

Thus (a4) holds with probability at least 1− ne−
√
n.

Similarly as (2.5.1) one can show that with probability at least 1 − ne−
√
n we

have dG(i,i′)(v,Ai) = (dG(v,A) ± 3εn/2)/K2 for all v ∈ A0 and dG(i,i′)(v,Bi′) =

(dG(v,B)±3εn/2)/K2 for all v ∈ B0. Together with the fact that eG(A0), eG(B0) =
0 and (a4) this now implies (a5). �

The next lemma first applies the previous one to construct localized subgraphs
G(i, i′) and then applies Lemma 2.5.1 to find many Hamilton exceptional systems
within each of the localized slices G(i, i′). Altogether, this yields many localized
Hamilton exceptional systems in G.

Lemma 2.5.3. Suppose that 0 < 1/n � ε0 � ε � φ, 1/K � 1 and that
n,K,m, (1/4−φ)n/K2 ∈ N. Suppose that (G,A,A0, B,B0) is an (ε0,K)-framework
with |G| = n, δ(G) ≥ n/2 and such that dG(v,A′) ≥ dG(v)/2 for all v ∈ A′ and
dG(v,B′) ≥ dG(v)/2 for all v ∈ B′. Suppose that P = {A0, A1, . . . , AK , B0, B1, . . . ,
BK} is a refinement of the partition A,A0, B,B0 such that (G−G[A]−G[B],P) is
a (K,m, ε0, ε)-exceptional scheme. Then there is a set J of (1/4−φ)n edge-disjoint
Hamilton exceptional systems with parameter ε0 in G such that, for each i, i′ ≤ K,
J contains precisely (1/4− φ)n/K2 (i, i′)-HES.
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Proof. Let α := (1/4 − φ)/K2 and choose a new constant ε′ such that ε �
ε′ � φ, 1/K. Note that (FR3) implies that |A′| ≥ |B′|. If |B′| < n/2, then
Proposition 2.2.1(i) implies that eG(A′, B′) ≥ 2|B′| ≥ (1 − ε0)n ≥ 3K2αn (where
the second inequality follows from (FR3) and there is room to spare in the final
inequality). Since dG[A′,B′](v) ≤ n/2 for every vertex v ∈ V (G), it follows that

eG−v(A
′, B′) ≥ (1/2− ε0)n ≥ 3K2αn/2. If |B′| = n/2, then |A′| = |B′| and Propo-

sition 2.2.1(i) implies that eG(A′, B′) ≥ |B′| = n/2 ≥ 2K2(α + ε′)n. Moreover,
|A′| = |B′| together with the fact that δ(G) ≥ n/2 also implies that dG[A′,B′](v) ≥ 1

for any vertex v ∈ V (G). Hence eG−v(A
′, B′) ≥ n/2− 1 ≥ 3K2αn/2. Thus regard-

less of the size of B′, we always have

(2.5.2) eG(A′, B′) ≥ 2K2(α+ ε′)n

and

(2.5.3) eG−v(A
′, B′) ≥ 3K2αn/2 ≥ K2(α+ ε′)n for any v ∈ V (G).

Set G� := G−G[A]−G[B]−G[A0]−G[B0]. Note that each vertex v ∈ V0 satisfies

(2.5.4) dG�(v) ≥ (1/2− ε0)n ≥ 2K2(α+ ε′)n.

Moreover, both (2.5.2) and (2.5.3) also hold for G�, and since (G−G[A]−G[B],P)
is a (K,m, ε0, ε)-exceptional scheme, (G�,P) is also a (K,m, ε0, ε)-exceptional
scheme. Thus we can apply Lemma 2.5.2 to G� to obtain edge-disjoint span-
ning subgraphs H(i, i′), H ′(i, i′) of G� (for all i, i′ ≤ K) which satisfy (a1)–(a5) of
Lemma 2.5.2. Set G(i, i′) := H(i, i′) +H ′(i, i′) for all i, i′ ≤ K. We claim that each
G(i, i′) satisfies the following properties:

(i) All edges of G(i, i′) lie in G�[A0 ∪Ai ∪B0 ∪Bi′ ].
(ii) eG(i,i′)(A

′, B′) ≥ 2(α+
√
ε)n.

(iii) eG(i,i′)−v(A
′, B′) ≥ αn for all v ∈ V0.

(iv) dG(i,i′)(v) ≥ 2(α+
√
ε)n for all v ∈ V0.

(v) dG(i,i′)(v,A
′) ≥ dG(i,i′)(v,B

′) − √εn for all v ∈ A0 and dG(i,i′)(v,B
′) ≥

dG(i,i′)(v,A
′)−√εn for all v ∈ B0.

Indeed, (i) follows from (a1) and (a2). To prove (ii), note that eG(i,i′)(A
′, B′) =

e(H ′(i, i′)). Now apply (a3) and (2.5.2). For (iii), note that (a4) and ∆(G[A′, B′]) ≤
n/2 imply that for all v ∈ V0,

dG(i,i′)[A′,B′](v) = dH′(i,i′)(v) ≤ (dG[A′,B′](v) + 2εn)/K2 ≤ (1/2 + 2ε)n/K2.

If eG(A′, B′) ≥ n, then (a3) implies that eG(i,i′)(A
′, B′) ≥ (1 − 4ε)n/K2 ≥ αn +

dG(i,i′)[A′,B′](v) and so (iii) follows. If eG(A′, B′) < n, then for all v ∈ V0

eG(i,i′)−v(A
′, B′) = e(H ′(i, i′))− dH′(i,i′)(v)

(a3),(a4)

≥ (eG−v(A
′, B′)− 6εn)/K2

(2.5.3)

≥ αn.

So (iii) follows again. (iv) follows from (a5) and (2.5.4). For (v), note that (a1) and
(a2) imply that for v ∈ A0,

dG(i,i′)(v,A
′) = dG(i,i′)(v)− dH′(i,i′)(v)

(a4),(a5)

≥ (dG(v,A′)− 6εn)/K2

≥ (dG(v,B′)− 6εn)/K2
(a4)

≥ dH′(i,i′)(v)− 8εn = dG(i,i′)(v,B
′)− 8εn.

The second part of (v) follows similarly.
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Note that each (G(i, i′), A,A0, B,B0) is an (ε0,K)-framework since this holds
for (G,A,A0, B,B0). Thus for all i, i′ ≤ K we can apply Lemma 2.5.1 (with

√
ε

playing the role of ε) to the (ε0,K)-framework (G(i, i′), A,A0, B,B0) in order to
obtain αn edge-disjoint Hamilton exceptional systems with parameter ε0 in G(i, i′).
By (i), we may delete any vertices outside A0 ∪ Ai ∪ B0 ∪ Bi′ from these systems
without affecting their edges. So each of these Hamilton exceptional systems is in
fact an (i, i′)-HES. The set J consisting of all these K2αn Hamilton exceptional
systems is as required in the lemma. �

Given the appropriate set J of localized Hamilton exceptional systems, the
next lemma guarantees a set of |J | edge-disjoint Hamilton cycles in a graph G
such that each of them contains one exceptional system from J , provided that G is
sufficiently close to the union of two disjoint copies of Kn/2. The lemma also allows
J to contain matching exceptional systems (each of these will then be extended into
a perfect matching of G). Note that with a suitable J and an appropriate choice of
parameters we can achieve that the ‘uncovered’ graph has density 2ρ ± 2/K � 1,
i.e. we do have an approximate decomposition. We defer the proof of the lemma
until Chapter 5.

Lemma 2.5.4. Suppose that 0 < 1/n � ε0 � 1/K � ρ � 1 and 0 ≤ µ � 1,
where n,K ∈ N and K is odd. Suppose that G is a graph on n vertices and P is
a (K,m, ε0)-partition of V (G). Furthermore, suppose that the following conditions
hold:

(a) d(v,Ai) = (1−4µ±4/K)m and d(w,Bi) = (1−4µ±4/K)m for all v ∈ A,
w ∈ B and 1 ≤ i ≤ K.

(b) There is a set J which consists of at most (1/4 − µ − ρ)n edge-disjoint
exceptional systems with parameter ε0 in G.

(c) J has a partition into K2 sets Ji,i′ (one for all 1 ≤ i, i′ ≤ K) such that
each Ji,i′ consists of precisely |J |/K2 (i, i′)-ES with respect to P.

(d) If J contains matching exceptional systems then |A′| = |B′| is even.

Then G contains |J | edge-disjoint spanning subgraphs H1, . . . ,H|J | which satisfy
the following properties:

• For each Hs there is some Js ∈ J such that Js ⊆ Hs.
• If Js is a Hamilton exceptional system, then Hs is a Hamilton cycle of G.

If Js is a matching exceptional system, then Hs is the edge-disjoint union
of two perfect matchings in G.

Matching exceptional systems do no play any role in the current application to
prove Theorem 1.3.9, but they will occur when we use Lemma 2.5.4 again in the
proof of Theorem 1.3.3.

To prove Theorem 1.3.9, we first apply Lemma 2.5.3 to find suitable localized
Hamilton exceptional systems and then apply Lemma 2.5.4 to transform these into
Hamilton cycles.

Proof of Theorem 1.3.9. Choose new constants εex, ε0, ε1, ε2, φ and an odd
number K ∈ N such that

1/n0 � εex � ε0 � ε1 � ε2 � 1/K � φ� ε.
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Further, we may assume that ε � 1. Let n ≥ n0 and let G be any graph on n
vertices such that δ(G) ≥ n/2 and such that G is εex-close to two disjoint copies of
Kn/2. By modifying φ slightly, we may assume that (1/4− φ)n/K2 ∈ N.

Apply Proposition 2.2.5 to obtain a partition A,A0, B,B0 of V (G) such that
such that (G,A,A0, B,B0) is an (ε0,K)-framework, d(v,A′) ≥ d(v)/2 for all v ∈
A′ and d(v,B′) ≥ d(v)/2 for all v ∈ B′. Let m := |A|/K = |B|/K. Ap-
ply Lemma 2.4.2 with ε0 playing the role of µ to obtain partitions A1, . . . , AK
of A and B1, . . . , BK of B which satisfy the following properties, where P =
{A0, A1, . . . , AK , B0, B1, . . . , BK}:

• (G[A] +G[B],P) is a (K,m, ε0, ε2)-scheme.
• (G−G[A]−G[B],P) is a (K,m, ε0, ε1)-exceptional scheme.

Apply Lemma 2.5.3 to obtain a set J of (1/4− φ)n edge-disjoint Hamilton excep-
tional systems with parameter ε0 in G such that, for each i, i′ ≤ K, J contains
precisely (1/4− φ)n/K2 (i, i′)-HES. Finally, our aim is to apply Lemma 2.5.4 with
µ := 1/K and ρ := φ−1/K. So let us check that conditions (a)–(c) of Lemma 2.5.4
hold (note that (d) is not relevant). Clearly (b) and (c) hold. To verify (a) note
that (Sch3) implies that for all v ∈ A we have d(v,Ai) ≥ (1−ε2)m ≥ (1−1/K)m ≥
(1 − 4µ − 4/K)m. Similarly, for all w ∈ B we have d(w,Bi) ≥ (1 − 4µ − 4/K)m.
So we can apply Lemma 2.5.4 to obtain |J | ≥ (1/4 − ε)n edge-disjoint Hamilton
cycles. �

2.6. Eliminating the Edges inside A0 and B0

This and the remaining sections of the chapter are all devoted to the proof of
Theorem 1.3.3. Suppose that G is a D-regular graph and (G,A,A0, B,B0) is an
(ε0,K)-framework with ∆(G[A′, B′]) ≤ D/2. The aim of this section is to construct
a small number of Hamilton cycles (and perfect matchings if appropriate) which
together cover all the edges of G[A0] and G[B0]. The first step is to construct a
small number of exceptional systems containing all the edges of G[A0] and G[B0].

Lemma 2.6.1. Suppose that 0 < 1/n � ε0 ≤ λ � 1 and that n, λn,D,K ∈ N.
Let G be a D-regular graph on n vertices with D ≥ n − 2bn/4c − 1. Suppose that
(G,A,A0, B,B0) is an (ε0,K)-framework with ∆(G[A′, B′]) ≤ D/2. Let

` :=

⌊
max{0, D − eG(A′, B′)}

2

⌋
and φn :=

{
2λn+ 1 if D is odd,

2λn if D is even.

Let w1 and w2 be vertices of G such that dG[A′,B′](w1) ≥ dG[A′,B′](w2) ≥ dG[A′,B′](v)
for all v ∈ V (G) \ {w1, w2}. Then there exist λn + 1 edge-disjoint subgraphs
J0, J1, . . . , Jλn of G which cover all the edges in G[A0] + G[B0] and satisfy the
following properties:

(i) If D is odd, then J0 is a perfect matching in G with eJ0(A′, B′) ≤ 1. If D
is even, then J0 is empty.

(ii) Js is a matching exceptional system with parameter ε0 for all 1 ≤ s ≤
min{`, λn}.

(iii) Js is a Hamilton exceptional system with parameter ε0 and such that
eJs(A′, B′) = 2 for all ` < s ≤ λn.
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(iv) Let J be the union of all the Js and let H� := G[A′, B′] − J . Then
eJ (A′, B′) ≤ φn and dJ (v) = φn for all v ∈ V0. Moreover, e(H�) is
even.

(v) dH�(w1) ≤ (D − φn)/2. Furthermore, if D = n/2 − 1 then dH�(w2) ≤
(D − φn)/2.

(vi) If eG(A′, B′) < D, then e(H�) ≤ D − φn and ∆(H�) ≤ e(H�)/2.

As indicated in Section 2.1, the main proof of Theorem 1.3.3 splits into three
cases: (a) the non-critical case with eG(A′, B′) ≥ D, (b) the critical case with
eG(A′, B′) ≥ D and (c) the case with eG(A′, B′) < D. The formal definition of
‘critical’ and a more detailed discussion of the different cases is given in Section 2.7.

The above lemma will be used in all three cases. In these different cases, we
will need that the Hamilton cycles or perfect matchings produced by the lemma
use appropriate edges between A′ and B′ (and thus the ‘leftover’ H� has suitable
properties). In particular, (v) will ensure that we can apply Lemma 2.7.4 in case
(b). Similarly, (vi) will ensure that we can apply Lemma 2.7.5 in case (c). (ii) and
(vi) will only be relevant in case (c).

Proof of Lemma 2.6.1. Set H := G[A′, B′] and W := {w1, w2}. First, we
construct J0. If D is even, then (i) is trivial, so we may assume that D is odd (and
so n is even). We will construct J0 such that it satisfies (i) as well as the following
additional property:

(i′) If w1w2 is an edge in G[A′] + G[B′], then w1w2 lies in J0. Moreover,
eJ0(A′, B′) = 1 if |A′| is odd and eJ0(A′, B′) = 0 if |A′| is even.

Suppose first that |A′| is even (and so |B′| is even as well). Since our assumptions
imply that δ(G[A′]) ≥ dD/2e ≥ 3ε0n, there exists a matching M ′A in G[A′] of size at
most |A0|+2 covering all the vertices of A0∪(A′∩W ). Moreover, if w1w2 is an edge
in G[A′], then we can ensure that w1w2 ∈ M ′A. Note that A′′ := A′ \ V (M ′A) is a
subset of A and |A′′| is even. (FR4) implies that δ(G[A′′]) ≥ D−ε0n−2(|A0|+2) ≥
|A′′|/2. Therefore, there exists a perfect matching M ′′A in G[A′′] (e.g. by Dirac’s
theorem). Hence, MA := M ′A +M ′′A is a perfect matching in G[A′]. Similarly, there
is a perfect matching MB in G[B′] such that if w1w2 is an edge in G[B′], then w1w2

is in MB . Set J0 := MA +MB .
Next assume that |A′| is odd. If D ≥ bn/2c, then Proposition 2.2.3 implies that

e(H −W ) > 0. If D = n/2 − 1, then n = 0 (mod 4) and so |B′| ≤ n/2 − 1 since
|A′| is odd. Together with Proposition 2.2.1(ii) this implies that e(H) ≥ n/2 − 1.
Since in this case we also have that ∆(H) ≤ bD/2c = n/4 − 1, it follows that
e(H −W ) ≥ e(H) − 2∆(H) > 0. Thus in both cases there exists an edge ab in
H −W with a ∈ A′ and b ∈ B′. Note that both |A′ \ {a}| and |B′ \ {b}| are even.
Moreover, δ(G[A′\{a}]) ≥ dD/2e−1 ≥ 3ε0n and δ(G[B′\{b}]) ≥ dD/2e−1 ≥ 3ε0n.
Thus we can argue as in the case when |A′| is even to find perfect matchings MA

and MB in G[A′ \ {a}] and G[B′ \ {b}] respectively such that if w1w2 is an edge in
G[A′] +G[B′] then w1w2 ∈MA +MB . Set J0 := MA +MB + ab.

This completes the construction of J0. (If D is even we set J0 := ∅.) So (i)
and (i′) hold. Let G′ := G−J0 and H ′ := G′[A′, B′]. Since |A0|+ |B0| ≤ ε0n ≤ λn,
Vizing’s theorem implies that we can decompose G′[A0] + G′[B0] into λn edge-
disjoint (possibly empty) matchings M1, . . . ,Mλn. By relabeling these matchings
if necessary, we may assume that if w1w2 ∈ EG′(A0) or w1w2 ∈ EG′(B0), then
w1w2 ∈M1.
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Case 1: e(H) ≥ D.

Note that in this case ` = 0 and e(H ′) ≥ D − 1. For each s = 1, . . . , λn in turn
we will extend Ms into a Hamilton exceptional system Js with eJs(A′, B′) = 2 and
such that Js and Js′ are edge-disjoint for all 0 ≤ s′ < s. In order to do this, we
will first extend Ms into a Hamilton exceptional system candidate Fs by adding
two independent A′B′-edges fs and f ′s. We will then use Lemma 2.3.2 to extend Fs
into a Hamilton exceptional system Js. For all s with 1 ≤ s ≤ λn, we will choose
these edges and sets to satisfy the following:

(α1) Js is a Hamilton exceptional system with parameter ε0 such that
eJs(A′, B′) = 2.

(α2) Suppose that dH(w1) ≥ 2λn. Then w1 is an endpoint of fs.
(α3) Suppose that dH(w2) ≥ 2λn. Then w2 is an endpoint of f ′s, unless both

s = 1 and w1w2 ∈M1.
(α4) Js contains Ms as well as the edges fs and f ′s. Js − Ms − fs − f ′s

only contains A0A-edges and B0B-edges of G. Js is edge-disjoint from
J0, . . . , Js−1.

First suppose that w1w2 ∈M1. We construct J1 satisfying the above. Our assump-
tion means that w1w2 is an edge in G[A′] +G[B′], so D is even (or else w1w2 ∈ J0

by (i′)). Moreover, H ′ = H and D ≥ bn/2c by (1.3.1) and the fact that D is even.
Together with Proposition 2.2.3 this implies that e(H ′−W ) = e(H−W ) > 0. Pick
an A′B′-edge f ′1 in H ′ −W . Let U1 be the connected component in M1 + f ′1 con-
taining f ′1. So |U1| ≤ 4 and w1 /∈ U1. If dH(w1) ≥ 2λn, we can find an A′B′-edge f1

such that w1 is one endpoint of f1 and the other endpoint of f1 does not lie in U1. If
dH(w1) < 2λn, then the choice of w1 implies that ∆(H) ≤ 2λn. So there exists an
A′B′-edge f1 in H ′−V (U1) = H−V (U1) since e(H−V (U1)) ≥ e(H)−|U1|∆(H) ≥
e(H)− 8λn > 0. Set F1 := M1 + f1 + f ′1. Note that f1 satisfies (α2) and that F1 is
a Hamilton exceptional system candidate with eF1

(A′, B′) = 2. By Lemma 2.3.2,
we can extend F1 into a Hamilton exceptional system J1 with parameter ε0 in G
such that F1 ⊆ J1 and such that J1 − F1 only contains A0A-edges and B0B-edges
of G.

Next, suppose that for some 1 ≤ s ≤ λn we have already constructed J0, . . . ,

Js−1 satisfying (α1)–(α4). So s ≥ 2 if w1w2 ∈ M1. Let Gs := G −∑λn
j=sMj −∑s−1

j=0 Jj and Hs := Gs[A
′, B′]. Note that

e(Hs) ≥ e(H)− 2(s− 1)− 1 ≥ D − 2λn.(2.6.1)

Moreover, note that dGs
(v,A) ≥ dG(v,A)− 2(s− 1)− 1 ≥ √ε0n for all v ∈ A0 and

dGs
(v,B) ≥ √ε0n for all v ∈ B0.
We first pick the edge f ′s as follows. If dH(w2) ≥ 2λn, then dHs

(w2) ≥ dH(w2)−
s ≥ λn. So we can pick an A′B′-edge f ′s of Hs such that w2 is an endpoint of f ′s
and the connected component Us of Ms + f ′s containing f ′s does not contain w1. If
dH(w2) < 2λn, then pick an A′B′-edge f ′s of Hs such that the connected component
Us ofMs+f

′
s containing f ′s does not contain w1. To see that such an edge exists, note

that in this case the neighbour w′1 of w1 in Ms satisfies dH(w′1) ≤ dH(w2) < 2λn
(if w′1 exists) and that (2.6.1) implies that e(Hs) ≥ D − 2λn > D/2 + 2λn ≥
dH(w1) + 2λn. Observe that in both cases |Us| ≤ 4.

We now pick the edge fs as follows. If dH(w1) ≥ 2λn, then dHs(w1) ≥ dH(w1)−
s ≥ λn. So we can find an A′B′-edge fs of Hs such that w1 is one endpoint of fs
and the other endpoint of fs does not lie in Us. If dH(w1) < 2λn, then ∆(H) ≤ 2λn
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and thus (2.6.1) implies that

e(Hs − V (Us)) ≥ D − 2λn− 2λn|Us| ≥ 1.

So there exists an A′B′-edge fs in Hs − V (Us).
In all cases the edges fs and f ′s satisfy (α2) and (α3). Set Fs := Ms + fs + f ′s.

Clearly, Fs is a Hamilton exceptional system candidate with eFs(A′, B′) = 2. Recall
that dGs(v,A) ≥ √ε0n for all v ∈ A0 and dGs(v,B) ≥ √ε0n for all v ∈ B0. Thus
by Lemma 2.3.2, we can extend Fs into a Hamilton exceptional system Js with
parameter ε0 such that Fs ⊆ Js ⊆ Gs + Fs and such that Js − Fs only contains
A0A-edges and B0B-edges of Gs. Hence we have constructed J1, . . . , Jλn satisfying
(α1)–(α4). So (iii) holds. Note (ii) and (vi) are vacuously true.

To verify (iv), recall that J := J0 ∪ · · · ∪ Jλn and H� = G[A′, B′]−J . For all
1 ≤ s ≤ λn we have eJs(A′, B′) = 2 by (iii). Moreover, (i) and (i′) together imply
that eJ0(A′, B′) = 1 if and only if both |A′| and D are odd. Therefore, eJ (A′, B′) ≤
φn. Moreover, since e(H�) = e(H)− 2λn− eJ0(A′, B′), Proposition 2.2.2(i) implies
that e(H�) is even. Thus (iv) holds.

To verify (v), note that if dH(w1) ≤ 2λn then clearly dH�(w1) ≤ 2λn ≤ (D −
φn)/2. If dH(w1) ≥ 2λn then (α2) implies that dJs[A′,B′](w1) = 1 for all 1 ≤ s ≤ λn.
Hence dH�(w1) ≤ bD/2c−λn = (D−φn)/2. Now suppose that D = n/2−1 and so
n = 0 (mod 4) by (1.3.1). Thus D is odd and so (i′) implies that if w1w2 is an edge
in G[A′] +G[B′], then w1w2 ∈ J0. In particular w1w2 /∈M1. (Note that if w1w2 ∈
G[A′, B′], then w1w2 is not contained in M1 either since M1 ⊆ G[A0] + G[B0].)
Thus in the case when dH(w2) ≥ 2λn, (α3) implies that dJs[A′,B′](w2) = 1 for all
1 ≤ s ≤ λn. Hence dH�(w2) ≤ bD/2c − λn = (D − φn)/2. If dH(w2) ≤ 2λn then
clearly dH�(w2) ≤ 2λn ≤ (D − φn)/2. Therefore (v) holds.

Case 2: e(H) < D

Together with Proposition 2.2.1(ii) this implies that n = 0 (mod 4), D = n/2 − 1
and |A′| = n/2 = |B′|. So D is odd and |A′| is even. In particular, by Propo-
sition 2.2.2(i) e(H) is even and by (i) and (i′) J0 is a perfect matching with
eJ0(A′, B′) = 0. Moreover, Proposition 2.2.4 implies that ∆(H) ≤ e(H)/2 in
this case (recall that H := G[A′, B′]).

Note that eachMs is a matching exceptional system candidate. By Lemma 2.3.2,
for each 1 ≤ s ≤ min{`, λn} in turn, we can extend Ms into a matching exceptional
system Js with parameter ε0 in G′ = G− J0 such that Ms ⊆ Js, and such that Js
and Js′ are edge-disjoint whenever 1 ≤ s′ < s ≤ min{`, λn}. Thus (ii) holds.

If ` ≥ λn, then e(H) ≤ D − 2λn = D − φn + 1. But since e(H) is even and
D − φn + 1 is odd this means that e(H) ≤ D − φn. Thus ∆(H) ≤ e(H)/2 ≤
(D − φn)/2. Moreover, dJ (v) = 2λn+ dJ0(v) = φn for all v ∈ V0. Hence (iv)–(vi)
hold since H� = H. ((iii) is vacuously true.)

Therefore, we may assume that ` < λn. Using a similar argument as in Case 1,
for all ` < s ≤ λn we can extend the matchings Ms into edge-disjoint Hamil-
ton exceptional systems Js satisfying (α1)–(α4) and which are edge-disjoint from
J0, . . . , J`. Indeed, suppose that for ` < s ≤ λn we have already constructed
J`+1, . . . , Js−1 satisfying (α1)–(α4). (Note that (i′) implies that the exception
in (α3) is not relevant.) The fact that D is odd and e(H) is even implies that
` = (D − e(H)− 1)/2. Then defining Hs analogously to Case 1, we have

e(Hs) ≥ e(H)− 2(s− 1− `) = D − 2s ≥ D − 2λn,
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where in the first inequality we use that eJ0(A′, B′) = 0 by (i′). So the analogue
of (2.6.1) holds. Hence we can proceed exactly as in Case 1 to construct Js (the
remaining calculations go through as before). Thus (iii) holds.

To verify (iv), note that eJ (A′, B′) = 2(λn− `). So

e(H�) = e(H)− 2(λn− `) = e(H)− 2λn+ (D − e(H)− 1) = D − φn.(2.6.2)

In particular, e(H�) is even and eJ (A′, B′) = e(H)− e(H�) < φn. So (iv) holds.
In order to verify (vi), recall that ∆(H) ≤ e(H)/2. Moreover, note that (α2)

implies that if dH(w1) ≥ 2λn, then dJs[A′,B′](w1) = 1 for all ` < s ≤ λn. Hence

dH�(w1) = dH(w1)− (λn− `) = ∆(H)− λn+ `

≤ e(H)/2− λn+ (D − e(H)− 1)/2 = (D − φn)/2
(2.6.2)

= e(H�)/2.

Similarly if dH(w2) ≥ 2λn, then dH�(w2) ≤ e(H�)/2. If dH(w1) ≤ 2λn, then
dH�(w1) ≤ 2λn ≤ e(H�)/2 by (2.6.2) and the analogue also holds for w2. Thus in
all cases dH(w1), dH(w2) ≤ e(H�)/2. Our choice of w1 and w2 implies that for all
v ∈ V (G) \W we have

dH(v) ≤ (e(H) + 3)/3 ≤ (D + 3)/3
(2.6.2)
< e(H�)/2.

Therefore, ∆(H�) ≤ e(H�)/2. Together with (2.6.2) this implies (vi) and thus (v).
�

The next lemma implies that each of the exceptional systems Js guaranteed by
Lemma 2.6.1 can be extended into a Hamilton cycle (if Js is a Hamilton exceptional
system) or into two perfect matchings (if Js is a matching exceptional system and
both |A′| and |B′| are even).

Lemma 2.6.2. Suppose that 0 < 1/n� ε0 ≤ λ� 1 and that n, λn,K ∈ N. Sup-
pose that (G,A,A0, B,B0) is an (ε0,K)-framework such that δ(G[A]) ≥ 4|A|/5 and
δ(G[B]) ≥ 4|B|/5. Let J1, . . . , Jλn be exceptional systems with parameter ε0. Sup-
pose that G and J1, . . . , Jλn are pairwise edge-disjoint. Then there are edge-disjoint

subgraphs H1, . . . ,Hλn in G+
∑λn
s=1 Js which satisfy the following properties:

(i) Js ⊆ Hs and E(Hs − Js) ⊆ E(G[A] +G[B]) for all 1 ≤ s ≤ λn.
(ii) If Js is a Hamilton exceptional system, then Hs is a Hamilton cycle on

V (G).
(iii) If Js is a matching exceptional system, then Hs is an union of a Hamilton

cycle on A′ = A ∪A0 and a Hamilton cycle on B′ = B ∪B0.

Proof. Recall that, given an exceptional system J , we have defined matchings J∗A,
J∗B and J∗ = J∗A+J∗B in Section 2.3. We will write J∗s,A := (Js)

∗
A and J∗s,B := (Js)

∗
B .

For each s ≤ λn in turn, we will find a subgraph H∗s of G[A]+G[B]+J∗s containing
J∗s such that H∗s is edge-disjoint from H∗1 , . . . ,H

∗
s−1. Moreover, H∗s will be the union

of two cycles CA and CB such that CA is a Hamilton cycle on A which is consistent
with J∗s,A and CB is a Hamilton cycle on B which is consistent with J∗s,B . (Recall
from Section 2.3 that we always view different J∗i as being edge-disjoint from each
other. So asking H∗s to be edge-disjoint from H∗1 , . . . ,H

∗
s−1 is the same as asking

H∗s − J∗s to be edge-disjoint from H∗1 − J∗1 , . . . ,H∗s−1 − J∗s−1.)
Suppose that for some 1 ≤ s ≤ λn we have already found H∗1 , . . . ,H

∗
s−1. For

all i < s, let Hi := H∗i − J∗i + Ji. Let Gs := G − (H1 ∪ · · · ∪ Hs−1). First we
construct CA as follows. Recall from (2.3.1) that J∗s,A is a matching of size at most
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2
√
ε0n. Note that δ(Gs[A]) ≥ δ(G[A]) − 2s ≥ (4/5 − 5λn)|A|. So we can greedily

find a path PA of length at most 6
√
ε0n in Gs[A] + J∗s,A such that PA is consistent

with J∗s,A. Let u and v denote the endpoints of PA. Let GAs be the graph obtained

from Gs[A] − V (PA) by adding a new vertex w whose neighbourhood is precisely
(NGs

(u) ∩ NGs
(v)) \ V (PA). Note that δ(GAs ) ≥ |GAs |/2 (with room to spare).

Thus GAs contains a Hamilton cycle C ′A by Dirac’s theorem. But C ′A corresponds
to a Hamilton cycle CA of Gs[A] + J∗s,A that is consistent with J∗s,A. Similarly, we

can find a Hamilton cycle CB of Gs[B] + J∗s,B that is consistent with J∗s,B . Let
H∗s = CA + CB . This completes the construction of H∗1 , . . . ,H

∗
λn.

For each 1 ≤ s ≤ λn we take Hs := H∗s − J∗s + Js. Then (i) holds. Proposi-
tion 2.3.1 implies (ii) and (iii). �

By combining Lemmas 2.6.1 and 2.6.2 we obtain the following result, which
guarantees a set of edge-disjoint Hamilton cycles covering all edges of G[A0] and
G[B0].

Lemma 2.6.3. Suppose that 0 < 1/n � ε0 � φ � 1 and that D,n, (D −
φn)/2,K ∈ N. Let G be a D-regular graph on n vertices with D ≥ n− 2bn/4c − 1.
Suppose that (G,A,A0, B,B0) is an (ε0,K)-framework with ∆(G[A′, B′]) ≤ D/2.
Let w1 and w2 be (fixed) vertices of G such that dG[A′,B′](w1) ≥ dG[A′,B′](w2) ≥
dG[A′,B′](v) for all v ∈ V (G) \ {w1, w2}. Then there exists a φn-regular spanning
subgraph G0 of G which satisfies the following properties:

(i) G[A0] +G[B0] ⊆ G0.
(ii) eG0

(A′, B′) ≤ φn and eG−G0
(A′, B′) is even.

(iii) G0 can be decomposed into beG0
(A′, B′)/2c Hamilton cycles and φn −

2beG0
(A′, B′)/2c perfect matchings. Moreover, if eG(A′, B′) ≥ D, then

this decomposition of G0 uses bφn/2c Hamilton cycles and one perfect
matching if D is odd.

(iv) Let H� := G[A′, B′]−G0. Then dH�(w1) ≤ (D − φn)/2. Furthermore, if
D = n/2− 1 then dH�(w2) ≤ (D − φn)/2.

(v) If eG(A′, B′) < D, then ∆(H�) ≤ e(H�)/2 ≤ (D − φn)/2.

Proof. Let

` :=

⌊
max{0, D − eG(A′, B′)}

2

⌋
and λn := bφn/2c =

{
(φn− 1)/2 if D is odd,

φn/2 if D is even.

(The last equality holds since our assumption that (D− φn)/2 ∈ N implies that D
is odd if and only if φn is odd.) So `, φ and λ are as in Lemma 2.6.1. Thus we can
apply Lemma 2.6.1 to G in order to obtain λn+1 subgraphs J0, . . . , Jλn as described
there. Let G′ be the graph obtained from G[A′] +G[B′] by removing all the edges
in J0 ∪ · · · ∪ Jλn. Recall that J0 is either a perfect matching in G or empty. Since
each of J1, . . . , Jλn is an exceptional system and so by (EC3) we have eJs(A) = 0
for all 1 ≤ s ≤ λn, it follows that δ(G′[A]) ≥ δ(G[A])− 1 ≥ 4|A|/5, where the final
inequality follows from (FR3) and (FR4). Similarly δ(G′[B]) ≥ 4|B|/5. So we can
apply Lemma 2.6.2 with G′ playing the role of G in order to extend J1, . . . , Jλn
into edge-disjoint subgraphs H1, . . . ,Hλn of G′ +

∑λn
s=1 Js such that

(a) Hs is a Hamilton cycle on V (G) which contains precisely two A′B′-edges
for all ` < s ≤ λn;
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(b) Hs is the union of a Hamilton cycle on A′ and a Hamilton cycle on B′ for
all 1 ≤ s ≤ min{`, λn}.

Indeed, the property eHs
(A′, B′) = 2 in (a) follows from Lemma 2.6.1(iii) and

2.6.2(i). Let G0 := J0 +
∑λn
s=1Hs. Then (i) holds since by Lemma 2.6.1 all the

J0, . . . , Jλn together cover all edges in G[A0] and G[B0]. Let JHC be the union
of all Js with ` < s ≤ λn and let J be the union of all Js with 0 ≤ s ≤ λn.
The definition of G0, Lemma 2.6.1(ii),(iii) and Lemma 2.6.2(i) together imply that
G0[A′, B′] = J [A′, B′] = J0[A′, B′] + JHC[A′, B′] and so

eG0
(A′, B′) = eJ (A′, B′)(2.6.3)

= eJ0(A′, B′) + 2(max{0, λn− `}).(2.6.4)

Together with Lemma 2.6.1(iv), (2.6.3) implies (ii). Moreover, the graph H� defined
in (iv) is the same as the graph H� defined in Lemma 2.6.1(iv). Thus (iv) and (v)
follow from Lemma 2.6.1(v) and (vi).

So it remains to verify (iii). Note that if ` > 0 then eG(A′, B′) < D and so
n = 0 (mod 4), D = n/2 − 1 and |A′| = n/2 = |B′| by Proposition 2.2.1(ii). In
particular, both A′ and B′ are even and so for all 1 ≤ s ≤ ` the graph Hs can be de-
composed into two edge-disjoint perfect matchings. Recall that by Lemma 2.6.1(i)
the graph J0 is a perfect matching if D is odd and empty if D is even. Thus,
if ` ≤ λn, then G0 can be decomposed into λn − ` edge-disjoint Hamilton cycles
and nmatch edge-disjoint perfect matchings, where nmatch = 2` if D is even and
nmatch = 2` + 1 if D is odd. In particular, this implies the ‘moreover part’ of
(iii) (since ` = 0 if eG(A′, B′) ≥ D). Also, (2.6.4) together with the fact that
eJ0(A′, B′) ≤ 1 by Lemma 2.6.1(i) implies that λn − ` = beG0

(A′, B′)/2c and so
φn − 2beG0

(A′, B′)/2c = nmatch. Thus (iii) holds in this case. If ` > λn, then (a)
implies that there are no Hamilton cycles at all in the decomposition. Also (2.6.4)
implies that beG0(A′, B′)/2c = 0, as required in (iii). Similarly, (b) implies that
nmatch = 2λn if D is even and nmatch = 2λn + 1 if D is odd, which also agrees
with (iii). �

2.7. Constructing Localized Exceptional Systems

Suppose that (G,A,A0, B,B0) is an (ε0,K)-framework and that G0 is the span-
ning subgraph of our given D-regular graph G obtained by Lemma 2.6.3. Set
G′ := G − G0. (So G′ has no edges inside A0 or B0.) Roughly speaking, the aim
of this section is to decompose G′ − G′[A] − G′[B] into edge-disjoint exceptional
systems. Each of these exceptional systems J will then be extended into a Hamil-
ton cycle (in the case when J is a Hamilton exceptional system) or into two perfect
matchings (in the case when J is a matching exceptional system). We will ensure
that all but a small number of these exceptional systems are localized (with respect
to some (K,m, ε0)-partition P of V (G) refining the partition A,A0, B,B0). More-
over, for all 1 ≤ i, i′ ≤ K, the number of (i, i′)-localized exceptional systems in our
decomposition will be the same. (Recall that (i, i′)-localized exceptional systems
were defined in Section 2.3.)

However, rather than decomposing the above ‘leftover’ G′ − G′[A] − G′[B] in
a single step, we actually need to proceed in two steps: initially, we find a small
number of exceptional systems J which have some additional useful properties
(e.g. the number of A′B′-edges of J is either zero or two). These exceptional
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systems will be used to construct the robustly decomposable graph Grob. (Recall
that the role of Grob was discussed in Section 2.1.) Let G′′ := G−G0−Grob. Some
of the additional properties of the exceptional systems contained in Grob then allow
us to find the desired decomposition of G� := G′′ − G′′[A] − G′′[B]. (We need to
proceed in two steps rather than one as we have little control over the structure of
Grob.)

Recall that in order to construct the required (localized) exceptional systems,
we will distinguish three cases:

(a) the case when G is ‘non-critical’ and contains at least D A′B′-edges (see
Lemma 2.7.3);

(b) the case when G is ‘critical’ and contains at least D A′B′-edges (see
Lemma 2.7.4);

(c) the case when G contains less than D A′B′-edges (see Lemma 2.7.5).

Each of the three lemmas above is formulated in such a way that we can apply
it twice: firstly to obtain the small number of exceptional systems needed for the
robustly decomposable graph Grob and secondly for the decomposition of the graph
G� into exceptional systems. The proofs of all the results in this section are deferred
until Chapter 3.

2.7.1. Critical Graphs. Roughly speaking, G is critical if most of its A′B′-
edges are incident to only a few vertices. More precisely, given a partition A′, B′ of
V (G) and D ∈ N, we say that G is critical (with respect to A′, B′ and D) if both
of the following hold:

• ∆(G[A′, B′]) ≥ 11D/40;
• e(H) ≤ 41D/40 for all subgraphs H of G[A′, B′] with ∆(H) ≤ 11D/40.

Note that the property of G being critical depends only on D and the partition
A′ = A ∪ A0 and B′ = B ∪ B0 of V (G), which is fixed after we have applied
Proposition 2.2.5 to obtain a framework (G,A,A0, B,B0). In particular, it does not
depend on the choice of the (K,m, ε0)-partition P of V (G) refining A,A0, B,B0.
(In the proof of Theorem 1.3.3 we will fix a framework (G,A,A0, B,B0), but will
then choose two different partitions refining A,A0, B,B0.)

One example of a critical graph is the following: Gcrit consists of two disjoint
cliques on (n − 1)/2 vertices with vertex set A and B respectively, where n = 1
(mod 4). In addition, there is a vertex a which is adjacent to exactly half of the
vertices in each of A and B. Also, add a perfect matching M between those vertices
of A and those vertices in B not adjacent to a. Let A′ := A ∪ {a}, B′ := B and
D := (n − 1)/2. Then Gcrit is critical, and D-regular with e(A′, B′) = D. Note
that e(M) = D/2. To obtain a Hamilton decomposition of Gcrit, we will need
to decompose Gcrit[A

′, B′] into D/2 Hamilton exceptional system candidates Js
(which need to be matchings of size exactly two in this case). In this example, this
decomposition is essentially unique: every Js has to consist of exactly one edge in
M and one edge incident to a. Note that in this way, every edge between a and B
yields a ‘connection’ (i.e. a maximal path) between A′ and B′ required in (ESC4).

The following lemma (proved in Section 3.1) collects some properties of critical
graphs. In particular, there is a set W consisting of between one and three vertices
with many neighbours in both A and B. We will need to use A′B′-edges incident
to one or two vertices of W to provide ‘connections’ between A′ and B′ when
constructing the Hamilton exceptional system candidates in the critical case (b).
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Lemma 2.7.1. Suppose that 0 < 1/n � 1 and that D,n ∈ N with D ≥ n −
2bn/4c − 1. Let G be a D-regular graph on n vertices and let A′, B′ be a partition
of V (G) with |A′|, |B′| ≥ D/2 and ∆(G[A′, B′]) ≤ D/2. Suppose that G is critical.
Let W be the set of vertices w ∈ V (G) such that dG[A′,B′](w) ≥ 11D/40. Then the
following properties are satisfied:

(i) 1 ≤ |W | ≤ 3.
(ii) Either D = (n − 1)/2 and n = 1 (mod 4), or D = n/2 − 1 and n = 0

(mod 4). Furthermore, if n = 1 (mod 4), then |W | = 1.
(iii) eG(A′, B′) ≤ 17D/10 + 5 < n.

Recall from Proposition 2.2.1(ii) that we have eG(A′, B′) ≥ D unless D =
n/2 − 1, n = 0 (mod 4) and |A| = |B| = n/2. Together with Lemma 2.7.1(ii)
this shows that in order to find the decomposition into exceptional systems, we can
distinguish the following three cases.

Corollary 2.7.2. Suppose that 0 < 1/n � 1 and that D,n ∈ N with D ≥
n−2bn/4c−1. Let G be a D-regular graph on n vertices and let A′, B′ be a partition
of V (G) with |A′|, |B′| ≥ D/2 and ∆(G[A′, B′]) ≤ D/2. Then exactly one of the
following holds:

(a) eG(A′, B′) ≥ D and G is not critical.
(b) eG(A′, B′) ≥ D and G is critical. In particular, eG(A′, B′) < n and either

D = (n− 1)/2 and n = 1 (mod 4), or D = n/2− 1 and n = 0 (mod 4).
(c) eG(A′, B′) < D. In particular, D = n/2 − 1, n = 0 (mod 4) and |A| =
|B| = n/2.

2.7.2. Decomposition into Exceptional Systems. Recall from the begin-
ning of Section 2.7 that our aim is to find a decomposition of G−G0−G[A]−G[B]
into suitable exceptional systems (in particular, most of these exceptional systems
have to be localized). The following lemma (proved in Section 3.2) states that this
can be done if we are in Case (a) of Corollary 2.7.2, i.e. if G is not critical and
eG(A′, B′) ≥ D.

Lemma 2.7.3. Suppose that 0 < 1/n � ε0 � ε � λ, 1/K � 1, that D ≥ n/3,
that 0 ≤ φ� 1 and that D,n,K,m, λn/K2, (D−φn)/(2K2) ∈ N. Suppose that the
following conditions hold:

(i) G is a D-regular graph on n vertices.
(ii) P is a (K,m, ε0)-partition of V (G) such that D ≤ eG(A′, B′) ≤ ε0n

2 and
∆(G[A′, B′]) ≤ D/2. Furthermore, G is not critical.

(iii) G0 is a subgraph of G such that G[A0] + G[B0] ⊆ G0, eG0
(A′, B′) ≤ φn

and dG0(v) = φn for all v ∈ V0.
(iv) Let G� := G − G[A] − G[B] − G0. eG�(A

′, B′) is even and (G�,P) is a
(K,m, ε0, ε)-exceptional scheme.

Then there exists a set J consisting of (D − φn)/2 edge-disjoint Hamilton excep-
tional systems with parameter ε0 in G� which satisfies the following properties:

(a) Together all the Hamilton exceptional systems in J cover all edges of G�.
(b) For all 1 ≤ i, i′ ≤ K, the set J contains (D−(φ+2λ)n)/(2K2) (i, i′)-HES.

Moreover, λn/K2 of these (i, i′)-HES J are such that eJ(A′, B′) = 2.

Note that (b) implies that J contains λn Hamilton exceptional systems which
might not be localized. This will make them less useful for our purposes and we
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extend them into Hamilton cycles in a separate step. On the other hand, the lemma
is ‘robust’ in the sense that we can remove a sparse subgraph G0 before we find
the decomposition J into Hamilton exceptional systems. In our first application of
Lemma 2.7.3 (i.e. to construct the exceptional systems for the robustly decompos-
able graph Grob), we will let G0 be the graph obtained from Lemma 2.6.3. In the
second application, G0 also includes Grob. In our first application of Lemma 2.7.3,
we will only use the (i, i′)-HES J with eJ(A′, B′) = 2.

The next lemma is an analogue of Lemma 2.7.3 for the case when G is critical
and eG(A′, B′) ≥ D. By Corollary 2.7.2(b) we know that in this case D = (n−1)/2
or D = n/2− 1. (Again we defer the proof to Section 3.3.)

Lemma 2.7.4. Suppose that 0 < 1/n � ε0 � ε � λ, 1/K � 1, that D ≥
n− 2bn/4c − 1, that 0 ≤ φ � 1 and that n,K,m, λn/K2, (D − φn)/(400K2) ∈ N.
Suppose that the following conditions hold:

(i) G is a D-regular graph on n vertices.
(ii) P is a (K,m, ε0)-partition of V (G) such that eG(A′, B′) ≥ D and

∆(G[A′, B′]) ≤ D/2. Furthermore, G is critical. In particular, eG(A′, B′)
< n and D = (n− 1)/2 or D = n/2− 1 by Lemma 3.1.1(ii) and (iii).

(iii) G0 is a subgraph of G such that G[A0] + G[B0] ⊆ G0, eG0
(A′, B′) ≤ φn

and dG0(v) = φn for all v ∈ V0.
(iv) Let G� := G − G[A] − G[B] − G0. eG�(A

′, B′) is even and (G�,P) is a
(K,m, ε0, ε)-exceptional scheme.

(v) Let w1 and w2 be (fixed) vertices such that dG[A′,B′](w1) ≥ dG[A′,B′](w2) ≥
dG[A′,B′](v) for all v ∈ V (G) \ {w1, w2}. Suppose that

(2.7.1) dG�[A′,B′](w1), dG�[A′,B′](w2) ≤ (D − φn)/2.

Then there exists a set J consisting of (D − φn)/2 edge-disjoint Hamilton excep-
tional systems with parameter ε0 in G� which satisfies the following properties:

(a) Together the Hamilton exceptional systems in J cover all edges of G�.
(b) For each 1 ≤ i, i′ ≤ K, the set J contains (D − (φ+ 2λ)n)/(2K2) (i, i′)-

HES. Moreover, λn/K2 of these (i, i′)-HES are such that
(b1) eJ(A′, B′) = 2 and
(b2) dJ[A′,B′](w) = 1 for all w ∈ {w1, w2} with dG[A′,B′](w) ≥ 11D/40.

Similarly as for Lemma 2.7.3, (b) implies that J contains λn Hamilton ex-
ceptional systems which might not be localized. Another similarity is that when
constructing the robustly decomposable graph Grob, we only use those Hamilton
exceptional systems J which have some additional useful properties, namely (b1)
and (b2) in this case. This guarantees that (2.7.1) will be satisfied in the second
application of Lemma 2.7.4 (i.e. after the removal of Grob), by ‘tracking’ the de-
grees of the high degree vertices w1 and w2. Indeed, if dG[A′,B′](w2) ≥ 11D/40,
then (b2) will imply that dGrob[A′,B′](wi) is large for i = 1, 2. This in turn means

that after removing Grob, in the leftover graph G�, dG�[A′,B′](wi) is comparatively
small, i.e. condition (2.7.1) will hold in the second application of Lemma 2.7.4.

Condition (2.7.1) itself is natural for the following reason: suppose for example
that it is violated for w1 and that w1 ∈ A0. Then for some Hamilton exceptional
system J returned by the lemma, both edges of J incident to w1 will have their
other endpoint in B′. So (the edges at) w1 cannot be used as a ‘connection’ between
A′ and B′ in the Hamilton cycle which will extend J , and it may be impossible to
find these connections elsewhere.
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The next lemma is an analogue of Lemma 2.7.3 for the case when eG(A′, B′) <
D. (Again we defer the proof to Section 3.4.) Recall that Proposition 2.2.1(ii) (or
Corollary 2.7.2) implies that in this case we have n = 0 (mod 4), D = n/2− 1 and
|A′| = |B′| = n/2. In particular, |A′| and |B′| are both even. This agrees with
the fact that the decomposition may also involve matching exceptional systems in
the current case: we will later extend each such system to a cycle spanning A′ and
one spanning B′. As |A′| and |B′| are both even, these cycles correspond to two
edge-disjoint perfect matchings in G.

Lemma 2.7.5. Suppose that 0 < 1/n� ε0 � ε� λ, 1/K � 1, that 0 ≤ φ� 1
and that n/4,K,m, λn/K2, (n/2− 1− φn)/(2K2) ∈ N. Suppose that the following
conditions hold:

(i) G is an (n/2− 1)-regular graph on n vertices.
(ii) P is a (K,m, ε0)-partition of V (G) such that ∆(G[A′, B′]) ≤ n/4 and
|A′| = |B′| = n/2.

(iii) G0 is a subgraph of G such that G[A0] +G[B0] ⊆ G0 and dG0
(v) = φn for

all v ∈ V0.
(iv) Let G� := G − G[A] − G[B] − G0. eG�(A

′, B′) is even and (G�,P) is a
(K,m, ε0, ε)-exceptional scheme.

(v) ∆(G�[A′, B′]) ≤ eG�(A′, B′)/2 ≤ (n/2− 1− φn)/2.

Then there exists a set J consisting of (n/2 − 1 − φn)/2 edge-disjoint exceptional
systems in G� which satisfies the following properties:

(a) Together the exceptional systems in J cover all edges of G�. Each J in J
is either a Hamilton exceptional system with eJ(A′, B′) = 2 or a matching
exceptional system.

(b) For all 1 ≤ i, i′ ≤ K, the set J contains (n/2 − 1 − (φn + 2λ))/(2K2)
(i, i′)-ES.

As in the other two cases, we will use the exceptional systems in (b) to construct
the robustly decomposable graph Grob. Unlike the critical case with eG(A′, B′) ≥
D, there is no need to ‘track’ the degrees of the vertices wi of high degree in
G[A′, B′] this time. Indeed, let G′′ := G−G0−Grob, where G0 is the graph defined
by Lemma 2.6.3. Then G′′[A′, B′] is the union of all those J in J (from the first
application of Lemma 2.7.5) not used in the construction of Grob. So (a) implies
that G′′[A′, B′] is a union of matchings of size two. So (v) will be trivially satisfied
when we apply Lemma 2.7.5 for the second time (i.e. with G0 + Grob playing the
role of G0).

2.8. Special Factors and Exceptional Factors

As discussed in the proof sketch, the main proof proceeds as follows. First
we remove a sparse ‘robustly decomposable’ graph Grob from the original graph
G. Then we find an approximate decomposition of G − Grob. Finally we find
a decomposition of Grob + G′, where G′ is the (very sparse) leftover from the
approximate decomposition.

Both the approximate decomposition as well as the actual decomposition step
assume that we work with a graph with two components, one on A and the other
on B. So in both steps, we would need A0 ∪ B0 to be empty, which we clearly
cannot assume. We build on the ideas of Section 2.3 to deal with this problem.
In both steps, one can choose ‘exceptional path systems’ in G with the following
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crucial property: one can replace each such exceptional path system EPS with a
path system EPS∗ so that

(α1) EPS∗ can be partitioned into EPS∗A and EPS∗B with the vertex sets of
EPS∗A and EPS∗B being contained in A and B respectively;

(α2) the union of any Hamilton cycle C∗A in G∗A := G[A] − EPS + EPS∗A
containing EPS∗A and any Hamilton cycle C∗B in G∗B := G[B] − EPS +
EPS∗B containing EPS∗B corresponds to either a Hamilton cycle of G
containing EPS or to the union of two edge-disjoint perfect matchings in
G containing EPS.

Each exceptional path system EPS will contain one of the exceptional systems J
constructed in Section 2.7. EPS∗ will then be obtained from EPS by replacing J
by J∗. (Recall that J∗ was defined in Section 2.3 and that we view the edges of J∗

as ‘fictive edges’ which are different from the edges of G.) So G∗A is obtained from
G[A] by adding J∗A = J∗[A]. Furthermore, J determines which of the cases in (α2)
holds: If J is a Hamilton exceptional system, then (α2) will give a Hamilton cycle
of G, while in the case when J is a matching exceptional system, (α2) will give the
union of two edge-disjoint perfect matchings in G.

So, roughly speaking, this allows us to work with G∗A and G∗B rather than G
in the two steps. A convenient way of handling these exceptional path systems is
to combine many of them into an ‘exceptional factor’ EF (see Section 2.8.2 for the
definition).

One complication is that the ‘robust decomposition lemma’ (Lemma 2.9.4) we
use from [21] deals with digraphs rather than undirected graphs. So in order to be
able to apply it, we need to suitably orient the edges of G and so we will actually
consider a directed path system EPS∗dir instead of the EPS∗ above (the exceptional
path system EPS itself will still be undirected). Moreover, we have to apply the
robust decomposition lemma twice, once to G∗A and once to G∗B .

The formulation of the robust decomposition lemma is quite general and rather
than guaranteeing (α2) directly, it assumes the existence of certain directed ‘spe-
cial paths systems’ SPS which are combined into ‘special factors’ SF . These are
introduced in Section 2.8.1. Each of the Hamilton cycles produced by the lemma
then contains exactly one of these special path systems. So to apply the lemma, it
suffices to check that each of our exceptional path systems EPS corresponds to two
path systems EPS∗A,dir and EPS∗B,dir which both satisfy the conditions required of
a special path system.

2.8.1. Special Path Systems and Special Factors. As mentioned above,
the robust decomposition lemma requires ‘special path systems’ and ‘special factors’
as an input when constructing the robustly decomposable graph. These are defined
in this subsection.

Let K,m ∈ N. A (K,m)-equipartition Q of a set V of vertices is a partition
of V into sets V1, . . . , VK such that |Vi| = m for all i ≤ K. The Vi are called
clusters of Q. Suppose that Q = {V1, . . . , VK} is a (K,m)-equipartition of V and
L,m/L ∈ N. We say that (Q,Q′) is a (K,L,m)-equipartition of V if Q′ is obtained
from Q by partitioning each cluster Vi of Q into L sets Vi,1, . . . , Vi,L of size m/L.
So Q′ consists of the KL clusters Vi,j .

Let (Q,Q′) be a (K,L,m)-equipartition of V . Consider a spanning cycle C =
V1 . . . VK on the clusters of Q. Given an integer f dividing K, the canonical interval
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partition I of C into f intervals consists of the intervals

V(i−1)K/f+1V(i−1)K/f+2 . . . ViK/f+1

for all i ≤ f (with addition modulo K).
Suppose that G is a digraph on V and h ≤ L. Let I = VjVj+1 . . . Vj′ be an

interval in I. A special path system SPS of style h in G spanning the interval I
consists of m/L vertex-disjoint directed paths P1, . . . , Pm/L such that the following
conditions hold:

(SPS1) Every Ps has its initial vertex in Vj,h and its final vertex in Vj′,h.
(SPS2) SPS contains a matching Fict(SPS) such that all the edges in Fict(SPS)

avoid the endclusters Vj and Vj′ of I and such that E(Ps) \ Fict(SPS) ⊆
E(G).

(SPS3) The vertex set of SPS is Vj,h ∪ Vj+1,h ∪ · · · ∪ Vj′,h.

The edges in Fict(SPS) are called fictive edges of SPS.
Let I = {I1, . . . , If}. A special factor SF with parameters (L, f) in G (with

respect to C, Q′) is a 1-regular digraph on V which is the union of Lf digraphs
SPSj,h (one for all j ≤ f and h ≤ L) such that each SPSj,h is a special path
system of style h in G which spans Ij . We write Fict(SF ) for the union of the sets
Fict(SPSj,h) over all j ≤ f and h ≤ L and call the edges in Fict(SF ) fictive edges
of SF .

We will always view fictive edges as being distinct from each other and from the
edges in other digraphs. So if we say that special factors SF1, . . . , SFr are pairwise
edge-disjoint from each other and from some digraph Q on V , then this means that
Q and all the SFi − Fict(SFi) are pairwise edge-disjoint, but for example there
could be an edge from x to y in Q as well as in Fict(SFi) for several indices i ≤ r.
But these are the only instances of multiedges that we allow, i.e. if there is more
than one edge from x to y, then all but at most one of these edges are fictive edges.

2.8.2. Exceptional Path Systems and Exceptional Factors. We now
introduce ‘exceptional path systems’ which will be combined into ‘exceptional fac-
tors’. These will satisfy the requirements of special path systems and special factors
respectively. So they can be used as an ‘input’ for the robust decomposition lemma.
Moreover, they will satisfy the properties (α1) and (α2) described at the beginning
of Section 2.8 (see Proposition 2.8.1). More precisely, suppose that

P = {A0, A1, . . . , AK , B0, B1, . . . , BK}
is a (K,m, ε0)-partition of a vertex set V and L,m/L ∈ N. We say that (P,P ′) is
a (K,L,m, ε0)-partition of V if P ′ is obtained from P by partitioning each cluster
Ai of P into L sets Ai,1, . . . , Ai,L of size m/L and partitioning each cluster Bi of P
into L sets Bi,1, . . . , Bi,L of size m/L. (So P ′ consists of the exceptional sets A0,
B0, the KL clusters Ai,j and the KL clusters Bi,j .) Set

QA := {A1, . . . , AK}, Q′A := {A1,1, . . . , AK,L},(2.8.1)

QB := {B1, . . . , BK}, Q′B := {B1,1, . . . , BK,L}.
Note that (QA,Q′A) and (QB ,Q′B) are (K,L,m)-equipartitions of A and B respec-

tively (where we recall that A =
⋃K
i=1Ai and B =

⋃K
i=1Bi).

Suppose that J is a Hamilton exceptional system (for the partition A,A0, B,B0)
with eJ(A′, B′) = 2. Thus J contains precisely two AB-paths. Let P1 = a1 . . . b1
and P2 = a2 . . . b2 be these two paths, where a1, a2 ∈ A and b1, b2 ∈ B. Recall from
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Section 2.3 that J∗A is the matching consisting of the edge a1a2 and an edge between
any two vertices a, a′ ∈ A for which J contains a path Paa′ whose endvertices are a
and a′. We also defined a matching J∗B in a similar way and set J∗ := J∗A ∪J∗B . We
say that an orientation of J is good if every path in J is oriented consistently and
one of the paths P1, P2 is oriented towards B while the other is oriented towards
A. Given a good orientation Jdir of J , the orientation J∗dir of J∗ induced by Jdir is
defined as follows:

• For every path Paa′ in J whose endvertices a, a′ both belong to A, we
orient the edge aa′ of J∗ towards its endpoint of the (oriented) path Paa′

in Jdir.
• If in Jdir the path P1 is oriented towards b1 (and thus P2 is oriented

towards a2), then we orient the edge a1a2 of J∗ towards a2 and the edge
b1b2 of J∗ towards b1. The analogue holds if P1 is oriented towards a1

(and thus P2 is oriented towards b2).

If J is a matching exceptional system, we define good orientations of J and the
corresponding induced orientations of J∗ in a similar way.

We now define exceptional path systems. As mentioned at the beginning of
Section 2.8, each such exceptional path system EPS will correspond to two directed
path systems EPS∗A,dir and EPS∗B,dir satisfying the conditions of a special path

system (for (QA,Q′A) and (QB ,Q′B) respectively).
Let (P,P ′) be a (K,L,m, ε0)-partition of a vertex set V . Suppose that K/f ∈

N. The canonical interval partition I(f,K) of [K] := {1, . . . ,K} into f intervals
consists of the intervals

{(i− 1)K/f + 1, (i− 1)K/f + 2, . . . , iK/f + 1}

for all i ≤ f (with addition modulo K).
Suppose that G is an oriented graph on A∪B such that G = G[A] +G[B]. Let

h ≤ L and suppose that I ∈ I(f,K) is an interval with I = {j, j + 1, . . . , j′}. An
exceptional path system EPS of style h for G spanning I consists of 2m/L vertex-
disjoint undirected paths P0, P

′
0, P

A
1 , . . . , P

A
m/L−1, P

B
1 , . . . , P

B
m/L−1, such that the

following conditions hold:

(EPS1) V (PAs ) ⊆ A and PAs has one endvertex in Aj,h and its other endvertex in
Aj′,h (for all 1 ≤ s < m/L). The analogue holds for every PBs .

(EPS2) Each of P0 and P ′0 has one endvertex in Aj,h∪Bj,h and its other endvertex
in Aj′,h ∪Bj′,h.

(EPS3) J := EPS − EPS[A]− EPS[B] is either a Hamilton exceptional system
with eJ(A′, B′) = 2 or a matching exceptional system (with respect to the
partition A,A0, B,B0). Moreover E(J) ⊆ E(P0) ∪ E(P ′0) and no edge of
J has an endvertex in Aj,h ∪Aj′,h ∪Bj,h ∪Bj′,h.

(EPS4) Let P0,dir and P ′0,dir be the paths obtained by orienting P0 and P ′0 towards
their endvertices in Aj′,h ∪Bj′,h. Then the orientation Jdir of J obtained
in this way is good. Let J∗dir be the orientation of J∗ induced by Jdir. Then
(P0,dir +P ′0,dir)−Jdir +J∗dir consists of two vertex-disjoint paths PA0,dir and

PB0,dir such that V (PA0,dir) ⊆ A, PA0,dir has one endvertex in Aj,h and its

other endvertex in Aj′,h and such that the analogue holds for PB0,dir.

(EPS5) The vertex set of EPS is V0∪Aj,h∪Aj+1,h · · ·∪Aj′,h∪Bj,h∪Bj+1,h · · ·∪
Bj′,h.
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PA2
PA1
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Bj′,h

Bj,h
Bj+1,h

A0

PA2,dir
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(i) EPS (ii) EPS∗dir

Figure 2.8.1. An example of an exceptional path system EPS
and the corresponding directed version EPS∗dir in the case when
|A0| = 2, B0 = ∅, m/L = 3 and |I| = 6. The thick edges indicate
J and J∗dir respectively.

(EPS6) For each 1 ≤ s < m/L, let PAs,dir be the path obtained by orienting

PAs towards its endvertex in Aj′,h. Define PBs,dir in a similar way. Then

E(PA0,dir) \ E(Jdir), E(PB0,dir) \ E(Jdir) ⊆ E(G) and E(PAs,dir), E(PBs,dir) ⊆
E(G) for every 1 ≤ s < m/L.

We call EPS a Hamilton exceptional path system if J (as defined in (EPS3))
is a Hamilton exceptional system, and a matching exceptional path system oth-
erwise. Let EPS∗A,dir be the (directed) path system consisting of PA0,dir, P

A
1,dir,

. . . , PAm/L−1,dir. Then EPS∗A,dir is a special path system of style h in G[A] which

spans the interval AjAj+1 . . . Aj′ of the cycle A1 . . . AK and satisfies Fict(EPS∗A,dir)

= J∗dir[A]. Define EPS∗B,dir similarly and let EPS∗dir := EPS∗A,dir + EPS∗B,dir and

Fict(EPS∗dir) := Fict(EPS∗A,dir) ∪ Fict(EPS∗B,dir) (see Figure 2.8.1).

Let I(f,K) = {I1, . . . , If}. An exceptional factor EF with parameters (L, f)
for G (with respect to (P,P ′)) is the union of Lf edge-disjoint undirected graphs
EPSj,h (one for all j ≤ f and h ≤ L) such that each EPSj,h is an exceptional
path system of style h for G which spans Ij . We write EF ∗A,dir for the union of
EPS∗j,h,A,dir over all j ≤ f and h ≤ L. Note that EF ∗A,dir is a special factor

with parameters (L, f) in G[A] (with respect to C = A1 . . . AK , Q′A) such that
Fict(EF ∗A,dir) is the union of J∗j,h,dir[A] over all j ≤ f and h ≤ L, where Jj,h is the

exceptional system contained in EPSj,h (see condition (EPS3)). Define EF ∗B,dir

similarly and let EF ∗dir := EF ∗A,dir + EF ∗B,dir and Fict(EF ∗dir) := Fict(EF ∗A,dir) ∪
Fict(EF ∗B,dir). Note that EF ∗dir is a 1-regular directed graph on A ∪ B while in
EF is an undirected graph on V with

dEF (v) = 2 for all v ∈ V \ V0 and dEF (v) = 2Lf for all v ∈ V0.(2.8.2)

Given an exceptional path system EPS, let J be as in (EPS3) and let

EPS∗ := EPS − J + J∗, EPS∗A := EPS∗[A] and EPS∗B := EPS∗[B].
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(Hence EPS∗, EPS∗A and EPS∗B are the undirected graphs obtained from EPS∗dir,
EPS∗A,dir and EPS∗B,dir by ignoring the orientations of all edges.) The follow-

ing result is an immediate consequence of (EPS3), (EPS4) and Proposition 2.3.1.
Roughly speaking, it implies that to find a Hamilton cycle in the ‘original’ graph
with vertex set V , it suffices to find a Hamilton cycle on A and one on B, containing
(the edges corresponding to) an exceptional path system.

Proposition 2.8.1. Let (P,P ′) be a (K,L,m, ε0)-partition of a vertex set V .
Suppose that G is a graph on V \ V0, that Gdir is an orientation of G[A] + G[B]
and that EPS is an exceptional path system for Gdir. Let J be as in (EPS3) and
J∗A as defined in Section 2.3. Let CA and CB be two cycles such that

• CA is a Hamilton cycle on A which contains EPS∗A;
• CB is a Hamilton cycle on B which contains EPS∗B.

Then the following assertions hold.

(i) If EPS is a Hamilton exceptional path system, then CA +CB −EPS∗ +
EPS is a Hamilton cycle on V .

(ii) If EPS is a matching exceptional path system, then CA + CB −EPS∗ +
EPS is the union of a Hamilton cycle on A′ and a Hamilton cycle on B′.
In particular, if both |A′| and |B′| are even, then CA+CB−EPS∗+EPS
is the union of two edge-disjoint perfect matchings on V .

Proof. Note that CA +CB −EPS∗+EPS = CA +CB −J∗+J . Recall that J∗AB
was defined in Section 2.3. (EPS3) implies that |E(J∗A) \E(J∗AB)| ≤ 1. Recall from
Section 2.3 that a path P is said to consistent with J∗A if P contains J∗A and (there
is an orientation of P which) visits the endvertices of the edges in E(J∗A) \E(J∗AB)
in a prescribed order. Since E(J∗A) \ E(J∗AB) contains at most one edge, any path
containing J∗A is also consistent with J∗A. Therefore, CA is consistent with J∗A
and, by a similar argument, CB is consistent with J∗B . So the proposition follows
immediately from Proposition 2.3.1. �

2.8.3. Finding Exceptional Factors in a Scheme. The next lemma (Lem-
ma 2.8.2) will allow us to extend a suitable exceptional system J into an exceptional
path system. In particular, we assume that J is ‘localized’. This allows us to choose
the path system in such a way that it spans only a few clusters. The structure within
which we find the path system is called a ‘scheme’. Roughly speaking, this is the
structure we obtain from G[A]+G[B] (i.e. the union of two almost complete graphs)
by considering a random equipartition of A and B and a random orientation of its
edges.

We now define this ‘oriented’ version of the (undirected) schemes which were
introduced in Section 2.4. Given an oriented graph G and partitions P and P ′ of a
vertex set V , we call (G,P,P ′) a [K,L,m, ε0, ε]-scheme if the following conditions
hold:

(Sch1′) (P,P ′) is a (K,L,m, ε0)-partition of V .
(Sch2′) V (G) = A ∪B and eG(A,B) = 0.
(Sch3′) G[Ai,j , Ai′,j′ ] and G[Bi,j , Bi′,j′ ] are [ε, 1/2]-superregular for all i, i′ ≤ K

and all j, j′ ≤ L such that (i, j) 6= (i′, j′). Moreover, G[Ai, Ai′ ] and
G[Bi, Bi′ ] are [ε, 1/2]-superregular for all i 6= i′ ≤ K.
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(Sch4′) |N+
G (x)∩N−G (y)∩Ai,j | ≥ (1/5− ε)m/L for all x, y ∈ A, all i ≤ K and all

j ≤ L. Similarly, |N+
G (x)∩N−G (y)∩Bi,j | ≥ (1/5− ε)m/L for all x, y ∈ B,

all i ≤ K and all j ≤ L.

Note that if L = 1 (and so P = P ′), then (Sch1′) just says that P is a (K,m, ε0)-
partition of V .

Suppose that J is an (i, i′)-ES with respect to P. Given h ≤ L, we say that J
has style h (with respect to the (K,L,m, ε0)-partition (P,P ′)) if all the edges of J
have their endvertices in V0 ∪Ai,h ∪Bi′,h.

Lemma 2.8.2. Suppose that K,L, n,m/L ∈ N, that 0 < 1/n � ε, ε0 � 1 and
ε0 � 1/K, 1/L. Let (G,P,P ′) be a [K,L,m, ε0, ε]-scheme with |V (G) ∪ V0| = n.
Let I = {j, j + 1, . . . , j′} ⊆ [K] be an integer interval with |I| ≥ 4. Let J be either
an (i1, i2)-HES of style h ≤ L with eJ(A′, B′) = 2 or an (i1, i2)-MES of style h ≤ L
(with respect to (P,P ′)), for some i1, i2 ∈ {j + 1, . . . , j′ − 1}. Then there exists an
exceptional path system of style h for G which spans the interval I and contains all
edges of J .

Proof. Let Jdir be a good orientation of J and let J∗dir be the induced orientation of
J∗. Let x1x2, . . . , x2s′−1x2s′ be the edges of J∗A,dir := J∗dir[A]. Since J is an (i1, i2)-

ES of style h with eJ(A′, B′) ≤ 2 it follows that s′ = e(J∗A) ≤ |V0|+ 1 ≤ 2ε0n and
xi ∈ Ai1,h for all i ≤ 2s′. Since |I| ≥ 4 we have i1 +1 ∈ {j+1, . . . , j′−1} or i1−1 ∈
{j+ 1, . . . , j′− 1}. We will only consider the case when i1 + 1 ∈ {j+ 1, . . . , j′− 1}.
(The argument for the other case is similar.)

Our assumption that ε0 � 1/K, 1/L implies that ε0n ≤ m/100L (say). To-
gether with (Sch4′) this ensures that for every 1 ≤ r < s′, we can pick a ver-
tex wr ∈ Ai1+1,h such that x2rwr and wrx2r+1 are (directed) edges in G and
such that w1, . . . , ws′−1 are distinct from each other. We also pick a vertex ws′ ∈
Ai1+1,h \ {w1, . . . , ws′−1} such that x2s′ws′ is a (directed) edge in G. Let Q0 be
the path x1x2w1x3x4w2 . . . x2s′−1x2s′ws′ . Thus Q0 is a directed path from Ai1,h to
Ai1+1,h in G+J∗dir which contains all edges of J∗A,dir. Note that |V (Q0)∩Ai1,h| = 2s′

and |V (Q0) ∩ Ai1+1,h| = s′. Moreover, V (Q0) ∩ Ai = ∅ for all i /∈ {i1, i1 + 1} and
V (Q0) ∩B = ∅.

Pick a vertex w0 ∈ Aj,h so that w0x1 is an edge of G. Find a path Q′0 from ws′

to Aj′,h in G such that the vertex set of Q′0 consists of ws′ and precisely one vertex
in each Ai,h for all i ∈ {j + 1, . . . , j′} \ {i1, i1 + 1} and no other vertices. (Sch4′)
ensures that this can be done greedily. Define PA0,dir to be the concatenation of

w0x1, Q0 and Q′0. Note that PA0,dir is a directed path from Aj,h to Aj′,h in G+ J∗dir

which contains J∗A,dir. Moreover,

|V (PA0,dir) ∩Ai,h| =


1 for i ∈ {j, . . . , j′} \ {i1, i1 + 1},
2s′ for i = i1,

s′ for i = i1 + 1,

0 otherwise,

while V (PA0,dir) ∩ B = ∅ and V (PA0,dir) ∩ Ai,h′ = ∅ for all i ≤ K and all h′ 6= h.

(Sch4′) ensures that we can also choose 2s′−1 (directed) paths PA1,dir, . . . , P
A
2s′−1,dir

in G such that the following conditions hold:

• For all 1 ≤ r < 2s′, PAr,dir is a path from Aj,h to Aj′,h.
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• For all 1 ≤ r ≤ s′, PAr,dir contains precisely one vertex in Ai,h for each

i ∈ {j, . . . , j′} \ {i1} and no other vertices.
• For all s′ < r < 2s′, PAr,dir contains precisely one vertex in Ai,h for each

i ∈ {j, . . . , j′} \ {i1, i1 + 1} and no other vertices.
• PA0,dir, . . . , P

A
2s′−1,dir are pairwise vertex-disjoint.

Let Q be the union of PA0,dir, . . . , P
A
2s′−1,dir. Thus Q is a path system consisting

of 2s′ vertex-disjoint directed paths from Aj,h to Aj′,h. Moreover, V (Q) consists
of precisely 2s′ vertices in Ai,h for every j ≤ i ≤ j′ and no other vertices. Set
A′i,h := Ai,h \ V (Q) for all i ≤ K. Note that

(2.8.3) |A′i,h| =
m

L
− 2s′ ≥ m

L
− 4ε0n ≥

m

L
− 10ε0mK ≥ (1−√ε0)

m

L

since ε0 � 1/K, 1/L. Pick a new constant ε′ such that ε, ε0 � ε′ � 1. Then
Proposition 1.4.1, (Sch3′) and (2.8.3) together imply that G[A′i,h, A

′
i+1,h] is still

[ε′, 1/2]-superregular and so by Proposition 1.4.2 we can find a perfect match-
ing in G[A′i,h, A

′
i+1,h] for all j ≤ i < j′. The union Q′ of all these matchings

forms m/L − 2s′ vertex-disjoint directed paths PA2s′,dir, . . . , P
A
m/L−1,dir. Note that

PA0,dir, P
A
1,dir, . . . , P

A
m/L−1,dir are pairwise vertex-disjoint and together cover precisely

the vertices in
⋃j′
i=j Ai,h. Moreover, PA0,dir contains J∗A,dir.

Similarly, we find m/L vertex-disjoint directed paths PB0,dir, P
B
1,dir, . . . ,

PBm/L−1,dir from Bj,h to Bj′,h such that PB0,dir contains J∗B,dir and together the

paths cover precisely the vertices in
⋃j′
i=j Bi,h. For each 1 ≤ r < m/L, let PAr

and PBr be the undirected paths obtained from PAr,dir and PBr,dir by ignoring the
directions of all the edges.

Since J∗A,dir ⊆ PA0,dir and J∗B,dir ⊆ PB0,dir and since J∗dir is the orientation of J∗

induced by Jdir, it follows that PA0,dir + PB0,dir − J∗dir + Jdir consists of two vertex-

disjoint paths P0,dir and P ′0,dir from Aj,h ∪ Bj,h to Aj′,h ∪ Bj′,h with V (P0,dir) ∪
V (P ′0,dir) = V0 ∪ V (PA0,dir) ∪ V (PB0,dir). Let P0 and P ′0 be the undirected paths

obtained from P0,dir and P ′0,dir by ignoring the directions of all the edges. Let

EPS be the union of P0, P
′
0, P

A
1 , . . . , P

A
m/L−1, P

B
1 , . . . , P

B
m/L−1. Then EPS is an

exceptional path system for G, as required. To see this, note that J = EPS −
EPS[A] − EPS[B] since eJ(A), eJ(B) = 0 by the definition of an exceptional
system (see (EC3) in Section 2.3). �

The next lemma uses the previous one to show that we can obtain many edge-
disjoint exceptional factors by extending exceptional systems with suitable proper-
ties.

Lemma 2.8.3. Suppose that L, f, q, n,m/L,K/f ∈ N, that K/f ≥ 3, that
0 < 1/n � ε, ε0 � 1, that ε0 � 1/K, 1/L and Lq/m � 1. Let (G,P,P ′) be a
[K,L,m, ε0, ε]-scheme with |V (G) ∪ V0| = n. Suppose that there exists a set J of
Lfq edge-disjoint exceptional systems satisfying the following conditions:

(i) Each J ∈ J is either a Hamilton exceptional system with eJ(A′, B′) = 2
or a matching exceptional system.

(ii) For all i ≤ f and all h ≤ L, J contains precisely q (i1, i2)-ES of style h
(with respect to (P,P ′)) for which i1, i2 ∈ {(i− 1)K/f + 2, . . . , iK/f}.
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Then there exist q edge-disjoint exceptional factors with parameters (L, f) for G
(with respect to (P,P ′)) covering all edges in

⋃J .

Recall that the canonical interval partition I(f,K) of [K] into f intervals con-
sists of the intervals {(i − 1)K/f + 1, . . . , iK/f + 1} for all i ≤ f . So (ii) ensures
that for each interval I ∈ I(f,K) and each h ≤ L, the set J contains precisely
q exceptional systems of style h whose edges are only incident to vertices in V0

and vertices belonging to clusters Ai1 and Bi2 for which both i1 and i2 lie in the
interior of I. We will use Lemma 2.8.2 to extend each such exceptional system into
an exceptional path system of style h spanning I.

Proof of Lemma 2.8.3. Choose a new constant ε′ with ε, Lq/m� ε′ � 1. Let
J1, . . . ,Jq be a partition of J such that for all j ≤ q, h ≤ L and i ≤ f , the set Jj
contains precisely one (i1, i2)-ES of style h with i1, i2 ∈ {(i−1)K/f+2, . . . , iK/f}.
Thus each Jj consists of Lf exceptional systems. For each j ≤ q in turn, we will
choose an exceptional factor EFj with parameters (L, f) for G (with respect to
(P,P ′)) such that EFj and EFj′ are edge-disjoint for all j′ < j and EFj contains
all edges of the exceptional systems in Jj . Assume that for some 1 ≤ j ≤ q
we have already constructed EF1, . . . , EFj−1. In order to construct EFj , we will
choose the Lf exceptional path systems forming EFj one by one, such that each of
these exceptional path systems is edge-disjoint from EF1, . . . , EFj−1 and contains
precisely one of the exceptional systems in Jj . Suppose that we have already
chosen some of these exceptional path systems and that next we wish to choose
an exceptional path system of style h which spans the interval I of the canonical
interval partition I(f,K) and contains J ∈ Jj . Let G′ be the oriented graph
obtained from G by deleting all the edges in the path systems already chosen for
EFj as well as deleting all the edges in EF1, . . . , EFj−1. Recall that V (G) = A∪B.
Thus ∆(G−G′) ≤ 2j < 3q by (2.8.2). Together with Proposition 1.4.1 this implies
that (G′,P,P ′) is still a [K,L,m, ε0, ε

′]-scheme. (Here we use that ∆(G − G′) <
3q = 3Lq/m ·m/L and ε, Lq/m � ε′ � 1.) So we can apply Lemma 2.8.2 with
ε′ playing the role of ε to obtain an exceptional path system of style h for G′ (and
thus for G) which spans I and contains all edges of J . This completes the proof of
the lemma. �

2.9. The Robust Decomposition Lemma

The aim of this section is to state the robust decomposition lemma (Lem-
ma 2.9.4). This is the key lemma proved in [21] and guarantees the existence of a
‘robustly decomposable’ digraph Grob

dir within a ‘setup’. For our purposes, we will
then derive an undirected version in Corollary 2.9.5 to construct a robustly decom-
posable graph Grob. Then Grob + H will have a Hamilton decomposition for any
sparse regular graph H which is edge-disjoint from Grob. The crucial ingredient
of a setup is a ‘universal walk’, which we introduce in the next subsection. The
(proof of the) robust decomposition lemma then uses edges guaranteed by this uni-
versal walk to ‘balance out’ edges of the graph H when constructing the Hamilton
decomposition of Grob +H.

2.9.1. Chord Sequences and Universal Walks. Let R be a digraph whose
vertices are V1, . . . , Vk and suppose that C = V1 . . . Vk is a Hamilton cycle of R.
(Later on the vertices of R will be clusters. So we denote them by capital letters.)
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A chord sequence CS(Vi, Vj) from Vi to Vj in R is an ordered sequence of edges
of the form

CS(Vi, Vj) = (Vi1−1Vi2 , Vi2−1Vi3 , . . . , Vit−1Vit+1),

where Vi1 = Vi, Vit+1 = Vj and the edge Vis−1Vis+1 belongs to R for each s ≤ t.
If i = j then we consider the empty set to be a chord sequence from Vi to Vj .

Without loss of generality, we may assume that CS(Vi, Vj) does not contain any
edges of C. (Indeed, suppose that Vis−1Vis+1

is an edge of C. Then is = is+1 and
so we can obtain a chord sequence from Vi to Vj with fewer edges.) For example,
if Vi−1Vi+1 ∈ E(R), then the edge Vi−1Vi+1 is a chord sequence from Vi to Vi+1.

The crucial property of chord sequences is that they satisfy a ‘local balance’
condition. Suppose that CS is obtained by concatenating several chord sequences

CS(Vi1 , Vi2), CS(Vi2 , Vi3), . . . , CS(Vik−1
, Vik)

so that Vi1 = Vik . Then for every cluster Vi, the number of edges of CS leaving Vi−1

equals the number of edges entering Vi. We will not use this property explicitly,
but it underlies the proof of the robust decomposition lemma (Lemma 2.9.4) that
we apply and appears implicitly e.g. in (U3).

A closed walk U in R is a universal walk for C with parameter `′ if the following
conditions hold:

(U1) For every i ≤ k there is a chord sequence ECS(Vi, Vi+1) from Vi to Vi+1

such that U contains all edges of all these chord sequences (counted with
multiplicities) and all remaining edges of U lie on C.

(U2) Each ECS(Vi, Vi+1) consists of at most
√
`′/2 edges.

(U3) U enters each Vi exactly `′ times and leaves each Vi exactly `′ times.

Note that condition (U1) means that if an edge ViVj ∈ E(R)\E(C) occurs in total
5 times (say) in ECS(V1, V2), . . . , ECS(Vk, V1) then it occurs precisely 5 times in
U . We will identify each occurrence of ViVj in ECS(V1, V2), . . . , ECS(Vk, V1) with
a (different) occurrence of ViVj in U . Note that the edges of ECS(Vi, Vi+1) are
allowed to appear in a different order within ECS(Vi, Vi+1) and within U .

Lemma 2.9.1. Let R be a digraph with vertices V1, . . . , Vk. Suppose that C =
V1 . . . Vk is a Hamilton cycle of R and that ViVi+2 ∈ E(R) for every 1 ≤ i ≤ k. Let
`′ ≥ 4 be an integer. Let U`′ the multiset obtained from `′ − 1 copies of E(C) by
adding ViVi+2 ∈ E(R) for every 1 ≤ i ≤ k. Then the edges in U`′ can be ordered
so that the resulting sequence forms a universal walk for C with parameter `′.

In the remainder of this section, we will also write U`′ for the universal walk
guaranteed by Lemma 2.9.1.

Proof. Let us first show that the edges in U`′ can be ordered so that the result-
ing sequence forms a closed walk in R. To see this, consider the multidigraph U
obtained from U`′ by deleting one copy of E(C). Then U is (`′ − 1)-regular and
thus has a decomposition into 1-factors. We order the edges of U`′ as follows: We
first traverse all cycles of the 1-factor decomposition of U which contain the cluster
V1. Next, we traverse the edge V1V2 of C. Next we traverse all those cycles of the
1-factor decomposition which contain V2 and which have not been traversed so far.
Next we traverse the edge V2V3 of C and so on until we reach V1 again.

Recall that, for each 1 ≤ i ≤ k, the edge Vi−1Vi+1 is a chord sequence from Vi
to Vi+1. Thus we can take ECS(Vi, Vi+1) := Vi−1Vi+1. Then U`′ satisfies (U1)–
(U3). �
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2.9.2. Setups and the Robust Decomposition Lemma. The aim of this
subsection is to state the robust decomposition lemma (Lemma 2.9.4, proved in [21])
and derive Corollary 2.9.5, which we shall use later on in order to prove Theo-
rem 1.3.3. The robust decomposition lemma guarantees the existence of a ‘robustly
decomposable’ digraph Grob

dir within a ‘setup’. Roughly speaking, a setup is a di-
graph G together with its ‘reduced digraph’ R, which contains a Hamilton cycle
C and a universal walk U . In our application, we will have two setups: G[A] and
G[B] will play the role of G, and R will be the complete digraph in both cases. To
define a setup formally, we first need to define certain ‘refinements’ of partitions.

Given a digraph G and a partition P of V (G) into k clusters V1, . . . , Vk of equal
size, we say that a partition P ′ of V is an `′-refinement of P if P ′ is obtained by
splitting each Vi into `′ subclusters of equal size. (So P ′ consists of `′k clusters.)
P ′ is an ε-uniform `-refinement of P if it is an `-refinement of P which satisfies
the following condition: Whenever x is a vertex of G, V is a cluster in P and
|N+

G (x) ∩ V | ≥ ε|V | then |N+
G (x) ∩ V ′| = (1 ± ε)|N+

G (x) ∩ V |/` for each cluster
V ′ ∈ P ′ with V ′ ⊆ V . The inneighbourhoods of the vertices of G satisfy an
analogous condition. We need the following simple observation from [21]. The
proof proceeds by considering a random partition to obtain a uniform refinement.

Lemma 2.9.2. Suppose that 0 < 1/m � 1/k, ε � ε′, d, 1/` ≤ 1 and that
n, k, `,m/` ∈ N. Suppose that G is a digraph on n = km vertices and that P
is a partition of V (G) into k clusters of size m. Then there exists an ε-uniform
`-refinement of P. Moreover, any ε-uniform `-refinement P ′ of P automatically
satisfies the following condition:

• Suppose that V , W are clusters in P and V ′,W ′ are clusters in P ′ with
V ′ ⊆ V and W ′ ⊆ W . If G[V,W ] is [ε, d′]-superregular for some d′ ≥ d
then G[V ′,W ′] is [ε′, d′]-superregular.

We will also need the following definition from [21]. (G,P,P ′, R, C, U, U ′) is
called an (`′, k,m, ε, d)-setup if the following properties are satisfied:

(ST1) G and R are digraphs. P is a partition of V (G) into k clusters of size m.
The vertex set of R consists of these clusters.

(ST2) For every edge VW of R the corresponding pair G[V,W ] is (ε,≥ d)-
regular.

(ST3) C is a Hamilton cycle of R and for every edge VW of C the corresponding
pair G[V,W ] is [ε,≥ d]-superregular.

(ST4) U is a universal walk for C with parameter `′ and P ′ is an ε-uniform
`′-refinement of P.

(ST5) Suppose that C = V1 . . . Vk and let V 1
j , . . . , V

`′

j denote the clusters in P ′
which are contained in Vj (for each 1 ≤ j ≤ k). Then U ′ is a closed walk
on the clusters in P ′ which is obtained from U as follows: When U visits
Vj for the ath time, we let U ′ visit the subcluster V aj (for all 1 ≤ a ≤ `′).

(ST6) Each edge of U ′ corresponds to an [ε,≥ d]-superregular pair in G.

In [21], in a setup, the digraph G could also contain an exceptional set, but since
we are only using the definition in the case when there is no such exceptional set,
we have only stated it in this special case.

Suppose that (G,P,P ′) is a [K,L,m, ε0, ε]-scheme. Recall that A1, . . . , AK
and B1, . . . , BK denote the clusters of P. Let QA := {A1, . . . , AK}, QB :=
{B1, . . . , BK} and let CA = A1 . . . AK and CB = B1 . . . BK be (directed) cycles.
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Suppose that `′,m/`′ ∈ N with `′ ≥ 4. Let Q′A be an ε-uniform `′-refinement of
QA. Let RA be the complete digraph whose vertices are the clusters in QA. Let
UA,`′ be a universal walk for CA with parameter `′ as defined in Lemma 2.9.1. Let
U ′A,`′ be the closed walk obtained from UA,`′ as described in (ST5). We will call

(G[A],QA,Q′A, RA, CA, UA,`′ , U ′A,`′)
the A-setup associated to (G,P,P ′). Define Q′B , RB , UB,`′ and U ′B,`′ similarly. We
will call

(G[B],QB ,Q′B , RB , CB , UB,`′ , U ′B,`′)
the B-setup associated to (G,P,P ′). The following lemma shows that both the
A-setup and the B-setup indeed satisfy all the conditions in the definition of a
setup.

Lemma 2.9.3. Suppose that 1/m � 1/K, ε0, ε � ε′, 1/`′ and K,L,m/L, `′,
m/`′ ∈ N with `′ ≥ 4. Suppose that (G,P,P ′) is a [K,L,m, ε0, ε]-scheme. Then
each of

(G[A],QA,Q′A, RA, CA, UA,`′ , U ′A,`′) and (G[B],QB ,Q′B , RB , CB , UB,`′ , U ′B,`′)
is an (`′,K,m, ε′, 1/2)-setup.

Proof. It suffices to show that (G[A],QA,Q′A, RA, CA, UA,`′ , U ′A,`′) is an (`′,K,m,

ε′, 1/2)-setup. Clearly, (ST1) holds. (Sch3′) implies that (ST2) and (ST3) hold.
Lemma 2.9.1 implies (ST4). (ST5) follows from the definition of U ′A,`′ . (ST6)

follows from Lemma 2.9.2 since Q′A is an ε-uniform `′-refinement of QA. �

We now state the robust decomposition lemma from [21]. Recall that this
guarantees the existence of a ‘robustly decomposable’ digraph Grob

dir , whose crucial
property is that H + Grob

dir has a Hamilton decomposition for any sparse regular
digraph H which is edge-disjoint from Grob

dir .
Grob

dir consists of digraphs CAdir(r) (the ‘chord absorber’) and PCAdir(r) (the
‘parity extended cycle switcher’) together with some special factors. Grob

dir is con-
structed in two steps: given a suitable set SF of special factors, the lemma first
‘constructs’ CAdir(r) and then, given another suitable set SF ′ of special factors, the
lemma ‘constructs’ PCAdir(r). The reason for having two separate steps is that
in [21], it is not clear how to construct CAdir(r) after constructing SF ′ (rather
than before), as the removal of SF ′ from the digraph under consideration affects
its properties considerably.

Lemma 2.9.4. Suppose that 0 < 1/m � 1/k � ε � 1/q � 1/f � r1/m �
d� 1/`′, 1/g � 1 and that rk2 ≤ m. Let

r2 := 96`′g2kr, r3 := rfk/q, r� := r1 + r2 + r − (q − 1)r3, s′ := rfk + 7r�

and suppose that k/14, k/f, k/g, q/f,m/4`′, fm/q, 2fk/3g(g−1) ∈ N. Suppose that
(G,P,P ′, R, C, U, U ′) is an (`′, k,m, ε, d)-setup and C = V1 . . . Vk. Suppose that P∗
is a (q/f)-refinement of P and that SF1, . . . , SFr3 are edge-disjoint special factors
with parameters (q/f, f) with respect to C, P∗ in G. Let SF := SF1 + · · ·+ SFr3 .
Then there exists a digraph CAdir(r) for which the following holds:

(i) CAdir(r) is an (r1 + r2)-regular spanning subdigraph of G which is edge-
disjoint from SF .
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(ii) Suppose that SF ′1, . . . , SF
′
r� are special factors with parameters (1, 7) with

respect to C, P in G which are edge-disjoint from each other and from
CAdir(r) +SF . Let SF ′ := SF ′1 + · · ·+SF ′r� . Then there exists a digraph
PCAdir(r) for which the following holds:
(a) PCAdir(r) is a 5r�-regular spanning subdigraph of G which is edge-

disjoint from CAdir(r) + SF + SF ′.
(b) Let SPS be the set consisting of all the s′ special path systems con-

tained in SF+SF ′. Suppose that H is an r-regular digraph on V (G)
which is edge-disjoint from Grob

dir := CAdir(r)+PCAdir(r)+SF+SF ′.
Then H + Grob

dir has a decomposition into s′ edge-disjoint Hamilton
cycles C1, . . . , Cs′ . Moreover, Ci contains one of the special path
systems from SPS, for each i ≤ s′.

Recall from Section 2.8.1 that we always view fictive edges in special factors as
being distinct from each other and from the edges in other graphs. So for example,
saying that CAdir(r) and SF are edge-disjoint in Lemma 2.9.4 still allows for a
fictive edge xy in SF to occur in CAdir(r) as well (but CAdir(r) will avoid all
non-fictive edges in SF).

In the proof of Theorem 1.3.3 we will use the following ‘undirected’ consequence
of Lemma 2.9.4.

Corollary 2.9.5. Suppose that 0 < 1/m � ε0, 1/K � ε � 1/L � 1/f �
r1/m� 1/`′, 1/g � 1 and that rK2 ≤ m. Let

r2 := 96`′g2Kr, r3 := rK/L, r� := r1 + r2 + r− (Lf − 1)r3, s′ := rfK + 7r�

and suppose that K/14,K/f,K/g,m/4`′,m/L, 2fK/3g(g − 1) ∈ N. Suppose that
(Gdir,P,P ′) is a [K,L,m, ε0, ε]-scheme and let G′ denote the underlying undirected
graph of Gdir. Suppose that EF1, . . . , EFr3 are edge-disjoint exceptional factors with
parameters (L, f) for Gdir (with respect to (P,P ′)). Let EF := EF1 + · · ·+ EFr3 .
Then there exists a graph CA(r) for which the following holds:

(i) CA(r) is a 2(r1+r2)-regular spanning subgraph of G′ which is edge-disjoint
from EF .

(ii) Suppose that EF ′1, . . . , EF
′
r� are exceptional factors with parameters (1, 7)

for Gdir (with respect to (P,P)) which are edge-disjoint from each other
and from CA(r) + EF . Let EF ′ := EF ′1 + · · · + EF ′r� . Then there exists
a graph PCA(r) for which the following holds:
(a) PCA(r) is a 10r�-regular spanning subgraph of G′ which is edge-

disjoint from CA(r) + EF + EF ′.
(b) Let EPS be the set consisting of all the s′ exceptional path systems

contained in EF + EF ′. Suppose that HA is a 2r-regular graph on

A =
⋃K
i=1Ai and HB is a 2r-regular graph on B =

⋃K
i=1Bi. Suppose

that H := HA+HB is edge-disjoint from Grob := CA(r)+PCA(r)+
EF+EF ′. Then H+Grob has a decomposition into s′ edge-disjoint 2-
factors H1, . . . ,Hs′ such that each Hi contains one of the exceptional
path systems from EPS. Moreover, for each i ≤ s′, the following
assertions hold:
(b1) If the exceptional path system contained in Hi is a Hamil-

ton exceptional path system, then Hi is a Hamilton cycle on
V (Gdir) ∪ V0.
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(b2) If the exceptional path system contained in Hi is a matching
exceptional path system, then Hi is the union of a Hamilton
cycle on A′ = A ∪ A0 and a Hamilton cycle on B′ = B ∪ B0.
In particular, if both |A′| and |B′| are even, then Hi is the
union of two edge-disjoint perfect matchings on V (Gdir) ∪ V0.

We remark that, as usual, in Corollary 2.9.5 we write A0 and B0 for the excep-
tional sets of P, V0 for A0 ∪B0, and A1, . . . , AK , B1, . . . , BK for the clusters in P.
Note that the vertex set of each of EF , EF ′, Grob includes V0 while that of Gdir,
CA(r), PCA(r), H does not.

Moreover, note that matching exceptional systems are only constructed if both
|A′| and |B′| are even. Indeed, we only construct matching exceptional systems in
the case when eG(A′, B′) < D. But by Proposition 2.2.1(ii), in this case we have
that n = 0 (mod 4) and |A′| = |B′| = n/2. Therefore, Corollary 2.9.5(ii)(b) implies
that H + Grob has a decomposition into Hamilton cycles and perfect matchings.
The proportion of Hamilton cycles (and perfect matchings) in this decomposition
is determined by EF + EF ′, and does not depend on H.

Proof of Corollary 2.9.5. Choose new constants ε′, d such that ε � ε′ � 1/L
and r1/m � d � 1/`′, 1/g. Consider the A-setup (Gdir[A],QA,Q′A, RA, CA, UA,`′ ,
U ′A,`′) associated to (Gdir,P,P ′). By Lemma 2.9.3, this is an (`′,K,m, ε′, 1/2)-

setup and thus also an (`′,K,m, ε′, d)-setup.
Recall that P ′ is obtained from P by partitioning each cluster Ai of P into

L sets Ai,1, . . . , Ai,L of equal size and partitioning each cluster Bi of P into L
sets Bi,1, . . . , Bi,L of equal size. Let Q′′A := {A1,1, . . . , AK,L}. (So Q′′A plays the
role of Q′A in (2.8.1).) Let EF ∗i,A,dir be as defined in Section 2.8.2. Recall from

there that, for each i ≤ r3, EF ∗i,A,dir is a special factor with parameters (L, f)

with respect to CA = A1 . . . AK , Q′′A in Gdir[A] such that Fict(EF ∗i,A,dir) is the

union of J∗[A] over all the Lf exceptional systems J contained in EFi. Thus we
can apply Lemma 2.9.4 to (Gdir[A],QA,Q′A, RA, CA, UA,`′ , U ′A,`′) with K, Lf , ε′

playing the roles of k, q, ε in order to obtain a spanning subdigraph CAA,dir(r) of
Gdir[A] which satisfies Lemma 2.9.4(i). Similarly, we obtain a spanning subdigraph
CAB,dir(r) of Gdir[B] which satisfies Lemma 2.9.4(i) (with Gdir[B] playing the role
of G). Thus the underlying undirected graph CA(r) of CAA,dir(r) + CAB,dir(r)
satisfies Corollary 2.9.5(i).

Now let EF ′1, . . . , EF
′
r� be exceptional factors as described in Corollary 2.9.5(ii).

Similarly as before, for each i ≤ r�, (EF ′i )
∗
A,dir is a special factor with param-

eters (1, 7) with respect to CA, QA in Gdir[A] such that Fict((EF ′i )
∗
A,dir) is the

union of J∗[A] over all the 7 exceptional systems J contained in EF ′i . Thus we
can apply Lemma 2.9.4 (with Gdir[A] playing the role of G) to obtain a spanning
subdigraph PCAA,dir(r) of Gdir[A] which satisfies Lemma 2.9.4(ii)(a) and (ii)(b).
Similarly, we obtain a spanning subdigraph PCAB,dir(r) of Gdir[B] which satis-
fies Lemma 2.9.4(ii)(a) and (ii)(b) (with Gdir[B] playing the role of G). Thus the
underlying undirected graph PCA(r) of PCAA,dir(r)+PCAB,dir(r) satisfies Corol-
lary 2.9.5(ii)(a).

It remains to check that Corollary 2.9.5(ii)(b) holds too. Thus let H = HA+HB

be as described in Corollary 2.9.5(ii)(b). Let HA,dir be an r-regular orientation of
HA. (To see that such an orientation exists, apply Petersen’s theorem, i.e. Theo-
rem 1.3.10, to obtain a decomposition of HA into 2-factors and then orient each
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2-factor to obtain a (directed) 1-factor.) Let EF∗A,dir := EF ∗1,A,dir + · · ·+EF ∗r3,A,dir

and let (EF ′)∗A,dir := (EF ′1)∗A,dir + · · · + (EF ′r�)
∗
A,dir. Then Lemma 2.9.4(ii)(b)

implies that HA,dir +CAA,dir(r)+PCAA,dir(r)+EF∗A,dir +(EF ′)∗A,dir has a decom-

position into s′ edge-disjoint (directed) Hamilton cycles C ′1,A, . . . , C
′
s′,A such that

each C ′i,A contains EPS∗i′,A,dir for some exceptional path system EPSi′ ∈ EPS.

Similarly, let HB,dir be an r-regular orientation of HB . Then HB,dir +CAB,dir(r)+
PCAB,dir(r) + EF∗B,dir + (EF ′)∗B,dir has a decomposition into s′ edge-disjoint (di-

rected) Hamilton cycles C ′1,B , . . . , C
′
s′,B such that each C ′i,B contains EPS∗i′′,B,dir

for some exceptional path system EPSi′′ ∈ EPS. By relabeling the C ′i,A and

C ′i,B if necessary, we may assume that C ′i,A contains EPS∗i,A,dir and C ′i,B contains

EPS∗i,B,dir. Let Ci,A and Ci,B be the undirected cycles obtained from C ′i,A and

C ′i,B by ignoring the directions of all the edges. So Ci,A contains EPS∗i,A and Ci,B
contains EPS∗i,B . Let Hi := Ci,A +Ci,B −EPS∗i +EPSi. Then Proposition 2.8.1

(applied with G′ playing the role of G) implies that H1, . . . ,Hs′ is a decomposition
of H +Grob = H + CA(r) + PCA(r) + EF + EF ′ into edge-disjoint 2-factors sat-
isfying Corollary 2.9.5(ii)(b1) and (b2). �

2.10. Proof of Theorem 1.3.3

Before we can prove Theorem 1.3.3, we need the following two observations. Re-
call that a (K,m, ε0, ε)-scheme was defined in Section 2.4 and that a [K,L,m, ε0, ε

′]-
scheme was defined in Section 2.8.3.

Proposition 2.10.1. Suppose that 0 < 1/m� ε, ε0 � ε′ � 1/K, 1/L� 1 and
that K,L,m/L ∈ N. Suppose that (G,P ′) is a (KL,m/L, ε0, ε)-scheme. Suppose
that P is a (K,m, ε0)-partition such that P ′ is an L-refinement of P. Then there
exists an orientation Gdir of G such that (Gdir,P,P ′) is a [K,L,m, ε0, ε

′]-scheme.

Proof. Randomly orient every edge in G to obtain an oriented graph Gdir. (So
given any edge xy in G with probability 1/2, xy ∈ E(Gdir) and with probability 1/2,
yx ∈ E(Gdir).) (Sch1′) and (Sch2′) follow immediately from (Sch1) and (Sch2).

Note that (Sch3) imply thatG[Ai,j , Bi′,j′ ] is [1,
√
ε]-superregular with density at

least 1− ε, for all i, i′ ≤ K and j, j′ ≤ L. Using this, (Sch3′) follows easily from the
large deviation bound in Proposition 1.4.4. (Sch4′) follows from Proposition 1.4.4
in a similar way. �

Proposition 2.10.2. Suppose that G is a D-regular graph on n vertices which
is ε-close to the union of two disjoint copies of Kn/2. Then D ≤ (1/2 + 4ε)n.

Proof. Let B ⊆ V (G) with |B| = bn/2c be such that e(B, V (G) \ B) ≤ εn2.
Note that B exists since G is ε-close to the union of two disjoint copies of Kn/2.
Let A = V (G) \ B. If D > (1/2 + 4ε)n, then Proposition 2.2.1(i) implies that
e(A,B) > εn2, a contradiction. �

We can now put everything together and prove Theorem 1.3.3 in the following
steps. We choose the (localized) exceptional systems needed as an ‘input’ for Corol-
lary 2.9.5 to construct the robustly decomposable graph Grob in Step 3. For this, we
first choose appropriate constants and a suitable vertex partition in Steps 1 and 2
respectively (in Step 1, we also find some Hamilton cycles covering ‘bad’ edges). In
Step 4, we then apply Corollary 2.9.5 to find Grob. Similarly, we then choose the
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(localized) exceptional systems needed as an ‘input’ for the ‘approximate decom-
position lemma’ (Lemma 2.5.4) in Step 6 (in this step, we also find some Hamilton
cycles which extend those exceptional systems which are not localized). For Step 6,
we first choose a suitable vertex partition in Step 5. In Step 7, we find an approxi-
mate decomposition using Lemma 2.5.4 and in Step 8, we decompose the union of
the ‘leftover’ and Grob via Corollary 2.9.5.

Proof of Theorem 1.3.3.
Step 1: Choosing the constants and a framework. Choose n0 ∈ N to be
sufficiently large compared to 1/εex. Let G and D be as in Theorem 1.3.3. By
Proposition 2.10.2

n/2− 1 ≤ D ≤ (1/2 + 4εex)n.(2.10.1)

Define new constants such that

0 < 1/n0 � εex � ε0 � φ0 � ε∗ � ε′∗ � ε′1 � λK2
� 1/K2 � γ � 1/K1

� ε′′∗ � 1/L� 1/f � γ1 � 1/g � ε′2, λK1L � ε� 1,

where K1,K2, L, f, g ∈ N and K2 is odd. Note that we can choose the constants
such that

(2.10.2)
D − φ0n

400(K1LK2)2
, φ0n,

λK1Ln

(K1L)2
,
λK2

n

K2
2

,
K1

14fg
,

2fK1

3g(g − 1)
∈ N.

Apply Proposition 2.2.5 to obtain a partition A,A0, B,B0 of V (G) such that
(G,A,A0, B,B0) is an (ε0, 4gK1LK2)-framework with ∆(G[A′, B′]) ≤ D/2 (where
A′ := A ∪ A0 and B′ := B ∪ B0). Let w1 and w2 be two vertices of G such that
dG[A′,B′](w1) ≥ dG[A′,B′](w2) ≥ dG[A′,B′](v) for all v ∈ V (G) \ {w1, w2}. Note
that the partition A,A0, B,B0 of V (G) and the two vertices w1 and w2 are fixed
throughout the proof. Moreover, in the remainder of the proof, given a graph H
on V (G), we will always write H� for H −H[A]−H[B].

Next we apply Lemma 2.6.3 with φ0 and 4gK1LK2 playing the roles of φ and
K to find a spanning subgraph H′1 of G. Let G1 := G − H′1. Thus the following
properties are satisfied:

(α1) G[A0] +G[B0] ⊆ H′1 and H′1 is a φ0n-regular spanning graph of G.
(α2) eH′1(A′, B′) ≤ φ0n and eG1(A′, B′) is even.
(α3) The edges of H′1 can be decomposed into beH′1(A′, B′)/2c Hamilton cycles

and φ0n− 2beH′1(A′, B′)/2c perfect matchings. Moreover, if eG(A′, B′) ≥
D, then this decomposition consists of bφ0n/2c Hamilton cycles and one
perfect matching if D is odd.

(α4) dG1[A′,B′](w1) ≤ (D − φ0n)/2. Furthermore, if D = n/2− 1 then
dG1[A′,B′](w2) ≤ (D − φ0n)/2.

(α5) If eG(A′, B′) < D, then ∆(G1[A′, B′]) ≤ e(G1[A′, B′])/2 ≤ (D − φ0n)/2.

Let H1 be the collection of Hamilton cycles and perfect matchings guaranteed by
(α3). (So H′1 =

⋃H1.) Note that

(2.10.3) D1 := D − φ0n

is even (since (2.10.2) implies that D and φ0n have the same parity) and that G1

is D1-regular. Moreover, (G1, A,A0, B,B0) is an (ε0, 4gK1LK2)-framework with
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∆(G1[A′, B′]) ≤ D/2. Let

m1 :=
|A|
K1

=
|B|
K1

, r := γm1, r1 := γ1m1, r2 := 96g3K1r,

r3 :=
rK1

L
, r� := r1 + r2 + r − (Lf − 1)r3,

m2 :=
|A|
K2

=
|B|
K2

, D4 := D1 − 2(Lfr3 + 7r�).(2.10.4)

Note that (FR3) implies m1/L ∈ N. Moreover,

(2.10.5) r2, r3 ≤ γ1/2m1 ≤ γ1/3r1, r1/2 ≤ r� ≤ 2r1.

Furthermore, by changing γ, γ1 slightly, we may assume that r/400LK2
2 , r1/400K2

2

∈ N. This implies that r2/400K2
2 , r3/400K2

2 , r
�/400K2

2 ∈ N. Together with the
fact that D1/400K2

2 = (D− φ0n)/400K2
2 ∈ N by (2.10.2), this in turn implies that

(2.10.6) D4/400K2
2 ∈ N.

Step 2: Choosing a (K1, L,m1, ε0)-partition (P1,P ′1). We now prepare the
ground for the construction of the robustly decomposable graph Grob, which we
will obtain via the robust decomposition lemma (Corollary 2.9.5) in Step 4.

Since (G1, A,A0, B,B0) is an (ε0, 4gK1LK2)-framework, it is also an (ε0,K1L)-
framework. Recall that G1 is D1-regular and D1 = D − φ0n ≥ (1 − 3φ0)n/2 (as
D ≥ n/2 − 1). Apply Lemma 2.4.2 with G1, m1/L, 3φ0, K1L, ε∗, ε∗ playing the
roles of G, m, µ, K, ε1, ε2 to obtain partitions A′1, . . . , A

′
K1L

of A and B′1, . . . , B
′
K1L

of B into sets of size m1/L such that the following properties are satisfied:

(S1a) Together with A0 and B0 all these sets A′i and B′i form a (K1L,m1/L, ε0)-
partition P ′1 of V (G1).

(S1b) (G1[A] +G1[B],P ′1) is a (K1L,m1/L, ε0, ε∗)-scheme.
(S1c) (G�1,P ′1) is a (K1L,m1/L, ε0, ε∗)-exceptional scheme (where G�1 := G1 −

G1[A]−G2[B]).

Note that (1 − ε0)n ≤ n − |A0 ∪ B0| = 2K1m1 ≤ n by (FR3). For all i ≤ K1

and all h ≤ L, let Ai,h := A′(i−1)L+h. (So this is just a relabeling of the sets

A′i.) Define Bi,h similarly and let Ai :=
⋃
h≤LAi,h and Bi :=

⋃
h≤LBi,h. Let

P1 := {A0, B0, A1, . . . , AK1 , B1, . . . , BK1} denote the corresponding (K1,m1, ε0)-
partition of V (G). Thus (P1,P ′1) is a (K1, L,m1, ε0)-partition of V (G), as defined
in Section 2.8.2.

Step 3: Exceptional systems for the robustly decomposable graph. In
order to be able to apply Corollary 2.9.5 to obtain the robustly decomposable graph
Grob, we first need to construct suitable exceptional systems with parameter ε0.
The construction of these exceptional systems depends on whether G is critical and
whether eG(A′, B′) ≥ D. First we show that in each case, for all 1 ≤ i′1, i′2 ≤ K1L,
we can always find sets Ji′1,i′2 of λK1Ln/(K1L)2 (i′1, i

′
2)-ES with respect to P ′1.

Case 1: eG(A′, B′) ≥ D and G is not critical. Our aim is to apply Lemma 2.7.3
to G with H′1, m1/L, K1L, P ′1, ε∗, φ0, λK1L playing the roles of G0, m, K, P,
ε, φ, λ. First we verify that Lemma 2.7.3(i)–(iv) are satisfied. Lemma 2.7.3(i)
holds trivially. (FR2) implies that eG(A′, B′) ≤ ε0n

2. Moreover, recall from (S1a)
that P ′1 is a (K1L,m1/L, ε0)-partition of V (G) and that A′ and B′ were chosen
(by Proposition 2.2.5) such that ∆(G[A′, B′]) ≤ D/2. Altogether this shows that
Lemma 2.7.3(ii) holds. Lemma 2.7.3(iii) follows from (α1) and (α2). To verify
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Lemma 2.7.3(iv), note that G�1 plays the role of G� in Lemma 2.7.3 and G�1[A′, B′] =
G1[A′, B′]. So eG�1 (A′, B′) is even by (α2). Together with the fact that (G�1,P ′1) is
a (K1L,m1/L, ε0, ε∗)-exceptional scheme by (S1c), this implies Lemma 2.7.3(iv).

By Lemma 2.7.3, we obtain a set J of λK1Ln edge-disjoint Hamilton exceptional
systems J in G�1 such that eJ(A′, B′) = 2 for each J ∈ J and such that for all
1 ≤ i′1, i

′
2 ≤ K1L the set J contains precisely λK1Ln/(K1L)2 (i′1, i

′
2)-HES with

respect to the partition P ′1. For all 1 ≤ i′1, i
′
2 ≤ K1L, let Ji′1,i′2 be the set of these

λK1Ln/(K1L)2 (i′1, i
′
2)-HES in J . So J is the union of all the sets Ji′1,i′2 . (Note

that the set J here is a subset of the set J in Lemma 2.7.3, i.e. we do not use all
the Hamilton exceptional systems constructed by Lemma 2.7.3. So we do not need
the full strength of Lemma 2.7.3 at this point.)
Case 2: eG(A′, B′) ≥ D and G is critical. Recall from Lemma 2.7.1(ii) that in
this case we have D = (n− 1)/2 or D = n/2− 1. Our aim is to apply Lemma 2.7.4
to G with H′1, m1/L, K1L, P ′1, ε∗, φ0, λK1L playing the roles of G0, m, K, P, ε, φ,
λ. Similar arguments as in Case 1 show that Lemma 2.7.4(i)–(iv) hold. Recall that
w1 and w2 are (fixed) vertices in V (G) such that dG[A′,B′](w1) ≥ dG[A′,B′](w2) ≥
dG[A′,B′](v) for all v ∈ V (G) \ {w1, w2}. Since G�1[A′, B′] = G1[A′, B′], (α4)
implies that dG�1 [A′,B′](w1) ≤ (D − φ0n)/2. Moreover, if D = n/2 − 1, then
dG�1 [A′,B′](w2) ≤ (D − φ0n)/2. Let W be the set of vertices w ∈ V (G) such
that dG[A′,B′](w) ≥ 11D/40, as defined in Lemma 2.7.1. If D = (n − 1)/2, then
|W | = 1 by Lemma 2.7.1(ii). This means that w2 /∈ W and so dG�1 [A′,B′](w2) ≤
dG[A′,B′](w2) ≤ 11D/40. Thus in both cases we have that

(2.10.7) dG�1 [A′,B′](w1), dG�1 [A′,B′](w2) ≤ (D − φ0n)/2.

Therefore, Lemma 2.7.4(v) holds.
By Lemma 2.7.4, we obtain a set J of λK1Ln edge-disjoint Hamilton excep-

tional systems J in G�1 such that, for all 1 ≤ i′1, i
′
2 ≤ K1L, the set J contains

precisely λK1Ln/(K1L)2 (i′1, i
′
2)-HES with respect to the partition P ′1. Moreover,

each J ∈ J satisfies eJ(A′, B′) = 2 and dJ[A′,B′](w) = 1 for all w ∈ {w1, w2} with
dG[A′,B′](w) ≥ 11D/40. For all 1 ≤ i′1, i

′
2 ≤ K1L, let Ji′1,i′2 be the set of these

λK1Ln/(K1L)2 (i′1, i
′
2)-HES. So J is the union of all the sets Ji′1,i′2 . (So similarly

as in Case 1, we do not use all the Hamilton exceptional systems constructed by
Lemma 2.7.4 at this point.)
Case 3: eG(A′, B′) < D. Recall from Proposition 2.2.1(ii) that in this case we
have D = n/2 − 1, n = 0 (mod 4) and |A′| = |B′| = n/2. Our aim is to apply
Lemma 2.7.5 to G with H′1, m1/L, K1L, P ′1, ε∗, φ0, λK1L playing the roles of G0,
m, K, P, ε, φ, λ. Similar arguments as in Case 1 show that Lemma 2.7.5(i)–(iv)
hold. Since G�1[A′, B′] = G1[A′, B′] and D = n/2− 1, Lemma 2.7.5(v) follows from
(α5).

By Lemma 2.7.5, G�1 can be decomposed into a set J ′ of D1/2 edge-disjoint
exceptional systems such that each of these exceptional systems J is either a Hamil-
ton exceptional system with eJ(A′, B′) = 2 or a matching exceptional system. (So
J ′ plays the role of the set J in Lemma 2.7.5.) Lemma 2.7.5(b) guarantees that we
can choose a subset J of J ′ such that J consists of λK1Ln edge-disjoint exceptional
systems J in G�1 such that for all 1 ≤ i′1, i

′
2 ≤ K1L the set J contains precisely

λK1Ln/(K1L)2 (i′1, i
′
2)-ES with respect to the partition P ′1. For all 1 ≤ i′1, i′2 ≤ K1L,

let Ji′1,i′2 be the set of these λK1Ln/(K1L)2 (i′1, i
′
2)-ES. So J is the union of all the

sets Ji′1,i′2 . (Note that to construct the robustly decomposable graph we will only
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use the exceptional systems in J . However, in order to prove condition (β5) below,
we will also use the fact that G�1 has a decomposition into edge-disjoint exceptional
systems.)

Thus in each of the three cases, J is the union of all the sets Ji′1,i′2 , where for

all 1 ≤ i′1, i′2 ≤ K1L, the set J consists of precisely λK1Ln/(K1L)2 (i′1, i
′
2)-ES with

respect to the partition P ′1. Moreover, all the λK1Ln exceptional systems in J are
edge-disjoint.

Our next aim is to choose two disjoint subsets JCA and JPCA of J with the
following properties:

(a) In total JCA contains Lfr3 exceptional systems. For each i ≤ f and each
h ≤ L, JCA contains precisely r3 (i1, i2)-ES of style h (with respect to
the (K1, L,m1, ε0)-partition (P1,P ′1)) such that i1, i2 ∈ {(i − 1)K1/f +
2, . . . , iK1/f}.

(b) In total JPCA contains 7r� exceptional systems. For each i ≤ 7, JPCA

contains precisely r� (i1, i2)-ES (with respect to the partition P1) with
i1, i2 ∈ {(i− 1)K1/7 + 2, . . . , iK1/7}.

(c) Each exceptional system J ∈ JCA∪JPCA is either a Hamilton exceptional
system with eJ(A′, B′) = 2 or a matching exceptional system.

(Recall that we defined in Section 2.8.3 when an (i1, i2)-ES has style h with respect
to a (K1, L,m1, ε0)-partition (P1,P ′1).) To see that it is possible to choose JCA

and JPCA, split J into two sets J1 and J2 such that both J1 and J2 contain
at least λK1Ln/3(K1L)2 (i′1, i

′
2)-ES with respect to P ′1, for all 1 ≤ i′1, i

′
2 ≤ K1L.

Note that, for each i ≤ f , there are (K1/f − 1)2 choices of pairs (i1, i2) with
i1, i2 ∈ {(i−1)K1/f +2, . . . , iK1/f}. Moreover, for each such pair (i1, i2) and each
h ≤ L there is precisely one pair (i′1, i

′
2) with 1 ≤ i′1, i

′
2 ≤ K1L and such that any

(i′1, i
′
2)-ES with respect to P ′1 is an (i1, i2)-ES of style h with respect to (P1,P ′1).

Together with the fact that γ � λK1L, 1/L, 1/f and

(K1/f − 1)2λK1Ln

3(K1L)2
≥ γn

L
≥ γK1m1

L
=
rK1

L
= r3,

this implies that we can choose a set JCA ⊆ J1 satisfying (a).
Similarly, for each i ≤ 7, there are (K1/7 − 1)2 choices of pairs (i1, i2) with

i1, i2 ∈ {(i − 1)K1/7 + 2, . . . , iK1/7}. Moreover, for each such pair (i1, i2) there
are L2 distinct pairs (i′1, i

′
2) with 1 ≤ i′1, i

′
2 ≤ K1L and such that any (i′1, i

′
2)-ES

with respect to P ′1 is an (i1, i2)-ES with respect to P1. Together with the fact that
γ1 � λK1L and

(K1/7− 1)2L2λK1Ln

3(K1L)2
≥ γ1n ≥ 2γ1m1 = 2r1

(2.10.5)

≥ r�,

this implies that we can choose a set JPCA ⊆ J2 satisfying (b). Our choice of
J ⊇ JCA ∪ JPCA guarantees that (c) holds too. Let

(2.10.8) J rob := JCA ∪JPCA, φrob
0 := (Lfr3 + 7r�)/n and G�4 := G�1−

⋃
J rob.

(In Step 5 below we will define a graph G4 which will satisfy G�4 = G4 − G4[A] −
G4[B]. So this will fit with our definition of the operator �.) Note that
(2.10.9)

φrob
0 ≥ 7r�

n

(2.10.5)

≥ 3r1

n
=

3γ1m1

n
≥ γ1

K1
≥ 2φ0 and 2φrob

0 n
(2.10.4)

= D1 −D4.
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Moreover, we claim that
⋃J rob is a subgraph of G�1 ⊆ G satisfying the following

properties:

(β1) d⋃J rob(v) = 2(Lfr3 + 7r�) = 2φrob
0 n for each v ∈ V0.

(β2) e⋃J rob(A′, B′) ≤ 2φrob
0 n is even.

(β3) J rob contains exactly φrob
0 n exceptional systems, of which precisely

e⋃J rob(A′, B′)/2 are Hamilton exceptional systems. If eG(A′, B′) ≥ D,

then J rob consists entirely of Hamilton exceptional systems. If J rob con-
tains a matching exceptional system, then |A′| = |B′| = n/2 is even.

(β4) If eG(A′, B′) ≥ D and G is critical, then d⋃J rob[A′,B′](w) = φrob
0 n for

all w ∈ {w1, w2} with dG[A′,B′](w) ≥ 11D/40. Moreover, dG�4 [A′,B′](w1),

dG�4 [A′,B′](w2) ≤ (D − (φ0 + 2φrob
0 )n)/2.

(β5) If eG(A′, B′) < D, then ∆(G�4[A′, B′]) ≤ e(G�4[A′, B′])/2 ≤ D4/2 = (D −
(φ0 + 2φrob

0 )n)/2.

To verify the above, note that J rob consists of precisely φrob
0 n exceptional systems J

(each of which is an exceptional cover). So (β1) follows from (EC2). Moreover, each
such J is either a Hamilton exceptional system with eJ(A′, B′) = 2 or a matching
exceptional system (with eJ(A′, B′) = 0 by (MES)), which implies (β2) and the first
part of (β3). If eG(A′, B′) ≥ D, then we are in Case 1 or 2 and so the second part of
(β3) follows from our construction of J ⊇ J rob. The first part of (β4) follows from
our construction of J ⊇ J rob in Case 2. Since 11D/40 < (D−(φ0 +2φrob

0 )n)/2, we
can combine the first part of (β4) with (2.10.7) to obtain the ‘moreover part’ of (β4).
Thus it remains to verify (β5). So suppose that eG(A′, B′) < D. Recall from Case 3
that G�1 has a decomposition into a set J ′ of D1/2 edge-disjoint exceptional systems
J , each of which is either a Hamilton exceptional system with eJ(A′, B′) = 2 or
a matching exceptional system. This means that J [A′, B′] is either empty or a
matching of size 2. Note that G�4[A′, B′] is precisely the union of J [A′, B′] over all
those D1/2− φrob

0 n = D4/2 exceptional systems J ∈ J ′ \ J rob. So (β5) holds.

Step 4: Finding the robustly decomposable graph. Let G2 := G1[A] +
G1[B]. Recall from (S1b) that (G2,P ′1) is a (K1L,m1/L, ε0, ε∗)-scheme. Apply
Proposition 2.10.1 with G2, P1, P ′1, K1, m1, ε∗, ε

′
∗ playing the roles of G, P, P ′,

K, m, ε, ε′ to obtain an orientation G2,dir of G2 such that (G2,dir,P1,P ′1) is a
[K1, L,m1, ε0, ε

′
∗]-scheme.

Our next aim is to use Lemma 2.8.3 in order to extend the exceptional systems
in JCA into r3 edge-disjoint exceptional factors with parameters (L, f) for G2,dir

(with respect to (P1,P ′1)). For this, note that (a) and (c) guarantee that JCA
satisfies Lemma 2.8.3(i),(ii) with r3 playing the role of q. Moreover, Lr3/m1 =
rK1/m1 = γK1 � 1. Thus we can indeed apply Lemma 2.8.3 to (G2,dir,P1,P ′1)
with JCA, m1, ε′∗, K1, r3 playing the roles of J , m, ε, K, q in order to obtain r3

edge-disjoint exceptional factors EF1, . . . , EFr3 with parameters (L, f) for G2,dir

(with respect to (P1,P ′1)) such that together these exceptional factors cover all
edges in

⋃JCA. Let EFCA := EF1 + · · · + EFr3 . Since G2 = G1[A] + G1[B], we
have (EFCA)� = JCA. Moreover, each exceptional path system in EFCA contains
a unique exceptional system in JCA (in particular, their numbers are equal).

Note thatm1/4g,m1/L ∈ N sincem1 = |A|/K1 and |A| is divisible by 4gK1L as
(G,A,A0, B,B0) is an (ε0, 4gK1LK2)-framework. Furthermore, rK2

1 = γm1K
2
1 ≤

γ1/2m1 ≤ m1. Thus we can apply Corollary 2.9.5 to the [K1, L,m1, ε0, ε
′′
∗ ]-scheme

(G2,dir,P1,P ′1) with K1, m1, ε′′∗ , g playing the roles of K, m, ε, `′ to obtain a
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spanning subgraph CA(r) of G2 as described there. (Note that G2 equals the
graph G′ defined in Corollary 2.9.5.) In particular, CA(r) is 2(r1 + r2)-regular and
edge-disjoint from EFCA.

Let G3 be the graph obtained from G2 by deleting all the edges of CA(r) +
EFCA. Thus G3 is obtained from G2 by deleting at most 2(r1 + r2 + r3) ≤ 6r1 =
6γ1m1 edges at every vertex in A ∪ B. Let G3,dir be the orientation of G3 in
which every edge is oriented in the same way as in G2,dir. Since (G2,dir,P1,P ′1) is
a [K1, L,m1, ε0, ε

′
∗]-scheme, Proposition 1.4.1 and the fact that ε′′∗ , γ1 � ε imply

that (G3,dir,P1,P1) is a [K1, 1,m1, ε0, ε]-scheme. Moreover,

r�

m1

(2.10.5)

≤ 2r1

m1
= 2γ1 � 1.

Together with (b) and (c) this ensures that we can apply Lemma 2.8.3 to (G3,dir,P1,
P1) with JPCA, m1, K1, 1, 7, r� playing the roles of J , m, K, L, f , q in order to
obtain r� edge-disjoint exceptional factors EF ′1, . . . , EF

′
r� with parameters (1, 7) for

G3,dir (with respect to (P1,P1)) such that together these exceptional factors cover
all edges in

⋃JPCA. Let EFPCA := EF ′1 + · · ·+EF ′r� . Since G3 ⊆ G1[A] +G1[B]
we have (EFPCA)� =

⋃JPCA. Moreover, each exceptional path system in EFPCA

contains a unique exceptional system in JPCA.
Apply Corollary 2.9.5 to obtain a spanning subgraph PCA(r) ofG2 as described

there. In particular, PCA(r) is 10r�-regular and edge-disjoint from CA(r)+EFCA+
EFPCA.

Let Grob := CA(r) + PCA(r) + EFCA + EFPCA. Note that by (2.8.2) all the
vertices in V0 := A0 ∪ B0 have the same degree rrob

0 := 2(Lfr3 + 7r�) = 2φrob
0 n in

Grob. So

(2.10.10) 7r1

(2.10.5)

≤ rrob
0

(2.10.5)

≤ 30r1.

Moreover, (2.8.2) also implies that all the vertices in A ∪ B have the same degree
rrob in Grob, where rrob := 2(r1 + r2) + 10r�+ 2r3 + 2r� = 2(r1 + r2 + r3 + 6r�). So

rrob
0 − rrob = 2 (Lfr3 + r� − (r1 + r2 + r3)) = 2(Lfr3 + r − (Lf − 1)r3 − r3) = 2r.

Note that (Grob)� =
⋃

(JCA ∪ JPCA) =
⋃J rob. Recall that the number of Hamil-

ton exceptional path systems in EFCA equals the number of Hamilton exceptional
systems in JCA, and that the analogue holds for EFPCA. Hence, (β1), (β2) and
(β3) imply the follow statements:

(β′1) dGrob(v) = rrob
0 = 2φrob

0 n for all v ∈ V0.
(β′2) eGrob(A′, B′) = e⋃J rob(A′, B′) ≤ rrob

0 = 2φrob
0 n is even.

(β′3) EFCA + EFPCA contains exactly φrob
0 n exceptional path systems (and

each such path system contains a unique exceptional system in J rob,
where |J rob| = φrob

0 n). Precisely e⋃J rob(A′, B′)/2 of these are Hamil-
ton exceptional path systems. If eG(A′, B′) ≥ D, then every exceptional
path system in EFCA + EFPCA is a Hamilton exceptional path system.
If EFCA + EFPCA contains a matching exceptional path system, then
|A′| = |B′| = n/2 is even.

Step 5: Choosing a (K2,m2, ε0)-partition P2. We now prepare the ground
for the approximate decomposition step (i.e. to apply Lemma 2.5.4). For this, we
need to work with a finer partition of A∪B than the previous one (this will ensure
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that the leftover from the approximate decomposition step is sufficiently sparse
compared to Grob).

So let G4 := G1 −Grob (where G1 was defined in Step 1) and note that

(2.10.11) D4
(2.10.4)

= D1 − rrob
0 = D1 − rrob − 2r.

So
(2.10.12)

dG4(v) = D4 + 2r for all v ∈ A ∪B and dG4(v) = D4 for all v ∈ V0.

Hence

δ(G4) ≥ D4
(2.10.9)

= D1 − 2φrob
0 n

(2.10.3)
= D − (φ0 + 2φrob

0 )n ≥ (1− 6φrob
0 )n/2

as φrob
0 ≥ 2φ0 by (2.10.9). Moreover, note that

2φrob
0 n = rrob

0

(2.10.10)

≤ 30r1 = 30γ1m1 ≤ 30γ1n/K1,

so φrob
0 � ε′2. Since (G,A,A0, B,B0) is an (ε0, 4gK1LK2)-framework, (G4, A,A0,

B,B0) is an (ε0,K2)-framework. Now apply Lemma 2.4.2 to (G4, A,A0, B,B0) with
K2, m2, ε′1, ε′2, 6φrob

0 playing the roles of K, m, ε1, ε2, µ in order to obtain partitions
A1, . . . , AK2

and B1, . . . , BK2
of A and B satisfying the following conditions:

(S2a) The vertex partition P2 := {A0, B0, A1, . . . AK2 , B1, . . . , BK2} is a (K2,
m2, ε0)-partition of V (G).

(S2b) (G4[A] +G4[B],P2) is a (K2,m2, ε0, ε
′
2)-scheme.

(S2c) (G�4,P2) is a (K2,m2, ε0, ε
′
1)-exceptional scheme.

(Recall that G�4 := G�1 −
⋃J rob was defined towards the end of Step 3. Since

G4 = G1 −Grob, we have (G4)� = G�1 − (Grob)� = G�1 −
⋃J rob, so (G4)� is indeed

the same as G�4.) Moreover, by Lemma 2.4.2(iv) we have

dG4
(v,Ai) = (dG4

(v,A)± ε0n)/K2 and dG4
(v,Bi) = (dG4

(v,B)± ε0n)/K2

(2.10.13)

for all v ∈ V (G) and 1 ≤ i ≤ K2. (Note that the previous partition of A and B
plays no role in the subsequent argument, so denoting the clusters in P2 by Ai and
Bi again will cause no notational conflicts.)

Since (G4, A,A0, B,B0) is an (ε0,K2)-framework, (FR3) and (FR4) together
imply that each v ∈ A satisfies dG4(v,A0) ≤ |V0| ≤ ε0n and dG4(v,B′) ≤ ε0n. So
dG4

(v,A) = dG4
(v)± 2ε0n. Therefore, for all v ∈ A and all 1 ≤ i ≤ K2 we have

dG4
(v,Ai)

(2.10.13)
=

dG4
(v,A)± ε0n

K2
=
dG4

(v)± 3ε0n

K2
=
dG4

(v)± 7ε0K2m2

K2
.

(2.10.14)

The analogue holds for dG4
(v,Bi) (where v ∈ B and 1 ≤ i ≤ K2).

Step 6: Exceptional systems for the approximate decomposition. In order
to apply Lemma 2.5.4, we first need to construct suitable exceptional systems. We
will show that G�4 can be decomposed completely into D4/2 exceptional systems
with parameter ε0. Moreover, these exceptional systems can be partitioned into
sets J ′0 and J ′i1,i2 (one set for each pair 1 ≤ i1, i2 ≤ K2) such that the following
conditions hold, where J ′′ denotes the union of J ′i1,i2 over all 1 ≤ i1, i2 ≤ K2:

(γ1) Each J ′i1,i2 consists of precisely (D4 − 2λK2
n)/2K2

2 (i1, i2)-ES with pa-
rameter ε0 with respect to the partition P2.
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(γ2) J ′0 contains precisely λK2
n exceptional systems with parameter ε0.

(γ3) If eG(A′, B′) ≥ D, then all exceptional systems in J ′0 ∪ J ′′ are Hamilton
exceptional systems.

(γ4) If eG(A′, B′) < D, then each exceptional system J ∈ J ′0∪J ′′ is a Hamilton
exceptional system with eJ(A′, B′) = 2 or a matching exceptional system.
In particular, J ′0 contains precisely e⋃J ′0(A′, B′)/2 Hamilton exceptional
systems and J ′′ contains precisely e⋃J ′′(A′, B′)/2 Hamilton exceptional
systems.

As in Step 3, the construction of J ′0 and the J ′i1,i2 will depend on whether G is

critical and whether eG(A′, B′) ≥ D. Recall that G4 = G1 −Grob and note that

(2.10.15)
D − φ0n− 2φrob

0 n

400K2
2

=
D4

400K2
2

∈ N

by (2.10.6).
Case 1: eG(A′, B′) ≥ D and G is not critical. Our aim is to apply Lemma 2.7.3
to G with G−G4, m2, K2, P2, ε′1, φ0 + 2φrob

0 , λK2
playing the roles of G0, m, K,

P, ε, φ, λ. (So G�4 will play the role of G�.) First we verify that the conditions
in Lemma 2.7.3(i)–(iv) are satisfied. Clearly, Lemma 2.7.3(i) and (ii) hold. Note
that G − G4 = H′1 + Grob, so (α1), (α2), (β′1) and (β′2) imply Lemma 2.7.3(iii).
By (α2) and (β′2), eG�4 (A′, B′) is even. Together with the fact (S2r) that (G�4,P2)
is a (K2,m2, ε0, ε

′
1)-exceptional scheme, this shows that Lemma 2.7.3(iv) holds.

Together with (2.10.15) this ensures that we can indeed apply Lemma 2.7.3 to
obtain a set of (D − (φ0 + 2φrob

0 )n)/2 = D4/2 edge-disjoint Hamilton exceptional
systems with parameter ε0 in G4. Moreover, these Hamilton exceptional systems
can be partitioned into sets J ′0 and J ′i1,i2 (for all 1 ≤ i1, i2 ≤ K2) such that (γ1)–
(γ3) hold.
Case 2: eG(A′, B′) ≥ D and G is critical. Our aim is to apply Lemma 2.7.4
to G with G − G4, m2, K2, P2, ε′1, φ0 + 2φrob

0 , λK2
playing the roles of G0, m,

K, P, ε, φ, λ. (So as before, G�4 will play the role of G�.) Similar arguments
as in Case 1 show that Lemma 2.7.4(i)–(iv) hold. (β4) implies Lemma 2.7.4(v).
Together with (2.10.15) this ensures that we can indeed apply Lemma 2.7.4 to
obtain a set of D4/2 edge-disjoint Hamilton exceptional systems with parameter ε0

in G4. Moreover, these Hamilton exceptional systems can be partitioned into sets
J ′0 and J ′i1,i2 (for 1 ≤ i1, i2 ≤ K2) such that (γ1)–(γ3) hold.
Case 3: eG(A′, B′) < D. Recall from Proposition 2.2.1(ii) that in this case we
have D = n/2 − 1, n = 0 (mod 4) and |A′| = |B′| = n/2. Our aim is to apply
Lemma 2.7.5 to G with G−G4, m2, K2, P2, ε′1, φ0 +2φrob, λK2 playing the roles of
G0, m, K, P, ε, φ, λ. (So as before, G�4 will play the role of G�.) Similar arguments
as in Case 1 show that Lemma 2.7.5(i)–(iv) hold. (β5) implies Lemma 2.7.4(v).
Together with (2.10.15) this ensures that we can indeed apply Lemma 2.7.5 to
obtain a set of D4/2 edge-disjoint exceptional systems in G4. Moreover, these
exceptional systems can be partitioned into sets J ′0 and J ′i1,i2 (for all 1 ≤ i1, i2 ≤
K2) such that (γ1), (γ2) and (γ4) hold. (In particular, (γ4) implies that each
exceptional system in these sets has parameter ε0.)

Therefore, in each of the three cases we have constructed sets J ′0 and J ′i1,i2 (for
all 1 ≤ i1, i2 ≤ K2) satisfying (γ1)–(γ4).

We now find Hamilton cycles and perfect matchings covering the ‘non-localized’
exceptional systems (i.e. the ones in J ′0). Let G′4 = G4 − G�4. So G′4 is obtained
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from G4 by keeping all edges inside A as well as all edges inside B, and delet-
ing all other edges. Note that (G′4, A,A0, B,B0) is an (ε0,K2)-framework since
(G4, A,A0, B,B0) is an (ε0,K2)-framework. Apply Lemma 2.6.2 to (G′4, A,A0, B,
B0) with K2, λK2

, J ′0 playing the roles of K, λ, {J1, . . . , Jλn}. (Recall from (S2b)
that (G4[A] + G4[B],P2) is a (K2,m2, ε0, ε

′
2)-scheme, so δ(G′4[A]) = δ(G4[A]) ≥

4|A|/5 and δ(G′4[B]) = δ(G4[B]) ≥ 4|B|/5 by (Sch3).) We obtain edge-disjoint
subgraphs H1, . . . ,H|J ′0| of G′4 +

⋃J ′0 such that, writing H2 := {H1, . . . ,H|J ′0|},
the following conditions hold:

(δ1) For each Hs ∈ H2 there is some Js ∈ J ′0 such that Js ⊆ Hs.
(δ2) If Js is a Hamilton exceptional system, then Hs is a Hamilton cycle on

V (G). If Js is a matching exceptional system, then Hs is the edge-disjoint
union of two perfect matchings on V (G).

(δ3) Let H′2 := H1 + · · ·+H|J ′0|. If eG(A′, B′) < D, then H2 contains precisely
eH′2(A′, B′)/2 Hamilton cycles on V (G).

Indeed, (δ1) follows from Lemma 2.6.2(i). (δ2) follows from Lemma 2.6.2(ii),(iii).
(For the second part, note that (γ3) and (γ4) imply that J ′0 contains matching
exceptional systems only in the case when eG(A′, B′) < D. But in this case,
Proposition 2.2.1(ii) implies that n = 0 (mod 4) and |A′| = |B′| = n/2, i.e. |A′|
and |B′| are even.) For (δ3), note that G′4 has no A′B′-edges and so e⋃J ′0(A′, B′) =
eH′2(A′, B′). Together with (δ2) and (γ4), this now implies (δ3).

Recall that J ′′ is the union of J ′i1,i2 over all 1 ≤ i1, i2 ≤ K2. Let G5 := G4−H′2
and D5 := D4 − 2|H2| = D4 − 2λK2

n. So (2.10.12) implies that
(2.10.16)

dG5(v) = D5 + 2r for all v ∈ A ∪B and dG5(v) = D5 for all v ∈ V0.

Note that

(2.10.17) G�5 := G5 −G5[A]−G5[B] = G�4 −H′2 = G�4 −
⋃
J ′0 =

⋃
J ′′.

Since dJ(v) = 2 for all v ∈ V0 and all J ∈ J ′′, it follows that

D5 = 2|J ′′|.(2.10.18)

Moreover, since (G4[A]+G4[B],P2) is a (K2,m2, ε0, ε
′
2)-scheme and ε′2 +2λK2

≤ ε,
Proposition 2.4.1 implies that (G5[A] +G5[B],P2) is a (K2,m2, ε0, ε)-scheme.

Step 7: Approximate Hamilton cycle decomposition. Our next aim is to
apply Lemma 2.5.4 to obtain an approximate decomposition of G5. Let

µ := (rrob
0 − 2r)/(4K2m2) and ρ := γ/(4K1).

We will apply the lemma with G5, P2, K2, m2, J ′′, ε playing the roles of G, P, K,
m, J , ε. Clearly, conditions (c) and (d) of Lemma 2.5.4 hold.

In order to see that condition (a) is satisfied, recall that m1K1 = |A| = m2K2.
So

0 ≤ 7r1 − 2r

4K2m2

(2.10.10)

≤ µ
(2.10.10)

≤ 30r1

4K2m2
=

30γ1

4K1
� 1.

Therefore, every vertex v ∈ A ∪B satisfies

dG4
(v)

(2.10.12)
= D4 + 2r

(2.10.11)
= D1 − rrob

0 + 2r
(2.10.3)

= D − φ0n− 4K2m2µ

(2.10.1)
= (1/2± 4εex)n− φ0n− 4K2m2µ

= (1− 4µ± 3φ0)K2m2,(2.10.19)
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where in the last equality we recall that (1 − ε0)n/2 ≤ |A| = K2m2 ≤ n/2 and
ε0, εex � φ0. Recall that G5 = G4 −H′2 and note that

∆(H′2) = 2|H2| = 2λK2
n ≤ 5λK2

K2m2.

Altogether this implies that for each v ∈ A and for all 1 ≤ i ≤ K2 we have

dG5
(v,Ai) = dG4

(v,Ai)− dH′2(v,Ai) = dG4
(v,Ai)± 5λK2

K2m2

(2.10.14)
= (dG4

(v)± 7ε0K2m2)/K2 ± 5λK2
K2m2

(2.10.19)
= (1− 4µ± (3φ0 + 7ε0 + 5λK2K2))m2.

Since φ0, ε0, λK2 � 1/K2, it follows that dG5(v,Ai) = (1−4µ±4/K2)m2. Similarly
one can show that dG5(w,Bj) = (1−4µ±4/K2)m2 for all w ∈ B. So Lemma 2.5.4(a)
holds.

To check condition (b), note that r = γ|A|/K1 ≥ γn/3K1. So

|J ′′| (2.10.18)
=

D5

2
≤ D4

2

(2.10.11)
=

D − rrob
0

2

(2.10.1)

≤ n

4
+ 2εexn−

rrob
0

2

=
n

4
+ 2εexn− 2K2m2µ− r ≤

(
1

4
+ 2εex − (1− ε0)µ− γ

3K1

)
n

≤
(

1

4
− µ− γ

4K1

)
n =

(
1

4
− µ− ρ

)
n.

Thus Lemma 2.5.4(b) holds.
So we can indeed apply Lemma 2.5.4 to obtain a collection H3 of |J ′′| edge-

disjoint spanning subgraphs H ′1, . . . ,H
′
|J ′′| of G5 which satisfy the following prop-

erties:

(ε1) For each H ′s ∈ H3 there is some J ′s ∈ J ′′ such that J ′s ⊆ H ′s.
(ε2) If J ′s is a Hamilton exceptional system then H ′s is a Hamilton cycle on

V (G). If J ′s is a matching exceptional system then H ′s is the edge-disjoint
union of two perfect matchings on V (G).

(ε3) Let H′3 := H ′1 + · · ·+H ′|J ′′|. If eG(A′, B′) < D, then H3 contains precisely

eH′3(A′, B′)/2 Hamilton cycles on V (G).

For (ε3), note that (2.10.17) implies G�5 =
⋃J ′′ and thus we have e⋃J ′′(A′, B′) =

eH′3(A′, B′). Together with (ε2) and (γ4), this now implies (ε3).

Step 8: Decomposing the leftover and the robustly decomposable graph.
Finally, we can apply the ‘robust decomposition property’ of Grob guaranteed by
Corollary 2.9.5 to obtain a decomposition of the leftover from the previous step
together with Grob into Hamilton cycles (and perfect matchings if applicable).

To achieve this, let H ′ := G5 − H′3. Thus (2.10.16) and (2.10.18) imply that
every vertex in V0 is isolated in H ′ while every vertex v ∈ A∪B has degree dG5

(v)−
2|J ′′| = D5 + 2r − 2|J ′′| = 2r in H ′ (the last equality follows from (2.10.18)).
Moreover, (H ′)� contains no edges. (This holds since

⋃J ′′ ⊆ H′3 and so H ′ ⊆
G5 −

⋃J ′′ = G5 − G�5 by (2.10.17).) Now let HA := H ′[A], HB := H ′[B], H :=
HA +HB . Note that H is the 2r-regular subgraph of H ′ obtained by removing all
the vertices in V0. Let

s′ := rfK1 + 7r�
(2.10.4)

= Lfr3 + 7r�
(2.10.8)

= φrob
0 n.
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Recall from (β′3) that each of the s′ exceptional path systems in EFCA + EFPCA

contains a unique exceptional system and J rob is the set of all these s′ excep-
tional systems. Thus Corollary 2.9.5(ii)(b) implies that H + Grob has a decompo-
sition into edge-disjoint spanning subgraphs H ′′1 , . . . ,H

′′
s′ such that, writing H4 :=

{H ′′1 , . . . ,H ′′s′}, we have:

(ζ1) For each H ′′s ∈ H4 there is some exceptional system J ′′s ∈ J rob such that
J ′′s ⊆ H ′′s .

(ζ2) If J ′′s is a Hamilton exceptional system then H ′′s is a Hamilton cycle on
V (G). If J ′′s is a matching exceptional system then H ′′s is the edge-disjoint
union of two perfect matchings on V (G).

(ζ3) Let H′4 := H ′′1 + · · · + H ′′s′ . Then H4 contains precisely eH′4(A′, B′)/2
Hamilton cycles on V (G).

Indeed, (ζ1) and (ζ2) follow from Corollary 2.9.5(ii)(b) (recall that if J rob contains
a matching exceptional system, then |A′| = |B′| = n/2 is even by (β′3)). For (ζ3),
note that eH′4(A′, B′) = eGrob(A′, B′) = e⋃J rob(A′, B′) by (β′2). Now (ζ3) follows
from (β′3) and (ζ2).

Note that H1∪H2∪H3∪H4 corresponds to a decomposition of G into Hamilton
cycles and perfect matchings. It remains to show that the proportion of Hamilton
cycles in this decomposition is as desired.

First suppose that eG(A′, B′) ≥ D. By (α3), H1 consists of Hamilton cycles and
one perfect matching if D is odd. By (γ3), (δ2) and (ε2), both H2 and H3 consist
of Hamilton cycles. By (β′3) and (ζ2) this also holds for H4. So H1 ∪H2 ∪H3 ∪H4

consists of Hamilton cycles and one perfect matching if D is odd.
Next suppose that eG(A′, B′) < D. Then by (α3), (δ3), (ε3) and (ζ3) the

numbers of Hamilton cycles in H1, H2, H3 and H4 are precisely beH′1(A′, B′)/2c,
eH′2(A′, B′)/2, eH′3(A′, B′)/2 and eH′4(A′, B′)/2. Hence, H1∪H2∪H3∪H4 contains
precisely ⌊

eH′1∪H′2∪H′3∪H′4(A′, B′)

2

⌋
=

⌊
eG(A′, B′)

2

⌋
≥
⌊
F

2

⌋
edge-disjoint Hamilton cycles, where F is the size of the minimum cut in G. Since
clearly G cannot have more than bF/2c edge-disjoint Hamilton cycles, it follows
that we have equality in the final step, as required. �





CHAPTER 3

Exceptional systems for the two cliques case

In this chapter we prove all the results that were stated in Section 2.7. Recall
that the exceptional edges are all those edges incident to A0 and B0 as well as all
those edges joining A′ to B′. The results stated in Section 2.7 generated a decom-
position of these exceptional edges into exceptional systems: Each such exceptional
system was then extended into a Hamilton cycle. (Recall that actually, the excep-
tional systems may contain some non-exceptional edges as well.) This is the most
difficult part of the construction of the Hamilton cycle decomposition and so forms
the heart of the argument for the two clique case.

Let G be a D-regular graph and let A′, B′ be a partition of V (G). Recall that
we say that G is critical (with respect to A′, B′ and D) if both of the following
hold:

• ∆(G[A′, B′]) ≥ 11D/40;
• e(H) ≤ 41D/40 for all subgraphs H of G[A′, B′] with ∆(H) ≤ 11D/40.

Recall that Lemmas 2.7.3–2.7.5 guarantee our desired decomposition of the
exceptional edges into exceptional systems. Lemma 2.7.3 covers the non-critical
case when G[A′, B′] contains many edges, Lemma 2.7.4 covers the critical case when
G[A′, B′] contains many edges and Lemma 2.7.5 tackles the case when G[A′, B′]
contains only a few edges.

3.1. Proof of Lemma 2.7.1

The following lemma (which collects some basic properties of critical graphs)
immediately implies Lemma 2.7.1.

Lemma 3.1.1. Suppose that 0 < 1/n� 1 and that D,n ∈ N are such that

(3.1.1) D ≥ n− 2bn/4c − 1 =


n/2− 1 if n = 0 (mod 4),

(n− 1)/2 if n = 1 (mod 4),

n/2 if n = 2 (mod 4),

(n+ 1)/2 if n = 3 (mod 4).

Let G be a D-regular graph on n vertices and let A′, B′ be a partition of V (G) with
|A′|, |B′| ≥ D/2 and ∆(G[A′, B′]) ≤ D/2. Suppose that G is critical. Let W be
the set of vertices w ∈ V (G) such that dG[A′,B′](w) ≥ 11D/40. Then the following
properties are satisfied:

(i) 1 ≤ |W | ≤ 3.
(ii) Either D = (n − 1)/2 and n = 1 (mod 4), or D = n/2 − 1 and n = 0

(mod 4). Furthermore, if n = 1 (mod 4), then |W | = 1.
(iii) eG(A′, B′) ≤ 17D/10 + 5 < n.

69



70 3. EXCEPTIONAL SYSTEMS FOR THE TWO CLIQUES CASE

(iv)

eG−W (A′, B′) ≤


3D/4 + 5 if |W | = 1,

19D/40 + 5 if |W | = 2,

D/5 + 5 if |W | = 3.

(v) There exists a set W ′ of vertices such that W ⊆W ′, |W ′| ≤ 3 and for all
w′ ∈W ′ and v ∈ V (G) \W ′ we have

dG[A′,B′](w
′) ≥ 21D

80
, dG[A′,B′](v) ≤ 11D

40
and dG[A′,B′](w

′)− dG[A′,B′](v) ≥ D

240
.

Proof. Let w1, . . . , w4 be vertices of G such that

dG[A′,B′](w1) ≥ · · · ≥ dG[A′,B′](w4) ≥ dG[A′,B′](v)

for all v ∈ V (G)\{w1, . . . , w4}. LetW4 := {w1, . . . , w4}. Suppose that dG[A′,B′](w4)
≥ 21D/80. Let H be a spanning subgraph of G[A′, B′] such that dH(wi) =
d21D/80e for all i ≤ 4 and such that every vertex v ∈ V (G) \W4 satisfies NH(v) ⊆
W4. Thus ∆(H) = d21D/80e and so e(H) ≤ 41D/40 since G is critical. On the
other hand, e(H) ≥ 4 · d21D/80e − 4, a contradiction. (Here we subtract four to
account for the edges of H ′ between vertices in W .) Hence, dG[A′,B′](w4) < 21D/80
and so |W | ≤ 3. But |W | ≥ 1 since G is critical. So (i) holds.

Let j be minimal such that dG[A′,B′](wj) ≤ 21D/80. So 1 < j ≤ 4. Choose
an index i with 1 ≤ i < j such that W ⊆ {w1, . . . , wi} and dG[A′,B′](wi) −
dG[A′,B′](wi+1) ≥ D/240. Then the set W ′ := {w1, . . . , wi} satisfies (v).

Let H ′ be a spanning subgraph of G[A′, B′] such that G[A′ \W,B′ \W ] ⊆ H ′
and dH′(w) = b11D/40c for all w ∈W . Similarly as before, e(H ′) ≤ 41D/40 since
G is critical. Thus

41D/40 ≥ e(H ′) ≥ e(H ′ −W ) + b11D/40c|W | − 2

= eG−W (A′, B′) + b11D/40c|W | − 2.

This in turn implies that

eG−W (A′, B′) ≤ (41− 11|W |)D/40 + 5.(3.1.2)

Together with (i) this implies (iv). If D ≥ n/2, then by Proposition 2.2.3 we
have eG−W (A′, B′) ≥ D − 28. This contradicts (iv). Thus (3.1.1) implies that
D = (n − 1)/2 and n = 1 (mod 4), or D = n/2 − 1 and n = 0 (mod 4). If n = 1
(mod 4) and D = (n − 1)/2, then Proposition 2.2.3 implies that eG−W (A′, B′) ≥
D/2− 28. Hence, by (iv) we deduce that |W | = 1 and so (ii) holds. Since |W | ≤ 3
and ∆(G[A′, B′]) ≤ D/2, we have

eG(A′, B′) ≤ eG−W (A′, B′) +
|W |D

2

(3.1.2)

≤ (41 + 9|W |)D
40

+ 5 ≤ 17D

10
+ 5 < n.

(The last inequality follows from (ii).) This implies (iii). �

3.2. Non-critical Case with e(A′, B′) ≥ D.

In this section we prove Lemma 2.7.3. Recall that Lemma 2.7.3 gives a decom-
position of the exceptional edges into exceptional systems in the non-critical case
when e(A′, B′) ≥ D. The proof splits into the following four steps:
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Step 1 We first decompose G� into edge-disjoint ‘localized’ subgraphs H(i, i′)
and H ′(i, i′) (where 1 ≤ i, i′ ≤ K). More precisely, each H(i, i′) only
contains A0Ai-edges and B0Bi′ -edges of G� while all edges of H ′(i, i′) lie
in G�[A0 ∪ Ai, B0 ∪ Bi′ ], and all the edges of G� are distributed evenly
amongst the H(i, i′) and H ′(i, i′) (see Lemma 2.5.2). We will then move a
small number of A′B′-edges between the H ′(i, i′) in order to obtain graphs
H ′′(i, i′) such that e(H ′′(i, i′)) is even (see Lemma 3.2.1).

Step 2 We decompose each H ′′(i, i′) into (D − φn)/(2K2) Hamilton exceptional
system candidates (see Lemma 3.2.3).

Step 3 Most of the Hamilton exceptional system candidates constructed in Step 2
will be extended into an (i, i′)-HES (see Lemma 3.2.4).

Step 4 The remaining Hamilton exceptional system candidates will be extended
into Hamilton exceptional systems, which need not be localized (see Lem-
ma 3.2.5). (Altogether, these will be the λn Hamilton exceptional systems
in J which are not mentioned in Lemma 2.7.3(b).)

3.2.1. Step 1: Constructing the Graphs H ′′(i, i′). LetH(i, i′) andH ′(i, i′)
be the graphs obtained by applying Lemma 2.5.2 to G�. We would like to decom-
pose each H ′(i, i′) into Hamilton exceptional system candidates. In order to do this,
e(H ′(i, i′)) must be even. The next lemma shows that we can ensure this property
without destroying the other properties of the H ′(i, i′) too much by moving a small
number of edges between the H ′(i, i′).

Lemma 3.2.1. Suppose that 0 < 1/n � ε0 � ε � ε′ � λ, 1/K � 1, that
D ≥ n/3, that 0 ≤ φ� 1 and that D,n,K,m, (D − φn)/(2K2) ∈ N. Define α by

2αn :=
D − φn
K2

and let γ := α− 2λ

K2
.(3.2.1)

Suppose that the following conditions hold:

(i) G is a D-regular graph on n vertices.
(ii) P is a (K,m, ε0)-partition of V (G) such that D ≤ eG(A′, B′) ≤ ε0n

2 and
∆(G[A′, B′]) ≤ D/2. Furthermore, G is not critical.

(iii) G0 is a subgraph of G such that G[A0] + G[B0] ⊆ G0, eG0(A′, B′) ≤ φn
and dG0(v) = φn for all v ∈ V0.

(iv) Let G� := G − G[A] − G[B] − G0. eG�(A
′, B′) is even and (G�,P) is a

(K,m, ε0, ε)-exceptional scheme.

Then G� can be decomposed into edge-disjoint spanning subgraphs H(i, i′) and
H ′′(i, i′) of G� (for all 1 ≤ i, i′ ≤ K) such that the following properties hold,
where G′(i, i′) := H(i, i′) +H ′′(i, i′):

(b1) Each H(i, i′) contains only A0Ai-edges and B0Bi′-edges.
(b2) H ′′(i, i′) ⊆ G�[A′, B′]. Moreover, all but at most ε′n edges of H ′′(i, i′) lie

in G�[A0 ∪Ai, B0 ∪Bi′ ].
(b3) e(H ′′(i, i′)) is even and 2αn ≤ e(H ′′(i, i′)) ≤ 11ε0n

2/(10K2).
(b4) ∆(H ′′(i, i′)) ≤ 31αn/30.
(b5) dG′(i,i′)(v) = (2α± ε′)n for all v ∈ V0.

(b6) Let H̃ be any spanning subgraph of H ′′(i, i′) which maximises e(H̃) under

the constraints that ∆(H̃) ≤ 3γn/5, H ′′(i, i′)[A0, B0] ⊆ H̃ and e(H̃) is

even. Then e(H̃) ≥ 2αn.
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Proof. Since φ� 1/3 ≤ D/n, we deduce that

α ≥ 1/(7K2), (1− 14λ)α ≤ γ < α and ε� ε′ � λ, 1/K,α, γ � 1.

(3.2.2)

Note that (ii) and (iii) together imply that

eG�(A
′, B′) ≥ D − φn (3.2.1)

= 2K2αn
(3.2.2)

≥ n/4.(3.2.3)

By (i) and (iii), each v ∈ V0 satisfies

(3.2.4) dG�(v) = D − φn (3.2.1)
= 2K2αn.

Apply Lemma 2.5.2 to decompose G� into subgraphs H(i, i′), H ′(i, i′) (for all 1 ≤
i, i′ ≤ K) satisfying the following properties, where G(i, i′) := H(i, i′) +H ′(i, i′):

(a′1) Each H(i, i′) contains only A0Ai-edges and B0Bi′ -edges.
(a′2) All edges of H ′(i, i′) lie in G�[A0 ∪Ai, B0 ∪Bi′ ].
(a′3) e(H ′(i, i′)) = (1± 16ε)eG�(A

′, B′)/K2. In particular,

2(1− 16ε)αn ≤ e(H ′(i, i′)) ≤ (1 + 16ε)ε0n
2/K2.

(a′4) dH′(i,i′)(v) = (dG�[A′,B′](v)± 2εn)/K2 for all v ∈ V0.

(a′5) dG(i,i′)(v) = (2α± 4ε/K2)n for all v ∈ V0.

Indeed, (a′3) follows from (3.2.3), Lemma 2.5.2(a3) and (ii), while (a′5) follows from
(3.2.4) and Lemma 2.5.2(a5). We now move some A′B′-edges of G� between the
H ′(i, i′) such that the graphs H ′′(i, i′) obtained in this way satisfy the following
conditions:

• Each H ′′(i, i′) is obtained from H ′(i, i′) by adding or removing at most
32K2εαn ≤ √εn edges.

• e(H ′′(i, i′)) ≥ 2αn and e(H ′′(i, i′)) is even.

Note that this is possible by (a′3) and since αn ∈ N and eG�(A
′, B′) ≥ 2K2αn is

even by (iv).
We will show that the graphs H(i, i′) and H ′′(i, i′) satisfy conditions (b1)–(b6).

Clearly both (b1) and (b2) hold. (a′3) implies that
(3.2.5)

e(H ′′(i, i′)) = (1± 16ε)eG�(A
′, B′)/K2 ±√εn (3.2.2),(3.2.3)

= (1± ε′)eG�(A′, B′)/K2.

Together with (ii) and our choice of the H ′′(i, i′) this implies (b3). (b5) follows
from (a′5) and the fact that dG′(i,i′)(v) = dG(i,i′)(v) ±√εn. Similarly, (a′4) implies
that for all v ∈ V0 we have

(3.2.6) dH′′(i,i′)(v) = (dG�[A′,B′](v)± ε′n)/K2.

Recall that ∆(G[A′, B′]) ≤ D/2 by (ii). Thus

∆(H ′′(i, i′))
(3.2.6)

≤ D/2 + ε′n

K2

(3.2.1)
=

(
α+

φ+ 2ε′

2K2

)
n

(3.2.2)

≤ 31αn

30
,

so (b4) holds.
So it remains to verify (b6). To do this, fix 1 ≤ i, i′ ≤ K and set H ′′ := H ′′(i, i′).

Let H̃ be a subgraph of H ′′ as defined in (b6). We need to show that e(H̃) ≥ 2αn.

Suppose the contrary that e(H̃) < 2αn. We will show that this contradicts the
assumption that G is not critical. Roughly speaking, the argument will be that if

H̃ is sparse, then so is H ′′. This in turn implies that G� is also sparse, and thus
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any subgraph of G[A′, B′] of comparatively small maximum degree is also sparse,
which leads to a contradiction.

Let X be the set of all those vertices x for which dH̃(x) ≥ 3γn/5−2. So X ⊆ V0

by (iv) and (ESch3). Note that if X = ∅, then H̃ = H ′′ and so e(H̃) ≥ 2αn by (b3).

If |X| ≥ 4, then e(H̃) ≥ 4(3γn/5 − 2) − 4 ≥ 2αn by (3.2.2). Hence 1 ≤ |X| ≤ 3.

Note that H̃ −X contains all but at most one edge from H ′′ −X. Together with

the fact that H̃[X] contains at most two edges (since |X| ≤ 3 and H̃ is bipartite)
this implies that

2αn > e(H̃) ≥ e(H̃ −X) +

(∑
x∈X

dH̃(x)

)
− 2

≥ e(H ′′ −X)− 1 + |X|(3γn/5− 2)− 2

≥ e(H ′′)−
∑
x∈X

dH′′(x) + |X|(3γn/5− 2)− 3

= e(H ′′)−
∑
x∈X

(dH′′(x)− 3γn/5 + 2)− 3(3.2.7)

and so

e(H ′′)
(3.2.6)
< 2αn+

∑
x∈X

(
dG�[A′,B′](x) + ε′n

K2
− 3γn/5 + 2

)
+ 3.(3.2.8)

Note that (b4) and (3.2.7) together imply that if e(H ′′) ≥ 4αn then e(H̃) ≥ e(H ′′)−
|X|(31αn/30− 3γn/5 + 2)− 3 ≥ 2αn. Thus e(H ′′) < 4αn and by (3.2.5) we have
eG�(A

′, B′) ≤ 4K2αn/(1− ε′) ≤ 5K2αn ≤ 3n. Hence

eG�(A
′, B′)

(3.2.5)

≤ K2e(H ′′) + ε′eG�(A
′, B′) ≤ K2e(H ′′) + 3ε′n

(3.2.8)

≤ D − φn+ 7ε′n+
∑
x∈X

(
dG�[A′,B′](x)−K2(3γn/5)

)
.(3.2.9)

Let G′ be any subgraph of G�[A′, B′] which maximises e(G′) under the constraint
that ∆(G′) ≤ K2(3γ/5 + 2ε′)n. Note that if dG�[A′,B′](v) ≥ K2(3γ/5 + 2ε′)n, then
v ∈ V0 (by (iv) and (ESch3)) and so dH′′(v) > 3γn/5 by (3.2.6). This in turn
implies that v ∈ X. Hence

e(G′) ≤ eG�(A
′, B′)−

∑
x∈X

(
dG�[A′,B′](x)−K2(3γ/5 + 2ε′)n

)
+ 2

(3.2.9)

≤ D − φn+ 7K2ε′n.(3.2.10)

Note that (3.2.6) together with the fact that X 6= ∅ implies that

∆(G[A′, B′]) ≥ ∆(G�[A′, B′]) ≥ K2(3γn/5− 2)− ε′n
(3.2.1),(3.2.2)

≥ 11D/40.

Since G is not critical this means that there exists a subgraph G′′ of G[A′, B′] such
that ∆(G′′) ≤ 11D/40 ≤ K2(3γ/5 + 2ε′)n and e(G′′) ≥ 41D/40. Thus

D − φn+ 7K2ε′n
(3.2.10)

≥ e(G′) ≥ e(G′′)− eG0
(A′, B′) ≥ 41D/40− φn,

which is a contradiction. Therefore, we must have e(H̃) ≥ 2αn. Hence (b6) is
satisfied. �
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3.2.2. Step 2: Decomposing H ′′(i, i′) into Hamilton Exceptional Sys-
tem Candidates. Our next aim is to decompose each H ′′(i, i′) into αn Hamilton
exceptional system candidates (this will follow from Lemma 3.2.3). Before we can
do this, we need the following result on decompositions of bipartite graphs into
‘even matchings’. We say that a matching is even if it contains an even number of
edges, otherwise it is odd.

Proposition 3.2.2. Suppose that 0 < 1/n � γ ≤ 1 and that n, γn ∈ N. Let
H be a bipartite graph on n vertices with ∆(H) ≤ 2γn/3 and where e(H) ≥ 2γn is
even. Then H can be decomposed into γn edge-disjoint non-empty even matchings,
each of size at most 3e(H)/(γn).

Proof. First note that since e(H) ≥ 2γn, it suffices to show that H can be
decomposed into at most γn edge-disjoint non-empty even matchings, each of size
at most 3e(H)/(γn). Indeed, by splitting these matchings further if necessary, one
can obtain precisely γn non-empty even matchings.

Set n′ := b2γn/3c. König’s theorem implies that χ′(H) ≤ n′. So Proposi-
tion 1.4.5 implies that there is a decomposition of H into n′ edge-disjoint matchings
M1, . . . ,Mn′ such that |e(Ms)− e(Ms′)| ≤ 1 for all s, s′ ≤ n′. Hence we have

2 ≤ e(H)

n′
− 1 ≤ e(Ms) ≤

e(H)

n′
+ 1 ≤ 3e(H)

γn

for all s ≤ n′. Since e(H) is even, there are an even number of odd matchings. Let
Ms and Ms′ be two odd matchings. So e(Ms), e(Ms′) ≥ 3 and thus there exist two
disjoint edges e ∈ Ms and e′ ∈ Ms′ . Hence, Ms − e, Ms′ − e′ and {e, e′} are three
even matchings. Thus, by pairing off the odd matchings and repeating this process,
the proposition follows. �

Lemma 3.2.3. Suppose that 0 < 1/n � ε0 � γ < 1, that γ + γ′ < 1 and that
n, γn, γ′n ∈ N. Let H be a bipartite graph on n vertices with vertex classes A∪̇A0

and B∪̇B0, where |A0|+ |B0| ≤ ε0n. Suppose that

(i) e(H) is even, ∆(H) ≤ 16γn/15 and ∆(H[A,B]) < (3γ/5− ε0)n.

Let H ′ be a spanning subgraph of H which maximises e(H ′) under the constraints
that ∆(H ′) ≤ 3γn/5, H[A0, B0] ⊆ H ′ and e(H ′) is even. Suppose that

(ii) 2(γ + γ′)n ≤ e(H ′) ≤ 10ε0γn
2.

Then there exists a decomposition of H into edge-disjoint Hamilton exceptional
system candidates F1, . . . , Fγn, F

′
1, . . . , F

′
γ′n with parameter ε0 such that e(F ′s) = 2

for all s ≤ γ′n.

Since we are in the non-critical case with many edges between A′ and B′, we
will be able to assume that the subgraph H ′ satisfies (ii).

Roughly speaking, the idea of the proof of Lemma 3.2.3 is to apply the previous
proposition to decompose H ′ into a suitable number of even matchings Mi (using
the fact that it has small maximum degree). We then extend these matchings into
Hamilton exceptional system candidates to cover all edges of H. The additional
edges added to each Mi will be vertex-disjoint from Mi and form vertex-disjoint
2-paths uvw with v ∈ V0. So the number of connections from A′ to B′ remains the
same (as H is bipartite). Each matching Mi will already be a Hamilton exceptional
system candidate, which means that Mi and its extension will have the correct
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number of connections from A′ to B′ (which makes this part of the argument
simpler than in the critical case).

Proof of Lemma 3.2.3. Set A′ := A0 ∪A and B′ := B0 ∪B. We first construct
the F ′s. If γ′ = 0, there is nothing to do. So suppose that γ′ > 0. Note that each
F ′s has to be a matching of size 2 (this follows from the definition of a Hamilton
exceptional system candidate and the fact that e(F ′s) = 2). Since H ′ is bipartite
and so

e(H ′)

χ′(H ′)
=

e(H ′)

∆(H ′)
≥ 2(γ + γ′)n

3γn/5
>

10

3
,

we can find a 2-matching F ′1 in H ′. Delete the edges in F ′1 from H ′ and choose
another 2-matching F ′2. We repeat this process until we have chosen γ′n edge-
disjoint 2-matchings F ′1, . . . , F

′
γ′n.

We now construct F1, . . . , Fγn in two steps: first we construct matchings M1,
. . . ,Mγn in H ′ and then extend each Mi into the desired Fi. Let H1 and H ′1
be obtained from H and H ′ by removing all the edges in F ′1, . . . , F

′
γ′n. So now

2γn ≤ e(H ′1) ≤ 10ε0γn
2 and both e(H1) and e(H ′1) are even. Thus Proposi-

tion 3.2.2 implies that there is a decomposition of H ′1 into edge-disjoint non-empty
even matchings M1, . . . ,Mγn, each of size at most 30ε0n.

Note that each Mi is a Hamilton exceptional system candidate with parame-
ter ε0. So if H ′1 = H1, then we are done by setting Fs := Ms for each s ≤ γn. Hence,
we may assume that H ′′ := H1−H ′1 = H −H ′ contains edges. Let X be the set of
all those vertices x ∈ A0∪B0 for which dH′′(x) > 0. Note that each x ∈ X satisfies
NH′′(x) ⊆ A ∪ B (since H[A0, B0] ⊆ H ′). This implies that each x ∈ X satisfies
dH′(x) ≥ b3γn/5c − 1 or dH′′(x) = 1. (Indeed, suppose that dH′(x) ≤ b3γn/5c − 2
and dH′′(x) ≥ 2. Then we can move two edges incident to x from H ′′ to H ′. The
final assumption in (i) and the assumption on dH′(x) together imply that we would
still have ∆(H ′) ≤ 3γn/5, a contradiction.) Since ∆(H) ≤ 16γn/15 by (i) this in
turn implies that dH′′(x) ≤ 7γn/15 + 2 for all x ∈ X.

Let M be a random subset of {M1, . . . ,Mγn} where each Mi is chosen inde-
pendently with probability 2/3. By Proposition 1.4.4, with high probability, the
following assertions hold:

r := |M| = (2/3± ε0)γn

|{Ms ∈M : dMs
(v) = 1}| = 2dH′1(v)/3± ε0γn for all v ∈ V (H).(3.2.11)

By relabeling if necessary, we may assume that M = {M1,M2, . . . ,Mr}. For each
s ≤ r, we will now extend Ms to a Hamilton exceptional system candidate Fs
with parameter ε0 by adding edges from H ′′. Suppose that for some 1 ≤ s ≤ r
we have already constructed F1, . . . , Fs−1. Set H ′′s := H ′′ −∑j<s Fj . Let Ws be

the set of all those vertices w ∈ X for which dMs
(w) = 0 and dH′′s (w) ≥ 32ε0n ≥

2|A0 ∪ B0| + e(Ms). Recall that X ⊆ A0 ∪ B0 and NH′′s (w) ⊆ NH′′(w) ⊆ A ∪ B
for each w ∈ X and thus also for each w ∈Ws. Thus there are |Ws| vertex-disjoint
2-paths uwu′ with w ∈ Ws and u, u′ ∈ NH′′s (w) \ V (Ms). Assign these 2-paths
to Ms and call the resulting graph Fs. Observe that Fs is a Hamilton exceptional
system candidate with parameter ε0. Therefore, we have constructed F1, . . . , Fr by
extending M1, . . . ,Mr.

We now construct Fr+1, . . . , Fγn. For this, we first prove that the above con-
struction implies that the current ‘leftover’ H ′′r+1 has small maximum degree. In-
deed, note that if w ∈ Ws, then dH′′s+1

(w) = dH′′s (w) − 2. By (3.2.11), for each
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x ∈ X, the number of Ms ∈M with dMs
(x) = 0 is

r − |{Ms ∈M : dMs
(x) = 1}| ≥ (2/3− ε0)γn− (2dH′1(x)/3 + ε0γn)

≥ 2γn/3− 2dH′(x)/3− 2ε0γn

≥ 2γn/3− 2/3 · b3γn/5c − 2ε0γn

≥ (4/15− 2ε0)γn > dH′′(x)/2.

Hence, we have dH′′r+1
(x) < 32ε0n for all x ∈ X (as we remove 2 edges at x each

time we have dMs
(x) = 0 and dH′′s (x) ≥ 32ε0n). Note that by definition of H ′,

all but at most one edge in H ′′ must have an endpoint in X. So for x /∈ X,
dH′′(x) ≤ |X|+ 1 ≤ |A0 ∪B0|+ 1 ≤ ε0n+ 1. Therefore, ∆(H ′′r+1) < 32ε0n.

Let H ′′′ := H1−(F1+· · ·+Fr). So H ′′′ is the union of H ′′r+1 and all the Ms with
r < s ≤ γn. Since each of H1 and F1, . . . , Fr contains an even number of edges,
e(H ′′′) is even. In addition, Ms ⊆ H ′′′ for each r < s ≤ γn, so e(H ′′′) ≥ 2(γn− r).
By (3.2.11), since ∆(H ′′r+1) ≤ 32ε0n, we deduce that for every vertex v ∈ V (H ′′′),
we have

dH′′′(v) ≤
(
dH′1(v)

3
+ ε0γn

)
+ ∆(H ′′r+1) ≤ 3γn/5

3
+ ε0γn+ 32ε0n ≤

2(γn− r)
3

In the second inequality, we used that dH′1(v) ≤ dH′(v). Moreover, we have

e(H ′′′) = e(H ′′r+1) + e(Mr+1 + · · ·+Mγn) ≤ 32ε0n
2 + 30ε0n(γn− r) ≤ 62ε0n

2.

Thus, by Proposition 3.2.2 applied with H ′′′ and γ − r/n playing the roles of H
and γ, there exists a decomposition of H ′′′ into γn−r edge-disjoint non-empty even
matchings Fr+1, . . . , Fγn, each of size at most 3e(H ′′′)/(γn− r) ≤ √ε0n/2. Thus
each such Fs is a Hamilton exceptional system candidate with parameter ε0. This
completes the proof. �

3.2.3. Step 3: Constructing the Localized Exceptional Systems. The
next lemma will be used to extend most of the exceptional system candidates guar-
anteed by Lemma 3.2.3 into localized exceptional systems. These extensions are
required to be ‘faithful’ in the following sense. Suppose that F is an exceptional
system candidate. Then J is a faithful extension of F if the following holds:

• J contains F and F [A′, B′] = J [A′, B′].
• If F is a Hamilton exceptional system candidate, then J is a Hamilton

exceptional system and the analogue holds if F is a matching exceptional
system candidate.

Lemma 3.2.4. Suppose that 0 < 1/n � ε0 � 1, that 0 ≤ γ ≤ 1 and that
n,K,m, γn ∈ N. Let P be a (K,m, ε0)-partition of a set V of n vertices. Let
1 ≤ i, i′ ≤ K. Suppose that H and F1, . . . , Fγn are pairwise edge-disjoint graphs
which satisfy the following conditions:

(i) V (H) = V and H contains only A0Ai-edges and B0Bi′-edges.
(ii) Each Fs is an (i, i′)-ESC with parameter ε0.
(iii) Each v ∈ V0 satisfies dH+

∑
Fs

(v) ≥ (2γ +
√
ε0)n.

Then there exist edge-disjoint (i, i′)-ES J1, . . . , Jγn with parameter ε0 in H +
∑
Fs

such that Js is a faithful extension of Fs for all s ≤ γn.
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Proof. For each s ≤ γn in turn, we extend Fs into an (i, i′)-ES Js with parameter
ε0 in H+

∑
Fs such that Js and Js′ are edge-disjoint for all s′ < s. Since H does not

contain any A′B′-edges, the Js will automatically satisfy Js[A
′, B′] = Fs[A

′, B′].
Suppose that for some 1 ≤ s ≤ γn we have already constructed J1, . . . , Js−1. Set
Hs := H −∑s′<s Js′ . Consider any v ∈ V0. Since v has degree at most 2 in an
exceptional system and in an exceptional system candidate, (iii) implies that

dHs
(v) ≥ dH+

∑
Fs

(v)− 2γn ≥ √ε0n.

Together with (i) this shows that condition (ii) in Lemma 2.3.2 holds (with Hs

playing the role of G). Since P is a (K,m, ε0)-partition of V , Lemma 2.3.2(i) holds
too. Hence we can apply Lemma 2.3.2 to obtain an exceptional system Js with
parameter ε0 in Hs + Fs such that Js is a faithful extension of Fs. (i) and (ii)
ensure that Js is an (i, i′)-ES, as required. �

3.2.4. Step 4: Constructing the Remaining Exceptional Systems. Due
to condition (iii), Lemma 3.2.4 cannot be used to extend all the exceptional system
candidates returned by Lemma 3.2.3 into localized exceptional systems. The next
lemma will be used to deal with the remaining exceptional system candidates (the
resulting exceptional systems will not be localized).

Lemma 3.2.5. Suppose that 0 < 1/n � ε0 � ε′ � λ � 1 and that n, λn ∈ N.
Let A,A0, B,B0 be a partition of a set V of n vertices such that |A0|+ |B0| ≤ ε0n
and |A| = |B|. Suppose that H,F1, . . . , Fλn are pairwise edge-disjoint graphs which
satisfy the following conditions:

(i) V (H) = V and H contains only A0A-edges and B0B-edges.
(ii) Each Fs is an exceptional system candidate with parameter ε0.

(iii) For all but at most ε′n indices s ≤ λn the graph Fs is either a matching
exceptional system candidate with e(Fs) = 0 or a Hamilton exceptional
system candidate with e(Fs) = 2. In particular, all but at most ε′n of the
Fs satisfy dFs

(v) ≤ 1 for all v ∈ V0.
(iv) All v ∈ V0 satisfy dH+

∑
Fs

(v) = 2λn.
(v) All v ∈ A ∪B satisfy dH+

∑
Fs

(v) ≤ 2ε0n.

Then there exists a decomposition of H+
∑
Fs into edge-disjoint exceptional systems

J1, . . . , Jλn with parameter ε0 such that Js is a faithful extension of Fs for all
s ≤ λn.

Proof. Let V0 := A0 ∪B0 and let v1, . . . , v|V0| denote the vertices of V0. We will
decompose H into graphs J ′s in such a way that the graphs Js := J ′s + Fs satisfy
dJs(vi) = 2 for all i ≤ |V0| and dJs(v) ≤ 1 for all v ∈ A ∪B. Hence each Js will be
an exceptional system with parameter ε0. Condition (i) guarantees that Js will be
a faithful extension of Fs. Moreover, the Js will form a decomposition of H+

∑
Fs.

We construct the decomposition of H by considering each vertex vi of A0 ∪ B0 in
turn.

Initially, we set V (J ′s) = E(J ′s) = ∅ for all s ≤ λn. Suppose that for some
1 ≤ i ≤ |V0| we have already assigned (and added) all the edges of H incident with
each of v1, . . . , vi−1 to the J ′s. Consider vi. Without loss of generality assume that
vi ∈ A0. Note that NH(vi) ⊆ A by (i). Define an auxiliary bipartite graph Qi with
vertex classes V1 and V2 as follows: V1 := NH(vi) and V2 consists of 2 − dFs

(vi)
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copies of Fs for each s ≤ λn. Moreover, Qi contains an edge between v ∈ V1 and
Fs ∈ V2 if and only if v /∈ V (Fs + J ′s).

We now show that Qi contains a perfect matching. For this, note that |V1| =
2λn − d∑Fs

(vi) = |V2| by (iv). (v) implies that for each v ∈ V1 ⊆ A we have
d∑(Fs+J′s)(v) ≤ dH+

∑
Fs

(v) ≤ 2ε0n. So v lies in at most 2ε0n of the graphs
Fs + J ′s. Therefore, dQi

(v) ≥ |V2| − 4ε0n ≥ |V2|/2 for all v ∈ V1. (The final
inequality follows since (iii) and (iv) together imply that dH(vi) = 2λn−d∑Fs

(vi) ≥
2λn − (λn − ε′n) − 2ε′n ≥ λn/2 and so |V2| = |V1| ≥ λn/2.) On the other hand,
since each Fs + J ′s is an exceptional system candidate with parameter ε0, (ESC3)
implies that |V (Fs+J ′s)∩A| ≤ (

√
ε0/2+2ε0)n ≤ √ε0n for each Fs ∈ V2. Therefore

dQi
(Fs) ≥ |V1| − |V (Fs + J ′s) ∩ A| ≥ |V1|/2 for each Fs ∈ V2. Thus we can apply

Hall’s theorem to find a perfect matching M in Qi. Whenever M contains an edge
between v and Fs, we add the edge viv to J ′s. This completes the desired assignment
of the edges of H at vi to the J ′s. �

3.2.5. Proof of Lemma 2.7.3. In our proof of Lemma 2.7.3 we will use
the following result, which is a consequence of Lemmas 3.2.4 and 3.2.5. Given a
suitable set of exceptional system candidates in an exceptional scheme, the lemma
extends these into exceptional systems which form a decomposition of the excep-
tional scheme. We prove the lemma in a slightly more general form than needed
for the current case, as we will also use it in the other two cases.

Lemma 3.2.6. Suppose that 0 < 1/n � ε0 � ε � ε′ � λ, 1/K � 1, that
1/(7K2) ≤ α < 1/K2 and that n,K,m,αn, λn/K2 ∈ N. Let

γ := α− λ

K2
and γ′ :=

λ

K2
.

Suppose that the following conditions hold:

(i) (G∗,P) is a (K,m, ε0, ε)-exceptional scheme with |G∗| = n.
(ii) G∗ is the edge-disjoint union of H(i, i′), F1(i, i′), . . . , Fγn(i, i′) and

F ′1(i, i′), . . . , F ′γ′n(i, i′) over all 1 ≤ i, i′ ≤ K.

(iii) Each H(i, i′) contains only A0Ai-edges and B0Bi′-edges.
(iv) Each Fs(i, i

′) is an (i, i′)-ESC with parameter ε0.
(v) Each F ′s(i, i

′) is an exceptional system candidate with parameter ε0. More-
over, for all but at most ε′n indices s ≤ γ′n the graph F ′s(i, i

′) is either a
matching exceptional system candidate with e(F ′s(i, i

′)) = 0 or a Hamilton
exceptional system candidate with e(F ′s(i, i

′)) = 2.
(vi) dG∗(v) = 2K2αn for all v ∈ V0.
(vii) For all 1 ≤ i, i′ ≤ K let G∗(i, i′) := H(i, i′) +

∑
s≤γn Fs(i, i

′)+∑
s≤γ′n F

′
s(i, i

′). Then dG∗(i,i′)(v) = (2α± ε′)n for all v ∈ V0.

Then G∗ has a decomposition into K2αn edge-disjoint exceptional systems

J1(i, i′), . . . , Jγn(i, i′) and J ′1(i, i′), . . . , J ′γ′n(i, i′)

with parameter ε0, where 1 ≤ i, i′ ≤ K, such that Js(i, i
′) is an (i, i′)-ES which is

a faithful extension of Fs(i, i
′) for all s ≤ γn and J ′s(i, i

′) is a faithful extension of
F ′s(i, i

′) for all s ≤ γ′n.

Proof. Fix any i, i′ ≤ K and set H := H(i, i′) and Fs := Fs(i, i
′) for all s ≤ γn.

Our first aim is to apply Lemma 3.2.4 in order to extend each of F1, . . . , Fγn into
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a (i, i′)-HES. (iii) and (iv) ensure that conditions (i) and (ii) of Lemma 3.2.4 hold.
To verify Lemma 3.2.4(iii), note that by (v) and (vii) each v ∈ V0 satisfies

dH+
∑
Fs

(v) = dG∗(i,i′)(v)− d∑
s F
′
s(i,i′)(v) ≥ (2α− ε′)n− (γ′ − ε′)n− 2ε′n

= (2α− γ′ − 2ε′)n ≥ (2γ +
√
ε0)n.

(Here the first inequality follows since (v) implies that dF ′s(i,i′)(v) ≤ 1 for all but
at most ε′n indices s ≤ γ′n.) Thus we can indeed apply Lemma 3.2.4 to find edge-
disjoint (i, i′)-ES J1(i, i′), . . . , Jγn(i, i′) with parameter ε0 in H +

∑
Fs such that

Js(i, i
′) is a faithful extension of Fs for all s ≤ γn. We repeat this procedure for all

1 ≤ i, i′ ≤ K to obtain K2γn edge-disjoint (localized) exceptional systems.
Our next aim is to apply Lemma 3.2.5 in order to construct the J ′s(i, i

′). Let
H0 be the union of H(i, i′)−(J1(i, i′)+· · ·+Jγn(i, i′)) over all i, i′ ≤ K. Relabel the
F ′s(i, i

′) (for all s ≤ γ′n and all i, i′ ≤ K) to obtain exceptional system candidates
F ′1, . . . , F

′
λn. Note that by (vi) each v ∈ V0 satisfies

(3.2.12) dH0+
∑
F ′s

(v) = dG∗(v)− 2K2γn = 2K2αn− 2K2γn = 2λn.

Thus condition (iv) of Lemma 3.2.5 holds withH0, F
′
s playing the roles ofH,Fs. (iii)

and (v) imply that conditions (i)–(iii) of Lemma 3.2.5 hold with K2ε′ playing the
role of ε′. To verify Lemma 3.2.5(v), note that each v ∈ A satisfies dH0+

∑
F ′s

(v) ≤
dG∗(v,A0) + dG∗(v,B

′) ≤ 2ε0n by (iii), (i) and (ESch3). Similarly each v ∈ B
satisfies dH0+

∑
F ′s

(v) ≤ 2ε0n. Thus we can apply Lemma 3.2.5 with H0, F
′
s,K

2ε′

playing the roles of H,Fs, ε
′ to obtain a decomposition of H0 +

∑
s F
′
s into λn

edge-disjoint exceptional systems J ′1, . . . , J
′
λn with parameter ε0 such that J ′s is a

faithful extension of F ′s for all s ≤ λn. Recall that each F ′s is a F ′s′(i, i
′) for some

i, i′ ≤ K and some s′ ≤ γ′n. Let J ′s′(i, i
′) := J ′s. Then all the Js(i, i

′) and all the
J ′s(i, i

′) are as required in the lemma. �

We now combine Lemmas 3.2.1, 3.2.3 and 3.2.6 in order to prove Lemma 2.7.3.

Proof of Lemma 2.7.3. Let G� be as defined in Lemma 2.7.3(iv). Choose a
new constant ε′ such that ε� ε′ � λ, 1/K. Set

2αn :=
D − φn
K2

, γ1 := α− 2λ

K2
and γ′1 :=

2λ

K2
.(3.2.13)

Similarly as in the proof of Lemma 3.2.1, since φ� 1/3 ≤ D/n, we have

α ≥ 1/(7K2), (1− 14λ)α ≤ γ1 < α and ε� ε′ � λ, 1/K,α, γ1 � 1.

(3.2.14)

Apply Lemma 3.2.1 with γ1 playing the role of γ in order to obtain a decomposition
of G� into edge-disjoint spanning subgraphs H(i, i′) and H ′′(i, i′) (for all 1 ≤ i, i′ ≤
K) which satisfy the following properties, where G′(i, i′) := H(i, i′) +H ′′(i, i′):

(b1) Each H(i, i′) contains only A0Ai-edges and B0Bi′ -edges.
(b2) H ′′(i, i′) ⊆ G�[A′, B′]. Moreover, all but at most ε′n edges of H ′′(i, i′) lie

in G�[A0 ∪Ai, B0 ∪Bi′ ].
(b3) e(H ′′(i, i′)) is even and 2αn ≤ e(H ′′(i, i′)) ≤ 11ε0n

2/(10K2).
(b4) ∆(H ′′(i, i′)) ≤ 31αn/30.
(b5) dG′(i,i′)(v) = (2α± ε′)n for all v ∈ V0.

(b6) Let H̃ any spanning subgraph of H ′′(i, i′) which maximises e(H̃) under

the constraints that ∆(H̃) ≤ 3γ1n/5, H ′′(i, i′)[A0, B0] ⊆ H̃ and e(H̃) is

even. Then e(H̃) ≥ 2αn.
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Fix any 1 ≤ i, i′ ≤ K. Set H := H(i, i′) and H ′′ := H ′′(i, i′). Our next aim
is to decompose H ′′ into suitable ‘localized’ Hamilton exceptional system candi-
dates. For this, we will apply Lemma 3.2.3 with H ′′, γ1, γ

′
1 playing the roles of

H, γ, γ′. Note that ∆(H ′′) ≤ 31αn/30 ≤ 16γ1n/15 by (b4) and (3.2.14). More-
over, ∆(H ′′[A,B]) ≤ ∆(G�[A,B]) ≤ ε0n by (iv) and (ESch3). Since e(H ′′) is
even by (b3), it follows that condition (i) of Lemma 3.2.3 holds. Condition (ii)

of Lemma 3.2.3 follows from (b6) and the fact that any H̃ as in (b6) satisfies

e(H̃) ≤ e(H ′′) ≤ 11ε0n
2/(10K2) ≤ 10ε0γ1n

2 (the last inequality follows from
(3.2.14)). Thus we can indeed apply Lemma 3.2.3 in order to decompose H ′′ into
αn edge-disjoint Hamilton exceptional system candidates F1, . . . , Fγ1n, F

′
1, . . . , F

′
γ′1n

with parameter ε0 such that e(F ′s) = 2 for all s ≤ γ′1n. Next we set

γ2 := α− λ

K2
and γ′2 :=

λ

K2
.

Condition (b2) ensures that by relabeling the Fs’s and F ′s’s we obtain αn edge-
disjoint Hamilton exceptional system candidates F1(i, i′), . . . , Fγ2n(i, i′), F ′1(i, i′),
. . . , F ′γ′2n

(i, i′) with parameter ε0 such that properties (a′) and (b′) hold:

(a′) Fs(i, i
′) is an (i, i′)-HESC for every s ≤ γ2n. Moreover, at least γ′2n of

the Fs(i, i
′) satisfy e(Fs(i, i

′)) = 2.
(b′) e(F ′s(i, i

′)) = 2 for all but at most ε′n of the F ′s(i, i
′).

Indeed, we can achieve this by relabeling each Fs which is a subgraph of G�[A0 ∪
Ai, B0 ∪Bi′ ] as one of the Fs′(i, i

′) and each Fs for which is not the case as one of
the F ′s′(i, i

′).
Our next aim is to apply Lemma 3.2.6 with G�, γ2, γ

′
2 playing the roles of

G∗, γ, γ′. Clearly conditions (i) and (ii) of Lemma 3.2.6 hold. (iii) follows from (b1).
(iv) and (v) follow from (a′) and (b′). (vi) follows from Lemma 2.7.3(i),(iii). Finally,
(vii) follows from (b5) since G′(i, i′) plays the role of G∗(i, i′). Thus we can indeed
apply Lemma 3.2.6 to obtain a decomposition of G� into K2αn edge-disjoint Hamil-
ton exceptional systems J1(i, i′), . . . , Jγ2n(i, i′) and J ′1(i, i′), . . . , J ′γ′2n

(i, i′) with pa-

rameter ε0, where 1 ≤ i, i′ ≤ K, such that Js(i, i
′) is an (i, i′)-HES which is a

faithful extension of Fs(i, i
′) for all s ≤ γ2n and J ′s(i, i

′) is a faithful extension of
F ′s(i, i

′) for all s ≤ γ′2n. Then the set J of all these Hamilton exceptional systems
is as required in Lemma 2.7.3. �

3.3. Critical Case with e(A′, B′) ≥ D
The aim of this section is to prove Lemma 2.7.4. Recall that Lemma 2.7.4 gives

a decomposition of the exceptional edges into exceptional systems in the critical
case when e(A′, B′) ≥ D. The overall strategy for the proof is similar to that of
Lemma 2.7.3. As before, it consists of four steps. In Step 1, we use Lemma 3.3.1
instead of Lemma 3.2.1. In Step 2, we use Lemma 3.3.3 instead of Lemma 3.2.3.
We still use Lemma 3.2.6 which combines Steps 3 and 4.

3.3.1. Step 1: Constructing the Graphs H ′′(i, i′). The next lemma is an
analogue of Lemma 3.2.1. We will apply it with the graph G� from Lemma 2.7.4(iv)
playing the role of G. Note that instead of assuming that our graph G given
in Lemma 2.7.4 is critical, the lemma assumes that eG�(A

′, B′) ≤ 2n. This is
a weaker assumption, since if G is critical, then eG�(A

′, B′) ≤ eG(A′, B′) < n
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by Lemma 3.1.1(iii). Using only this weaker assumption has the advantage that
we can also apply the lemma in the proof of Lemma 2.7.5, i.e. the case when
eG(A′, B′) < D. (b7) is only used in the latter application.

Lemma 3.3.1. Suppose that 0 < 1/n � ε0 � ε � 1/K � 1 and that
n,K,m ∈ N. Let (G,P) be a (K,m, ε0, ε)-exceptional scheme with |G| = n and
eG(A0), eG(B0) = 0. Let W0 be a subset of V0 of size at most 2 such that for each
w ∈W0, we have

(3.3.1) K2 ≤ dG[A′,B′](w) ≤ eG(A′, B′)/2.

Suppose that eG(A′, B′) ≤ 2n is even. Then G can be decomposed into edge-disjoint
spanning subgraphs H(i, i′) and H ′′(i, i′) of G (for all 1 ≤ i, i′ ≤ K) such that the
following properties hold, where G′(i, i′) := H(i, i′) +H ′′(i, i′):

(b1) Each H(i, i′) contains only A0Ai-edges and B0Bi′-edges.
(b2) H ′′(i, i′) ⊆ G[A′, B′]. Moreover, all but at most 20εn/K2 edges of H ′′(i, i′)

lie in G[A0 ∪Ai, B0 ∪Bi′ ].
(b3) e(H ′′(i, i′)) = 2

⌈
eG(A′, B′)/(2K2)

⌉
or e(H ′′(i, i′)) = 2

⌊
eG(A′, B′)/(2K2)

⌋
.

(b4) dH′′(i,i′)(v) = (dG[A′,B′](v)± 25εn)/K2 for all v ∈ V0.

(b5) dG′(i,i′)(v) = (dG(v)± 25εn) /K2 for all v ∈ V0.

(b6) Each w ∈W0 satisfies dH′′(i,i′)(w) = ddG[A′,B′](w)/K2e or dH′′(i,i′)(w) =

bdG[A′,B′](w)/K2c.
(b7) Each w ∈W0 satisfies 2dH′′(i,i′)(w) ≤ e(H ′′(i, i′)).

Proof. Since eG(A′, B′) is even, there exist unique non-negative integers b and q
such that eG(A′, B′) = 2K2b + 2q and q < K2. Hence, for all 1 ≤ i, i′ ≤ K, there
are integers bi,i′ ∈ {2b, 2b + 2} such that

∑
i,i′≤K bi,i′ = eG(A′, B′). In particular,

the number of pairs i, i′ for which bi,i′ = b + 2 is precisely q. We will choose the
graphs H ′′(i, i′) such that e(H ′′(i, i′)) = bi,i′ . (In particular, this will ensure that
(b3) holds.) The following claim will help to ensure (b6) and (b7).

Claim. For each w ∈W0 and all i, i′ ≤ K there is an integer ai,i′ = ai,i′(w) which
satisfies the following properties:

• ai,i′ = ddG[A′,B′](w)/K2e or ai,i′ = bdG[A′,B′](w)/K2c.
• 2ai,i′ ≤ bi,i′ .
• ∑i,i′≤K ai,i′ = dG[A′,B′](w).

To prove the claim, note that there are unique non-negative integers a and p such
that dG[A′,B′](w) = K2a+ p and p < K2. Note that a ≥ 1 by (3.3.1). Moreover,

2(K2a+ p) = 2dG[A′,B′](w)
(3.3.1)

≤ eG(A′, B′) = 2K2b+ 2q.(3.3.2)

This implies that a ≤ b. Recall that bi,i′ ∈ {2b, 2b + 2}. So if b > a, then the
claim holds by choosing any ai,i′ ∈ {a, a+1} such that

∑
i,i′≤K ai,i′ = dG[A′,B′](w).

Hence we may assume that a = b. Then (3.3.2) implies that p ≤ q. Therefore, the
claim holds by setting ai,i′ := a+ 1 for exactly p pairs i, i′ for which bi,i′ = 2b+ 2
and setting ai,i′ := a otherwise. This completes the proof of the claim.

Apply Lemma 2.5.2 to decompose G into subgraphs H(i, i′), H ′(i, i′) (for all i, i′ ≤
K) satisfying the following properties, where G(i, i′) = H(i, i′) +H ′(i, i′):

(a′1) Each H(i, i′) contains only A0Ai-edges and B0Bi′ -edges.
(a′2) All edges of H ′(i, i′) lie in G[A0 ∪Ai, B0 ∪Bi′ ].
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(a′3) e(H ′(i, i′)) = (eG(A′, B′)± 8εn)/K2.
(a′4) dH′(i,i′)(v) = (dG[A′,B′](v)± 2εn)/K2 for all v ∈ V0.

(a′5) dG(i,i′)(v) = (dG(v)± 4εn)/K2 for all v ∈ V0.

Indeed, (a′3) follows from Lemma 2.5.2(a3) and our assumption that eG(A′, B′) ≤
2n.

Clearly, (a′1) implies that the graphs H(i, i′) satisfy (b1). We will now move
some A′B′-edges of G between the H ′(i, i′) such that the graphs H ′′(i, i′) obtained
in this way satisfy the following conditions:

• Each H ′′(i, i′) is obtained from H ′(i, i′) by adding or removing at most
20εn/K2 edges of G.

• e(H ′′(i, i′)) = bi,i′ .
• dH′′(i,i′)(w) = ai,i′(w) for each w ∈ W0, where ai,i′(w) are integers satis-

fying the claim.

Write W0 =: {w1} if |W0| = 1 and W0 =: {w1, w2} if |W0| = 2. If W0 6= ∅,
then (a′4) implies that dH′(i,i′)(w1) = ai,i′(w1)± (2εn/K2 + 1). For each i, i′ ≤ K,

we add or remove at most 2εn/K2 + 1 edges incident to w1 such that the graphs
H ′′(i, i′) obtained in this way satisfy dH′′(i,i′)(w1) = ai,i′(w1). Note that since

ai,i′(w1) ≥ bdG[A′,B′](w1)/K2c ≥ 1 by (3.3.1), we can do this in such a way that
we do not move the edge w1w2 (if it exists). Similarly, if |W0| = 2, then for each
i, i′ ≤ K we add or remove at most 2εn/K2 + 1 edges incident to w2 such that the
graphs H ′′(i, i′) obtained in this way satisfy dH′′(i,i′)(w2) = ai,i′(w2). As before,
we do this in such a way that we do not move the edge w1w2 (if it exists).

Thus dH′′(i,i′)(w1) = ai,i′(w1) and dH′′(i,i′)(w2) = ai,i′(w2) for all 1 ≤ i, i′ ≤
K (if w1, w2 exist). In particular, together with the claim, this implies that
dH′′(i,i′)(w1), dH′′(i,i′)(w2) ≤ bi,i′/2. Thus the number of edges of H ′′(i, i′) inci-
dent to W0 is at most ∑

w∈W0

dH′′(i,i′)(w) ≤ bi,i′ .(3.3.3)

(This holds regardless of the size of W0.) On the other hand, (a′3) implies that for
all i, i′ ≤ K we have

e(H ′′(i, i′)) = (eG(A′, B′)± 8εn)/K2 ± 2(2εn/K2 + 1) = bi,i′ ± 13εn/K2.

Together with (3.3.3) this ensures that we can add or delete at most 13εn/K2

edges which do not intersect W0 to or from each H ′′(i, i′) in order to ensure that
e(H ′′(i, i′)) = bi,i′ for all i, i′ ≤ K. Hence, (b3), (b6) and (b7) hold. Moreover,

(3.3.4) e(H ′′(i, i′)−H ′(i, i′)) ≤ |W0|(2εn/K2 + 1) + 13εn/K2 ≤ 20εn/K2.

So (b2) follows from (a′2). Finally, (b4) and (b5) follow from (3.3.4), (a′4) and (a′5).
�

3.3.2. Step 2: Decomposing H ′′(i, i′) into Hamilton Exceptional Sys-
tem Candidates. Before we can prove an analogue of Lemma 3.2.3, we need the
following result. It will allow us to distribute the edges incident to the (up to three)
vertices wi of high degree in G[A′, B′] in a suitable way among the localized Hamil-
ton exceptional system candidates Fj . The degrees of these high degree vertices wi
will play the role of the ai. The cj will account for edges (not incident to wi) which
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have already been assigned to the Fj . (b) and (c) will be used to ensure (ESC4),
i.e. that the total number of ‘connections’ between A′ and B′ is even and positive.

Lemma 3.3.2. Let 1 ≤ q ≤ 3 and 0 ≤ η < 1 and r, ηr ∈ N. Suppose that
a1, . . . , aq ∈ N and c1, . . . , cr ∈ {0, 1, 2} satisfy the following conditions:

(i) c1 ≥ · · · ≥ cr ≥ c1 − 1.
(ii)

∑
i≤q ai +

∑
j≤r cj = 2(1 + η)r.

(iii) 31r/60 ≤ a1, a2 ≤ r and 31r/60 ≤ a3 ≤ 31r/30.

Then for all i ≤ q and all j ≤ r there are ai,j ∈ {0, 1, 2} such that the following
properties hold:

(a)
∑
j≤r ai,j = ai for all i ≤ q.

(b) cj +
∑
i≤q ai,j = 4 for all j ≤ ηr and cj +

∑
i≤q ai,j = 2 for all ηr < j ≤ r.

(c) For all j ≤ r there are at least 2− cj indices i ≤ q with ai,j = 1.

Proof. We will choose ai,1, . . . , ai,r for each i ≤ q in turn such that the following

properties (αi)–(ρi) hold, where we write c
(i)
j := cj +

∑
i′≤i ai′,j for each 0 ≤ i ≤ q

(so c
(0)
j = cj):

(αi) If i ≥ 1 then
∑
j≤r ai,j = ai.

(βi) 4 ≥ c(i)1 ≥ · · · ≥ c
(i)
r .

(γi) If
∑
j≤r c

(i)
j < 2r, then |c(i)j − c

(i)
j′ | ≤ 1 for all j, j′ ≤ r.

(δi) If
∑
j≤r c

(i)
j ≥ 2r, then c

(i)
j ≥ 2 for all j ≤ ηr and c

(i)
j = 2 for all ηr < j ≤

r.
(ρi) If 1 ≤ i ≤ q and c

(i−1)
j < 2 for some j ≤ r, then ai,j ∈ {0, 1}.

We will then show that the ai,j defined in this way are as required in the lemma.
Note that (i) and the fact that c1, . . . , cr ∈ {0, 1, 2} together imply (β0)–(δ0).

Moreover, (α0) and (ρ0) are vacuously true. Suppose that for some 1 ≤ i ≤ q we
have already defined ai′,j for all i′ < i and all j ≤ r such that (αi′)–(ρi′) hold. In
order to define ai,j for all j ≤ r, we distinguish the following cases.

Case 1:
∑
j≤r c

(i−1)
j ≥ 2r.

Recall that in this case c
(i−1)
j ≥ 2 for all j ≤ r by (δi−1). For each j ≤ r in turn we

choose ai,j ∈ {0, 1, 2} as large as possible subject to the constraints that

• ai,j + c
(i−1)
j ≤ 4 and

• ∑j′≤j ai,j′ ≤ ai.
Since c

(i)
j = ai,j + c

(i−1)
j , (βi) follows from (βi−1) and our choice of the ai,j . (γi)

is vacuously true. To verify (δi), note that c
(i)
j ≥ c

(i−1)
j ≥ 2 by (δi−1). Suppose

that the second part of (δi) does not hold, i.e. that c
(i)
ηn+1 > 2. This means that

ai,ηn+1 > 0. Together with our choice of the ai,j this implies that c
(i)
j = 4 for all

j ≤ ηn. Thus

2(1 + η)r = 4ηr+ 2(r− ηr) <
∑
j≤r

c
(i)
j =

∑
j≤r

ai,j +
∑
i′<i

ai′ +
∑
j≤r

cj ≤
∑
i′≤i

ai′ +
∑
j≤r

cj

contradicting (ii). Thus the second part of (δi) holds too. Moreover, c
(i)
ηn+1 =

c
(i−1)
ηn+1 = 2 also means that ai,ηn+1 = 0. So

∑
j′≤ηn ai,j′ = ai, i.e. (αi) holds. (ρi) is

vacuously true since c
(i−1)
j ≥ 2 by (δi−1).
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Case 2: 2r − ai ≤
∑
j≤r c

(i−1)
j < 2r.

If i ∈ {1, 2} then together with (iii) this implies that

(3.3.5)
∑
j≤r

c
(i−1)
j ≥ r ≥ ai.

If i = 3 then

(3.3.6)
∑
j≤r

c
(i−1)
j ≥

∑
j≤r

∑
i′≤2

ai′,j = a1 + a2 ≥
31r

30
≥ a3

by (iii). In particular, in both cases we have
∑
j≤r c

(i−1)
j ≥ r. Together with (γi−1)

this implies that c
(i−1)
j ∈ {1, 2} for all j ≤ r. Let 0 ≤ r′ ≤ r be the largest integer

such that c
(i−1)
r′ = 2. So r′ < r and

∑
j≤r c

(i−1)
j = r+ r′. Together with (3.3.5) and

(3.3.6) this in turn implies that ai ≤ r + r′ (regardless of the value of i).
Set ai,j := 1 for all r′ < j ≤ r. Note that∑

r′<j≤r

ai,j = r − r′ = 2r −
∑
j≤r

c
(i−1)
j ≤ ai,

where the final inequality comes from the assumption of Case 2. Take ai,1, . . . , ai,r′

to be a sequence of the form 2, . . . , 2, 0, . . . , 0 (in the case when ai −
∑
r′<j≤r ai,j

is even) or 2, . . . , 2, 1, 0, . . . , 0 (in the case when ai −
∑
r′<j≤r ai,j is odd) which is

chosen in such a way that
∑
j≤r′ ai,j = ai −

∑
r′<j≤r ai,j = ai − r + r′. This can

be done since ai ≤ r + r′ implies that the right hand side is at most 2r′.

Clearly, (αi), (βi) and (ρi) hold. Since
∑
j≤r c

(i)
j = ai+

∑
j≤r c

(i−1)
j ≥ 2r as we

are in Case 2, (γi) is vacuously true. Clearly, our choice of the ai,j guarantees that

c
(i)
j ≥ 2 for all j ≤ r. As in Case 1 one can show that c

(i)
j = 2 for all ηr < j ≤ r.

Thus (δi) holds.

Case 3:
∑
j≤r c

(i−1)
j < 2r − ai.

Note that in this case

2r >
∑
j≤r

c
(i−1)
j + ai =

∑
i′≤i

ai′ +
∑
j≤r

cj ,

and so i < q by (ii). Together with (iii) this implies that ai ≤ r. Thus for all
j ≤ r we can choose ai,j ∈ {0, 1} such that (αi)–(γi) and (ρi) are satisfied. (δi) is
vacuously true.

This completes the proof of the existence of numbers ai,j (for all i ≤ q and all
j ≤ r) satisfying (αi)–(ρi). It remains to show that these ai,j are as required in

the lemma. Clearly, (α1)–(αq) imply that (a) holds. Since c
(q)
j = cj +

∑
i≤q ai,j

the second part of (b) follows from (δq). Since c
(q)
j ≤ 4 for each j ≤ ηr by (βq),

together with (ii) this in turn implies that the first part of (b) must hold too. If
cj < 2, then (ρ1)–(ρq) and (b) together imply that for at least 2 − cj indices i we
have ai,j = 1. Therefore, (c) holds. �
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We can now use the previous lemma to decompose the bipartite graph induced
by A′ and B′ into Hamilton exceptional system candidates.

Lemma 3.3.3. Suppose that 0 < 1/n � ε0 � α < 1, that 0 ≤ η < 199/200
and that n, αn/200, ηαn ∈ N. Let H be a bipartite graph on n vertices with vertex
classes A∪̇A0 and B∪̇B0 where |A0| + |B0| ≤ ε0n. Furthermore, suppose that the
following conditions hold:

(c1) e(H) = 2(1 + η)αn.
(c2) There is a set W ′ ⊆ V (H) with 1 ≤ |W ′| ≤ 3 and such that

e(H −W ′) ≤ 199αn/100 and dH(w) ≥ 13αn/25 for all w ∈W ′.
(c3) There exists a set W0 ⊆ W ′ with |W0| = min{2, |W ′|} and such that

dH(w) ≤ αn for all w ∈W0 and dH(w′) ≤ 41αn/40 for all w′ ∈W ′ \W0.
(c4) For all w ∈W ′ and all v ∈ V (H)\W ′ we have dH(w)−dH(v) ≥ αn/150.
(c5) For all v ∈ A ∪B we have dH(v) ≤ ε0n.

Then there exists a decomposition of H into edge-disjoint Hamilton exceptional
system candidates F1, . . . , Fαn such that e(Fs) = 4 for all s ≤ ηαn and e(Fs) = 2
for all ηαn < s ≤ αn. Furthermore, at least αn/200 of the Fs satisfy the following
two properties:

• dFs(w) = 1 for all w ∈W0,
• e(Fs) = 2.

Roughly speaking, the idea of the proof is first to find the Fs which satisfy the
final two properties. Let H1 be the graph obtained from H by removing the edges
in all these Fs. We will decompose H1−W ′ into matchings Mj of size at most two.
Next, we extend these matchings into Hamilton exceptional system candidates Fj
using Lemma 3.3.2. In particular, if e(Mj) < 2, then we will use one or more edges
incident to W ′ to ensure that the number of A′B′-connections is positive and even,
as required by (ESC4). (Note that it does not suffice to ensure that the number of
A′B′-edges is positive and even for this.)

Proof. Set H ′ := H−W ′, W0 =: {w1, w|W0|} and W ′ =: {w1, . . . , w|W ′|}. Hence,
if |W ′| = 3, then W ′ \W0 = {w3}. Otherwise W ′ = W0.

We will first construct eH(W ′) Hamilton exceptional system candidates Fs,
such that each of them is a matching of size two and together they cover all edges
in H[W ′]. So suppose that eH(W ′) > 0. Thus |W ′| = 2 or |W ′| = 3. If |W ′| = 2,
let f denote the unique edge in H[W ′]. Note that

e(H ′) ≥ e(H)− (dH(w1) + dH(w2)− 1) ≥ 2(1 + η)αn− (2αn− 1) ≥ 1

by (c1) and (c3). So there exists an edge f ′ in H ′. Therefore, M ′1 := {f, f ′} is
a matching. If |W ′| = 3, then eH(W ′) ≤ 2 as H is bipartite. Since by (c2) each
w ∈ W ′ satisfies dH(w) ≥ 13αn/25, it is easy to construct eH(W ′) 2-matchings
M ′1,M

′
eH(W ′) such that dM ′s(w) = 1 for all w ∈ W ′ and all s ≤ eH(W ′) and such

that H[W ′] ⊆ M ′1 ∪M ′eH(W ′). Set Fαn−s+1 := M ′s for all s ≤ eH(W ′) (regardless

of the size of W ′).
We now greedily choose αn/200−eH(W ′) additional 2-matchings F199αn/200+1,

. . . , Fαn−eH(W ′) in H which are edge-disjoint from each other and from Fαn,
Fαn−eH(W ′)+1 and such that dFs

(w) = 1 for all w ∈ W0 and all 199αn/200 <
s ≤ αn − eH(W ′). To see that this can be done, recall that by (c2) we have
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dH(w) ≥ 13αn/25 for all w ∈W ′ (and thus for all w ∈W0) and that (c1) and (c3)
together imply that e(H −W0) ≥ 2(1 + η)αn− αn > αn if |W0| = 1.

Thus F199αn/200+1, . . . , Fαn are Hamilton exceptional system candidates satis-
fying the two properties in the ‘furthermore part’ of the lemma. Let H1 and H ′1
be the graphs obtained from H and H ′ by deleting all the αn/100 edges in these
Hamilton exceptional system candidates. Set

r := 199αn/200 and η′ := ηαn/r = 200η/199.(3.3.7)

Thus 0 ≤ η′ < 1 and we now have

H1[W ′] = ∅, e(H1) = e(H)− αn/100 = 2(1 + η′)r and e(H ′1) ≤ 2r.(3.3.8)

(To verify the last inequality note that e(H ′1) ≤ e(H −W ′) ≤ 2r by (c2).) Also,
(c2) and (c4) together imply that for all w ∈W ′ and all v ∈ V (H) \W ′ we have

dH1
(w) ≥ αn/2 ≥ 4ε0n and dH1

(w)− dH1
(v) ≥ 2ε0n.(3.3.9)

Moreover, by (c2) and (c3), each w ∈W0 satisfies

31r/60 ≤ 13αn/25− αn/200 ≤ dH(w)− dH−H1
(w) = dH1

(w)

≤ αn− αn/200 = r.(3.3.10)

Similarly, if |W ′| = 3 and so w3 exists, then

31r/60 ≤ 13αn/25− αn/200 ≤ dH(w3)− dH−H1
(w3) = dH1

(w3)

≤ 41αn/40 ≤ 31r/30.(3.3.11)

(3.3.9) and (3.3.10) together imply that dH′1(v) ≤ dH1(v) < dH1(w1) ≤ r for all
v ∈ V (H) \W ′. Thus χ′(H ′1) ≤ ∆(H ′1) ≤ r. Together with Proposition 1.4.5 this
implies that H ′1 can be decomposed into r edge-disjoint matchings M1, . . . ,Mr such
that |mj −mj′ | ≤ 1 for all 1 ≤ j, j′ ≤ r, where we set mj := e(Mj).

Our next aim is to apply Lemma 3.3.2 with |W ′|, dH1
(wi), mj , η

′ playing the
roles of q, ai, cj , η (for all i ≤ |W ′| and all j ≤ r). Since

∑
j≤rmj = e(H ′1) ≤ 2r

by (3.3.8) and since |mj − mj′ | ≤ 1, it follows that mj ∈ {0, 1, 2} for all j ≤
r. Moreover, by relabeling the matchings Mj if necessary, we may assume that
m1 ≥ m2 ≥ · · · ≥ mr. Thus condition (i) of Lemma 3.3.2 holds. (ii) holds too
since

∑
i≤|W ′| dH1

(wi) +
∑
j≤rmj = e(H1) = 2(1 + η′)r by (3.3.8). Finally, (iii)

follows from (3.3.10) and (3.3.11). Thus we can indeed apply Lemma 3.3.2 in order
to obtain numbers ai,j ∈ {0, 1, 2} (for all i ≤ |W ′| and j ≤ r) which satisfy the
following properties:

(a′)
∑
j≤r ai,j = dH1(wi) for all i ≤ |W ′|.

(b′) mj +
∑
i≤|W ′| ai,j = 4 for all j ≤ η′r and mj +

∑
i≤|W ′| ai,j = 2 for all

η′r < j ≤ r.
(c′) If mj < 2 then there exist at least 2−mj indices i such that ai,j = 1.

For all j ≤ r, our Hamilton exceptional system candidate Fj will consist of the
edges in Mj as well as of ai,j edges of H1 incident to wi (for each i ≤ |W ′|). So
let F 0

j := Mj for all j ≤ r. For each i = 1, . . . , |W ′| in turn, we will now assign

the edges of H1 incident with wi to F i−1
1 , . . . , F i−1

r such that the resulting graphs
F i1, . . . , F

i
r satisfy the following properties:

(αi) If i ≥ 1, then e(F ij )− e(F i−1
j ) = ai,j .
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(βi) F ij is a path system. Every vertex v ∈ A ∪ B is incident to at most one

edge of F ij . For every v ∈ V0 \W ′ we have dF i
j
(v) ≤ 2. If e(F ij ) ≤ 2, we

even have dF i
j
(v) ≤ 1.

(γi) Let bij be the number of vertex-disjoint maximal paths in F ij with one

endpoint in A′ and the other in B′. If ai,j = 1 and i ≥ 1, then bij = bi−1
j +1.

Otherwise bij = bi−1
j .

We assign the edges of H1 incident with wi to F i−1
1 , . . . , F i−1

r in two steps. In the
first step, for each index j ≤ r with ai,j = 2 in turn, we assign an edge of H1

between wi and V0 to F i−1
j whenever there is such an edge left. More formally, to

do this, we set N0 := NH1
(wi). For each j ≤ r in turn, if ai,j = 2 and Nj−1∩V0 6= ∅,

then we choose a vertex v ∈ Nj−1 ∩V0 and set F ′j := F i−1
j +wiv, Nj := Nj−1 \ {v}

and a′i,j := 1. Otherwise, we set F ′j := F i−1
j , Nj := Nj−1 and a′i,j := ai,j .

Therefore, after having dealt with all indices j ≤ r in this way, we have that

either a′i,j ≤ 1 for all j ≤ r or Nr ∩ V0 = ∅ (or both).(3.3.12)

Note that by (b′) we have e(F ′j) ≤ mj +
∑
i′≤i ai′,j ≤ 4 for all j ≤ r. Moreover, (a′)

implies that |Nr| =
∑
j≤r a

′
i,j . Also, Nr \V0 = NH1

(wi)\V0, and so NH1
(wi)\Nr ⊆

V0. Hence

|Nr| = |NH1(wi)| − |NH1(wi) \Nr| ≥ dH1(wi)− |V0| ≥ dH1(wi)− ε0n.(3.3.13)

In the second step, we assign the remaining edges of H1 incident with wi to
F ′1, . . . , F

′
r. We achieve this by finding a perfect matching M in a suitable auxiliary

graph.

Claim. Define a graph Q with vertex classes Nr and V ′ as follows: V ′ consists of
a′i,j copies of F ′j for each j ≤ r. Q contains an edge between v ∈ Nr and F ′j ∈ V ′ if
and only v is not an endpoint of an edge in F ′j. Then Q has a perfect matching M .

To prove the claim, note that

|V ′| =
∑
j≤r

a′i,j = |Nr|
(3.3.13)

≥ dH1
(wi)− ε0n.(3.3.14)

Moreover, since F ′j ⊆ H is bipartite and so every edge of F ′j has at most one
endpoint in Nr, it follows that

dQ(F ′j) ≥ |Nr| − e(F ′j) ≥ |Nr| − 4(3.3.15)

for each F ′j ∈ V ′. Consider any v ∈ Nr. Clearly, there are at most dH1
(v) indices

j ≤ r such that v is an endpoint of an edge of F ′j . If v ∈ Nr \ V0 ⊆ A ∪ B, then
by (c5), v lies in at most 2dH1(v) ≤ 2dH(v) ≤ 2ε0n elements of V ′. (The factor 2
accounts for the fact that each F ′j occurs in V ′ precisely a′i,j ≤ 2 times.) So

dQ(v) ≥ |V ′| − 2ε0n
(3.3.14)

≥ dH1(wi)− 3ε0n
(3.3.9)

≥ ε0n.

If v ∈ Nr ∩ V0, then (3.3.12) implies that a′i,j ≤ 1 for all j ≤ r. Thus

dQ(v) ≥ |V ′| − dH1(v)
(3.3.14)

≥ (dH1(wi)− dH1(v))− ε0n
(3.3.9)

≥ 2ε0n− ε0n = ε0n.

To summarize, for all v ∈ Nr we have dQ(v) ≥ ε0n. Together with (3.3.15) and the
fact that |Nr| = |V ′| by (3.3.14) this implies that Q contains a perfect matching M
by Hall’s theorem. This proves the claim.
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For each j ≤ r, let F ij be the graph obtained from F ′j by adding the edge wiv
whenever the perfect matching M (as guaranteed by the claim) contains an edge
between v and F ′j .

Let us now verify (αi)–(γi) for all i ≤ |W ′|. Clearly, (α0)–(γ0) hold and b0j =
mj . Now suppose that i ≥ 1 and that (αi−1)–(γi−1) hold. Clearly, (αi) holds by
our construction of F i1, . . . , F

i
r . Now consider any j ≤ r. If ai,j = 0, then (βi) and

(γi) follow from (βi−1) and (γi−1). If ai,j = 1, then the unique edge in F ij − F i−1
j

is vertex-disjoint from any edge of F i−1
j (by the definition of Q) and so (βi) holds.

Moreover, bij = bi−1
j + 1 and so (γi) holds. So suppose that ai,j = 2. Then the

unique two edges in F ij −F i−1
j form a path P = v′wiv

′′ of length two with internal

vertex wi. Moreover, at least one of the edges of P , wiv
′′ say, was added to F i−1

j

in the second step of our construction of F ij . Thus dF i
j
(v′′) = 1. The other edge

wiv
′ of P was either added in the first or in the second step. If wiv

′ was added
in the second step, then dF i

j
(v′) = 1. Altogether this shows that in this case (γi)

holds and (βi) follows from (βi−1). So suppose that wiv
′ was added to F i−1

j in the

first step of our construction of F ij . Thus v′ ∈ V0 \W ′. But since ai,j = 2, (b′)

implies that e(F i−1
j ) = mj +

∑
i′<i ai′,j ≤ 2. Together with (βi−1) this shows that

dF i−1
j

(v) ≤ 1 for all v ∈ V0 \W ′. Hence dF i−1
j

(v′) ≤ 1 and so dF i
j
(v′) ≤ 2. Together

with (βi−1) this implies (βi). (Note that if e(F i−1
j ) = 0, then the above argument

actually shows that dF i
j (v′) ≤ 1, as required.) Moreover, the above observations

also guarantee that (γi) holds. Thus F i1, . . . , F
i
r satisfy (αi)–(γi).

After having assigned the edges of H1 incident with wi for all i ≤ |W ′|, we

have obtained graphs F
|W ′|
1 , . . . , F

|W ′|
r . Let Fj := F

|W ′|
j for all j ≤ r. Note that

by (γ|W ′|) for all j ≤ r the number of vertex-disjoint maximal A′B′-paths in Fj is

precisely b
|W ′|
j .

We now claim that b
|W ′|
j is positive and even. To verify this, recall that b0j = mj .

Let oddj be the number of ai,j with ai,j = 1 and i ≤ |W ′|. So b
|W ′|
j = mj + oddj .

Together with (c′) this immediately implies that b
|W ′|
j ≥ 2. Moreover, since ai,j ∈

{0, 1, 2} we have

b
|W ′|
j = mj + oddj = mj +

∑
i≤|W ′|, ai,j is odd

ai,j .

Together with (b′) this now implies that b
|W ′|
j is even. This proves the claim.

Together with (a′), (b′) and (αi), (βi) for all i ≤ |W ′| this in turn shows
that F1, . . . , Fr form a decomposition of H1 into edge-disjoint Hamilton exceptional
system candidates with e(Fj) = 4 for all j ≤ η′r and e(Fj) = 2 for all η′r < j ≤ r.
Recall that η′r = ηαn by (3.3.7) and that we have already constructed Hamilton
exceptional system candidates F199αn/200+1, . . . , Fαn which satisfy the ‘furthermore
statement’ of the lemma, and thus in particular consist of precisely two edges. This
completes the proof of the lemma. �

3.3.3. Proof of Lemma 2.7.4. We will now combine Lemmas 3.3.1, 3.3.3
and 3.2.6 in order to prove Lemma 2.7.4. This will complete the construction of the
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required exceptional sequences in the case whenG is both critical and e(G[A′, B′]) ≥
D.

Proof of Lemma 2.7.4. Let G� be as defined in Lemma 2.7.4(iv). Our first aim
is to decompose G� into suitable ‘localized’ subgraphs via Lemma 3.3.1. Choose a
new constant ε′ such that ε� ε′ � λ, 1/K and define α by

(3.3.16) 2αn :=
D − φn
K2

.

Recall from Lemma 2.7.4(ii) that D = (n − 1)/2 or D = n/2 − 1. Together with
our assumption that φ� 1 this implies that

(3.3.17)
1− 2/n− 2φ

4K2
≤ α ≤ 1− 2φ

4K2
and ε� ε′ � λ, 1/K,α� 1.

Note that by Lemma 2.7.4(ii) and (iii) we have eG�(A
′, B′) ≥ D − φn = 2K2αn.

Together with Lemma 3.1.1(iii) this implies that

2K2αn ≤ eG�(A′, B′) ≤ eG(A′, B′) ≤ 17D/10 + 5
(3.3.16)

≤ 18K2αn/5
(3.3.17)
< n.

(3.3.18)

Moreover, recall that by Lemma 2.7.4(i) and (iii) we have

(3.3.19) dG�(v) = 2K2αn for all v ∈ V0.

Let W be the set of all those vertices w ∈ V (G) with dG[A′,B′](w) ≥ 11D/40. So W
is as defined in Lemma 3.1.1 and 1 ≤ |W | ≤ 3 by Lemma 3.1.1(i). Let W ′ ⊆ V (G)
be as guaranteed by Lemma 3.1.1(v). Thus W ⊆W ′, |W ′| ≤ 3,

dG[A′,B′](w
′) ≥ 21D

80
, dG[A′,B′](v) ≤ 11D

40
and dG[A′,B′](w

′)− dG[A′,B′](v) ≥ D

240
.

(3.3.20)

for all w′ ∈W ′ and all v ∈ V (G) \W ′. In particular, W ′ ⊆ V0. (This follows since
Lemma 2.7.4(iii),(iv) and (ESch3) together imply that dG[A′,B′](v) = dG�[A′,B′](v)+
dG0[A′,B′](v) ≤ ε0n+ eG0(A′, B′) ≤ ε0n+ φn for all v ∈ A ∪B.) Let w1, w2, w3 be
vertices of G such that

dG[A′,B′](w1) ≥ dG[A′,B′](w2) ≥ dG[A′,B′](w3) ≥ dG[A′,B′](v)

for all v ∈ V (G)\{w1, w2, w3}, where w1 and w2 are as in Lemma 2.7.4(v). Hence W
consists of w1, . . . , w|W | and W ′ consists of w1, . . . , w|W ′|. Set W0 := {w1, w2}∩W ′.
Since dG0

(v) = φn for each v ∈ V0 (and thus for each v ∈W0), each w ∈W0 satisfies

K2≤21D/80− φn
(3.3.20)

≤ dG�[A′,B′](w) ≤ K2αn
(3.3.18)

≤ eG�(A
′, B′)/2.(3.3.21)

(Here the third inequality follows from Lemma 2.7.4(v).) Apply Lemma 3.3.1 to
G� in order to obtain a decomposition of G� into edge-disjoint spanning subgraphs
H(i, i′) and H ′′(i, i′) (for all 1 ≤ i, i′ ≤ K) which satisfy the following properties,
where G′(i, i′) := H(i, i′) +H ′′(i, i′):

(b′1) Each H(i, i′) contains only A0Ai-edges and B0Bi′ -edges.
(b′2) H ′′(i, i′) ⊆ G�[A′, B′]. Moreover, all but at most 20εn/K2 edges of

H ′′(i, i′) lie in G�[A0 ∪Ai, B0 ∪Bi′ ].
(b′3) e(H ′′(i, i′)) = 2

⌈
eG�(A

′, B′)/(2K2)
⌉

or e(H ′′(i, i′)) = 2beG�(A′, B′)/
(2K2)c. In particular, 2αn ≤ e(H ′′(i, i′)) ≤ 19αn/5 by (3.3.18).

(b′4) dH′′(i,i′)(v) = (dG�[A′,B′](v)± 25εn)/K2 for all v ∈ V0.
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(b′5) dG′(i,i′)(v) = (dG�(v) ± 25εn)/K2 =
(
2α± 25ε/K2

)
n for all v ∈ V0

by (3.3.19).
(b′6) Each w ∈W0 satisfies dH′′(i,i′)(w) ≤ ddG�[A′,B′](w)/K2e ≤ αn by (3.3.21).

Our next aim is to apply Lemma 3.3.3 to each H ′′(i, i′) to obtain suitable Hamilton
exceptional system candidates (in particular almost all of them will be ‘localized’).
So consider any 1 ≤ i, i′ ≤ K and let H ′′ := H ′′(i, i′). We claim that there exists
0 ≤ η ≤ 9/10 such that H ′′ satisfies the following conditions (which in turn imply
conditions (c1)–(c5) of Lemma 3.3.3):

(c′1) e(H ′′) = 2(1 + η)αn and ηαn ∈ N.
(c′2) e(H ′′ −W ′) ≤ 199αn/100 and dH′′(w) ≥ 13αn/25 for all w ∈W ′.
(c′3) dH′′(w) ≤ αn for all w ∈W0 and dH′′(w

′) ≤ 41αn/40 for all w′ ∈W ′\W0.
(c′4) For all w ∈W ′ and all v ∈ V (G)\W ′ we have dH′′(w)−dH′′(v) ≥ αn/150.
(c′5) For all v ∈ A ∪B we have dH′′(v) ≤ ε0n.

Clearly, (b′3) implies the first part of (c′1). Since e(H ′′) is even by (b′3) and αn ∈ N,
it follows that ηαn ∈ N. To verify the first part of (c′2), note that (b′3) and (b′4)
together imply that

e(H ′′ −W ′) = e(H ′′)−
∑
w∈W ′

dH′′(w) + e(H ′′[W ′])

≤ 2
⌈
eG�(A

′, B′)/(2K2)
⌉
−
∑
w∈W ′

(dG�[A′,B′](w)− 25εn)/K2 + 3

≤ (eG�−W ′(A
′, B′) + 80εn)/K2.

Together with Lemma 3.1.1(iv) this implies that

e(H ′′−W ′) ≤ (eG−W ′(A
′, B′)+80εn)/K2 ≤ ((3D/4+5)+80εn)/K2 ≤ 199αn/100.

To verify the second part of (c′2), note that by (3.3.20) and Lemma 2.7.4(iii) each
w ∈ W ′ satisfies dG�[A′,B′](w) ≥ dG[A′,B′](w)− φn ≥ 21D/80− φn. Together with
(b′4) this implies dH′′(w) ≥ 26αn/50. Thus (c′2) holds. By (b′6) we have dH′′(w) ≤
αn for all w ∈ W0. If w′ ∈ W ′ \W0, then Lemma 2.7.4(ii) implies dG[A′,B′](w

′) ≤
D/2 ≤ 51K2αn/50. Thus, dH′′(w

′) ≤ 41αn/40 by (b′4). Altogether this shows
that (c′3) holds. (c′4) follows from (3.3.20), (b′4) and the fact that dG�[A′,B′](v) ≥
dG[A′,B′](v) − φn for all v ∈ V (G) by Lemma 2.7.4(iii). (c′5) holds since dH′′(v) ≤
dG�[A′,B′](v) ≤ ε0n for all v ∈ A ∪B by (ESch3).

Now we apply Lemma 3.3.3 in order to decompose H ′′ into αn edge-disjoint
Hamilton exceptional system candidates F1, . . . , Fαn such that e(Fs) ∈ {2, 4} for
all s ≤ αn and such that at least αn/200 of Fs satisfy e(Fs) = 2 and dFs(w) = 1
for all w ∈W0. Let

γ := α− λ

K2
and γ′ :=

λ

K2
.

Recall that by (b′2) all but at most 20εn/K2 ≤ ε′n edges of H ′′ lie in G�[A0 ∪
Ai, B0 ∪ Bi′ ]. Together with (3.3.17) this ensures that we can relabel the Fs
if necessary to obtain αn edge-disjoint Hamilton exceptional system candidates
F1(i, i′), . . . , Fγn(i, i′) and F ′1(i, i′), . . . , F ′γ′n(i, i′) such that the following properties
hold:

(a′) Fs(i, i
′) is an (i, i′)-HESC for every s ≤ γn. Moreover, γ′n of the Fs(i, i

′)
satisfy e(Fs(i, i

′)) = 2 and dFs(i,i′)(w) = 1 for all w ∈W0.
(b′) e(F ′s(i, i

′)) = 2 for all but at most ε′n of the F ′s(i, i
′).
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(c′) e(Fs(i, i
′)), e(F ′s(i, i

′)) ∈ {2, 4}.
For (b′) and the ‘moreover’ part of (a′), we use that αn/200−ε′n ≥ 2λn/K2 = 2γ′n.
Our next aim is to apply Lemma 3.2.6 with G� playing the role of G∗ to extend the
above exceptional system candidates into exceptional systems. Clearly conditions
(i) and (ii) of Lemma 3.2.6 hold. (iii) follows from (b′1). (iv) and (v) follow from
(a′)–(c′). (vi) follows from Lemma 2.7.4(i),(iii). Finally, (vii) follows from (b′5)
since G′(i, i′) plays the role of G∗(i, i′). Thus we can indeed apply Lemma 3.2.6
to obtain a decomposition of G� into K2αn edge-disjoint Hamilton exceptional
systems J1(i, i′), . . . , Jγn(i, i′) and J ′1(i, i′), . . . , J ′γ′n(i, i′) with parameter ε0, where

1 ≤ i, i′ ≤ K, such that Js(i, i
′) is an (i, i′)-HES which is a faithful extension of

Fs(i, i
′) for all s ≤ γn and J ′s(i, i

′) is a faithful extension of F ′s(i, i
′) for all s ≤ γ′n.

Then the set J of all these exceptional systems is as required in Lemma 2.7.4.
(Since W0 contains {w1, w2}∩W , the ‘moreover part’ of (a′) implies the ‘moreover
part’ of Lemma 2.7.4(b).) �

3.4. The Case when e(A′, B′) < D

The aim of this section is to prove Lemma 2.7.5. This lemma provides a de-
composition of the exceptional edges into exceptional systems in the case when
e(A′, B′) < D. In this case, we do not need to prove any auxiliary lemmas first, as
we can apply those proved in the other two cases (Lemmas 3.2.6 and 3.3.1).

Proof of Lemma 2.7.5. Let ε′ be a new constant such that ε� ε′ � λ, 1/K and
set

(3.4.1) 2αn :=
n/2− 1− φn

K2
.

Similarly as in the proof of Lemma 2.7.4 we have

(3.4.2) ε� ε′ � λ, 1/K,α� 1.

We claim that G� can be decomposed into edge-disjoint spanning subgraphs H(i, i′)
and H ′′(i, i′) (for all 1 ≤ i, i′ ≤ K) which satisfy the following properties, where
G′(i, i′) := H(i, i′) +H ′′(i, i′):

(b′1) Each H(i, i′) contains only A0Ai-edges and B0Bi′ -edges.
(b′2) H ′′(i, i′) ⊆ G�[A′, B′]. Moreover, all but at most ε′n edges of H ′′(i, i′) lie

in G�[A0 ∪Ai, B0 ∪Bi′ ].
(b′3) e(H ′′(i, i′)) is even and e(H ′′(i, i′)) ≤ 2αn.
(b′4) ∆(H ′′(i, i′)) ≤ e(H ′′(i, i′))/2.
(b′5) dG′(i,i′)(v) = (2α± ε′)n for all v ∈ V0.

To see this, let us first consider the case when eG�(A
′, B′) ≤ 300εn. Apply

Lemma 2.5.2 to G� in order to obtain a decomposition of G� into edge-disjoint
spanning subgraphs H(i, i′) and H ′(i, i′) (for all 1 ≤ i, i′ ≤ K) which satisfy
Lemma 2.5.2(a1)–(a5). Set H ′′(1, 1) :=

⋃
i,i′≤K H

′(i, i′) = G�[A′, B′] and H ′′(i, i′)

:= ∅ for all other pairs 1 ≤ i, i′ ≤ K. Then (b′1) follows from (a1). (b′2) follows
from our definition of the H ′′(i, i′) and our assumption that eG�(A

′, B′) ≤ 300εn <
ε′n < αn. Together with Lemma 2.7.5(iv) this also implies (b′3). (b′4) follows from
Lemma 2.7.5(v). Note that by Lemma 2.7.5(i) and (iii), every v ∈ V0 satisfies
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dG�(v) = n/2 − 1 − φn = 2K2αn. So, writing G(i, i′) := H(i, i′) + H ′(i, i′), (a5)
implies that

dG′(i,i′)(v) = dG(i,i′)(v)± 300εn = (2α± 4ε/K2)n± 300εn = (2α± ε′)n.
Thus (b′5) holds too.

So let us next consider the case when eG�(A
′, B′) > 300εn. Let W0 be the

set of all those vertices v ∈ V (G) for which dG�[A′,B′](v) ≥ 3eG�(A
′, B′)/8. Then

clearly |W0| ≤ 2. Moreover, each v ∈ V (G) \W0 satisfies

dG�[A′,B′](v) + 26εn < 3eG�(A
′, B′)/8 + eG�(A

′, B′)/8 = eG�(A
′, B′)/2.(3.4.3)

Recall from Lemma 2.7.5(v) that dG�[A′,B′](w) ≤ eG�(A
′, B′)/2 for each w ∈ W0.

So we can apply Lemma 3.3.1 to G� in order to obtain a decomposition of G� into
edge-disjoint spanning subgraphs H(i, i′) and H ′′(i, i′) (for all 1 ≤ i, i′ ≤ K) which
satisfy Lemma 3.3.1(b1)–(b7). Then (b1) and (b2) imply (b′1) and (b′2). (b′3) follows
from (b3), (3.4.1) and Lemma 2.7.5(v). Note that (b3), (b4) and (3.4.3) together
imply that

(3.4.4) dH′′(i,i′)(v) ≤ eG�(A
′, B′)/2− εn
K2

≤ e(H ′′(i, i′))

2

for all v ∈ V0 \W0. Note that each v ∈ A∪B satisfies dH′′(i,i′)(v) ≤ dG�[A′,B′](v) ≤
ε0n by Lemma 2.7.5(iv) and (ESch3). Together with the fact that e(H ′′(i, i′)) ≥
2b300εn/(2K2)c ≥ 2ε0n by (b3), this implies that (3.4.4) also holds for all v ∈ A∪B.
Together with (b7) this implies (b′4). (b′5) follows from (b5) and the fact that by
Lemma 2.7.5(i) and (iii) every v ∈ V0 satisfies dG�(v) = n/2 − 1 − φn = 2K2αn.
So (b′1)–(b′5) hold in all cases.

We now decompose the localized subgraphs H ′′(i, i′) into exceptional system
candidates. For this, fix i, i′ ≤ K and write H ′′ for H ′′(i, i′). By (b′4) we have
∆(H ′′) ≤ e(H ′′)/2 and so χ′(H ′′) ≤ e(H ′′)/2. Apply Proposition 1.4.5 with
e(H ′′)/2 playing the role of m to decompose H ′′ into e(H ′′)/2 edge-disjoint match-
ings, each of size 2. Note that αn−e(H ′′)/2 ≥ 0 by (b′3). So we can add some empty
matchings to obtain a decomposition of H ′′ into αn edge-disjoint M1, . . . ,Mαn such
that each Ms is either empty or has size 2. Let

γ := α− λ

K2
and γ′ :=

λ

K2
.

Recall from (b′2) that all but at most ε′n ≤ γ′n edges of H ′′ lie in G�[A0 ∪Ai, B0 ∪
Bi′ ]. Hence by relabeling if necessary, we may assume that Ms ⊆ G�[A0 ∪Ai, B0 ∪
Bi′ ] for every s ≤ γn. So by setting Fs(i, i

′) := Ms for all s ≤ γn and F ′s(i, i
′) :=

Mγn+s for all s ≤ γ′n we obtain a decomposition of H ′′ into edge-disjoint ex-
ceptional system candidates F1(i, i′), . . . , Fγn(i, i′) and F ′1(i, i′), . . . , F ′γ′n(i, i′) such
that the following properties hold:

(a′) Fs(i, i
′) is an (i, i′)-ESC for every s ≤ γn.

(b′) Each Fs(i, i
′) is either a Hamilton exceptional system candidate with

e(Fs(i, i
′)) = 2or a matching exceptional system candidate with e(Fs(i, i

′))
= 0. The analogue holds for each F ′s′(i, i

′).

Our next aim is to apply Lemma 3.2.6 with G� playing the role of G∗, to extend the
above exceptional system candidates into exceptional systems. Clearly conditions
(i) and (ii) of Lemma 3.2.6 hold. (iii) follows from (b′1). (iv) and (v) follow from
(a′) and (b′). (vi) follows from Lemma 2.7.5(i),(iii). Finally, (vii) follows from (b′5)
since G′(i, i′) plays the role of G∗(i, i′) in Lemma 3.2.6. Thus we can indeed apply
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Lemma 3.2.6 to obtain a decomposition of G� into K2αn edge-disjoint exceptional
systems J1(i, i′), . . . , Jγn(i, i′) and J ′1(i, i′), . . . , J ′γ′n(i, i′), where 1 ≤ i, i′ ≤ K, such

that Js(i, i
′) is an (i, i′)-ES which is a faithful extension of Fs(i, i

′) for all s ≤ γn
and J ′s(i, i

′) is a faithful extension of F ′s(i, i
′) for all s ≤ γ′n. Then the set J of all

these exceptional systems is as required in Lemma 2.7.5. �





CHAPTER 4

The bipartite case

The aim of this chapter is to prove Theorems 1.3.5 and 1.3.8. Recall that The-
orem 1.3.8 guarantees many edge-disjoint Hamilton cycles in a graph G when G has
large minimum degree and is close to bipartite, whilst Theorem 1.3.5 guarantees
a Hamilton decomposition of G when G has sufficiently large minimum degree, is
regular and is close to bipartite. In Section 4.1 we give an outline of the proofs.
The results from Sections 4.2 and 4.3 are used in both the proofs of Theorems 1.3.5
and 1.3.8. In Sections 4.4 and 4.5 we build up machinery for the proof of The-
orem 1.3.5. We then prove Theorem 1.3.8 in Section 4.6 and Theorem 1.3.5 in
Section 4.7.

Unlike in the previous chapters, in this chapter we view a matching M as a set
of edges. (So |M | for example, denotes the number of edges in M .)

4.1. Overview of the Proofs of Theorems 1.3.5 and 1.3.8

Note that, unlike in Theorem 1.3.5, in Theorem 1.3.8 we do not require a com-
plete decomposition of our graph F into edge-disjoint Hamilton cycles. Therefore,
the proof of Theorem 1.3.5 is considerably more involved than the proof of The-
orem 1.3.8. Moreover, the ideas in the proof of Theorem 1.3.8 are all used in the
proof of Theorem 1.3.5 too.

4.1.1. Proof Overview for Theorem 1.3.8. Let F be a graph on n vertices
with δ(F ) ≥ (1/2− o(1))n which is close to the balanced bipartite graph Kn/2,n/2.
Further, suppose that G is a D-regular spanning subgraph of F as in Theorem 1.3.8.
Then there is a partition A, B of V (F ) such that A and B are of roughly equal size
and most edges in F go between A and B. Our ultimate aim is to construct D/2
edge-disjoint Hamilton cycles in F .

Suppose first that, in the graph F , both A and B are independent sets of
equal size. So F is an almost complete balanced bipartite graph. In this case, the
densest spanning even-regular subgraph G of F is also almost complete bipartite.
This means that one can extend existing techniques (developed e.g. in [6, 7, 9,
11, 31]) to find an approximate Hamilton decomposition. (In Chapter 5, using
such techniques, we prove an approximate decomposition result (Lemma 4.6.1)
which is suitable for our purposes. In particular, Lemma 4.6.1 is sufficient to prove
Theorem 1.3.8 in this special case.) The real difficulties arise when

(i) F is unbalanced (i.e. |A| 6= |B|);
(ii) F has vertices having high degree in both A and B (these are called

exceptional vertices).

To illustrate (i), recall the following example due to Babai (which is the ex-
tremal construction for Corollary 1.1.5). Consider the graph F on n = 8k + 2
vertices consisting of one vertex class A of size 4k+2 containing a perfect matching

95
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and no other edges, one empty vertex class B of size 4k, and all possible edges
between A and B. Thus the minimum degree of F is 4k + 1 = n/2. Then one can
use Tutte’s factor theorem to show that the largest even-regular spanning subgraph
G of F has degree D = 2k = (n − 2)/4. Note that to prove Theorem 1.3.8 in this
case, each of the D/2 = k Hamilton cycles we find must contain exactly two of the
2k + 1 edges in A. In this way, we can ‘balance out’ the difference in the vertex
class sizes.

More generally we will construct our Hamilton cycles in two steps. In the first
step, we find a path system J which balances out the vertex class sizes (so in the
above example, J would contain two edges in A). Then we extend J into a Hamilton
cycle using only AB-edges in F . It turns out that the first step is the difficult one.
It is easy to see that a path system J will balance out the sizes of A and B (in the
sense that the number of uncovered vertices in A and B is the same) if and only if

eJ(A)− eJ(B) = |A| − |B|.(4.1.1)

Note that any Hamilton cycle also satisfies this identity. So we need to find a set
of D/2 path systems J satisfying (4.1.1) (where D is the degree of G). This is
achieved (amongst other things) in Sections 4.3.2 and 4.3.3.

As indicated above, our aim is to use Lemma 4.6.1 (our approximate decompo-
sition result for the bipartite case) in order to extend each such J into a Hamilton
cycle. To apply Lemma 4.6.1 we also need to extend the balancing path systems J
into ‘balanced exceptional (path) systems’ which contain all the exceptional vertices
from (ii). This is achieved in Section 4.3.4. Lemma 4.6.1 also assumes that the path
systems are ‘localized’ with respect to a given subpartition of A,B (i.e. they are
induced by a small number of partition classes). Section 4.3.1 prepares the ground
for this. The balanced exceptional systems are the analogues of the exceptional
systems which we use in the two cliques case (i.e. in Chapter 2).

Finding the balanced exceptional systems is extremely difficult if G contains
edges between the set A0 of exceptional vertices in A and the set B0 of exceptional
vertices in B. So in a preliminary step, we find and remove a small number of
edge-disjoint Hamilton cycles covering all A0B0-edges in Section 4.2. We put all
these steps together in Section 4.6. (Sections 4.4, 4.5 and 4.7 are only relevant for
the proof of Theorem 1.3.5.)

4.1.2. Proof Overview for Theorem 1.3.5. The main result of this chapter
is Theorem 1.3.5. Suppose that G is a D-regular graph satisfying the conditions
of that theorem. Using the approach of the previous subsection, one can obtain an
approximate decomposition of G, i.e. a set of edge-disjoint Hamilton cycles covering
almost all edges of G. However, one does not have any control over the ‘leftover’
graph H, which makes a complete decomposition seem infeasible. As in the proof
of Theorem 1.3.3, we use the following strategy to overcome this issue and obtain
a decomposition of G:

(1) find a (sparse) robustly decomposable graph Grob in G and let G′ denote
the leftover;

(2) find an approximate Hamilton decomposition of G′ and let H denote the
(very sparse) leftover;

(3) find a Hamilton decomposition of Grob ∪H.

As before, it is of course far from obvious that such a graph Grob exists. By
assumption our graph G can be partitioned into two classes A and B of almost
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equal size such that almost all the edges in G go between A and B. If both A
and B are independent sets of equal size then the ‘bipartite’ version of the robust
decomposition lemma of [21] guarantees our desired subgraph Grob of G. Of course,
in general our graph G will contain edges in A and B. Our aim is therefore to replace
such edges with ‘fictive edges’ between A and B, so that we can apply this version of
the robust decomposition lemma (Lemma 4.5.3). (We note here that Lemma 4.5.3
is designed to deal with bipartite graphs. So its statement is slightly different to
the robust decomposition lemma (Lemma 2.9.4) that was applied in the proof of
Theorem 1.3.3.)

More precisely, similarly as in the proof of Theorem 1.3.8, we construct a collec-
tion of localized balanced exceptional systems. Together these path systems contain
all the edges in G[A] and G[B]. Again, each balanced exceptional system balances
out the sizes of A and B and covers the exceptional vertices in G (i.e. those vertices
having high degree into both A and B).

Similarly as in the two cliques case, we now introduce fictive edges. This time,
by replacing edges of the balanced exceptional systems with fictive edges, we obtain
from G an auxiliary (multi)graph G∗ which only contains edges between A and B
and which does not contain the exceptional vertices of G. This will allow us to ap-
ply the robust decomposition lemma. In particular this ensures that each Hamilton
cycle obtained in G∗ contains a collection of fictive edges corresponding to a sin-
gle balanced exceptional system (as before the set-up of the robust decomposition
lemma does allow for this). Each such Hamilton cycle in G∗ then corresponds to a
Hamilton cycle in G.

We now give an example of how we introduce fictive edges. Let m be an integer
so that (m − 1)/2 is even. Set m′ := (m − 1)/2 and m′′ := (m + 1)/2. Define the
graph G as follows: Let A and B be disjoint vertex sets of size m. Let A1, A2 be a
partition of A and B1, B2 be a partition of B such that |A1| = |B1| = m′′. Add all
edges between A and B. Add a matching M1 = {e1, . . . , em′/2} covering precisely
the vertices of A2 and add a matching M2 = {e′1, . . . , e′m′/2} covering precisely

the vertices of B2. Finally add a vertex v which sends an edge to every vertex
in A1 ∪ B1. So G is (m + 1)-regular (and v would be regarded as an exceptional
vertex).

Now pair up each edge ei with the edge e′i. Write ei = x2i−1x2i and e′i =
y2i−1y2i for each 1 ≤ i ≤ m′/2. Let A1 = {a1, . . . , am′′} and B1 = {b1, . . . , bm′′}
and write fi := aibi for all 1 ≤ i ≤ m′′. Obtain G∗ from G by deleting v together
with the edges in M1∪M2 and by adding the following fictive edges: add fi for each
1 ≤ i ≤ m′′ and add xjyj for each 1 ≤ j ≤ m′. Then G∗ is a balanced bipartite
(m+ 1)-regular multigraph containing only edges between A and B.

First, note that any Hamilton cycle C∗ in G∗ that contains precisely one fictive
edge fi for some 1 ≤ i ≤ m′′ corresponds to a Hamilton cycle C in G, where we
replace the fictive edge fi with aiv and biv. Next, consider any Hamilton cycle C∗

in G∗ that contains precisely three fictive edges; fi for some 1 ≤ i ≤ m′′ together
with x2j−1y2j−1 and x2jy2j for some 1 ≤ j ≤ m′/2. Further suppose C∗ traverses
the vertices ai, bi, x2j−1, y2j−1, x2j , y2j in this order. Then C∗ corresponds to a
Hamilton cycle C in G, where we replace the fictive edges with aiv, biv, ej and e′j
(see Figure 4.1.1). Here the path system J formed by the edges aiv, biv, ej and e′j
is an example of a balanced exceptional system. The above ideas are formalized in
Section 4.4.
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x2j−1 y2j−1

x2j y2j

ai bi

v

fi

A B

Figure 4.1.1. Transforming the problem of finding a Hamilton
cycle in G into finding a Hamilton cycle in the balanced bipartite
graph G∗

We can now summarize the steps leading to proof of Theorem 1.3.5. In Sec-
tion 4.2, we find and remove a set of edge-disjoint Hamilton cycles covering all
edges in G[A0, B0]. We can then find the localized balanced exceptional systems
in Section 4.3. After this, we need to extend and combine them into certain path
systems and factors (which contain fictive edges) in Section 4.4, before we can use
them as an ‘input’ for the robust decomposition lemma in Section 4.5. Finally, all
these steps are combined in Section 4.7 to prove Theorem 1.3.5.

4.2. Eliminating Edges between the Exceptional Sets

Suppose that G is a D-regular graph as in Theorem 1.3.5. The purpose of this
section is to prove Corollary 4.2.12. Roughly speaking, given K ∈ N, this corollary
states that one can delete a small number of edge-disjoint Hamilton cycles from G
to obtain a spanning subgraph G′ of G and a partition A,A0, B,B0 of V (G) such
that (amongst others) the following properties hold:

• almost all edges of G′ join A ∪A0 to B ∪B0;
• |A| = |B| is divisible by K;
• every vertex in A has almost all its neighbours in B∪B0 and every vertex

in B has almost all its neighbours in A ∪A0;
• A0 ∪B0 is small and there are no edges between A0 and B0 in G′.

We will call (G′, A,A0, B,B0) a bi-framework. (The formal definition of a bi-
framework is stated before Lemma 4.2.11.) Both A and B will then be split into
K clusters of equal size. Our assumption that G is εex-bipartite easily implies that
there is such a partition A,A0, B,B0 which satisfies all these properties apart from
the property that there are no edges between A0 and B0. So the main part of this
section shows that we can cover the collection of all edges between A0 and B0 by a
small number of edge-disjoint Hamilton cycles.

Since Corollary 4.2.12 will also be used in the proof of Theorem 1.3.8, instead
of working with regular graphs we need to consider so-called balanced graphs. We
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also need to find the above Hamilton cycles in the graph F ⊇ G rather than in G
itself (in the proof of Theorem 1.3.5 we will take F to be equal to G).

More precisely, suppose that G is a graph and that A′, B′ is a partition of
V (G), where A′ = A0 ∪A, B′ = B0 ∪B and A,A0, B,B0 are disjoint. Then we say
that G is D-balanced (with respect to (A,A0, B,B0)) if

(B1) eG(A′)− eG(B′) = (|A′| − |B′|)D/2;
(B2) all vertices in A0 ∪B0 have degree exactly D.

Proposition 4.2.1 below implies that whenever A,A0, B,B0 is a partition of the ver-
tex set of a D-regular graph H, then H is D-balanced with respect to (A,A0, B,B0).
Moreover, note that if G is DG-balanced with respect to (A,A0, B,B0) and H is a
spanning subgraph of G which is DH -balanced with respect to (A,A0, B,B0), then
G−H is (DG−DH)-balanced with respect to (A,A0, B,B0). Furthermore, a graph
G is D-balanced with respect to (A,A0, B,B0) if and only if G is D-balanced with
respect to (B,B0, A,A0).

Proposition 4.2.1. Let H be a graph and let A′, B′ be a partition of V (H).
Suppose that A0, A is a partition of A′ and that B0, B is a partition of B′ such
that |A| = |B|. Suppose that dH(v) = D for every v ∈ A0 ∪B0 and dH(v) = D′ for
every v ∈ A ∪B. Then eH(A′)− eH(B′) = (|A′| − |B′|)D/2.
Proof. Note that ∑

x∈A′
dH(x,B′) = eH(A′, B′) =

∑
y∈B′

dH(y,A′).

Moreover,

2eH(A′) =
∑
x∈A0

(D − dH(x,B′)) +
∑
x∈A

(D′ − dH(x,B′))

= D|A0|+D′|A| −
∑
x∈A′

dH(x,B′)

and

2eH(B′) =
∑
y∈B0

(D − dH(y,A′)) +
∑
y∈B

(D′ − dH(y,A′))

= D|B0|+D′|B| −
∑
y∈B′

dH(y,A′).

Therefore

2eH(A′)−2eH(B′) = D(|A0|−|B0|)+D′(|A|−|B|) = D(|A0|−|B0|) = D(|A′|−|B′|),
as desired. �

The following observation states that balancedness is preserved under suitable
modifications of the partition.

Proposition 4.2.2. Let H be D-balanced with respect to (A,A0, B,B0). Sup-
pose that A′0, B

′
0 is a partition of A0 ∪ B0. Then H is D-balanced with respect to

(A,A′0, B,B
′
0).

Proof. Observe that the general result follows if we can show that H is D-balanced
with respect to (A,A′0, B,B

′
0), where A′0 = A0 ∪ {v}, B′0 = B0 \ {v} and v ∈ B0.

(B2) is trivially satisfied in this case, so we only need to check (B1) for the new
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partition. For this, let A′ := A0 ∪A and B′ := B0 ∪B. Now note that (B1) for the
original partition implies that

eH(A′0 ∪A)− eH(B′0 ∪B) = eH(A′) + dH(v,A′)− (eH(B′)− dH(v,B′))

= (|A′| − |B′|)D/2 +D = (|A′0 ∪A| − |B′0 ∪B|)D/2.
Thus (B1) holds for the new partition. �

Suppose that G is a graph and A′, B′ is a partition of V (G). For every vertex
v ∈ A′ we call dG(v,A′) the internal degree of v in G. Similarly, for every vertex
v ∈ B′ we call dG(v,B′) the internal degree of v in G.

Given a graph F and a spanning subgraph G of F , we say that (F,G,A,A0, B,
B0) is an (ε, ε′,K,D)-weak framework if the following holds, where A′ := A0 ∪ A,
B′ := B0 ∪B and n := |G| = |F |:

(WF1) A,A0, B,B0 forms a partition of V (G) = V (F );
(WF2) G is D-balanced with respect to (A,A0, B,B0);
(WF3) eG(A′), eG(B′) ≤ εn2;
(WF4) |A| = |B| is divisible by K. Moreover, a + b ≤ εn, where a := |A0| and

b := |B0|;
(WF5) all vertices in A ∪B have internal degree at most ε′n in F ;
(WF6) any vertex v has internal degree at most dG(v)/2 in G.

Throughout the chapter, when referring to internal degrees without mentioning the
partition, we always mean with respect to the partition A′, B′, where A′ = A0 ∪A
and B′ = B0 ∪B. Moreover, a and b will always denote |A0| and |B0|.

We say that (F,G,A,A0, B,B0) is an (ε, ε′,K,D)-pre-framework if it satisfies
(WF1)–(WF5). The following observation states that pre-frameworks are preserved
if we remove suitable balanced subgraphs.

Proposition 4.2.3. Let ε, ε′ > 0 and K,DG, DH ∈ N. Let (F,G,A,A0, B,B0)
be an (ε, ε′,K,DG)-pre framework. Suppose that H is a DH-regular spanning sub-
graph of F such that G ∩ H is DH-balanced with respect to (A,A0, B,B0). Let
F ′ := F−H and G′ := G−H. Then (F ′, G′, A,A0, B,B0) is an (ε, ε′,K,DG−DH)-
pre framework.

Proof. Note that all required properties except possibly (WF2) are not affected by
removing edges. But G′ satisfies (WF2) since G ∩H is DH -balanced with respect
to (A,A0, B,B0). �

Lemma 4.2.4. Let 0 < 1/n � ε � ε′, 1/K � 1 and let D ≥ n/200. Suppose
that F is a graph on n vertices which is ε-bipartite and that G is a D-regular
spanning subgraph of F . Then there is a partition A,A0, B,B0 of V (G) = V (F ) so
that (F,G,A,A0, B,B0) is an (ε1/3, ε′,K,D)-weak framework.

Proof. Let S1, S2 be a partition of V (F ) which is guaranteed by the assumption
that F is ε-bipartite. Let S be the set of all those vertices x ∈ S1 with dF (x, S1) ≥√
εn together with all those vertices x ∈ S2 with dF (x, S2) ≥ √εn. Since F is

ε-bipartite, it follows that |S| ≤ 4
√
εn.

Given a partition X,Y of V (F ), we say that v ∈ X is bad for X,Y if dG(v,X) >
dG(v, Y ) and similarly that v ∈ Y is bad for X,Y if dG(v, Y ) > dG(v,X). Suppose
that there is a vertex v ∈ S which is bad for S1, S2. Then we move v into the class
which does not currently contain v to obtain a new partition S′1, S′2. We do not
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change the set S. If there is a vertex v′ ∈ S which is bad for S′1, S′2, then again we
move it into the other class.

We repeat this process. After each step, the number of edges in G between the
two classes increases, so this process has to terminate with some partition A′, B′

such that A′4S1 ⊆ S and B′4S2 ⊆ S. Clearly, no vertex in S is now bad for A′,
B′. Also, for any v ∈ A′ \ S we have

dG(v,A′) ≤ dF (v,A′) ≤ dF (v, S1) + |S| ≤ √εn+ 4
√
εn < ε′n(4.2.1)

< D/2 = dG(v)/2.

Similarly, dG(v,B′) < ε′n < dG(v)/2 for all v ∈ B′ \S. Altogether this implies that
no vertex is bad for A′, B′ and thus (WF6) holds. Also note that eG(A′, B′) ≥
eG(S1, S2) ≥ e(G)− 2εn2. So

(4.2.2) eG(A′), eG(B′) ≤ 2εn2.

This implies (WF3).
Without loss of generality we may assume that |A′| ≥ |B′|. Let A′0 denote the

set of all those vertices v ∈ A′ for which dF (v,A′) ≥ ε′n. Define B′0 ⊆ B′ similarly.
We will choose sets A ⊆ A′\A′0 and A0 ⊇ A′0 and sets B ⊆ B′\B′0 and B0 ⊇ B′0 such
that |A| = |B| is divisible by K and so that A,A0 and B,B0 are partitions of A′ and
B′ respectively. We obtain such sets by moving at most ||A′ \A′0| − |B′ \B′0||+K
vertices from A′ \ A′0 to A′0 and at most ||A′ \A′0| − |B′ \B′0|| + K vertices from
B′ \ B′0 to B′0. The choice of A,A0, B,B0 is such that (WF1) and (WF5) hold.
Further, since |A| = |B|, Proposition 4.2.1 implies (WF2).

In order to verify (WF4), it remains to show that a+b = |A0∪B0| ≤ ε1/3n. But
(4.2.1) together with its analogue for the vertices in B′\S implies that A′0∪B′0 ⊆ S.
Thus |A′0|+ |B′0| ≤ |S| ≤ 4

√
εn. Moreover, (WF2), (4.2.2) and our assumption that

D ≥ n/200 together imply that

|A′| − |B′| = (eG(A′)− eG(B′))/(D/2) ≤ 2εn2/(D/2) ≤ 800εn.

So altogether, we have

a+ b ≤ |A′0 ∪B′0|+ 2 ||A′ \A′0| − |B′ \B′0||+ 2K

≤ 4
√
εn+ 2 ||A′| − |B′| − (|A′0| − |B′0|)|+ 2K

≤ 4
√
εn+ 1600εn+ 8

√
εn+ 2K ≤ ε1/3n.

Thus (WF4) holds. �

Our next goal is to cover the edges of G[A0, B0] by edge-disjoint Hamilton
cycles. To do this, we will first decompose G[A0, B0] into a collection of matchings.
We will then extend each such matching into a system of vertex-disjoint paths
such that altogether these paths cover every vertex in G[A0, B0], each path has its
endvertices in A ∪ B and the path system is 2-balanced. Since our path system
will only contain a small number of nontrivial paths, we can then extend the path
system into a Hamilton cycle (see Lemma 4.2.9).

We will call the path systems we are working with A0B0-path systems. More
precisely, an A0B0-path system (with respect to (A,A0, B,B0)) is a path system Q
satisfying the following properties:

• Every vertex in A0 ∪B0 is an internal vertex of a path in Q.
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• A ∪B contains the endpoints of each path in Q but no internal vertex of
a path in Q.

The following observation (which motivates the use of the word ‘balanced’) will
often be helpful.

Proposition 4.2.5. Let A0, A,B0, B be a partition of a vertex set V . Then an
A0B0-path system Q with V (Q) ⊆ V is 2-balanced with respect to (A,A0, B,B0) if
and only if the number of vertices in A which are endpoints of nontrivial paths in
Q equals the number of vertices in B which are endpoints of nontrivial paths in Q.

Proof. Note that by definition any A0B0-path system satisfies (B2), so we only
need to consider (B1). Let nA be the number of vertices in A which are endpoints of
nontrivial paths in Q and define nB similarly. Let a := |A0|, b := |B0|, A′ := A∪A0

and B′ := B ∪ B0. Since dQ(v) = 2 for all v ∈ A0 and since every vertex in A is
either an endpoint of a nontrivial path in Q or has degree zero in Q, we have

2eQ(A′) + eQ(A′, B′) =
∑
v∈A′

dQ(v) = 2a+ nA.

So nA = 2(eQ(A′)−a)+eQ(A′, B′), and similarly nB = 2(eQ(B′)− b)+eQ(A′, B′).
Therefore, nA = nB if and only if 2(eQ(A′)− eQ(B′)− a+ b) = 0 if and only if Q
satisfies (B1), as desired. �

The next observation shows that if we have a suitable path system satisfying
(B1), we can extend it into a path system which also satisfies (B2).

Lemma 4.2.6. Let 0 < 1/n� α� 1. Let G be a graph on n vertices such that
there is a partition A′, B′ of V (G) which satisfies the following properties:

(i) A′ = A0 ∪A, B′ = B0 ∪B and A0, A,B0, B are disjoint;
(ii) |A| = |B| and a+ b ≤ αn, where a := |A0| and b := |B0|;

(iii) if v ∈ A0 then dG(v,B) ≥ 4αn and if v ∈ B0 then dG(v,A) ≥ 4αn.

Let Q′ ⊆ G be a path system consisting of at most αn nontrivial paths such that
A∪B contains no internal vertex of a path in Q′ and eQ′(A

′)−eQ′(B′) = a−b. Then
G contains a 2-balanced A0B0-path system Q (with respect to (A,A0, B,B0)) which
extends Q′ and consists of at most 2αn nontrivial paths. Furthermore, E(Q)\E(Q′)
consists of A0B- and AB0-edges only.

Proof. Since A ∪ B contains no internal vertex of a path in Q′ and since Q′

contains at most αn nontrivial paths, it follows that at most 2αn vertices in A∪B
lie on nontrivial paths in Q′. We will now extend Q′ into an A0B0-path system Q
consisting of at most a+ b+ αn ≤ 2αn nontrivial paths as follows:

• for every vertex v ∈ A0, we join v to 2− dQ′(v) vertices in B;
• for every vertex v ∈ B0, we join v to 2− dQ′(v) vertices in A.

Condition (iii) and the fact that at most 2αn vertices in A∪B lie on nontrivial paths
in Q′ together ensure that we can extend Q′ in such a way that the endvertices
in A ∪ B are distinct for different paths in Q. Note that eQ(A′) − eQ(B′) =
eQ′(A

′)−eQ′(B′) = a−b. Therefore, Q is 2-balanced with respect to (A,A0, B,B0).
�
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The next lemma constructs a small number of 2-balanced A0B0-path systems
covering the edges of G[A0, B0]. Each of these path systems will later be extended
into a Hamilton cycle.

Lemma 4.2.7. Let 0 < 1/n � ε � ε′, 1/K � α � 1. Let F be a graph on n
vertices and let G be a spanning subgraph of F . Suppose that (F,G,A,A0, B,B0) is
an (ε, ε′,K,D)-weak framework with δ(F ) ≥ (1/4 + α)n and D ≥ n/200. Then for
some r∗ ≤ εn the graph G contains r∗ edge-disjoint 2-balanced A0B0-path systems
Q1, . . . , Qr∗ which satisfy the following properties:

(i) Together Q1, . . . , Qr∗ cover all edges in G[A0, B0];
(ii) For each i ≤ r∗, Qi contains at most 2εn nontrivial paths;
(iii) For each i ≤ r∗, Qi does not contain any edge from G[A,B].

Proof. (WF4) implies that |A0|+ |B0| ≤ εn. Thus, by Corollary 1.4.6, there exists
a collection M ′1, . . . ,M

′
r∗ of r∗ edge-disjoint matchings in G[A0, B0] that together

cover all the edges in G[A0, B0], where r∗ ≤ εn.
We may assume that a ≥ b (the case when b > a follows analogously). We

will use edges in G[A′] to extend each M ′i into a 2-balanced A0B0-path system.
(WF2) implies that eG(A′) ≥ (a − b)D/2. Since dG(v) = D for all v ∈ A0 ∪ B0

by (WF2), (WF5) and (WF6) imply that ∆(G[A′]) ≤ D/2. Thus Corollary 1.4.6
implies that E(G[A′]) can be decomposed into bD/2c + 1 edge-disjoint matchings
MA,1, . . . ,MA,bD/2c+1 such that ||MA,i| − |MA,j || ≤ 1 for all i, j ≤ bD/2c+ 1.

Notice that at least εn of the matchings MA,i are such that |MA,i| ≥ a − b.
Indeed, otherwise we have that

(a− b)D/2 ≤ eG(A′) ≤ εn(a− b) + (a− b− 1)(D/2 + 1− εn)

= (a− b)D/2 + a− b−D/2− 1 + εn

< (a− b)D/2 + 2εn−D/2 < (a− b)D/2,
a contradiction. (The last inequality follows since D ≥ n/200.) In particular,
this implies that G[A′] contains r∗ edge-disjoint matchings M ′′1 , . . . ,M

′′
r∗ that each

consist of precisely a− b edges.
For each i ≤ r∗, set Mi := M ′i ∪M ′′i . So for each i ≤ r∗, Mi is a path system

consisting of at most b+(a− b) = a ≤ εn nontrivial paths such that A∪B contains
no internal vertex of a path in Mi and eMi

(A′)− eMi
(B′) = eM ′′i (A′) = a− b.

Suppose for some 0 ≤ r < r∗ we have already found a collection Q1, . . . , Qr of r
edge-disjoint 2-balanced A0B0-path systems which satisfy the following properties
for each i ≤ r:

(α)i Qi contains at most 2εn nontrivial paths;
(β)i Mi ⊆ Qi;
(γ)i Qi and Mj are edge-disjoint for each j ≤ r∗ such that i 6= j;
(δ)i Qi contains no edge from G[A,B].

(Note that (α)0–(δ)0 are vacuously true.) Let G′ denote the spanning subgraph of
G obtained from G by deleting the edges lying in Q1 ∪ · · · ∪ Qr. (WF2), (WF4)
and (WF6) imply that, if v ∈ A0, dG′(v,B) ≥ D/2− εn− 2r ≥ 4εn and if v ∈ B0

then dG′(v,A) ≥ 4εn. Thus Lemma 4.2.6 implies that G′ contains a 2-balanced
A0B0-path system Qr+1 that satisfies (α)r+1–(δ)r+1.

So we can proceed in this way in order to obtain edge-disjoint 2-balanced A0B0-
path systems Q1, . . . , Qr∗ in G such that (α)i–(δ)i hold for each i ≤ r∗. Note that
(i)–(iii) follow immediately from these conditions, as desired. �
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The next lemma (Corollary 5.4 in [20]) allows us to extend a 2-balanced path
system into a Hamilton cycle. Corollary 5.4 concerns so-called ‘(A,B)-balanced’-
path systems rather than 2-balanced A0B0-path systems. But the latter satisfies
the requirements of the former by Proposition 4.2.5.

Lemma 4.2.8. Let 0 < 1/n� ε′ � α � 1. Let F be a graph and suppose that
A0, A,B0, B is a partition of V (F ) such that |A| = |B| = n. Let H be a bipartite
subgraph of F with vertex classes A and B such that δ(H) ≥ (1/2 + α)n. Suppose
that Q is a 2-balanced A0B0-path system with respect to (A,A0, B,B0) in F which
consists of at most ε′n nontrivial paths. Then F contains a Hamilton cycle C which
satisfies the following properties:

• Q ⊆ C;
• E(C) \ E(Q) consists of edges from H.

Now we can apply Lemma 4.2.8 to extend a 2-balanced A0B0-path system in
a pre-framework into a Hamilton cycle.

Lemma 4.2.9. Let 0 < 1/n � ε � ε′, 1/K � α � 1. Let F be a graph on n
vertices and let G be a spanning subgraph of F . Suppose that (F,G,A,A0, B,B0) is
an (ε, ε′,K,D)-pre-framework, i.e. it satisfies (WF1)–(WF5). Suppose also that
δ(F ) ≥ (1/4 + α)n. Let Q be a 2-balanced A0B0-path system with respect to
(A,A0, B,B0) in G which consists of at most ε′n nontrivial paths. Then F contains
a Hamilton cycle C which satisfies the following properties:

(i) Q ⊆ C;
(ii) E(C) \ E(Q) consists of AB-edges;

(iii) C ∩G is 2-balanced with respect to (A,A0, B,B0).

Proof. Note that (WF4), (WF5) and our assumption that δ(F ) ≥ (1/4 + α)n
together imply that every vertex x ∈ A satisfies

dF (x,B) ≥ dF (x,B′)−|B0| ≥ dF (x)− ε′n−|B0| ≥ (1/4 +α/2)n ≥ (1/2 +α/2)|B|.
Similarly, dF (x,A) ≥ (1/2 + α/2)|A| for all x ∈ B. Thus, δ(F [A,B]) ≥ (1/2 +
α/2)|A|. Applying Lemma 4.2.8 with F [A,B] playing the role of H, we obtain a
Hamilton cycle C in F that satisfies (i) and (ii). To verify (iii), note that (ii) and
the 2-balancedness of Q together imply that

eC∩G(A′)− eC∩G(B′) = eQ(A′)− eQ(B′) = a− b.
Since every vertex v ∈ A0 ∪B0 satisfies dC∩G(v) = dQ(v) = 2, (iii) holds. �

We now combine Lemmas 4.2.7 and 4.2.9 to find a collection of edge-disjoint
Hamilton cycles covering all the edges in G[A0, B0].

Lemma 4.2.10. Let 0 < 1/n � ε � ε′, 1/K � α � 1 and let D ≥ n/100.
Let F be a graph on n vertices and let G be a spanning subgraph of F . Suppose
that (F,G,A,A0, B,B0) is an (ε, ε′,K,D)-weak framework with δ(F ) ≥ (1/4 +
α)n. Then for some r∗ ≤ εn the graph F contains edge-disjoint Hamilton cycles
C1, . . . , Cr∗ which satisfy the following properties:

(i) Together C1, . . . , Cr∗ cover all edges in G[A0, B0];
(ii) (C1 ∪ · · · ∪ Cr∗) ∩G is 2r∗-balanced with respect to (A,A0, B,B0).
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Proof. Apply Lemma 4.2.7 to obtain a collection of r∗ ≤ εn edge-disjoint 2-
balanced A0B0-path systems Q1, . . . , Qr∗ in G which satisfy Lemma 4.2.7(i)–(iii).
We will extend each Qi to a Hamilton cycle Ci.

Suppose that for some 0 ≤ r < r∗ we have found a collection C1, . . . , Cr of r
edge-disjoint Hamilton cycles in F such that the following holds for each 0 ≤ i ≤ r:

(α)i Qi ⊆ Ci;
(β)i E(Ci) \ E(Qi) consists of AB-edges;
(γ)i G ∩ Ci is 2-balanced with respect to (A,A0, B,B0).

(Note that (α)0–(γ)0 are vacuously true.) Let Hr := C1 ∪ · · · ∪ Cr (where H0 :=
(V (G), ∅)). So Hr is 2r-regular. Further, since G ∩ Ci is 2-balanced for each
i ≤ r, G ∩ Hr is 2r-balanced. Let Gr := G − Hr and Fr := F − Hr. Since
(F,G,A,A0, B,B0) is an (ε, ε′,K,D)-pre-framework, Proposition 4.2.3 implies that
(Fr, Gr, A,A0, B,B0) is an (ε, ε′,K,D − 2r)-pre-framework. Moreover, δ(Fr) ≥
δ(F ) − 2r ≥ (1/4 + α/2)n. Lemma 4.2.7(iii) and (β)1–(β)r together imply that
Qr+1 lies in Gr. Therefore, Lemma 4.2.9 implies that Fr contains a Hamilton cycle
Cr+1 which satisfies (α)r+1–(γ)r+1.

So we can proceed in this way in order to obtain r∗ edge-disjoint Hamilton
cycles C1, . . . , Cr∗ in F such that for each i ≤ r∗, (α)i–(γ)i hold. Note that this
implies that (ii) is satisfied. Further, the choice of Q1, . . . , Qr∗ ensures that (i)
holds. �

Given a graph G, we say that (G,A,A0, B,B0) is an (ε, ε′,K,D)-bi-framework
if the following holds, where A′ := A0 ∪A, B′ := B0 ∪B and n := |G|:
(BFR1) A,A0, B,B0 forms a partition of V (G);
(BFR2) G is D-balanced with respect to (A,A0, B,B0);
(BFR3) eG(A′), eG(B′) ≤ εn2;
(BFR4) |A| = |B| is divisible by K. Moreover, b ≤ a and a + b ≤ εn, where

a := |A0| and b := |B0|;
(BFR5) all vertices in A ∪B have internal degree at most ε′n in G;
(BFR6) e(G[A0, B0]) = 0;
(BFR7) all vertices v ∈ V (G) have internal degree at most dG(v)/2 + εn in G.

Note that the main differences to a weak framework are (BFR6) and the fact that
a weak framework involves an additional graph F . In particular (BFR1)–(BFR4)
imply (WF1)–(WF4). Suppose that ε1 ≥ ε, ε′1 ≥ ε′ and that K1 divides K. Then
note that every (ε, ε′,K,D)-bi-framework is also an (ε1, ε

′
1,K1, D)-bi-framework.

Lemma 4.2.11. Let 0 < 1/n� ε� ε′, 1/K � α � 1 and let D ≥ n/100. Let
F be a graph on n vertices and let G be a spanning subgraph of F . Suppose that
(F,G,A,A0, B,B0) is an (ε, ε′,K,D)-weak framework. Suppose also that δ(F ) ≥
(1/4 + α)n and |A0| ≥ |B0|. Then the following properties hold:

(i) there is an (ε, ε′,K,DG′)-bi-framework (G′, A,A0, B,B0) such that G′ is
a spanning subgraph of G with DG′ ≥ D − 2εn;

(ii) there is a set of (D−DG′)/2 ≤ εn edge-disjoint Hamilton cycles in F −G′
containing all edges of G − G′. In particular, if D is even then DG′ is
even.

Proof. Lemma 4.2.10 implies that there exists some r∗ ≤ εn such that F contains
a spanning subgraph H satisfying the following properties:

(a) H is 2r∗-regular;
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(b) H contains all the edges in G[A0, B0];
(c) G ∩H is 2r∗-balanced with respect to (A,A0, B,B0);
(d) H has a decomposition into r∗ edge-disjoint Hamilton cycles.

Set G′ := G − H. Then (G′, A,A0, B,B0) is an (ε, ε′,K,DG′)-bi-framework
where DG′ := D− 2r∗ ≥ D− 2εn. Indeed, since (F,G,A,A0, B,B0) is an (ε, ε′,K,
D)-weak framework, (BFR1) and (BFR3)–(BFR5) follow from (WF1) and (WF3)–
(WF5). Further, (BFR2) follows from (WF2) and (c) while (BFR6) follows from
(b). (WF6) implies that all vertices v ∈ V (G) have internal degree at most dG(v)/2
in G. Thus all vertices v ∈ V (G′) have internal degree at most dG(v)/2 ≤ (dG′(v)+
2r∗)/2 ≤ dG′(v)/2 + εn in G′. So (BFR7) is satisfied. Hence, (i) is satisfied.

Note that by definition of G′, H contains all edges of G − G′. So since r∗ =
(D −DG′)/2 ≤ εn, (d) implies (ii). �

The following result follows immediately from Lemmas 4.2.4 and 4.2.11.

Corollary 4.2.12. Let 0 < 1/n � ε � ε∗ � ε′, 1/K � α � 1 and let
D ≥ n/100. Suppose that F is an ε-bipartite graph on n vertices with δ(F ) ≥
(1/4 + α)n. Suppose that G is a D-regular spanning subgraph of F . Then the
following properties hold:

(i) there is an (ε∗, ε′,K,DG′)-bi-framework (G′, A,A0, B,B0) such that G′ is
a spanning subgraph of G, DG′ ≥ D − 2ε1/3n and such that F satisfies
(WF5) (with respect to the partition A,A0, B,B0);

(ii) there is a set of (D − DG′)/2 ≤ ε1/3n edge-disjoint Hamilton cycles in
F − G′ containing all edges of G − G′. In particular, if D is even then
DG′ is even.

4.3. Finding Path Systems which Cover All the Edges within the
Classes

The purpose of this section is to prove Corollary 4.3.10 which, given a bi-
framework (G,A,A0, B,B0), guarantees a set C of edge-disjoint Hamilton cycles
and a set J of suitable edge-disjoint 2-balanced A0B0-path systems such that the
graph G∗ obtained from G by deleting the edges in all these Hamilton cycles and
path systems is bipartite with vertex classes A′ and B′ and A0 ∪ B0 is isolated in
G∗. Each of the path systems in J will later be extended into a Hamilton cycle by
adding suitable edges between A and B. The path systems in J will need to be
‘localized’ with respect to a given partition. We prepare the ground for this in the
next subsection.

We will call the path systems in J balanced exceptional systems (see Sec-
tion 4.3.4 for the definition). These will play a similar role as the exceptional
systems in the two cliques case (i.e. in Chapter 2).

Throughout this section, given sets S, S′ ⊆ V (G) we often write E(S), E(S, S′),
e(S) and e(S, S′) for EG(S), EG(S, S′), eG(S) and eG(S, S′) respectively.

4.3.1. Choosing the Partition and the Localized Slices. Let K,m ∈ N
and ε > 0. Recall that a (K,m, ε)-partition of a set V of vertices is a partition of
V into sets A0, A1, . . . , AK and B0, B1, . . . , BK such that |Ai| = |Bi| = m for all
1 ≤ i ≤ K and |A0 ∪ B0| ≤ ε|V |. We often write V0 for A0 ∪ B0 and think of the
vertices in V0 as ‘exceptional vertices’. The sets A1, . . . , AK and B1, . . . , BK are
called clusters of the (K,m, ε0)-partition and A0, B0 are called exceptional sets.
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Unless stated otherwise, when considering a (K,m, ε)-partition P we denote the
elements of P by A0, A1, . . . , AK and B0, B1, . . . , BK as above. Further, we will
often write A for A1 ∪ · · · ∪AK and B for B1 ∪ · · · ∪BK .

Suppose that (G,A,A0, B,B0) is an (ε, ε′,K,D)-bi-framework with |G| = n
and that ε1, ε2 > 0. We say that P is a (K,m, ε, ε1, ε2)-partition for G if P satisfies
the following properties:

(P1) P is a (K,m, ε)-partition of V (G) such that the exceptional sets A0 and
B0 in the partition P are the same as the sets A0, B0 which are part of
the bi-framework (G,A,A0, B,B0). In particular, m = |A|/K = |B|/K;

(P2) d(v,Ai) = (d(v,A)± ε1n)/K for all 1 ≤ i ≤ K and v ∈ V (G);
(P3) e(Ai, Aj) = 2(e(A)± ε2 max{n, e(A)})/K2 for all 1 ≤ i < j ≤ K;
(P4) e(Ai) = (e(A)± ε2 max{n, e(A)})/K2 for all 1 ≤ i ≤ K;
(P5) e(A0, Ai) = (e(A0, A)± ε2 max{n, e(A0, A)})/K for all 1 ≤ i ≤ K;
(P6) e(Ai, Bj) = (e(A,B)± 3ε2e(A,B))/K2 for all 1 ≤ i, j ≤ K;

and the analogous assertions hold if we replace A by B (as well as Ai by Bi etc.)
in (P2)–(P5).

Our first aim is to show that for every bi-framework we can find such a partition
with suitable parameters.

Lemma 4.3.1. Let 0 < 1/n � ε � ε′ � ε1 � ε2 � 1/K � 1. Suppose that
(G,A,A0, B,B0) is an (ε, ε′,K,D)-bi-framework with |G| = n and δ(G) ≥ D ≥
n/200. Suppose that F is a graph with V (F ) = V (G). Then there exists a partition
P = {A0, A1, . . . , AK , B0, B1, . . . , BK} of V (G) so that

(i) P is a (K,m, ε, ε1, ε2)-partition for G.
(ii) dF (v,Ai) = (dF (v,A)± ε1n)/K and dF (v,Bi) = (dF (v,B)± ε1n)/K for

all 1 ≤ i ≤ K and v ∈ V (G).

Proof. In order to find the required partitions A1, . . . , AK of A and B1, . . . , BK
of B we will apply Lemma 1.4.7 twice, as follows. In the first application we
let U := A, R1 := A0, R2 := B0 and R3 := B. Note that ∆(G[U ]) ≤ ε′n by
(BFR5) and dG(u,Rj) ≤ |Rj | ≤ εn ≤ ε′n for all u ∈ U and j = 1, 2 by (BFR4).
Moreover, (BFR4) and (BFR7) together imply that dG(x, U) ≥ D/3 ≥ ε′n for each
x ∈ R3 = B. Thus we can apply Lemma 1.4.7 with ε′ playing the role of ε to obtain
a partition U1, . . . , UK of U . We let Ai := Ui for all i ≤ K. Then the Ai satisfy
(P2)–(P5) and

(4.3.1) eG(Ai, B) = (eG(A,B)± ε2 max{n, eG(A,B)})/K = (1± ε2)eG(A,B)/K.

Further, Lemma 1.4.7(vi) implies that

dF (v,Ai) = (dF (v,A)± ε1n)/K

for all 1 ≤ i ≤ K and v ∈ V (G).
For the second application of Lemma 1.4.7 we let U := B, R1 := B0, R2 := A0

and Rj := Aj−2 for all 3 ≤ j ≤ K + 2. As before, ∆(G[U ]) ≤ ε′n by (BFR5) and
dG(u,Rj) ≤ εn ≤ ε′n for all u ∈ U and j = 1, 2 by (BFR4). Moreover, (BFR4)
and (BFR7) together imply that dG(x, U) ≥ D/3 ≥ ε′n for all 3 ≤ j ≤ K + 2 and
each x ∈ Rj = Aj−2. Thus we can apply Lemma 1.4.7 with ε′ playing the role of
ε to obtain a partition U1, . . . , UK of U . Let Bi := Ui for all i ≤ K. Then the Bi
satisfy (P2)–(P5) with A replaced by B, Ai replaced by Bi, and so on. Moreover,
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for all 1 ≤ i, j ≤ K,

eG(Ai, Bj) = (eG(Ai, B)± ε2 max{n, eG(Ai, B)})/K
(4.3.1)

= ((1± ε2)eG(A,B)± ε2(1 + ε2)eG(A,B))/K2

= (eG(A,B)± 3ε2eG(A,B))/K2,

i.e. (P6) holds. Since clearly (P1) holds as well, A0, A1, . . . , AK and B0, B1, . . . , BK
together form a (K,m, ε, ε1, ε2)-partition for G. Further, Lemma 1.4.7(vi) implies
that

dF (v,Bi) = (dF (v,B)± ε1n)/K

for all 1 ≤ i ≤ K and v ∈ V (G). �

The next lemma gives a decomposition of G[A′] and G[B′] into suitable smaller
edge-disjoint subgraphs HA

ij and HB
ij . We say that the graphs HA

ij and HB
ij guar-

anteed by Lemma 4.3.2 are localized slices of G. Note that the order of the indices
i and j matters here, i.e. HA

ij 6= HA
ji. Also, we allow i = j.

Lemma 4.3.2. Let 0 < 1/n � ε � ε′ � ε1 � ε2 � 1/K � 1. Suppose that
(G,A,A0, B,B0) is an (ε, ε′,K,D)-bi-framework with |G| = n and D ≥ n/200. Let
A0, A1, . . . , AK and B0, B1, . . . , BK be a (K,m, ε, ε1, ε2)-partition for G. Then for
all 1 ≤ i, j ≤ K there are graphs HA

ij and HB
ij with the following properties:

(i) HA
ij is a spanning subgraph of G[A0, Ai ∪Aj ] ∪G[Ai, Aj ] ∪G[A0];

(ii) The sets E(HA
ij ) over all 1 ≤ i, j ≤ K form a partition of the edges of

G[A′];
(iii) e(HA

ij ) = (e(A′)± 9ε2 max{n, e(A′)})/K2 for all 1 ≤ i, j ≤ K;

(iv) eHA
ij

(A0, Ai ∪ Aj) = (e(A0, A) ± 2ε2 max{n, e(A0, A)})/K2 for all 1 ≤
i, j ≤ K;

(v) eHA
ij

(Ai, Aj) = (e(A)± 2ε2 max{n, e(A)})/K2 for all 1 ≤ i, j ≤ K;

(vi) For all 1 ≤ i, j ≤ K and all v ∈ A0 we have dHA
ij

(v) = dHA
ij

(v,Ai ∪Aj) +

dHA
ij

(v,A0) = (d(v,A)± 4ε1n)/K2.

The analogous assertions hold if we replace A by B, Ai by Bi, and so on.

Proof. In order to construct the graphs HA
ij we perform the following procedure:

• Initially each HA
ij is an empty graph with vertex set A0 ∪Ai ∪Aj .

• For all 1 ≤ i ≤ K choose a random partition E(A0, Ai) into K sets Uj
of equal size and let E(HA

ij ) := Uj . (If E(A0, Ai) is not divisible by K,
first distribute up to K − 1 edges arbitrarily among the Uj to achieve
divisibility.)
• For all i ≤ K, we add all the edges in E(Ai) to HA

ii .
• For all i, j ≤ K with i 6= j, half of the edges in E(Ai, Aj) are added to HA

ij

and the other half is added to HA
ji (the choice of the edges is arbitrary).

• The edges in G[A0] are distributed equally amongst the HA
ij . (So eHA

ij
(A0)

= e(A0)/K2 ± 1.)

Clearly, the above procedure ensures that properties (i) and (ii) hold. (P5) implies
(iv) and (P3) and (P4) imply (v).

Consider any v ∈ A0. To prove (vi), note that we may assume that d(v,A) ≥
ε1n/K

2. Let X := dHA
ij

(v,Ai∪Aj). Note that (P2) implies that E(X) = (d(v,A)±
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2ε1n)/K2 and note that E(X) ≤ n. So the Chernoff-Hoeffding bound for the
hypergeometric distribution in Proposition 1.4.4 implies that

P(|X−E(X)| > ε1n/K
2) ≤ P(|X−E(X)| > ε1E(X)/K2) ≤ 2e−ε

2
1E(X)/3K4 ≤ 1/n2.

Since dHA
ij

(v,A0) ≤ |A0| ≤ ε1n/K
2, a union bound implies the desired result.

Finally, observe that for any a, b1, . . . , b4 > 0, we have

4∑
i=1

max{a, bi} ≤ 4 max{a, b1, . . . , b4} ≤ 4 max{a, b1 + · · ·+ b4}.

So (iii) follows from (iv), (v) and the fact that eHA
ij

(A0) = e(A0)/K2 ± 1. �

Note that the construction implies that if i 6= j, then HA
ij will contain edges be-

tween A0 and Ai but not between A0 and Aj . However, this additional information
is not needed in the subsequent argument.

4.3.2. Decomposing the Localized Slices. Suppose that (G,A,A0, B,B0)
is an (ε, ε′,K,D)-bi-framework. Recall that a = |A0|, b = |B0| and a ≥ b. Since
G is D-balanced by (BFR2), we have e(A′)− e(B′) = (a− b)D/2. So there are an
integer q ≥ −b and a constant 0 ≤ c < 1 such that

(4.3.2) e(A′) = (a+ q + c)D/2 and e(B′) = (b+ q + c)D/2.

The aim of this subsection is to prove Lemma 4.3.5, which guarantees a decom-
position of each localized slice HA

ij into path systems (which will be extended into
A0B0-path systems in Section 4.3.4) and a sparse (but not too sparse) leftover
graph GAij .

The following two results will be used in the proof of Lemma 4.3.5.

Lemma 4.3.3. Let 0 < 1/n � α, β, γ so that γ < 1/2. Suppose that G is a
graph on n vertices such that ∆(G) ≤ αn and e(G) ≥ βn. Then G contains a
spanning subgraph H such that e(H) = d(1− γ)e(G)e and ∆(G−H) ≤ 6γαn/5.

Proof. Let H ′ be a spanning subgraph of G such that

• ∆(H ′) ≤ 6γαn/5;
• e(H ′) ≥ γe(G).

To see that such a graph H ′ exists, consider a random subgraph of G obtained by
including each edge of G with probability 11γ/10. Then E(∆(H ′)) ≤ 11γαn/10
and E(e(H ′)) = 11γe(G)/10. Thus applying Proposition 1.4.4 we have that, with
high probability, H ′ is as desired.

Define H to be a spanning subgraph of G such that H ⊇ G−H ′ and e(H) =
d(1− γ)e(G)e. Then ∆(G−H) ≤ ∆(H ′) ≤ 6γαn/5, as required. �

Lemma 4.3.4. Suppose that G is a graph such that ∆(G) ≤ D−2 where D ∈ N
is even. Suppose A0, A is a partition of V (G) such that dG(x) ≤ D/2 − 1 for all
x ∈ A and ∆(G[A0]) ≤ D/2−1. Then G has a decomposition into D/2 edge-disjoint
path systems P1, . . . , PD/2 such that the following conditions hold:

(i) For each i ≤ D/2, any internal vertex on a path in Pi lies in A0;
(ii) |e(Pi)− e(Pj)| ≤ 1 for all i, j ≤ D/2.
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Proof. Let G1 be a maximal spanning subgraph of G under the constraints that
G[A0] ⊆ G1 and ∆(G1) ≤ D/2−1. Note that G[A0]∪G[A] ⊆ G1. Set G2 := G−G1.
So G2 only contains A0A-edges. Further, since ∆(G) ≤ D − 2, the maximality of
G1 implies that ∆(G2) ≤ D/2− 1.

Define an auxiliary graph G′, obtained from G1 as follows: let A0 = {a1, . . . ,
am}. Add a new vertex set A′0 = {a′1, . . . , a′m} to G1. For each i ≤ m and x ∈ A,
we add an edge between a′i and x if and only if aix is an edge in G2.

Thus G′[A0 ∪ A] is isomorphic to G1 and G′[A′0, A] is isomorphic to G2. By
construction and since dG(x) ≤ D/2−1 for all x ∈ A, we have that ∆(G′) ≤ D/2−1.
Hence, Corollary 1.4.6 implies that E(G′) can be decomposed intoD/2 edge-disjoint
matchings M1, . . . ,MD/2 such that ||Mi| − |Mj || ≤ 1 for all i, j ≤ D/2.

By identifying each vertex a′i ∈ A′0 with the corresponding vertex ai ∈ A0,
M1, . . . ,MD/2 correspond to edge-disjoint subgraphs P1, . . . , PD/2 of G such that

• P1, . . . , PD/2 together cover all the edges in G;
• |e(Pi)− e(Pj)| ≤ 1 for all i, j ≤ D/2.

Note that dMi
(x) ≤ 1 for each x ∈ V (G′). Thus dPi

(x) ≤ 1 for each x ∈ A and
dPi(x) ≤ 2 for each x ∈ A0. This implies that any cycle in Pi must lie in G[A0].
However, Mi is a matching and G′[A′0] ∪ G′[A0, A

′
0] contains no edges. Therefore,

Pi contains no cycle, and so Pi is a path system such that any internal vertex on a
path in Pi lies in A0. Hence P1, . . . , PD/2 satisfy (i) and (ii). �

Lemma 4.3.5. Let 0 < 1/n � ε � ε′ � ε1 � ε2 � ε3 � ε4 � 1/K � 1.
Suppose that (G,A,A0, B,B0) is an (ε, ε′,K,D)-bi-framework with |G| = n and
D ≥ n/200. Let A0, A1, . . . , AK and B0, B1, . . . , BK be a (K,m, ε, ε1, ε2)-partition
for G. Let HA

ij be a localized slice of G as guaranteed by Lemma 4.3.2. Define c

and q as in (4.3.2). Suppose that t := (1 − 20ε4)D/2K2 ∈ N. If e(B′) ≥ ε3n, set
t∗ to be the largest integer which is at most ct and is divisible by K2. Otherwise,
set t∗ := 0. Define

`a :=

 0 if e(A′) < ε3n;
a− b if e(A′) ≥ ε3n but e(B′) < ε3n;
a+ q + c otherwise

and

`b :=

{
0 if e(B′) < ε3n;
b+ q + c otherwise.

Then HA
ij has a decomposition into t edge-disjoint path systems P1, . . . , Pt and a

spanning subgraph GAij with the following properties:

(i) For each s ≤ t, any internal vertex on a path in Ps lies in A0;
(ii) e(P1) = · · · = e(Pt∗) = d`ae and e(Pt∗+1) = · · · = e(Pt) = b`ac;

(iii) e(Ps) ≤
√
εn for every s ≤ t;

(iv) ∆(GAij) ≤ 13ε4D/K
2.

The analogous assertion (with `a replaced by `b and A0 replaced by B0) holds for
each localized slice HB

ij of G. Furthermore, d`ae − d`be = b`ac − b`bc = a− b.
Proof. Note that (4.3.2) and (BFR3) together imply that `aD/2 ≤ (a+q+c)D/2 =
e(A′) ≤ εn2 and so d`ae ≤

√
εn. Thus (iii) will follow from (ii). So it remains to

prove (i), (ii) and (iv). We split the proof into three cases.

Case 1. e(A′) < ε3n
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(BFR2) and (BFR4) imply that e(A′) − e(B′) = (a − b)D/2 ≥ 0. So e(B′) ≤
e(A′) < ε3n. Thus `a = `b = 0. Set GAij := HA

ij and GBij := HB
ij . Therefore, (iv) is

satisfied as ∆(HA
ij ) ≤ e(A′) < ε3n ≤ 13ε4D/K

2. Further, (i) and (ii) are vacuous
(i.e. we set each Ps to be the empty graph on V (G)).

Note that a = b since otherwise a > b and therefore (BFR2) implies that
e(A′) ≥ (a−b)D/2 ≥ D/2 > ε3n, a contradiction. Hence, d`ae−d`be = b`ac−b`bc =
0 = a− b.
Case 2. e(A′) ≥ ε3n and e(B′) < ε3n

Since `b = 0 in this case, we set GBij := HB
ij and each Ps to be the empty graph

on V (G). Then as in Case 1, (i), (ii) and (iv) are satisfied with respect to HB
ij .

Further, clearly d`ae − d`be = b`ac − b`bc = a− b.
Note that a > b since otherwise a = b and thus e(A′) = e(B′) by (BFR2), a

contradiction to the case assumptions. Since e(A′)−e(B′) = (a−b)D/2 by (BFR2),
Lemma 4.3.2(iii) implies that

e(HA
ij ) ≥ (1− 9ε2)e(A′)/K2 − 9ε2n/K

2 ≥ (1− 9ε2)(a− b)D/(2K2)− 9ε2n/K
2

≥ (1− ε3)(a− b)D/(2K2) > (a− b)t.(4.3.3)

Similarly, Lemma 4.3.2(iii) implies that

e(HA
ij ) ≤ (1 + ε4)(a− b)D/(2K2).(4.3.4)

Therefore, (4.3.3) implies that there exists a constant γ > 0 such that

(1− γ)e(HA
ij ) = (a− b)t.

Since (1−19ε4)(1−ε3) > (1−20ε4), (4.3.3) implies that γ > 19ε4 � 1/n. Further,
since (1 + ε4)(1− 21ε4) < (1− 20ε4), (4.3.4) implies that γ < 21ε4.

Note that (BFR5), (BFR7) and Lemma 4.3.2(vi) imply that

∆(HA
ij ) ≤ (D/2 + 5ε1n)/K2.(4.3.5)

Thus Lemma 4.3.3 implies that HA
ij contains a spanning subgraph H such that

e(H) = (1− γ)e(HA
ij ) = (a− b)t and

∆(HA
ij −H) ≤ 6γ(D/2 + 5ε1n)/(5K2) ≤ 13ε4D/K

2,

where the last inequality follows since γ < 21ε4 and ε1 � 1. Setting GAij := HA
ij−H

implies that (iv) is satisfied.
Our next task is to decompose H into t edge-disjoint path systems so that (i)

and (ii) are satisfied. Note that (4.3.5) implies that

∆(H) ≤ ∆(HA
ij ) ≤ (D/2 + 5ε1n)/K2 < 2t− 2.

Further, (BFR4) implies that ∆(H[A0]) ≤ |A0| ≤ εn < t − 1 and (BFR5) implies
that dH(x) ≤ ε′n < t− 1 for all x ∈ A. Since e(H) = (a− b)t, Lemma 4.3.4 implies
that H has a decomposition into t edge-disjoint path systems P1, . . . , Pt satisfying
(i) and so that e(Ps) = a− b = `a for all s ≤ t. In particular, (ii) is satisfied.

Case 3. e(A′), e(B′) ≥ ε3n
By definition of `a and `b, we have that d`ae − d`be = b`ac − b`bc = a − b.

Notice that since e(A′) ≥ ε3n and ε2 � ε3, certainly ε3e(A
′)/(2K2) > 9ε2n/K

2.
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Therefore, Lemma 4.3.2(iii) implies that

e(HA
ij ) ≥ (1− 9ε2)e(A′)/K2 − 9ε2n/K

2

≥ (1− ε3)e(A′)/K2(4.3.6)

≥ ε3n/(2K
2).

Note that 1/n� ε3/(2K
2). Further, (4.3.2) and (4.3.6) imply that

e(HA
ij ) ≥ (1− ε3)e(A′)/K2

= (1− ε3)(a+ q + c)D/(2K2) > (a+ q)t+ t∗.(4.3.7)

Similarly, Lemma 4.3.2(iii) implies that

e(HA
ij ) ≤ (1 + ε3)(a+ q + c)D/(2K2).(4.3.8)

By (4.3.7) there exists a constant γ > 0 such that

(1− γ)e(HA
ij ) = (a+ q)t+ t∗.

Note that (4.3.7) implies that 1/n � 19ε4 < γ and (4.3.8) implies that γ < 21ε4.
Moreover, as in Case 2, (BFR5), (BFR7) and Lemma 4.3.2(vi) together show that

∆(HA
ij ) ≤ (D/2 + 5ε1n)/K2.(4.3.9)

Thus (as in Case 2 again), Lemma 4.3.3 implies that HA
ij contains a spanning

subgraph H such that e(H) = (1− γ)e(HA
ij ) = (a+ q)t+ t∗ and

∆(HA
ij −H) ≤ 6γ(D/2 + 5ε1n)/(5K2) ≤ 13ε4D/K

2.

Setting GAij := HA
ij − H implies that (iv) is satisfied. Next we decompose H into

t edge-disjoint path systems so that (i) and (ii) are satisfied. Note that (4.3.9)
implies that

∆(H) ≤ ∆(HA
ij ) ≤ (D/2 + 5ε1n)/K2 < 2t− 2.

Further, (BFR4) implies that ∆(H[A0]) ≤ |A0| ≤ εn < t − 1 and (BFR5) implies
that dH(x) ≤ ε′n < t − 1 for all x ∈ A. Since e(H) = (a + q)t + t∗, Lemma 4.3.4
implies that H has a decomposition into t edge-disjoint path systems P1, . . . , Pt
satisfying (i) and (ii). An identical argument implies that (i), (ii) and (iv) are
satisfied with respect to HB

ij also. �

4.3.3. Decomposing the Global Graph. Let GAglob be the union of the

graphs GAij guaranteed by Lemma 4.3.5 over all 1 ≤ i, j ≤ K. Define GBglob similarly.

The next lemma gives a decomposition of both GAglob and GBglob into suitable path

systems. Properties (iii) and (iv) of the lemma guarantee that one can pair up each
such path system QA ⊆ GAglob with a different path system QB ⊆ GBglob such that

QA ∪QB is 2-balanced (in particular e(QA)− e(QB) = a− b). This property will
then enable us to apply Lemma 4.2.9 to extend QA ∪ QB into a Hamilton cycle
using only edges between A′ and B′.

Lemma 4.3.6. Let 0 < 1/n � ε � ε′ � ε1 � ε2 � ε3 � ε4 � 1/K � 1.
Suppose that (G,A,A0, B,B0) is an (ε, ε′,K,D)-bi-framework with |G| = n and
such that D ≥ n/200 and D is even. Let A0, A1, . . . , AK and B0, B1, . . . , BK be a
(K,m, ε, ε1, ε2)-partition for G. Let GAglob be the union of the graphs GAij guaranteed

by Lemma 4.3.5 over all 1 ≤ i, j ≤ K. Define GBglob similarly. Suppose that
k := 10ε4D ∈ N. Then the following properties hold:
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(i) There is an integer q′ and a real number 0 ≤ c′ < 1 so that e(GAglob) =

(a+ q′ + c′)k and e(GBglob) = (b+ q′ + c′)k.

(ii) ∆(GAglob),∆(GBglob) < 3k/2.

(iii) Let k∗ := c′k. Then GAglob has a decomposition into k∗ path systems, each

containing a+q′+1 edges, and k−k∗ path systems, each containing a+q′

edges. Moreover, each of these k path systems Q satisfies dQ(x) ≤ 1 for
all x ∈ A.

(iv) GBglob has a decomposition into k∗ path systems, each containing b+ q′+ 1

edges, and k − k∗ path systems, each containing b + q′ edges. Moreover,
each of these k path systems Q satisfies dQ(x) ≤ 1 for all x ∈ B.

(v) Each of the path systems guaranteed in (iii) and (iv) contains at most√
εn edges.

Note that in Lemma 4.3.6 and several later statements the parameter ε3 is
implicitly defined by the application of Lemma 4.3.5 which constructs the graphs
GAglob and GBglob.

Proof. Let t∗ and t be as defined in Lemma 4.3.5. Our first task is to show that (i)
is satisfied. If e(A′), e(B′) < ε3n then GAglob = G[A′] and GBglob = G[B′]. Further,

a = b in this case since otherwise (BFR4) implies that a > b and so (BFR2) yields
that e(A′) ≥ (a− b)D/2 ≥ D/2 > ε3n, a contradiction. Therefore, (BFR2) implies
that

e(GAglob)− e(GBglob) = e(A′)− e(B′)=(a− b)D/2 = 0 = (a− b)k.
If e(A′) ≥ ε3n and e(B′) < ε3n then GBglob = G[B′]. Further, GAglob is obtained

from G[A′] by removing tK2 edge-disjoint path systems, each of which contains
precisely a− b edges. Thus (BFR2) implies that

e(GAglob)− e(GBglob) = e(A′)− e(B′)− tK2(a− b) = (a− b)(D/2− tK2) = (a− b)k.
Finally, consider the case when e(A′), e(B′) > ε3n. Then GAglob is obtained from

G[A′] by removing t∗K2 edge-disjoint path systems, each of which contain exactly
a+q+1 edges, and by removing (t−t∗)K2 edge-disjoint path systems, each of which
contain exactly a + q edges. Similarly, GBglob is obtained from G[B′] by removing

t∗K2 edge-disjoint path systems, each of which contain exactly b+ q+ 1 edges, and
by removing (t − t∗)K2 edge-disjoint path systems, each of which contain exactly
b+ q edges. So (BFR2) implies that

e(GAglob)− e(GBglob) = e(A′)− e(B′)− (a− b)tK2 = (a− b)k.
Therefore, in every case,

e(GAglob)− e(GBglob) = (a− b)k.(4.3.10)

Define the integer q′ and 0 ≤ c′ < 1 by e(GAglob) = (a + q′ + c′)k. Then (4.3.10)

implies that e(GBglob) = (b + q′ + c′)k. This proves (i). To prove (ii), note that

Lemma 4.3.5(iv) implies that ∆(GAglob) ≤ 13ε4D < 3k/2 and similarly ∆(GBglob) <

3k/2.
Note that (BFR5) implies that dGA

glob
(x) ≤ ε′n < k − 1 for all x ∈ A and

∆(GAglob[A0]) ≤ |A0| ≤ εn < k − 1. Thus Lemma 4.3.4 together with (i) implies

that (iii) is satisfied. (iv) follows from Lemma 4.3.4 analogously.



114 4. THE BIPARTITE CASE

(BFR3) implies that e(GAglob) ≤ eG(A′) ≤ εn2 and e(GBglob) ≤ eG(B′) ≤ εn2.

Therefore, each path system from (iii) and (iv) contains at most dεn2/ke ≤ √εn
edges. So (v) is satisfied. �

We say that a path system P ⊆ G[A′] is (i, j, A)-localized if

(i) E(P ) ⊆ E(G[A0, Ai ∪Aj ]) ∪ E(G[Ai, Aj ]) ∪ E(G[A0]);
(ii) Any internal vertex on a path in P lies in A0.

We introduce an analogous notion of (i, j, B)-localized for path systems P ⊆ G[B′].
The following result is a straightforward consequence of Lemmas 4.3.2, 4.3.5

and 4.3.6. It gives a decomposition of G[A′] ∪ G[B′] into pairs of paths systems
so that most of these are localized and so that each pair can be extended into a
Hamilton cycle by adding A′B′-edges.

Corollary 4.3.7. Let 0 < 1/n� ε� ε′ � ε1 � ε2 � ε3 � ε4 � 1/K � 1.
Suppose that (G,A,A0, B,B0) is an (ε, ε′,K,D)-bi-framework with |G| = n and
such that D ≥ n/200 and D is even. Let A0, A1, . . . , AK and B0, B1, . . . , BK be a
(K,m, ε, ε1, ε2)-partition for G. Let tK := (1− 20ε4)D/2K4 and k := 10ε4D. Sup-
pose that tK ∈ N. Then there are K4 sets Mi1i2i3i4 , one for each 1 ≤ i1, i2, i3, i4 ≤
K, such that each Mi1i2i3i4 consists of tK pairs of path systems and satisfies the
following properties:

(a) Let (P, P ′) be a pair of path systems which forms an element of Mi1i2i3i4 .
Then

(i) P is an (i1, i2, A)-localized path system and P ′ is an (i3,i4,B)-localized
path system;

(ii) e(P )− e(P ′) = a− b;
(iii) e(P ), e(P ′) ≤ √εn.

(b) The 2tK path systems in the pairs belonging to Mi1i2i3i4 are all pairwise
edge-disjoint.

(c) Let G(Mi1i2i3i4) denote the spanning subgraph of G whose edge set is the
union of all the path systems in the pairs belonging toMi1i2i3i4 . Then the
K4 graphs G(Mi1i2i3i4) are edge-disjoint. Further, each x ∈ A0 satisfies
dG(Mi1i2i3i4 )(x) ≥ (dG(x,A) − 15ε4D)/K4 while each y ∈ B0 satisfies

dG(Mi1i2i3i4
)(y) ≥ (dG(y,B)− 15ε4D)/K4.

(d) Let Gglob be the subgraph of G[A′] ∪G[B′] obtained by removing all edges
contained in G(Mi1i2i3i4) for all 1 ≤ i1, i2, i3, i4 ≤ K. Then ∆(Gglob) ≤
3k/2. Moreover, Gglob has a decomposition into k pairs of path systems
(Q1,A, Q1,B), . . . , (Qk,A, Qk,B) so that
(i′) Qi,A ⊆ Gglob[A′] and Qi,B ⊆ Gglob[B′] for all i ≤ k;

(ii′) dQi,A
(x) ≤ 1 for all x ∈ A and dQi,B

(x) ≤ 1 for all x ∈ B;
(iii′) e(Qi,A)− e(Qi,B) = a− b for all i ≤ k;
(iv′) e(Qi,A), e(Qi,B) ≤ √εn for all i ≤ k.

Proof. Apply Lemma 4.3.2 to obtain localized slices HA
ij and HB

ij (for all i, j ≤ K).

Let t := K2tK and let t∗ be as defined in Lemma 4.3.5. Since t/K2, t∗/K2 ∈ N we
have (t − t∗)/K2 ∈ N. For all i1, i2 ≤ K, let MA

i1i2
be the set of t path systems

in HA
i1i2

guaranteed by Lemma 4.3.5. We call the t∗ path systems in MA
i1i2

of size

d`ae large and the others small. We define MB
i3i4

as well as large and small path

systems in MB
i3i4

analogously (for all i3, i4 ≤ K).
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We now construct the sets Mi1i2i3i4 as follows: For all i1, i2 ≤ K, consider
a random partition of the set of all large path systems in MA

i1i2
into K2 sets of

equal size t∗/K2 and assign (all the path systems in) each of these sets to one of
the Mi1i2i3i4 with i3, i4 ≤ K. Similarly, randomly partition the set of small path
systems in MA

i1i2
into K2 sets, each containing (t − t∗)/K2 path systems. Assign

each of these K2 sets to one of theMi1i2i3i4 with i3, i4 ≤ K. Proceed similarly for
eachMB

i3i4
in order to assign each of its path systems randomly to someMi1i2i3i4 .

Then to each Mi1i2i3i4 we have assigned exactly t∗/K2 large path systems from
both MA

i1i2
and MB

i3i4
. Pair these off arbitrarily. Similarly, pair off the small path

systems assigned to Mi1i2i3i4 arbitrarily. Clearly, the sets Mi1i2i3i4 obtained in
this way satisfy (a) and (b).

We now verify (c). By construction, the K4 graphs G(Mi1i2i3i4) are edge-
disjoint. So consider any vertex x ∈ A0 and write d := dG(x,A). Note that
dHA

i1i2
(x) ≥ (d − 4ε1n)/K2 by Lemma 4.3.2(vi). Let G(MA

i1i2
) be the spanning

subgraph of G whose edge set is the union of all the path systems in MA
i1i2

. Then
Lemma 4.3.5(iv) implies that

dG(MA
i1i2

)(x) ≥ dHA
i1i2

(x)−∆(GAi1i2) ≥ d− 4ε1n

K2
− 13ε4D

K2
≥ d− 14ε4D

K2
.

So a Chernoff-Hoeffding estimate for the hypergeometric distribution (Proposi-
tion 1.4.4) implies that

dG(Mi1i2i3i4
)(x) ≥ 1

K2

(
d− 14ε4D

K2

)
− εn ≥ d− 15ε4D

K4
.

(Note that we only need to apply the Chernoff-Hoeffding bound if d ≥ εn say, as
(c) is vacuous otherwise.)

It remains to check condition (d). First note that k ∈ N since tK , D/2 ∈ N.
Thus we can apply Lemma 4.3.6 to obtain a decomposition of both GAglob and GBglob
into path systems. Since Gglob = GAglob ∪GBglob, (d) is an immediate consequence of

Lemma 4.3.6(ii)–(v). �

4.3.4. Constructing Localized Balanced Exceptional Systems. The lo-
calized path systems obtained from Corollary 4.3.7 do not yet cover all of the ex-
ceptional vertices. This is achieved via the following lemma: we extend the path
systems to achieve this additional property, while maintaining the property of being
balanced. More precisely, let

P := {A0, A1, . . . , AK , B0, B1, . . . , BK}
be a (K,m, ε)-partition of a set V of n vertices. Given 1 ≤ i1, i2, i3, i4 ≤ K
and ε0 > 0, an (i1, i2, i3, i4)-balanced exceptional system with respect to P and
parameter ε0 is a path system J with V (J) ⊆ A0 ∪B0 ∪Ai1 ∪Ai2 ∪Bi3 ∪Bi4 such
that the following conditions hold:

(BES1) Every vertex in A0 ∪B0 is an internal vertex of a path in J . Every vertex
v ∈ Ai1 ∪Ai2 ∪Bi3 ∪Bi4 satisfies dJ(v) ≤ 1.

(BES2) Every edge of J [A ∪B] is either an Ai1Ai2-edge or a Bi3Bi4-edge.
(BES3) The edges in J cover precisely the same number of vertices in A as in B.
(BES4) e(J) ≤ ε0n.
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To shorten the notation, we will often refer to J as an (i1, i2, i3, i4)-BES. If V is
the vertex set of a graph G and J ⊆ G, we also say that J is an (i1, i2, i3, i4)-
BES in G. Note that (BES2) implies that an (i1, i2, i3, i4)-BES does not contain
edges between A and B. Furthermore, an (i1, i2, i3, i4)-BES is also, for example,
an (i2, i1, i4, i3)-BES. We will sometimes omit the indices i1, i2, i3, i4 and just refer
to a balanced exceptional system (or a BES for short). We will sometimes also
omit the partition P, if it is clear from the context. As mentioned before, balanced
exceptional systems will play a similar role as the exceptional systems that we used
in the two cliques case (i.e. in Chapter 2).

(BES1) implies that each balanced exceptional system is an A0B0-path system
as defined before Proposition 4.2.5. (However, the converse is not true since, for
example, a 2-balanced A0B0-path system need not satisfy (BES4).) So (BES3) and
Proposition 4.2.5 imply that each balanced exceptional system is also 2-balanced.

We now extend each set Mi1i2i3i4 obtained from Corollary 4.3.7 into a set
Ji1i2i3i4 of (i1, i2, i3, i4)-BES.

Lemma 4.3.8. Let 0 < 1/n� ε� ε0 � ε′ � ε1 � ε2 � ε3 � ε4 � 1/K � 1.
Suppose that (G,A,A0, B,B0) is an (ε, ε′,K,D)-bi-framework with |G| = n and
such that D ≥ n/200 and D is even. Let P := {A0, A1, . . . , AK , B0, B1, . . . , BK} be
a (K,m, ε, ε1, ε2)-partition for G. Suppose that tK := (1 − 20ε4)D/2K4 ∈ N. Let
Mi1i2i3i4 be the sets returned by Corollary 4.3.7. Then for all 1 ≤ i1, i2, i3, i4 ≤ K
there is a set Ji1i2i3i4 which satisfies the following properties:

(i) Ji1i2i3i4 consists of tK edge-disjoint (i1, i2, i3, i4)-BES in G with respect
to P and with parameter ε0.

(ii) For each of the tK pairs of path systems (P, P ′) ∈ Mi1i2i3i4 , there is a
unique J ∈ Ji1i2i3i4 which contains all the edges in P ∪ P ′. Moreover, all
edges in E(J) \ E(P ∪ P ′) lie in G[A0, Bi3 ] ∪G[B0, Ai1 ].

(iii) Whenever (i1, i2, i3, i4) 6= (i′1, i
′
2, i
′
3, i
′
4), J ∈ Ji1i2i3i4 and J ′ ∈ Ji′1i′2i′3i′4 ,

then J and J ′ are edge-disjoint.

We let J denote the union of the sets Ji1i2i3i4 over all 1 ≤ i1, i2, i3, i4 ≤ K.

Proof. We will construct the sets Ji1i2i3i4 greedily by extending each pair of path
systems (P, P ′) ∈ Mi1i2i3i4 in turn into an (i1, i2, i3, i4)-BES containing P ∪ P ′.
For this, consider some arbitrary ordering of the K4 4-tuples (i1, i2, i3, i4). Suppose
that we have already constructed the sets Ji′1i′2i′3i′4 for all (i′1, i

′
2, i
′
3, i
′
4) preceding

(i1, i2, i3, i4) so that (i)–(iii) are satisfied. So our aim now is to construct Ji1i2i3i4 .
Consider an enumeration (P1, P

′
1), . . . , (PtK , P

′
tK ) of the pairs of path systems in

Mi1i2i3i4 . Suppose that for some i ≤ tK we have already constructed edge-disjoint
(i1, i2, i3, i4)-BES J1, . . . , Ji−1, so that for each i′ < i the following conditions hold:

• Ji′ contains the edges in Pi′ ∪ P ′i′ ;
• all edges in E(Ji′) \ E(Pi′ ∪ P ′i′) lie in G[A0, Bi3 ] ∪G[B0, Ai1 ];
• Ji′ is edge-disjoint from all the balanced exceptional systems in⋃

(i′1,i
′
2,i
′
3,i
′
4) Ji′1i′2i′3i′4 , where the union is over all (i′1, i

′
2, i
′
3, i
′
4) preceding

(i1, i2, i3, i4).

We will now construct J := Ji. For this, we need to add suitable edges to Pi∪P ′i to
ensure that all vertices of A0 ∪B0 have degree two. We start with A0. Recall that
a = |A0| and write A0 = {x1, . . . , xa}. Let G′ denote the subgraph of G[A′, B′]
obtained by removing all the edges lying in J1, . . . , Ji−1 as well as all those edges
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lying in the balanced exceptional systems belonging to
⋃

(i′1,i
′
2,i
′
3,i
′
4) Ji′1i′2i′3i′4 (where

as before the union is over all (i′1, i
′
2, i
′
3, i
′
4) preceding (i1, i2, i3, i4)). We will choose

the new edges incident to A0 in J inside G′[A0, Bi3 ].
Suppose we have already found suitable edges for x1, . . . , xj−1 and let J(j) be

the set of all these edges. We will first show that the degree of xj inside G′[A0, Bi3 ] is
still large. Let dj := dG(xj , A

′). Consider any (i′1, i
′
2, i
′
3, i
′
4) preceding (i1, i2, i3, i4).

Let G(Ji′1i′2i′3i′4) denote the union of the tK balanced exceptional systems belonging
to Ji′1i′2i′3i′4 . Thus dG(Ji′1i′2i′3i′4

)(xj) = 2tK . However, Corollary 4.3.7(c) implies

that dG(Mi′1i′2i′3i′4
)(xj) ≥ (dj − 15ε4D)/K4. So altogether, when constructing (the

balanced exceptional systems in) Ji′1i′2i′3i′4 , we have added at most 2tK − (dj −
15ε4D)/K4 new edges at xj , and all these edges join xj to vertices in Bi′3 . Similarly,

when constructing J1, . . . , Ji−1, we have added at most 2tK−(dj−15ε4D)/K4 new
edges at xj . Since the number of 4-tuples (i′1, i

′
2, i
′
3, i
′
4) with i′3 = i3 is K3, it follows

that

dG(xj , Bi3)− dG′(xj , Bi3) ≤ K3

(
2tK −

dj − 15ε4D

K4

)
=

1

K
((1− 20ε4)D − dj + 15ε4D)

=
1

K
(D − dj − 5ε4D) .

Also, (P2) with A replaced by B implies that

dG(xj , Bi3) ≥ dG(xj , B)− ε1n

K
≥ dG(xj)− dG(xj , A

′)− ε1n

K
=
D − dj − ε1n

K
,

where here we use (BFR2) and (BFR6). So altogether, we have

dG′(xj , Bi3) ≥ (5ε4D − ε1n)/K ≥ ε4n/50K.

Let B′i3 be the set of vertices in Bi3 not covered by the edges of J(j)∪P ′i . Note that

|B′i3 | ≥ |Bi3 | − 2|A0| − 2e(P ′i ) ≥ |Bi3 | − 3
√
εn since a = |A0| ≤ εn by (BFR4) and

e(P ′i ) ≤
√
εn by Corollary 4.3.7(a)(iii). So dG′(xj , B

′
i3

) ≥ ε4n/51K. We can add
up to two of these edges to J in order to ensure that xj has degree two in J . This
completes the construction of the edges of J incident to A0. The edges incident to
B0 are found similarly.

Let J be the graph on A0 ∪ B0 ∪ Ai1 ∪ Ai2 ∪ Bi3 ∪ Bi4 whose edge set is
constructed in this way. By construction, J satisfies (BES1) and (BES2) since
Pj and P ′j are (i1, i2, A)-localized and (i3, i4, B)-localized respectively. We now
verify (BES3). As mentioned before the statement of the lemma, (BES1) implies
that J is an A0B0-path system (as defined before Proposition 4.2.5). Moreover,
Corollary 4.3.7(a)(ii) implies that Pi ∪ P ′i is a path system which satisfies (B1)
in the definition of 2-balanced. Since J was obtained by adding only A′B′-edges,
(B1) is preserved in J . Since by construction J satisfies (B2), it follows that J is
2-balanced. So Proposition 4.2.5 implies (BES3).

Finally, we verify (BES4). For this, note that Corollary 4.3.7(a)(iii) implies
that e(Pi), e(P

′
i ) ≤

√
εn. Moreover, the number of edges added to Pi ∪ P ′i when

constructing J is at most 2(|A0| + |B0|), which is at most 2εn by (BFR4). Thus
e(J) ≤ 2

√
εn+ 2εn ≤ ε0n. �
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4.3.5. Covering Gglob by Edge-disjoint Hamilton Cycles. We now find
a set of edge-disjoint Hamilton cycles covering the edges of the ‘leftover’ graph
obtained from G−G[A,B] by deleting all those edges lying in balanced exceptional
systems belonging to J.

Lemma 4.3.9. Let 0 < 1/n� ε� ε0 � ε′ � ε1 � ε2 � ε3 � ε4 � 1/K � 1.
Suppose that (G,A,A0, B,B0) is an (ε, ε′,K,D)-bi-framework with |G| = n and
such that D ≥ n/200 and D is even. Let P := {A0, A1, . . . , AK , B0, B1, . . . , BK}
be a (K,m, ε, ε1, ε2)-partition for G. Suppose that tK := (1 − 20ε4)D/2K4 ∈ N.
Let J be as defined after Lemma 4.3.8 and let G(J) ⊆ G be the union of all the
balanced exceptional systems lying in J. Let G∗ := G − G(J), let k := 10ε4D and
let (Q1,A, Q1,B), . . . , (Qk,A, Qk,B) be as in Corollary 4.3.7(d).

(a) The graph G∗ − G∗[A,B] can be decomposed into k A0B0-path systems
Q1, . . . , Qk which are 2-balanced and satisfy the following properties:

(i) Qi contains all edges of Qi,A ∪Qi,B;
(ii) Q1, . . . , Qk are pairwise edge-disjoint;
(iii) e(Qi) ≤ 3

√
εn.

(b) Let Q1, . . . , Qk be as in (a). Suppose that F is a graph on V (G) such that
G ⊆ F , δ(F ) ≥ 2n/5 and such that F satisfies (WF5) with respect to ε′.
Then there are edge-disjoint Hamilton cycles C1, . . . , Ck in F −G(J) such
that Qi ⊆ Ci and Ci ∩G is 2-balanced for each i ≤ k.

Proof. We first prove (a). The argument is similar to that of Lemma 4.3.6.
Roughly speaking, we will extend each Qi,A into a path system Q′i,A by adding
suitable A0B-edges which ensure that every vertex in A0 has degree exactly two in
Q′i,A. Similarly, we will extend each Qi,B into Q′i,B by adding suitable AB0-edges.

We will ensure that no vertex is an endvertex of both an edge in Q′i,A and an edge

in Q′i,B and take Qi to be the union of these two path systems. We first construct

all the Q′i,A.

Claim 1. G∗[A′] ∪ G∗[A0, B] has a decomposition into edge-disjoint path systems
Q′1,A, . . . , Q

′
k,A such that

• Qi,A ⊆ Q′i,A and E(Q′i,A)\E(Qi,A) consists of A0B-edges in G∗ (for each

i ≤ k);
• dQ′i,A(x) = 2 for every x ∈ A0 and dQ′i,A(x) ≤ 1 for every x /∈ A0;

• no vertex is an endvertex of both an edge in Q′i,A and an edge in Qi,B (for

each i ≤ k).

To prove Claim 1, let Gglob be as defined in Corollary 4.3.7(d). Thus Gglob[A
′] =

Q1,A ∪ · · · ∪ Qk,A. On the other hand, Lemma 4.3.8(ii) implies that G∗[A′] =
Gglob[A

′]. Hence,

(4.3.11) G∗[A′] = Gglob[A
′] = Q1,A ∪ · · · ∪Qk,A.

Similarly, G∗[B′] = Gglob[B
′] = Q1,B ∪ · · · ∪ Qk,B . Moreover, Gglob = G∗[A′] ∪

G∗[B′]. Consider any vertex x ∈ A0. Let dglob(x) denote the degree of x in
Q1,A ∪ · · · ∪Qk,A. So dglob(x) = dG∗(x,A

′) by (4.3.11). Let

dloc(x) := dG(x,A′)− dglob(x)(4.3.12)

= dG(x,A′)− dG∗(x,A′) = dG(J)(x,A
′).(4.3.13)
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Then

(4.3.14) dloc(x) + dG(x,B′) + dglob(x)
(4.3.12)

= dG(x) = D,

where the final equality follows from (BFR2). Recall that J consists of K4tK
edge-disjoint balanced exceptional systems. Since x has two neighbours in each of
these balanced exceptional systems, the degree of x in G(J) is 2K4tK = D − 2k.
Altogether this implies that

dG∗(x,B
′) = dG(x,B′)− dG(J)(x,B

′)

= dG(x,B′)− (dG(J)(x)− dG(J)(x,A
′))

(4.3.13)
= dG(x,B′)− (D − 2k − dloc(x))

(4.3.14)
= 2k − dglob(x).(4.3.15)

Note that this is precisely the total number of edges at x which we need to add to
Q1,A, . . . , Qk,A in order to obtain Q′1,A, . . . , Q

′
k,A as in Claim 1.

We can now construct the path systems Q′i,A. For each x ∈ A0, let ni(x) =

2− dQi,A
(x). So 0 ≤ ni(x) ≤ 2 for all i ≤ k. Recall that a := |A0| and consider an

ordering x1, . . . , xa of the vertices in A0. Let G∗j := G∗[{x1, . . . , xj}, B]. Assume
that for some 0 ≤ j < a, we have already found a decomposition of G∗j into
edge-disjoint path systems Q1,j , . . . , Qk,j satisfying the following properties (for all
i ≤ k):

(i′) no vertex is an endvertex of both an edge in Qi,j and an edge in Qi,B ;
(ii′) xj′ has degree ni(xj′) in Qi,j for all j′ ≤ j and all other vertices have

degree at most one in Qi,j .

We call this assertion Aj . We will show that Aj+1 holds (i.e. the above assertion
also holds with j replaced by j + 1). This in turn implies Claim 1 if we let Q′i,A :=
Qi,a ∪Qi,A for all i ≤ k.

To prove Aj+1, consider the following bipartite auxiliary graph Hj+1. The
vertex classes of Hj+1 are Nj+1 := NG∗(xj+1)∩B and Zj+1, where Zj+1 is a mul-
tiset whose elements are chosen from Q1,B , . . . , Qk,B . Each Qi,B is included exactly
ni(xj+1) times in Zj+1. Note that Nj+1 = NG∗(xj+1) ∩ B′ since e(G[A0, B0]) = 0
by (BFR6). Altogether this implies that

|Zj+1| =
k∑
i=1

ni(xj+1) = 2k −
k∑
i=1

dQi,A
(xj+1) = 2k − dglob(xj+1)(4.3.16)

(4.3.15)
= dG∗(xj+1, B

′) = |Nj+1| ≥ k/2.
The final inequality follows from (4.3.15) since

dglob(xj+1)
(4.3.11)

≤ ∆(Gglob[A
′]) ≤ 3k/2

by Corollary 4.3.7(d). We include an edge in Hj+1 between v ∈ Nj+1 and Qi,B ∈
Zj+1 if v is not an endvertex of an edge in Qi,B ∪Qi,j .
Claim 2. Hj+1 has a perfect matching M ′j+1.

Given the perfect matching guaranteed by the claim, we construct Qi,j+1 from Qi,j
as follows: the edges of Qi,j+1 incident to xj+1 are precisely the edges xj+1v where
vQi,B is an edge of M ′j+1 (note that there are up to two of these). Thus Claim 2 im-
plies that Aj+1 holds. (Indeed, (i′)–(ii′) are immediate from the definition of Hj+1.)
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To prove Claim 2, consider any vertex v ∈ Nj+1. Since v ∈ B, the number of path
systems Qi,B containing an edge at v is at most dG(v,B′). The number of indices
i for which Qi,j contains an edge at v is at most dG(v,A0) ≤ |A0|. Since each path
system Qi,B occurs at most twice in the multiset Zj+1, it follows that the degree of
v in Hj+1 is at least |Zj+1|−2dG(v,B′)−2|A0|. Moreover, dG(v,B′) ≤ ε′n ≤ k/16
(say) by (BFR5). Also, |A0| ≤ εn ≤ k/16 by (BFR4). So v has degree at least
|Zj+1| − k/4 ≥ |Zj+1|/2 in Hj+1.

Now consider any path system Qi,B ∈ Zj+1. Recall that e(Qi,B) ≤ √εn ≤ k/16
(say), where the first inequality follows from Corollary 4.3.7(d)(iv′). Moreover,
e(Qi,j) ≤ 2|A0| ≤ 2εn ≤ k/8, where the second inequality follows from (BFR4).
Thus the degree of Qi,B in Hj+1 is at least

|Nj+1| − 2e(Qi,B)− e(Qi,j) ≥ |Nj+1| − k/4 ≥ |Nj+1|/2.
Altogether this implies that Hj+1 has a perfect matching M ′j+1, as required.

This completes the construction ofQ′1,A, . . . , Q
′
k,A. Next we constructQ′1,B , . . . ,

Q′k,B using the same approach.

Claim 3. G∗[B′] ∪ G∗[B0, A] has a decomposition into edge-disjoint path systems
Q′1,B , . . . , Q

′
k,B such that

• Qi,B ⊆ Q′i,B and E(Q′i,B)\E(Qi,B) consists of B0A-edges in G∗ (for each

i ≤ k);
• dQ′i,B (x) = 2 for every x ∈ B0 and dQ′i,B (x) ≤ 1 for every x /∈ B0;

• no vertex is an endvertex of both an edge in Q′i,A and an edge in Q′i,B (for

each i ≤ k).

The proof of Claim 3 is similar to that of Claim 1. The only difference is that when
constructing Q′i,B , we need to avoid the endvertices of all the edges in Q′i,A (not

just the edges in Qi,A). However, e(Q′i,A − Qi,A) ≤ 2|A0|, so this does not affect
the calculations significantly.

We now take Qi := Q′i,A∪Q′i,B for all i ≤ k. Then the Qi are pairwise edge-disjoint
and

e(Qi) ≤ e(Qi,A) + e(Qi,B) + 2|A0 ∪B0| ≤ 2
√
εn+ 2εn ≤ 3

√
εn

by Corollary 4.3.7(d)(iv′) and (BFR4). Moreover, Corollary 4.3.7(d)(iii′) implies
that

eQi
(A′)− eQi

(B′) = e(Qi,A)− e(Qi,B) = a− b.
Thus each Qi is a 2-balanced A0B0-path system. Further, Q1, . . . , Qk form a de-
composition of

G∗[A′] ∪G∗[A0, B] ∪G∗[B′] ∪G∗[B0, A] = G∗ −G∗[A,B].

(The last equality follows since e(G[A0, B0]) = 0 by (BFR6).) This completes the
proof of (a).

To prove (b), note that (F,G,A,A0, B,B0) is an (ε, ε′, D)-pre-framework, i.e. it
satisfies (WF1)–(WF5). Indeed, recall that (BFR1)–(BFR4) imply (WF1)–(WF4)
and that (WF5) holds by assumption. So we can apply Lemma 4.2.9 (with Q1 play-
ing the role ofQ) to extendQ1 into a Hamilton cycle C1. Moreover, Lemma 4.2.9(iii)
implies that C1 ∩ G is 2-balanced, as required. (Lemma 4.2.9(ii) guarantees that
C1 is edge-disjoint from Q2, . . . , Qk and G(J).)
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Let G1 := G−C1 and F1 := F−C1. Proposition 4.2.3 (with C1 playing the role
of H) implies that (F1, G1, A,A0, B,B0) is an (ε, ε′, D − 2)-pre-framework. So we
can now apply Lemma 4.2.9 to (F1, G1, A,A0, B,B0) to extend Q2 into a Hamilton
cycle C2, where C2 ∩G is also 2-balanced.

We can continue this way to find C3, . . . , Ck. Indeed, suppose that we have
found C1, . . . , Ci for i < k. Then we can still apply Lemma 4.2.9 since δ(F )− 2i ≥
δ(F )−2k ≥ n/3. Moreover, Cj∩G is 2-balanced for all j ≤ i, so (C1∪· · ·∪Ci)∩G is
2i-balanced. This in turn means that Proposition 4.2.3 (applied with C1 ∪ · · · ∪Ci
playing the role of H) implies that after removing C1, . . . , Ci, we still have an
(ε, ε′, D − 2i)-pre-framework and can find Ci+1. �

We can now put everything together to find a set of localized balanced excep-
tional systems and a set of Hamilton cycles which altogether cover all edges of G
outside G[A,B]. The localized balanced exceptional systems will be extended to
Hamilton cycles later on.

Corollary 4.3.10. Let 0 < 1/n � ε � ε0 � ε′ � ε1 � ε2 � ε3 � ε4 �
1/K � 1. Suppose that (G,A,A0, B,B0) is an (ε, ε′,K,D)-bi-framework with |G| =
n and so that D ≥ n/200 and D is even. Let P := {A0, A1, . . . , AK , B0, B1, . . . ,
BK} be a (K,m, ε, ε1, ε2)-partition for G. Suppose that tK := (1− 20ε4)D/2K4 ∈
N and let k := 10ε4D. Suppose that F is a graph on V (G) such that G ⊆ F ,
δ(F ) ≥ 2n/5 and such that F satisfies (WF5) with respect to ε′. Then there are k
edge-disjoint Hamilton cycles C1, . . . , Ck in F and for all 1 ≤ i1, i2, i3, i4 ≤ K there
is a set Ji1i2i3i4 such that the following properties are satisfied:

(i) Ji1i2i3i4 consists of tK (i1, i2, i3, i4)-BES in G with respect to P and with
parameter ε0 which are edge-disjoint from each other and from C1 ∪ · · · ∪
Ck.

(ii) Whenever (i1, i2, i3, i4) 6= (i′1, i
′
2, i
′
3, i
′
4), J ∈ Ji1i2i3i4 and J ′ ∈ Ji′1i′2i′3i′4 ,

then J and J ′ are edge-disjoint.
(iii) Given any i ≤ k and v ∈ A0 ∪B0, the two edges incident to v in Ci lie in

G.
(iv) Let G� be the subgraph of G obtained by deleting the edges of all the Ci and

all the balanced exceptional systems in Ji1i2i3i4 (for all 1 ≤ i1, i2, i3, i4 ≤
K). Then G� is bipartite with vertex classes A′, B′ and V0 = A0 ∪ B0 is
an isolated set in G�.

Proof. This follows immediately from Lemmas 4.3.8 and 4.3.9(b). Indeed, clearly
(i)–(iii) are satisfied. To check (iv), note that G� is obtained from the graph G∗

defined in Lemma 4.3.9 by deleting all the edges of the Hamilton cycles Ci. But
Lemma 4.3.9 implies that the Ci together cover all the edges in G∗−G∗[A,B]. Thus
this implies that G� is bipartite with vertex classes A′, B′ and V0 is an isolated set
in G�. �

4.4. Special Factors and Balanced Exceptional Factors

As discussed in the proof sketch, the proof of Theorem 1.3.5 proceeds as follows.
First we find an approximate decomposition of the given graph G and finally we
find a decomposition of the (sparse) leftover from the approximate decomposition
(with the aid of a ‘robustly decomposable’ graph we removed earlier). Both the
approximate decomposition as well as the actual decomposition steps assume that
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we work with a bipartite graph on A ∪ B (with |A| = |B|). So in both steps, we
would need A0 ∪ B0 to be empty, which we clearly cannot assume. On the other
hand, in both steps, one can specify ‘balanced exceptional path systems’ (BEPS)
in G with the following crucial property: one can replace each BEPS with a path
system BEPS∗ so that

(α1) BEPS∗ is bipartite with vertex classes A and B;
(α2) a Hamilton cycle C∗ in G∗ := G[A,B] + BEPS∗ which contains BEPS∗

corresponds to a Hamilton cycle C in G which contains BEPS (see Sec-
tion 4.4.1).

Each BEPS will contain one of the balanced exceptional sequences BES constructed
in Section 4.3. BEPS∗ will then be obtained by replacing the edges in BES by
suitable ‘fictive’ edges (i.e. which are not necessarily contained in G).

So, roughly speaking, this allows us to work with G∗ rather than G in the
two steps. Similarly as in the two clique case, a convenient way of specifying and
handling these balanced exceptional path systems is to combine them into ‘bal-
anced exceptional factors’ BF (see Section 4.4.3 for the definition). (The balanced
exceptional path systems and balanced exceptional factors are analogues of the
exceptional path systems and exceptional factors considered in Chapter 2.)

As before, one complication is that the ‘robust decomposition lemma’ (Lem-
ma 4.5.3) we use from [21] deals with digraphs rather than undirected graphs. So
to be able to apply it, we again need a suitable orientation of the edges of G and so
we will actually consider directed path systems BEPS∗dir instead of BEPS∗ above
(whereas the path systems BEPS are undirected).

Rather than guaranteeing (α2) directly, the (bipartite) robust decomposition
lemma assumes the existence of certain directed ‘special paths systems’ SPS which
are combined into ‘special factors’ SF. (Recall that these notions were used in the
proof of Theorem 1.3.3; see Section 2.8.1. In this chapter, we use slight variants of
these definitions which are introduced in Section 4.4.2.) Each of the Hamilton cycles
produced by the lemma then contains exactly one of these special path systems. So
to apply the lemma, it suffices to check separately that each BEPS∗dir satisfies the
conditions required of a special path system and that it also satisfies (α2).

4.4.1. Constructing the Graphs J∗ from the Balanced Exceptional
Systems J . Suppose that J is a balanced exceptional system in a graph G with
respect to a (K,m, ε0)-partition P = {A0, A1, . . . , AK , B0, B1, . . . , BK} of V (G).
We will now use J to define an auxiliary matching J∗. Every edge of J∗ will
have one endvertex in A and its other endvertex in B. We will regard J∗ as
being edge-disjoint from the original graph G. So even if both J∗ and G have
an edge between the same pair of endvertices, we will regard these as different
edges. The edges of such a J∗ will be called fictive edges. Proposition 4.4.1(ii)
below shows that a Hamilton cycle in G[A∪B] + J∗ containing all edges of J∗ in a
suitable order will correspond to a Hamilton cycle in G which contains J . So when
finding our Hamilton cycles, this property will enable us to ignore all the vertices in
V0 = A0 ∪B0 and to consider a bipartite (multi-)graph between A and B instead.

We construct J∗ in two steps. First we will construct a matching J∗AB on A∪B
and then J∗. Since each maximal path in J has endpoints in A ∪ B and inter-
nal vertices in V0 by (BES1), a balanced exceptional system J naturally induces
a matching J∗AB on A ∪ B. More precisely, if P1, . . . , P`′ are the non-trivial paths
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Figure 4.4.1. The thick lines illustrate the edges of J , J∗AB and
J∗ respectively.

in J and xi, yi are the endpoints of Pi, then we define J∗AB := {xiyi : i ≤ `′}.
Thus J∗AB is a matching by (BES1) and e(J∗AB) ≤ e(J). Moreover, J∗AB and
E(J) cover exactly the same vertices in A. Similarly, they cover exactly the
same vertices in B. So (BES3) implies that e(J∗AB [A]) = e(J∗AB [B]). We can
write E(J∗AB [A]) = {x1x2, . . . , x2s−1x2s}, E(J∗AB [B]) = {y1y2, . . . , y2s−1y2s} and
E(J∗AB [A,B]) = {x2s+1y2s+1, . . . , xs′ys′}, where xi ∈ A and yi ∈ B. Define
J∗ := {xiyi : 1 ≤ i ≤ s′}. Note that e(J∗) = e(J∗AB) ≤ e(J). All edges of J∗

are called fictive edges.
As mentioned before, we regard J∗ as being edge-disjoint from the original

graph G. Suppose that P is an orientation of a subpath of (the multigraph) G[A∪
B] + J∗. We say that P is consistent with J∗ if P contains all the edges of J∗ and
P traverses the vertices x1, y1, x2, . . . , ys′−1, xs′ , ys′ in this order. (This ordering
will be crucial for the vertices x1, y1, . . . , x2s, y2s, but it is also convenient to have
an ordering involving all vertices of J∗.) Similarly, we say that a cycle D in G[A ∪
B] + J∗ is consistent with J∗ if D contains all the edges of J∗ and there exists
some orientation of D which traverses the vertices x1, y1, x2, . . . , ys′−1, xs′ , ys′ in
this order.

The next result shows that if J is a balanced exceptional system and C is a
Hamilton cycle on A ∪ B which is consistent with J∗, then the graph obtained
from C by replacing J∗ with J is a Hamilton cycle on V (G) which contains J ,
see Figure 4.4.1. When choosing our Hamilton cycles, this property will enable us
ignore all the vertices in V0 and edges in A and B and to consider the (almost
complete) bipartite graph with vertex classes A and B instead.

Proposition 4.4.1. Let P = {A0, A1, . . . , AK , B0, B1, . . . , BK} be a (K,m, ε)-
partition of a vertex set V . Let G be a graph on V and let J be a balanced exceptional
system with respect to P.

(i) Assume that P is an orientation of a subpath of G[A∪B]+J∗ such that P
is consistent with J∗. Then the graph obtained from P−J∗+J by ignoring
the orientations of the edges is a path on V (P )∪V0 whose endvertices are
the same as those of P .

(ii) If J ⊆ G and D is a Hamilton cycle of G[A∪B] + J∗ which is consistent
with J∗, then D − J∗ + J is a Hamilton cycle of G.
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Proof. We first prove (i). Let s := e(J∗AB [A]) = e(J∗AB [B]) and J� := {x1y1, . . . ,
x2sy2s} (where the xi and yi are as in the definition of J∗). So J∗ := J� ∪
{x2s+1y2s+1, . . . , xs′ys′}, where s′ := e(J∗). Let P c denote the path obtained from
P = z1 . . . z2 by reversing its direction. (So P c = z2 . . . z1 traverses the vertices
ys′ , xs′ , y2s′−1, . . . , x2, y1, x1 in this order.) First note

P ′ := z1Px1x2P
cy1y2Px3x4P

cy3y4 . . . x2s−1x2sP
cy2s−1y2sPz2

is a path on V (P ). Moreover, the underlying undirected graph of P ′ is precisely

P − J� + (J∗AB [A] ∪ J∗AB [B]) = P − J∗ + J∗AB .

In particular, P ′ contains J∗AB . Now recall that if w1w2 is an edge in J∗AB , then
the vertices w1 and w2 are the endpoints of some path P ∗ in J (where the internal
vertices on P ∗ lie in V0). Clearly, P ′ − w1w2 + P ∗ is also a path. Repeating
this step for every edge w1w2 of J∗AB gives a path P ′′ on V (P ) ∪ V0. Moreover,
P ′′ = P − J∗ + J . This completes the proof of (i).

(ii) now follows immediately from (i). �

4.4.2. Special Path Systems and Special Factors. As mentioned earlier,
in order to apply Lemma 4.5.3, we first need to prove the existence of certain
‘special path systems’. These are defined below. Note that the definitions given in
this section are slight variants of the corresponding definitions used in Chapter 2.

Suppose that
P = {A0, A1, . . . , AK , B0, B1, . . . , BK}

is a (K,m, ε0)-partition of a vertex set V and L,m/L ∈ N. Recall that we say that
(P,P ′) is a (K,L,m, ε0)-partition of V if P ′ is obtained from P by partitioning
Ai into L sets Ai,1, . . . , Ai,L of size m/L for all 1 ≤ i ≤ K and partitioning Bi
into L sets Bi,1, . . . , Bi,L of size m/L for all 1 ≤ i ≤ K. (So P ′ consists of the
exceptional sets A0, B0, the KL clusters Ai,j and the KL clusters Bi,j .) Unless
stated otherwise, whenever considering a (K,L,m, ε0)-partition (P,P ′) of a vertex
set V we use the above notation to denote the elements of P and P ′.

Let (P,P ′) be a (K,L,m, ε0)-partition of V . Consider a spanning cycle C =
A1B1 . . . AKBK on the clusters of P. Given an integer f dividing K, the canonical
interval partition I of C into f intervals consists of the intervals

A(i−1)K/f+1B(i−1)K/f+1A(i−1)K/f+2 . . . BiK/fAiK/f+1

for all i ≤ f . (Here AK+1 := A1.)
Suppose that G is a digraph on V \V0 and h ≤ L. Let I = AjBjAj+1 . . . Aj′ be

an interval in I. A special path system SPS of style h in G spanning the interval I
consists of precisely m/L (non-trivial) vertex-disjoint directed paths P1, . . . , Pm/L
such that the following conditions hold:

(SPS1) Every Ps has its initial vertex in Aj,h and its final vertex in Aj′,h.
(SPS2) SPS contains a matching Fict(SPS) such that all the edges in Fict(SPS)

avoid the endclusters Aj and Aj′ of I and such that E(Ps) \Fict(SPS) ⊆
E(G).

(SPS3) The vertex set of SPS is Aj,h ∪Bj,h ∪Aj+1,h ∪ · · · ∪Bj′−1,h ∪Aj′,h.

The edges in Fict(SPS) are called fictive edges of SPS.
Let I = {I1, . . . , If} be the canonical interval partition of C into f intervals. A

special factor SF with parameters (L, f) in G (with respect to C, P ′) is a 1-regular
digraph on V \ V0 which is the union of Lf digraphs SPSj,h (one for all j ≤ f
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and h ≤ L) such that each SPSj,h is a special path system of style h in G which
spans Ij . We write Fict(SF ) for the union of the sets Fict(SPSj,h) over all j ≤ f
and h ≤ L and call the edges in Fict(SF ) fictive edges of SF .

We will always view fictive edges as being distinct from each other and from the
edges in other digraphs. So if we say that special factors SF1, . . . , SFr are pairwise
edge-disjoint from each other and from some digraph Q on V \V0, then this means
that Q and all the SFi−Fict(SFi) are pairwise edge-disjoint, but for example there
could be an edge from x to y in Q as well as in Fict(SFi) for several indices i ≤ r.
But these are the only instances of multiedges that we allow, i.e. if there is more
than one edge from x to y, then all but at most one of these edges are fictive edges.

4.4.3. Balanced Exceptional Path Systems and Balanced Exceptional
Factors. We now define balanced exceptional path systems BEPS. It will turn
out that they (or rather their bipartite directed versions BEPS∗dir involving fictive
edges) will satisfy the conditions of the special path systems defined above. More-
over, Hamilton cycles that respect the partition A,B and which contain BEPS∗dir

correspond to Hamilton cycles in the ‘original’ graph G (see Proposition 4.4.2).
Let (P,P ′) be a (K,L,m, ε0)-partition of a vertex set V . Suppose thatK/f ∈ N

and h ≤ L. Consider a spanning cycle C = A1B1 . . . AKBK on the clusters of P.
Let I be the canonical interval partition of C into f intervals of equal size. Suppose
that G is an oriented bipartite graph with vertex classes A and B. Suppose that
I = AjBj . . . Aj′ is an interval in I. A balanced exceptional path system BEPS
of style h for G spanning I consists of precisely m/L (non-trivial) vertex-disjoint
undirected paths P1, . . . , Pm/L such that the following conditions hold:

(BEPS1) Every Ps has one endvertex in Aj,h and its other endvertex in Aj′,h.
(BEPS2) J := BEPS−BEPS[A,B] is a balanced exceptional system with respect

to P such that P1 contains all edges of J and so that the edge set of
J is disjoint from Aj,h and Aj′,h. Let P1,dir be the path obtained by
orienting P1 towards its endvertex in Aj′,h and let Jdir be the orientation
of J obtained in this way. Moreover, let J∗dir be obtained from J∗ by
orienting every edge in J∗ towards its endvertex in B. Then P ∗1,dir :=
P1,dir−Jdir +J∗dir is a directed path from Aj,h to Aj′,h which is consistent
with J∗.

(BEPS3) The vertex set of BEPS is V0∪Aj,h∪Bj,h∪Aj+1,h∪· · ·∪Bj′−1,h∪Aj′,h.
(BEPS4) For each 2 ≤ s ≤ m/L, define Ps,dir similarly as P1,dir. Then E(Ps,dir) \

E(Jdir) ⊆ E(G) for every 1 ≤ s ≤ m/L.

Let BEPS∗dir be the path system consisting of P ∗1,dir, P2,dir, . . . , Pm/L,dir. Then
BEPS∗dir is a special path system of style h in G which spans the interval I and
such that Fict(BEPS∗dir) = J∗dir.

Let I = {I1, . . . , If} be the canonical interval partition of C into f intervals. A
balanced exceptional factor BF with parameters (L, f) for G (with respect to C, P ′)
is the union of Lf undirected graphs BEPSj,h (one for all j ≤ f and h ≤ L) such
that each BEPSj,h is a balanced exceptional path system of style h for G which
spans Ij . We write BF ∗dir for the union of BEPS∗j,h,dir over all j ≤ f and h ≤ L.

Note that BF ∗dir is a special factor with parameters (L, f) in G (with respect to C,
P ′) such that Fict(BF ∗dir) is the union of J∗j,h,dir over all j ≤ f and h ≤ L, where

Jj,h = BEPSj,h −BEPSj,h[A,B] is the balanced exceptional system contained in
BEPSj,h (see condition (BEPS2)). In particular, BF ∗dir is a 1-regular digraph on
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V \ V0 while BF is an undirected graph on V with

dBF (v) = 2 for all v ∈ V \ V0 and dBF (v) = 2Lf for all v ∈ V0.(4.4.1)

Given a balanced exceptional path system BEPS, let J be as in (BEPS2) and
let BEPS∗ := BEPS − J + J∗. So BEPS∗ consists of P ∗1 := P1 − J + J∗ as
well as P2, . . . , Pm/L. The following is an immediate consequence of (BEPS2) and
Proposition 4.4.1.

Proposition 4.4.2. Let (P,P ′) be a (K,L,m, ε0)-partition of a vertex set V .
Suppose that G is a graph on V \V0, that Gdir is an orientation of G[A,B] and that
BEPS is a balanced exceptional path system for Gdir. Let J be as in (BEPS2). Let
C be a Hamilton cycle of G+J∗ which contains BEPS∗. Then C−BEPS∗+BEPS
is a Hamilton cycle of G ∪ J .

Proof. Note that C−BEPS∗+BEPS = C−J∗+J . Moreover, (BEPS2) implies
that C contains all edges of J∗ and is consistent with J∗. So the proposition follows
from Proposition 4.4.1(ii) applied with G ∪ J playing the role of G. �

4.4.4. Finding Balanced Exceptional Factors in a Bi-scheme. The fol-
lowing definition of a ‘bi-scheme’ captures the ‘non-exceptional’ part of the graphs
we are working with. For example, this will be the structure within which we
find the edges needed to extend a balanced exceptional system into a balanced
exceptional path system.

Given an oriented graph G and partitions P and P ′ of a vertex set V , we call
(G,P,P ′) a [K,L,m, ε0, ε]-bi-scheme if the following properties hold:

(BSch1′) (P,P ′) is a (K,L,m, ε0)-partition of V . Moreover, V (G) = A ∪B.
(BSch2′) Every edge of G has one endvertex in A and its other endvertex in B.
(BSch3′) G[Ai,j , Bi′,j′ ] and G[Bi′,j′ , Ai,j ] are [ε, 1/2]-superregular for all i, i′ ≤ K

and all j, j′ ≤ L. Further, G[Ai, Bj ] andG[Bj , Ai] are [ε, 1/2]-superregular
for all i, j ≤ K.

(BSch4′) |N+
G (x)∩N−G (y)∩Bi,j | ≥ (1− ε)m/5L for all distinct x, y ∈ A, all i ≤ K

and all j ≤ L. Similarly, |N+
G (x) ∩ N−G (y) ∩ Ai,j | ≥ (1 − ε)m/5L for all

distinct x, y ∈ B, all i ≤ K and all j ≤ L.

If L = 1 (and so P = P ′), then (BSch1′) just says that P is a (K,m, ε0)-partition
of V (G).

The next lemma allows us to extend a suitable balanced exceptional system into
a balanced exceptional path system. Given h ≤ L, we say that an (i1, i2, i3, i4)-BES
J has style h (with respect to the (K,L,m, ε0)-partition (P,P ′)) if all the edges of
J have their endvertices in V0 ∪Ai1,h ∪Ai2,h ∪Bi3,h ∪Bi4,h.

Lemma 4.4.3. Suppose that K,L, n,m/L ∈ N, that 0 < 1/n � ε, ε0 � 1
and ε0 � 1/K, 1/L. Let (G,P,P ′) be a [K,L,m, ε0, ε]-bi-scheme with |V (G) ∪
V0| = n. Consider a spanning cycle C = A1B1 . . . AKBK on the clusters of P and
let I = AjBjAj+1 . . . Aj′ be an interval on C of length at least 10. Let J be an
(i1, i2, i3, i4)-BES of style h ≤ L with parameter ε0 (with respect to (P,P ′)), for
some i1, i2, i3, i4 ∈ {j+ 1, . . . , j′− 1}. Then there exists a balanced exceptional path
system of style h for G which spans the interval I and contains all edges in J .

Proof. For each k ≤ 4, let mk denote the number of vertices in Aik,h ∪ Bik,h
which are incident to edges of J . We only consider the case when i1, i2, i3 and i4
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are distinct and mk > 0 for each k ≤ 4, as the other cases can be proved by similar
arguments. Clearly m1 + · · ·+m4 ≤ 2ε0n by (BES4). For every vertex x ∈ A, we
define B(x) to be the cluster Bi,h ∈ P ′ such that Ai contains x. Similarly, for every
y ∈ B, we define A(y) to be the cluster Ai,h ∈ P ′ such that Bi contains y.

Let x1y1, . . . , xs′ys′ be the edges of J∗, with xi ∈ A and yi ∈ B for all i ≤ s′.
(Recall that the ordering of these edges is fixed in the definition of J∗.) Thus
s′ = (m1 + · · · + m4)/2 ≤ ε0n. Moreover, our assumption that ε0 � 1/K, 1/L
implies that ε0n ≤ m/100L (say). Together with (BSch4′) this in turn ensures
that for every r ≤ s′, we can pick vertices wr ∈ B(xr) and zr ∈ A(yr) such
that wrxr, yrzr and zrwr+1 are (directed) edges in G and such that all the 4s′

vertices xr, yr, wr, zr (for r ≤ s′) are distinct from each other. Let P ′1 be the path
w1x1y1z1w2x2y2z2w3 . . . ys′zs′ . Thus P ′1 is a directed path from B to A in G+ J∗dir

which is consistent with J∗. (Here J∗dir is obtained from J∗ by orienting every edge
towards B.) Note that |V (P ′1) ∩ Aik,h| = mk = |V (P ′1) ∩ Bik,h| for all k ≤ 4.
(This follows from our assumption that i1, i2, i3 and i4 are distinct.) Moreover,
V (P ′1) ∩ (Ai ∪Bi) = ∅ for all i /∈ {i1, i2, i3, i4}.

Pick a vertex z′ in Aj,h so that z′w1 is an edge of G. Find a path P ′′1 from zs′

to Aj′,h in G such that the vertex set of P ′′1 consists of zs′ and precisely one vertex
in each Ai,h for all i ∈ {j+ 1, . . . , j′} \ {i1, i2, i3, i4} and one vertex in each Bi,h for
all i ∈ {j, . . . , j′ − 1} \ {i1, i2, i3, i4} and no other vertices. (BSch4′) ensures that
this can be done greedily. Define P ∗1,dir to be the concatenation of z′w1, P ′1 and P ′′1 .
Note that P ∗1,dir is a directed path from Aj,h to Aj′,h in G+J∗dir which is consistent

with J∗. Moreover, V (P ∗1,dir) ⊆
⋃
i≤K Ai,h ∪Bi,h,

|V (P ∗1,dir) ∩Ai,h| =


1 for i ∈ {j, . . . , j′} \ {i1, i2, i3, i4},
mk for i = ik and k ≤ 4,

0 otherwise,

while

|V (P ∗1,dir) ∩Bi,h| =


1 for i ∈ {j, . . . , j′ − 1} \ {i1, i2, i3, i4},
mk for i = ik and k ≤ 4,

0 otherwise.

(BSch4′) ensures that for each k ≤ 4, there exist mk − 1 (directed) paths P k1 , . . . ,
P kmk−1 in G such that

• P kr is a path from Aj,h to Aj′,h for each r ≤ mk − 1 and k ≤ 4;
• each P kr contains precisely one vertex in Ai,h for each i ∈ {j, . . . , j′}\{ik},

one vertex in Bi,h for each i ∈ {j, . . . , j′ − 1} \ {ik} and no other vertices;
• P ∗1,dir, P

1
1 , . . . , P

1
m1−1, P

2
1 , . . . , P

4
m4−1 are vertex-disjoint.

Let Q be the union of P ∗1,dir and all the P kr over all k ≤ 4 and r ≤ mk − 1. Thus
Q is a path system consisting of m1 + · · · + m4 − 3 vertex-disjoint directed paths
from Aj,h to Aj′,h. Moreover, V (Q) consists of precisely m1 + · · ·+m4 − 3 ≤ 2ε0n
vertices in Ai,h for every j ≤ i ≤ j′ and precisely m1 + · · ·+m4− 3 vertices in Bi,h
for every j ≤ i < j′. Set A′i,h := Ai,h \ V (Q) and B′i,h := Bi,h \ V (Q) for all i ≤ K.

Note that, for all j ≤ i ≤ j′,

(4.4.2) |A′i,h| =
m

L
−(m1 + · · ·+m4−3) ≥ m

L
−2ε0n ≥

m

L
−5ε0mK ≥ (1−√ε0)

m

L
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since ε0 � 1/K, 1/L. Similarly, |B′i,h| ≥ (1 − √ε0)m/L for all j ≤ i < j′. Pick

a new constant ε′ such that ε, ε0 � ε′ � 1. Then (BSch3′) and (4.4.2) together
with Proposition 1.4.1 imply that G[A′i,h, B

′
i,h] is still [ε′, 1/2]-superregular and so

we can find a perfect matching in G[A′i,h, B
′
i,h] for all j ≤ i < j′. Similarly, we can

find a perfect matching in G[B′i,h, A
′
i+1,h] for all j ≤ i < j′. The union Q′ of all

these matchings forms m/L− (m1 + · · ·+m4) + 3 vertex-disjoint directed paths.
Let P1 be the undirected graph obtained from P ∗1,dir − J∗dir + J by ignoring

the directions of all the edges. Proposition 4.4.1(i) implies that P1 is a path on
V (P ∗1,dir) ∪ V0 with the same endvertices as P ∗1,dir. Consider the path system ob-

tained from (Q ∪ Q′) \ {P ∗1,dir} by ignoring the directions of the edges on all the
paths. Let BEPS be the union of this path system and P1. Then BEPS is a
balanced exceptional path system for G, as required. �

The next lemma shows that we can obtain many edge-disjoint balanced excep-
tional factors by extending balanced exceptional systems with suitable properties.

Lemma 4.4.4. Suppose that L, f, q, n,m/L,K/f ∈ N, that K/f ≥ 10, that
0 < 1/n � ε, ε0 � 1, that ε0 � 1/K, 1/L and Lq/m � 1. Let (G,P,P ′) be a
[K,L,m, ε0, ε]-bi-scheme with |V (G) ∪ V0| = n. Consider a spanning cycle C =
A1B1 . . . AKBK on the clusters of P. Suppose that there exists a set J of Lfq
edge-disjoint balanced exceptional systems with parameter ε0 such that

• for all i ≤ f and all h ≤ L, J contains precisely q (i1, i2, i3, i4)-BES of
style h (with respect to (P,P ′)) for which i1, i2, i3, i4 ∈ {(i − 1)K/f +
2, . . . , iK/f}.

Then there exist q edge-disjoint balanced exceptional factors with parameters (L, f)
for G (with respect to C, P ′) covering all edges in

⋃J .

Recall that the canonical interval partition I of C into f intervals consists of
the intervals

A(i−1)K/f+1B(i−1)K/f+1A(i−1)K/f+2 . . . AiK/f+1

for all i ≤ f . So the condition on J ensures that for each interval I ∈ I and each
h ≤ L, the set J contains precisely q balanced exceptional systems of style h whose
edges are only incident to vertices in V0 and vertices belonging to clusters in the
interior of I. We will use Lemma 4.4.3 to extend each such balanced exceptional
system into a balanced exceptional path system of style h spanning I.

Proof of Lemma 4.4.4. Choose a new constant ε′ with ε, Lq/m� ε′ � 1. Let
J1, . . . ,Jq be a partition of J such that for all j ≤ q, h ≤ L and i ≤ f , the set Jj
contains precisely one (i1, i2, i3, i4)-BES of style h with i1, i2, i3, i4 ∈ {(i− 1)K/f +
2, . . . , iK/f}. Thus each Jj consists of Lf balanced exceptional systems. For each
j ≤ q in turn, we will choose a balanced exceptional factor EFj with parameters
(L, f) for G such that BFj and BFj′ are edge-disjoint for all j′ < j and BFj
contains all edges of the balanced exceptional systems in Jj . Assume that we have
already constructed BF1, . . . , BFj−1. In order to construct BFj , we will choose
the Lf balanced exceptional path systems forming BFj one by one, such that each
of these balanced exceptional path systems is edge-disjoint from BF1, . . . , BFj−1

and contains precisely one of the balanced exceptional systems in Jj . Suppose
that we have already chosen some of these balanced exceptional path systems and
that next we wish to choose a balanced exceptional path system of style h which
spans the interval I ∈ I of C and contains J ∈ Jj . Let G′ be the oriented graph
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obtained from G by deleting all the edges in the balanced path systems already
chosen for BFj as well as deleting all the edges in BF1, . . . , BFj−1. Recall from
(BSch1′) that V (G) = A∪B. Thus ∆(G−G′) ≤ 2j < 3q by (4.4.1). Together with
Proposition 1.4.1 this implies that (G′,P,P ′) is still a [K,L,m, ε0, ε

′]-bi-scheme.
(Here we use that ∆(G−G′) < 3q = 3Lq/m ·m/L and ε, Lq/m� ε′ � 1.) So we
can apply Lemma 4.4.3 with ε′ playing the role of ε to obtain a balanced exceptional
path system of style h for G′ (and thus for G) which spans I and contains all edges
of J . This completes the proof of the lemma. �

4.5. The Robust Decomposition Lemma

The purpose of this section is to derive the version of the robust decomposition
lemma (Corollary 4.5.4) that we will use in this chapter to prove Theorem 1.3.5.
(Recall from Section 4.1 that we will not use it in the proof of Theorem 1.3.8.)
Similarly as in the two cliques case, Corollary 4.5.4 allows us to transform an ap-
proximate Hamilton decomposition into an exact one. In the next subsection, we
introduce the necessary concepts. In particular, Corollary 4.5.4 relies on the exis-
tence of a so-called bi-universal walk (which is a ‘bipartite version’ of the universal
walk introduced in Section 2.9.1). The (proof of the) robust decomposition lemma
then uses edges guaranteed by this bi-universal walk to ‘balance out’ edges of the
graph H when constructing the Hamilton decomposition of Grob +H.

4.5.1. Chord Sequences and Bi-universal Walks. Let R be a digraph
whose vertices are V1, . . . , Vk and suppose that C = V1 . . . Vk is a Hamilton cycle
of R. (Later on the vertices of R will be clusters. So we denote them by capital
letters.)

Recall from Section 2.9.1 that a chord sequence CS(Vi, Vj) from Vi to Vj in R
is an ordered sequence of edges of the form

CS(Vi, Vj) = (Vi1−1Vi2 , Vi2−1Vi3 , . . . , Vit−1Vit+1),

where Vi1 = Vi, Vit+1
= Vj and the edge Vis−1Vis+1

belongs to R for each s ≤ t.
As before, if i = j then we consider the empty set to be a chord sequence from

Vi to Vj and we may assume that CS(Vi, Vj) does not contain any edges of C.
A closed walk U in R is a bi-universal walk for C with parameter `′ if the

following conditions hold:

(BU1) The edge set of U has a partition into Uodd and Ueven. For every 1 ≤ i ≤ k
there is a chord sequence ECSbi(Vi, Vi+2) from Vi to Vi+2 such that Ueven

contains all edges of all these chord sequences for even i (counted with
multiplicities) and Uodd contains all edges of these chord sequences for
odd i. All remaining edges of U lie on C.

(BU2) Each ECSbi(Vi, Vi+2) consists of at most
√
`′/2 edges.

(BU3) Ueven enters every cluster Vi exactly `′/2 times and it leaves every cluster
Vi exactly `′/2 times. The same assertion holds for Uodd.

Note that condition (BU1) means that if an edge ViVj ∈ E(R)\E(C) occurs in total
5 times (say) in ECSbi(V1, V3), . . . , ECSbi(Vk, V2) then it occurs precisely 5 times
in U . We will identify each occurrence of ViVj in ECSbi(V1, V3), . . . , ECSbi(Vk, V2)
with a (different) occurrence of ViVj in U . Note that the edges of ECSbi(Vi, Vi+2)
are allowed to appear in a different order within U .
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Lemma 4.5.1. Let R be a digraph with vertices V1, . . . , Vk where k ≥ 4 is even.
Suppose that C = V1 . . . Vk is a Hamilton cycle of R and that Vi−1Vi+2 ∈ E(R)
for every 1 ≤ i ≤ k. Let `′ ≥ 4 be an even integer. Let Ubi,`′ denote the multiset
obtained from `′−1 copies of E(C) by adding Vi−1Vi+2 ∈ E(R) for every 1 ≤ i ≤ k.
Then the edges in Ubi,`′ can be ordered so that the resulting sequence forms a bi-
universal walk for C with parameter `′.

In the remainder of the chapter, we will also write Ubi,`′ for the bi-universal
walk guaranteed by Lemma 4.5.1.

Proof. Let us first show that the edges in Ubi,`′ can be ordered so that the
resulting sequence forms a closed walk in R. To see this, consider the multidigraph
U obtained from Ubi,`′ by deleting one copy of E(C). Then U is (`′ − 1)-regular
and thus has a decomposition into 1-factors. We order the edges of Ubi,`′ as follows:
We first traverse all cycles of the 1-factor decomposition of U which contain the
cluster V1. Next, we traverse the edge V1V2 of C. Next we traverse all those cycles
of the 1-factor decomposition which contain V2 and which have not been traversed
so far. Next we traverse the edge V2V3 of C and so on until we reach V1 again.

Recall that, for each 1 ≤ i ≤ k, the edge Vi−1Vi+2 is a chord sequence from
Vi to Vi+2. Thus we can take ECSbi(Vi, Vi+2) := Vi−1Vi+2. Then Ubi,`′ satisfies
(BU1)–(BU3). Indeed, (BU2) is clearly satisfied. Partition one of the copies of
E(C) in Ubi,`′ into Eeven and Eodd where Eeven = {ViVi+1| i even} and Eodd =
{ViVi+1| i odd}. Note that the union of Eeven together with all ECSbi(Vi, Vi+2)
for even i is a 1-factor in R. Add `′/2− 1 of the remaining copies of E(C) to this
1-factor to obtain Ueven. Define Uodd to be E(Ubi,`′) \ Ueven. By construction of
Ueven and Uodd, (BU1) and (BU3) are satisfied. �

4.5.2. Bi-setups and the Robust Decomposition Lemma. The aim of
this subsection is to state the ‘bipartite version’ of the robust decomposition lemma
(Lemma 4.5.3, proved in [21]) and derive Corollary 4.5.4, which we shall use later on
in our proof of Theorem 1.3.5. Lemma 4.5.3 guarantees the existence of a ‘robustly
decomposable’ digraph Grob

dir within a ‘bi-setup’. Roughly speaking, a bi-setup is a
digraph G together with its ‘reduced digraph’ R, which contains a Hamilton cycle
C and a bi-universal walk U . (So a bi-setup is a ‘bipartite analogue’ of a setup that
was introduced in Section 2.9.2.) In our application, G[A,B] will play the role of
G and R will be the complete bipartite digraph.

To define a bi-setup formally, we first need to recall the following definitions.
Given a digraph G and a partition P of V (G) into k clusters V1, . . . , Vk of equal
size, recall that a partition P ′ of V (G) is an `′-refinement of P if P ′ is obtained by
splitting each Vi into `′ subclusters of equal size. (So P ′ consists of `′k clusters.)
Recall also that P ′ is an ε-uniform `′-refinement of P if it is an `′-refinement of P
which satisfies the following condition: Whenever x is a vertex of G, V is a cluster
in P and |N+

G (x) ∩ V | ≥ ε|V | then |N+
G (x) ∩ V ′| = (1± ε)|N+

G (x) ∩ V |/`′ for each
cluster V ′ ∈ P ′ with V ′ ⊆ V . The inneighbourhoods of the vertices of G satisfy an
analogous condition.

We will need the following definition from [21], which describes the structure
within which the robust decomposition lemma finds the robustly decomposable
graph. (G,P,P ′, R, C, U, U ′) is called an (`′, k,m, ε, d)-bi-setup if the following
properties are satisfied:



4.5. THE ROBUST DECOMPOSITION LEMMA 131

(BST1) G and R are digraphs. P is a partition of V (G) into k clusters of size m
where k is even. The vertex set of R consists of these clusters.

(BST2) For every edge VW of R, the corresponding pair G[V,W ] is (ε,≥ d)-
regular.

(BST3) C = V1 . . . Vk is a Hamilton cycle of R and for every edge ViVi+1 of C the
corresponding pair G[Vi, Vi+1] is [ε,≥ d]-superregular.

(BST4) U is a bi-universal walk for C in R with parameter `′ and P ′ is an ε-
uniform `′-refinement of P.

(BST5) Let V 1
j , . . . , V

`′

j denote the clusters in P ′ which are contained in Vj (for
each 1 ≤ j ≤ k). Then U ′ is a closed walk on the clusters in P ′ which is
obtained from U as follows: When U visits Vj for the ath time, we let U ′

visit the subcluster V aj (for all 1 ≤ a ≤ `′).
(BST6) For every edge V ji V

j′

i′ of U ′ the corresponding pair G[V ji , V
j′

i′ ] is [ε,≥ d]-
superregular.

In [21], in a bi-setup, the digraph G could also contain an exceptional set, but since
we are only using the definition in the case when there is no such exceptional set,
we have only stated it in this special case.

Suppose that (G,P,P ′) is a [K,L,m, ε0, ε]-bi-scheme and that C = A1B1 . . .
AKBK is a spanning cycle on the clusters of P. Let Pbi := {A1, . . . , AK , B1, . . . ,
BK}. Suppose that `′,m/`′ ∈ N with `′ ≥ 4. Let P ′′bi be an ε-uniform `′-refinement
of Pbi (which exists by Lemma 2.9.2). Let Cbi be the directed cycle obtained from C
in which the edge A1B1 is oriented towards B1 and so on. Let Rbi be the complete
bipartite digraph whose vertex classes are {A1, . . . , AK} and {B1, . . . , BK}. Let
Ubi,`′ be a bi-universal walk for C with parameter `′ as defined in Lemma 4.5.1.
Let U ′bi,`′ be the closed walk obtained from Ubi,`′ as described in (BST5). We will
call

(G,Pbi,P ′′bi, Rbi, Cbi, Ubi,`′ , U
′
bi,`′)

the bi-setup associated to (G,P,P ′). The following lemma shows that it is indeed
a bi-setup.

Lemma 4.5.2. Suppose that K,L,m/L, `′,m/`′ ∈ N with `′ ≥ 4, K ≥ 2 and
0 < 1/m� 1/K, ε� ε′, 1/`′. Suppose that (G,P,P ′) is a [K,L,m, ε0, ε]-bi-scheme
and that C = A1B1 . . . AKBK is a spanning cycle on the clusters of P. Then

(G,Pbi,P ′′bi, Rbi, Cbi, Ubi,`′ , U
′
bi,`′)

is an (`′, 2K,m, ε′, 1/2)-bi-setup.

Proof. Clearly, (G,Pbi,P ′′bi, Rbi, Cbi, Ubi,`′ , U
′
bi,`′) satisfies (BST1). (BSch3′) im-

plies that (BST2) and (BST3) hold. Lemma 4.5.1 implies (BST4). (BST5) follows
from the definition of U ′bi,`′ . Finally, (BST6) follows from (BSch3′) and Lemma 2.9.2

since P ′′bi is an ε-uniform `′-refinement of Pbi. �

We now state the ‘bipartite version’ of the robust decomposition lemma which
was proved in [21]. It is an analogue of the robust decomposition lemma (Lem-
ma 2.9.4) used in Chapter 2 and works for bi-setups rather than setups. As before,
the lemma guarantees the existence of a ‘robustly decomposable’ digraph Grob

dir ,
whose crucial property is that H + Grob

dir has a Hamilton decomposition for any
sparse bipartite regular digraph H which is edge-disjoint from Grob

dir .



132 4. THE BIPARTITE CASE

Again, Grob
dir consists of digraphs CAdir(r) (the ‘chord absorber’) and PCAdir(r)

(the ‘parity extended cycle switcher’) together with some special factors. Grob
dir is

constructed in two steps: given a suitable set SF of special factors, the lemma first
‘constructs’ CAdir(r) and then, given another suitable set SF ′ of special factors,
the lemma ‘constructs’ PCAdir(r).

Lemma 4.5.3. Suppose that 0 < 1/m � 1/k � ε � 1/q � 1/f � r1/m �
d� 1/`′, 1/g � 1 where `′ is even and that rk2 ≤ m. Let

r2 := 96`′g2kr, r3 := rfk/q, r� := r1 + r2 + r − (q − 1)r3, s′ := rfk + 7r�

and suppose that k/14, k/f, k/g, q/f,m/4`′, fm/q, 2fk/3g(g − 1) ∈ N. Suppose
that (G,P,P ′, R, C, U, U ′) is an (`′, k,m, ε, d)-bi-setup and C = V1 . . . Vk. Suppose
that P∗ is a (q/f)-refinement of P and that SF1, . . . , SFr3 are edge-disjoint special
factors with parameters (q/f, f) with respect to C, P∗ in G. Let SF := SF1 + · · ·+
SFr3 . Then there exists a digraph CAdir(r) for which the following holds:

(i) CAdir(r) is an (r1 + r2)-regular spanning subdigraph of G which is edge-
disjoint from SF .

(ii) Suppose that SF ′1, . . . , SF
′
r� are special factors with parameters (1, 7) with

respect to C, P in G which are edge-disjoint from each other and from
CAdir(r) +SF . Let SF ′ := SF ′1 + · · ·+SF ′r� . Then there exists a digraph
PCAdir(r) for which the following holds:
(a) PCAdir(r) is a 5r�-regular spanning subdigraph of G which is edge-

disjoint from CAdir(r) + SF + SF ′.
(b) Let SPS be the set consisting of all the s′ special path systems con-

tained in SF+SF ′. Let Veven denote the union of all Vi over all even
1 ≤ i ≤ k and define Vodd similarly. Suppose that H is an r-regular
bipartite digraph on V (G) with vertex classes Veven and Vodd which is
edge-disjoint from Grob

dir := CAdir(r) +PCAdir(r) +SF +SF ′. Then
H + Grob

dir has a decomposition into s′ edge-disjoint Hamilton cycles
C1, . . . , Cs′ . Moreover, Ci contains one of the special path systems
from SPS, for each i ≤ s′.

Recall from Section 4.4.2 that we always view fictive edges in special factors as
being distinct from each other and from the edges in other graphs. So for example,
saying that CAdir(r) and SF are edge-disjoint in Lemma 4.5.3 still allows for a
fictive edge xy in SF to occur in CAdir(r) as well (but CAdir(r) will avoid all
non-fictive edges in SF).

We will use the following ‘undirected’ consequence of Lemma 4.5.3.

Corollary 4.5.4. Suppose that 0 < 1/m � ε0, 1/K � ε � 1/L � 1/f �
r1/m� 1/`′, 1/g � 1 where `′ is even and that 4rK2 ≤ m. Let

r2 := 192`′g2Kr, r3 := 2rK/L, r� := r1 +r2 +r−(Lf−1)r3, s′ := 2rfK+7r�

and suppose that L,K/7,K/f,K/g,m/4`′,m/L, 4fK/3g(g − 1) ∈ N. Suppose that
(Gdir,P,P ′) is a [K,L,m, ε0, ε]-bi-scheme and let G′ denote the underlying undi-
rected graph of Gdir. Let C = A1B1 . . . AKBK be a spanning cycle on the clusters in
P. Suppose that BF1, . . . , BFr3 are edge-disjoint balanced exceptional factors with
parameters (L, f) for Gdir (with respect to C, P ′). Let BF := BF1 + · · · + BFr3 .
Then there exists a graph CA(r) for which the following holds:
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(i) CA(r) is a 2(r1+r2)-regular spanning subgraph of G′ which is edge-disjoint
from BF .

(ii) Suppose that BF ′1, . . . , BF
′
r� are balanced exceptional factors with param-

eters (1, 7) for Gdir (with respect to C, P) which are edge-disjoint from
each other and from CA(r) + BF . Let BF ′ := BF ′1 + · · · + BF ′r� . Then
there exists a graph PCA(r) for which the following holds:
(a) PCA(r) is a 10r�-regular spanning subgraph of G′ which is edge-

disjoint from CA(r) + BF + BF ′.
(b) Let BEPS be the set consisting of all the s′ balanced exceptional path

systems contained in BF+BF ′. Suppose that H is a 2r-regular bipar-

tite graph on V (Gdir) with vertex classes
⋃K
i=1Ai and

⋃K
i=1Bi which

is edge-disjoint from Grob := CA(r) + PCA(r) + BF + BF ′. Then
H + Grob has a decomposition into s′ edge-disjoint Hamilton cycles
C1, . . . , Cs′ . Moreover, Ci contains one of the balanced exceptional
path systems from BEPS, for each i ≤ s′.

We remark that we write A1, . . . , AK , B1, . . . , BK for the clusters in P. Note
that the vertex set of each of EF , EF ′, Grob includes V0 while that of Gdir, CA(r),
PCA(r), H does not. Here V0 = A0 ∪ B0, where A0 and B0 are the exceptional
sets of P.

Proof. Choose new constants ε′ and d such that ε � ε′ � 1/L and r1/m
� d � 1/`′, 1/g. Consider the bi-setup (Gdir,Pbi,P ′′bi, Rbi, Cbi, Ubi,`′ , U

′
bi,`′) as-

sociated to (Gdir,P,P ′). By Lemma 4.5.2, (Gdir,Pbi,P ′′bi, Rbi, Cbi, Ubi,`′ , U
′
bi,`′)

is an (`′, 2K,m, ε′, 1/2)-bi-setup and thus also an (`′, 2K,m, ε′, d)-bi-setup. Let
BF ∗i,dir be as defined in Section 4.4.3. Recall from there that, for each i ≤ r3,

BF ∗i,dir is a special factor with parameters (L, f) with respect to C, P ′ in Gdir

such that Fict(BF ∗i,dir) consists of all the edges in the J∗ for all the Lf bal-
anced exceptional systems J contained in BFi. Thus we can apply Lemma 4.5.3
to (Gdir,Pbi,P ′′bi, Rbi, Cbi, Ubi,`′ , U

′
bi,`′) with 2K, Lf , ε′ playing the roles of k,

q, ε in order to obtain a spanning subdigraph CAdir(r) of Gdir which satisfies
Lemma 4.5.3(i). Hence the underlying undirected graph CA(r) of CAdir(r) satis-
fies Corollary 4.5.4(i). Indeed, to check that CA(r) and BF are edge-disjoint, by
Lemma 4.5.3(i) it suffices to check that CA(r) avoids all edges in all the balanced
exceptional systems J contained in BFi (for all i ≤ r3). But this follows since
E(Gdir) ⊇ E(CA(r)) consists only of AB-edges by (BSch2′) and since no balanced
exceptional system contains an AB-edge by (BES2).

Now let BF ′1, . . . , BF
′
r� be balanced exceptional factors as described in Corol-

lary 4.5.4(ii). Similarly as before, for each i ≤ r�, (BF ′i )
∗
dir is a special factor with

parameters (1, 7) with respect to C, P in Gdir such that Fict((BF ′i )
∗
dir) consists of

all the edges in the J∗ over all the 7 balanced exceptional systems J contained in
BF ′i . Thus we can apply Lemma 4.5.3 to obtain a spanning subdigraph PCAdir(r)
of Gdir which satisfies Lemma 4.5.3(ii)(a) and (ii)(b). Hence the underlying undi-
rected graph PCA(r) of PCAdir(r) satisfies Corollary 4.5.4(ii)(a).

It remains to check that Corollary 4.5.4(ii)(b) holds too. Thus let H be as
described in Corollary 4.5.4(ii)(b). Let Hdir be an r-regular orientation of H. (To
see that such an orientation exists, apply Petersen’s theorem to obtain a decom-
position of H into 2-factors and then orient each 2-factor to obtain a (directed)
1-factor.) Let BF∗dir be the union of the BF ∗i,dir over all i ≤ r3 and let (BF ′)∗dir
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be the union of the (BF ′i )
∗
dir over all i ≤ r�. Then Lemma 4.5.3(ii)(b) implies

that Hdir + CAdir(r) + PCAdir(r) + BF∗dir + (BF ′)∗dir has a decomposition into
s′ edge-disjoint (directed) Hamilton cycles C ′1, . . . , C

′
s′ such that each C ′i contains

BEPS∗i,dir for some balanced exceptional path system BEPSi from BEPS. Let

Ci be the undirected graph obtained from C ′i − BEPS∗i,dir + BEPSi by ignoring

the directions of all the edges. Then Proposition 4.4.2 (applied with G′ play-
ing the role of G) implies that C1, . . . , Cs′ is a decomposition of H + Grob =
H + CA(r) + PCA(r) + BF + BF ′ into edge-disjoint Hamilton cycles. �

4.6. Proof of Theorem 1.3.8

The proof of Theorem 1.3.8 is similar to that of Theorem 1.3.5 except that we
do not need to apply the robust decomposition lemma in the proof of Theorem 1.3.8.
For both results, we will need an approximate decomposition result (Lemma 4.6.1),
which is stated below and proved in Chapter 5. Lemma 4.6.1 is a bipartite analogue
of Lemma 2.5.4. It extends a suitable set of balanced exceptional systems into a
set of edge-disjoint Hamilton cycles covering most edges of an almost complete and
almost balanced bipartite graph.

Lemma 4.6.1. Suppose that 0 < 1/n � ε0 � 1/K � ρ � 1 and 0 ≤ µ � 1,
where n,K ∈ N and K is even. Suppose that G is a graph on n vertices and P is
a (K,m, ε0)-partition of V (G). Furthermore, suppose that the following conditions
hold:

(a) d(w,Bi) = (1 − 4µ ± 4/K)m and d(v,Ai) = (1 − 4µ ± 4/K)m for all
w ∈ A, v ∈ B and 1 ≤ i ≤ K.

(b) There is a set J which consists of at most (1/4 − µ − ρ)n edge-disjoint
balanced exceptional systems with parameter ε0 in G.

(c) J has a partition into K4 sets Ji1,i2,i3,i4 (one for all 1 ≤ i1, i2, i3, i4 ≤ K)
such that each Ji1,i2,i3,i4 consists of precisely |J |/K4 (i1, i2, i3, i4)-BES
with respect to P.

(d) Each v ∈ A ∪B is incident with an edge in J for at most 2ε0n J ∈ J .

Then G contains |J | edge-disjoint Hamilton cycles such that each of these Hamilton
cycles contains some J ∈ J .

To prove Theorem 1.3.8, we find a bi-framework via Corollary 4.2.12. Then we
choose suitable balanced exceptional systems using Corollary 4.3.10. Finally, we
extend these into Hamilton cycles using Lemma 4.6.1.

Proof of Theorem 1.3.8. Step 1: Choosing the constants and a bi-
framework. By making α smaller if necessary, we may assume that α � 1.
Define new constants such that

0 < 1/n0 � εex � ε0 � ε′0 � ε′ � ε1 � ε2 � ε3 � ε4 � 1/K � α� ε� 1,

where K ∈ N and K is even.
Let G, F and D be as in Theorem 1.3.8. Apply Corollary 4.2.12 with εex, ε0

playing the role of ε, ε∗ to find a set C1 of at most ε
1/3
ex n edge-disjoint Hamilton

cycles in F so that the graph G1 obtained from G by deleting all the edges in these
Hamilton cycles forms part of an (ε0, ε

′,K,D1)-bi-framework (G1, A,A0, B,B0)

with D1 ≥ D − 2ε
1/3
ex n. Moreover, F satisfies (WF5) with respect to ε′ and

(4.6.1) |C1| = (D −D1)/2.
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In particular, this implies that δ(G1) ≥ D1 and that D1 is even (since D is even).
Let F1 be the graph obtained from F by deleting all those edges lying on Hamilton
cycles in C1. Then

(4.6.2) δ(F1) ≥ δ(F )− 2|C1| ≥ (1/2− 3ε1/3
ex )n.

Let

m :=
|A|
K

=
|B|
K

and tK :=
(1− 20ε4)D1

2K4
.

By changing ε4 slightly, we may assume that tK ∈ N.

Step 2: Choosing a (K,m, ε0)-partition P. Apply Lemma 4.3.1 to the bi-
framework (G1, A,A0, B,B0) with F1, ε0 playing the roles of F , ε in order to
obtain partitions A1, . . . , AK and B1, . . . , BK of A and B into sets of size m such
that together with A0 and B0 the sets Ai and Bi form a (K,m, ε0, ε1, ε2)-partition
P for G1.

Note that by Lemma 4.3.1(ii) and since F satisfies (WF5), for all x ∈ A and
1 ≤ j ≤ K, we have

dF1(x,Bj) ≥ dF1
(x,B)− ε1n

K

(WF5)

≥ dF1(x)− ε′n− |B0| − ε1n

K
(4.6.2)

≥ (1/2− 3ε
1/3
ex )n− 2ε1n

K
≥ (1− 5ε1)m.(4.6.3)

Similarly, dF1
(y,Ai) ≥ (1− 5ε1)m for all y ∈ B and 1 ≤ i ≤ K.

Step 3: Choosing balanced exceptional systems for the almost decompo-
sition. Apply Corollary 4.3.10 to the (ε0, ε

′,K,D1)-bi-framework (G1,A,A0,B,B0)
with F1, G1, ε0, ε′0, D1 playing the roles of F , G, ε, ε0, D. Let J ′ be the union
of the sets Ji1i2i3i4 guaranteed by Corollary 4.3.10. So J ′ consists of K4tK edge-
disjoint balanced exceptional systems with parameter ε′0 in G1 (with respect to P).
Let C2 denote the set of 10ε4D1 Hamilton cycles guaranteed by Corollary 4.3.10.
Let F2 be the subgraph obtained from F1 by deleting all the Hamilton cycles in C2.
Note that

(4.6.4) D2 := D1 − 2|C2| = (1− 20ε4)D1 = 2K4tK = 2|J ′|.
Step 4: Finding the remaining Hamilton cycles. Our next aim is to apply
Lemma 4.6.1 with F2, J ′, ε′ playing the roles of G, J , ε0.

Clearly, condition (c) of Lemma 4.6.1 is satisfied. In order to see that condition
(a) is satisfied, let µ := 1/K and note that for all w ∈ A we have

dF2(w,Bi) ≥ dF1(w,Bi)− 2|C2|
(4.6.3)

≥ (1− 5ε1)m− 20ε4D1 ≥ (1− 1/K)m.

Similarly dF2
(v,Ai) ≥ (1− 1/K)m for all v ∈ B.

To check condition (b), note that

|J ′| (4.6.4)
=

D2

2
≤ D

2
≤ (1/2− α)

n

2
≤ (1/4− µ− α/3)n.

Thus condition (b) of Lemma 4.6.1 holds with α/3 playing the role of ρ. Since
the edges in J ′ lie in G1 and (G1, A,A0, B,B0) is an (ε0, ε

′,K,D1)-bi-framework,
(BFR5) implies that each v ∈ A ∪ B is incident with an edge in J for at most
ε′n + |V0| ≤ 2ε′n J ∈ J ′. (Recall that in a balanced exceptional system there are
no edges between A and B.) So condition (d) of Lemma 4.6.1 holds with ε′ playing
the role of ε0.
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So we can indeed apply Lemma 4.6.1 to obtain a collection C3 of |J ′| edge-
disjoint Hamilton cycles in F2 which cover all edges of

⋃J ′. Then C1 ∪ C2 ∪ C3 is
a set of edge-disjoint Hamilton cycles in F of size

|C1|+ |C2|+ |C3|
(4.6.1),(4.6.4)

=
D −D1

2
+
D1 −D2

2
+
D2

2
=
D

2
,

as required. �

4.7. Proof of Theorem 1.3.5

As mentioned earlier, the proof of Theorem 1.3.5 is similar to that of Theo-
rem 1.3.8 except that we will also need to apply the robust decomposition lemma
(Corollary 4.5.4). This means Steps 2–4 and Step 8 in the proof of Theorem 1.3.5
did not appear in the proof of Theorem 1.3.8. Steps 2–4 prepare the ground for the
application of the robust decomposition lemma and in Step 8 we apply it to cover
the leftover from the approximate decomposition step with Hamilton cycles. Steps
5–7 contain the approximate decomposition step, using Lemma 4.6.1.

In our proof of Theorem 1.3.5 it will be convenient to work with an undirected
version of the bi-schemes introduced in Section 4.4.4. Given a graph G and parti-
tions P and P ′ of a vertex set V , we call (G,P,P ′) a (K,L,m, ε0, ε)-bi-scheme if
the following properties hold:

(BSch1) (P,P ′) is a (K,L,m, ε0)-partition of V . Moreover, V (G) = A ∪B.
(BSch2) Every edge of G joins some vertex in A to some vertex in B.
(BSch3) dG(v,Ai,j) ≥ (1 − ε)m/L and dG(w,Bi,j) ≥ (1 − ε)m/L for all v ∈ B,

w ∈ A, i ≤ K and j ≤ L.

We will also use the following proposition.

Proposition 4.7.1. Suppose that K,L, n,m/L ∈ N and 0 < 1/n� ε, ε0 � 1.
Let (G,P,P ′) be a (K,L,m, ε0, ε)-bi-scheme with |G| = n. Then there exists an
orientation Gdir of G such that (Gdir,P,P ′) is a [K,L,m, ε0, 2

√
ε]-bi-scheme.

Proof. Randomly orient every edge in G to obtain an oriented graph Gdir. (So
given any edge xy in G with probability 1/2, xy ∈ E(Gdir) and with probability
1/2, yx ∈ E(Gdir).) (BSch1′) and (BSch2′) follow immediately from (BSch1) and
(BSch2).

Note that Fact 1.4.3 and (BSch3) imply that G[Ai,j , Bi′,j′ ] is [1,
√
ε]-superregu-

lar with density at least 1− ε, for all i, i′ ≤ K and j, j′ ≤ L. Using this, (BSch3′)
follows easily from the large deviation bound in Proposition 1.4.4. (BSch4′) follows
from Proposition 1.4.4 in a similar way. �

Proof of Theorem 1.3.5.
Step 1: Choosing the constants and a bi-framework. Define new constants
such that

0 < 1/n0 � εex � ε∗ � ε0 � ε′0 � ε′ � ε1 � ε2 � ε3 � ε4 � 1/K2(4.7.1)

� γ � 1/K1 � ε′′ � 1/L� 1/f � γ1 � 1/g � ε� 1,

where K1,K2, L, f, g ∈ N and both K2, g are even. Note that we can choose the
constants such that

K1

28fgL
,

K2

4gLK1
,

4fK1

3g(g − 1)
∈ N.
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Let G and D be as in Theorem 1.3.5. By applying Dirac’s theorem to remove a
suitable number of edge-disjoint Hamilton cycles if necessary, we may assume that
D ≤ n/2. Apply Corollary 4.2.12 with G, εex, ε∗, ε0, K2 playing the roles of F ,

ε, ε∗, ε′, K to find a set C1 of at most ε
1/3
ex n edge-disjoint Hamilton cycles in G

so that the graph G1 obtained from G by deleting all the edges in these Hamilton
cycles forms part of an (ε∗, ε0,K2, D1)-bi-framework (G1, A,A0, B,B0), where
(4.7.2)

|A|+ε0n ≥ n/2 ≥ D1 = D−2|C1| ≥ D−2ε1/3
ex n ≥ D−ε0n ≥ n/2−2ε0n ≥ |A|−2ε0n.

Note that G1 is D1-regular and that D1 is even since D was even. Moreover, since
K2/LK1 ∈ N, (G1, A,A0, B,B0) is also an (ε∗, ε0,K1L,D1)-bi-framework and thus
an (ε∗, ε

′,K1L,D1)-bi-framework.
Let

m1 :=
|A|
K1

=
|B|
K1

, r := γm1, r1 := γ1m1, r2 := 192g3K1r,

r3 :=
2rK1

L
, r� := r1 + r2 + r − (Lf − 1)r3,

D4 := D1 − 2(Lfr3 + 7r�), tK1L :=
(1− 20ε4)D1

2(K1L)4
.

Note that (BFR4) implies m1/L ∈ N. Moreover,

(4.7.3) r2, r3 ≤ γ1/2m1 ≤ γ1/3r1, r1/2 ≤ r� ≤ 2r1.

Further, by changing γ, γ1, ε4 slightly, we may assume that r/K2
2 , r1, tK1L ∈ N.

Since K1/L ∈ N this implies that r3 ∈ N. Finally, note that

(4.7.4) (1 + 3ε∗)|A| ≥ D ≥ D4

(4.7.3)

≥ D1 − γ1n
(4.7.2)

≥ |A| − 2γ1n ≥ (1− 5γ1)|A|.
Step 2: Choosing a (K1, L,m1, ε0)-partition (P1,P ′1). We now prepare the
ground for the construction of the robustly decomposable graph Grob, which we
will obtain via the robust decomposition lemma (Corollary 4.5.4) in Step 4.

Recall that (G1, A,A0, B,B0) is an (ε∗, ε
′,K1L,D1)-bi-framework. Apply Lem-

ma 4.3.1 with G1, D1, K1L, ε∗ playing the roles of G, D, K, ε to obtain partitions
A′1, . . . , A

′
K1L

of A and B′1, . . . , B
′
K1L

of B into sets of size m1/L such that together
with A0 and B0 all these sets A′i and B′i form a (K1L,m1/L, ε∗, ε1, ε2)-partition
P ′1 for G1. Note that (1 − ε0)n ≤ n − |A0 ∪ B0| = 2K1m1 ≤ n by (BFR4). For
all i ≤ K1 and all h ≤ L, let Ai,h := A′(i−1)L+h. (So this is just a relabeling of the

sets A′i.) Define Bi,h similarly and let Ai :=
⋃
h≤LAi,h and Bi :=

⋃
h≤LBi,h. Let

P1 := {A0, B0, A1, . . . , AK1
, B1, . . . , BK1

} denote the corresponding (K1,m1, ε0)-
partition of V (G). Thus (P1,P ′1) is a (K,L,m1, ε0)-partition of V (G), as defined
in Section 4.4.2.

Let G2 := G1[A,B]. We claim that (G2,P1,P ′1) is a (K1, L,m1, ε0, ε
′)-bi-

scheme. Indeed, clearly (BSch1) and (BSch2) hold. To verify (BSch3), recall that
that (G1, A,A0, B,B0) is an (ε∗, ε0,K1L,D1)-bi-framework and so by (BFR5) for
all x ∈ B we have

dG2
(x,A) ≥ dG1

(x)− dG1
(x,B′)− |A0| ≥ D1 − ε0n− |A0|

(4.7.2)

≥ |A| − 4ε0n

and similarly dG2
(y,B) ≥ |B| − 4ε0n for all y ∈ A. Since ε0 � ε′/K1L, this

implies (BSch3).
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Step 3: Balanced exceptional systems for the robustly decomposable
graph. In order to apply Corollary 4.5.4, we first need to construct suitable
balanced exceptional systems. Apply Corollary 4.3.10 to the (ε∗, ε

′,K1L,D1)-bi-
framework (G1, A,A0, B,B0) with G1, K1L, P ′1, ε∗ playing the roles of F , K, P,
ε in order to obtain a set J of (K1L)4tK1L edge-disjoint balanced exceptional sys-
tems in G1 with parameter ε0 such that for all 1 ≤ i′1, i

′
2, i
′
3, i
′
4 ≤ K1L the set J

contains precisely tK1L (i′1, i
′
2, i
′
3, i
′
4)-BES with respect to the partition P ′1. (Note

that F in Corollary 4.3.10 satisfies (WF5) since G1 satisfies (BFR5).) So J is the
union of all the sets Ji′1i′2i′3i′4 returned by Corollary 4.3.10. (Note that we will not
use all the balanced exceptional systems in J and we do not need to consider the
Hamilton cycles guaranteed by this result. So we do not need the full strength of
Corollary 4.3.10 at this point.)

Our next aim is to choose two disjoint subsets JCA and JPCA of J with the
following properties:

(a) In total JCA contains Lfr3 balanced exceptional systems. For each i ≤ f
and each h ≤ L, JCA contains precisely r3 (i1, i2, i3, i4)-BES of style h
(with respect to the (K,L,m1, ε0)-partition (P1,P ′1)) such that i1, i2, i3,
i4 ∈ {(i− 1)K1/f + 2, . . . , iK1/f}.

(b) In total JPCA contains 7r� balanced exceptional systems. For each i ≤ 7,
JPCA contains precisely r� (i1, i2, i3, i4)-BES (with respect to the partition
P1) with i1, i2, i3, i4 ∈ {(i− 1)K1/7 + 2, . . . , iK1/7}.

(Recall that we defined in Section 4.4.4 when an (i1, i2, i3, i4)-BES has style h with
respect to a (K,L,m1, ε0)-partition (P1,P ′1).) To see that it is possible to choose
JCA and JPCA, split J into two sets J1 and J2 such that both J1 and J2 contain
at least tK1L/3 (i′1, i

′
2, i
′
3, i
′
4)-BES with respect to P ′1, for all 1 ≤ i′1, i′2, i′3, i′4 ≤ K1L.

Note that there are (K1/f − 1)4 choices of 4-tuples (i1, i2, i3, i4) with i1, i2, i3, i4 ∈
{(i − 1)K1/f + 2, . . . , iK1/f}. Moreover, for each such 4-tuple (i1, i2, i3, i4) and
each h ≤ L there is one 4-tuple (i′1, i

′
2, i
′
3, i
′
4) with 1 ≤ i′1, i

′
2, i
′
3, i
′
4 ≤ K1L and such

that any (i′1, i
′
2, i
′
3, i
′
4)-BES with respect to P ′1 is an (i1, i2, i3, i4)-BES of style h

with respect to (P1,P ′1). Together with the fact that

(K1/f − 1)4tK1L

3
≥ D1

7(Lf)4
≥ γ1/2n

(4.7.3)

≥ r3,

this implies that we can choose a set JCA ⊆ J1 satisfying (a).
Similarly, there are (K1/7−1)4 choices of 4-tuples (i1, i2, i3, i4) with i1,i2,i3,i4 ∈

{(i − 1)K1/7 + 2, . . . , iK1/7}. Moreover, for each such 4-tuple (i1, i2, i3, i4) there
are L4 distinct 4-tuples (i′1, i

′
2, i
′
3, i
′
4) with 1 ≤ i′1, i′2, i′3, i′4 ≤ K1L and such that any

(i′1, i
′
2, i
′
3, i
′
4)-BES with respect to P ′1 is an (i1, i2, i3, i4)-BES with respect to P1.

Together with the fact that

(K1/7− 1)4L4tK1L

3
≥ D1

75
≥ n

3 · 75

(4.7.3)

≥ r�,

this implies that we can choose a set JPCA ⊆ J2 satisfying (b).

Step 4: Finding the robustly decomposable graph. Recall that (G2,P1,P ′1)
is a (K1, L,m1, ε0, ε

′)-bi-scheme. Apply Proposition 4.7.1 with G2, P1, P ′1, K1,
m1, ε′ playing the roles of G, P, P ′, K, m, ε to obtain an orientation G2,dir of G2

such that (G2,dir,P1,P ′1) is a [K1, L,m1, ε0, 2
√
ε′]-bi-scheme. Let C = A1B1A2 . . .

AK1
BK1

be a spanning cycle on the clusters in P1.
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Our next aim is to use Lemma 4.4.4 in order to extend the balanced exceptional
systems in JCA into r3 edge-disjoint balanced exceptional factors with parameters
(L, f) for G2,dir (with respect to C, P ′1). For this, note that the condition on JCA in
Lemma 4.4.4 with r3 playing the role of q is satisfied by (a). Moreover, Lr3/m1 =
2rK1/m1 = 2γK1 � 1. Thus we can indeed apply Lemma 4.4.4 to (G2,dir,P1,P ′1)

with JCA, 2
√
ε′, K1, r3 playing the roles of J , ε, K, q in order to obtain r3

edge-disjoint balanced exceptional factors BF1, . . . , BFr3 with parameters (L, f)
for G2,dir (with respect to C, P ′1) such that together these balanced exceptional
factors cover all edges in

⋃JCA. Let BFCA := BF1 + · · ·+BFr3 .
Note that m1/4g,m1/L ∈ N since m1 = |A|/K1 and |A| is divisible by K2 and

thusm1 is divisible by 4gL (sinceK2/4gLK1 ∈ N by our assumption). Furthermore,
4rK2

1 = 4γm1K
2
1 ≤ γ1/2m1 ≤ m1. Thus we can apply Corollary 4.5.4 to the

[K1, L,m1, ε0, ε
′′]-bi-scheme (G2,dir,P1,P ′1) with K1, ε′′, g playing the roles of K,

ε, `′ to obtain a spanning subgraph CA(r) of G2 as described there. (Note that G2

equals the graph G′ defined in Corollary 4.5.4.) In particular, CA(r) is 2(r1 + r2)-
regular and edge-disjoint from BFCA.

Let G3 be the graph obtained from G2 by deleting all the edges of CA(r) +
BFCA. Thus G3 is obtained from G2 by deleting at most 2(r1 + r2 + r3) ≤ 6r1 =
6γ1m1 edges at every vertex in A∪B = V (G3). Let G3,dir be the orientation of G3

in which every edge is oriented in the same way as in G2,dir. Then Proposition 1.4.1
implies that (G3,dir,P1,P1) is still a [K1, 1,m1, ε0, ε]-bi-scheme. Moreover,

r�

m1

(4.7.3)

≤ 2r1

m1
= 2γ1 � 1.

Together with (b) this ensures that we can apply Lemma 4.4.4 to (G3,dir,P1) with
P1, JPCA, K1, 1, 7, r� playing the roles of P, J , K, L, f , q in order to obtain
r� edge-disjoint balanced exceptional factors BF ′1, . . . , BF

′
r� with parameters (1, 7)

for G3,dir (with respect to C, P1) such that together these balanced exceptional
factors cover all edges in

⋃JPCA. Let BFPCA := BF ′1 + · · ·+BF ′r� .
Apply Corollary 4.5.4 to obtain a spanning subgraph PCA(r) ofG2 as described

there. In particular, PCA(r) is 10r�-regular and edge-disjoint from CA(r)+BFCA+
BFPCA.

Let Grob := CA(r) + PCA(r) + BFCA + BFPCA. Note that by (4.4.1) all the
vertices in V0 := A0 ∪B0 have the same degree rrob

0 := 2(Lfr3 + 7r�) in Grob. So

(4.7.5) 7r1

(4.7.3)

≤ rrob
0

(4.7.3)

≤ 30r1.

Moreover, (4.4.1) also implies that all the vertices in A ∪ B have the same degree
rrob in Grob, where rrob = 2(r1 + r2 + r3 + 6r�). So

rrob
0 − rrob = 2 (Lfr3 + r� − (r1 + r2 + r3)) = 2(Lfr3 + r − (Lf − 1)r3 − r3) = 2r.

Step 5: Choosing a (K2,m2, ε0)-partition P2. We now prepare the ground
for the approximate decomposition step (i.e. to apply Lemma 4.6.1). For this, we
need to work with a finer partition of A∪B than the previous one (this will ensure
that the leftover from the approximate decomposition step is sufficiently sparse
compared to Grob).

Let G4 := G1 −Grob (where G1 was defined in Step 1) and note that

(4.7.6) D4 = D1 − rrob
0 = D1 − rrob − 2r.
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So

(4.7.7) dG4
(x) = D4 + 2r for all x ∈ A ∪B and dG4

(x) = D4 for all x ∈ V0.

(Note that D4 is even since D1 and rrob
0 are even.) So G4 is D4-balanced with re-

spect to (A,A0, B,B0) by Proposition 4.2.1. Together with the fact that (G1,A,A0,
B,B0) is an (ε∗, ε0,K2, D1)-bi-framework, this implies that (G4,G4,A,A0,B,B0) sat-
isfies conditions (WF1)–(WF5) in the definition of an (ε∗, ε0,K2, D4)-weak frame-
work. However, some vertices in A0 ∪ B0 might violate condition (WF6). (But
every vertex in A ∪ B will still satisfy (WF6) with room to spare.) So we need to
modify the partition of V0 = A0 ∪B0 to obtain a new weak framework.

Consider a partition A∗0, B
∗
0 of A0 ∪ B0 which maximizes the number of edges

in G4 between A∗0 ∪A and B∗0 ∪B. Then dG4
(v,A∗0 ∪A) ≤ dG4

(v)/2 for all v ∈ A∗0
since otherwise A∗0 \{v}, B∗0 ∪{v} would be a better partition of A0∪B0. Similarly
dG4(v,B∗0 ∪ B) ≤ dG4(v)/2 for all v ∈ B∗0 . Thus (WF6) holds in G4 (with respect
to the partition A ∪A∗0 and B ∪B∗0). Moreover, Proposition 4.2.2 implies that G4

is still D4-balanced with respect to (A,A∗0, B,B
∗
0). Furthermore, with (BFR3) and

(BFR4) applied to G1, we obtain eG4
(A∪A∗0) ≤ eG1

(A∪A0) + |A∗0||A∪A∗0| ≤ ε0n
2

and similarly eG4
(B∪B∗0) ≤ ε0n

2. Finally, every vertex in A∪B has internal degree
at most ε0n + |A0 ∪ B0| ≤ 2ε0n in G4 (with respect to the partition A ∪ A∗0 and
B ∪B∗0). Altogether this implies that (G4, G4, A,A

∗
0, B,B

∗
0) is an (ε0, 2ε0,K2, D4)-

weak framework and thus also an (ε0, ε
′,K2, D4)-weak framework.

Without loss of generality we may assume that |A∗0| ≥ |B∗0 |. Apply Lem-
ma 4.2.11 to the (ε0, ε

′,K2, D4)-weak framework (G4, G4, A,A
∗
0, B,B

∗
0) to find a

set C2 of |C2| ≤ ε0n edge-disjoint Hamilton cycles in G4 so that the graph G5

obtained from G4 by deleting all the edges of these Hamilton cycles forms part of
an (ε0, ε

′,K2, D5)-bi-framework (G5, A,A
∗
0, B,B

∗
0), where

D5 = D4 − 2|C2| ≥ D4 − 2ε0n.(4.7.8)

Since D4 is even, D5 is even. Further,
(4.7.9)

dG5
(x)

(4.7.7)
= D5 + 2r for all x ∈ A ∪B and dG5

(x)
(4.7.7)

= D5 for all x ∈ A∗0 ∪B∗0 .
Choose an additional constant ε′4 such that ε3 � ε′4 � 1/K2 and so that

tK2 :=
(1− 20ε′4)D5

2K4
2

∈ N.

Now apply Lemma 4.3.1 to (G5, A,A
∗
0, B,B

∗
0) with D5, K2, ε0 playing the roles

of D, K, ε in order to obtain partitions A1, . . . , AK2 and B1, . . . , BK2 of A and B
into sets of size

(4.7.10) m2 := |A|/K2

such that together with A∗0 and B∗0 the sets Ai and Bi form a (K2,m2, ε0, ε1, ε2)-
partition P2 for G5. (Note that the previous partition of A and B plays no role in
the subsequent argument, so denoting the clusters in P2 by Ai and Bi again will
cause no notational conflicts.)

Step 6: Balanced exceptional systems for the approximate decomposi-
tion. In order to apply Lemma 4.6.1, we first need to construct suitable balanced
exceptional systems. Apply Corollary 4.3.10 to the (ε0, ε

′,K2, D5)-bi-framework
(G5, A,A

∗
0, B,B

∗
0) with G5, ε0, ε′0, ε′4, K2, D5, P2 playing the roles of F , ε, ε0, ε4,

K, D, P. (Note that since we are letting G5 play the role of F , condition (WF5)
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in the corollary immediately follows from (BFR5).) Let J ′ be the union of the
sets Ji1i2i3i4 guaranteed by Corollary 4.3.10. So J ′ consists of K4

2 tK2 edge-disjoint
balanced exceptional systems with parameter ε′0 in G5 (with respect to P2). Let C3
denote the set of Hamilton cycles guaranteed by Corollary 4.3.10. So |C3| = 10ε′4D5.

Let G6 be the subgraph obtained from G5 by deleting all those edges lying in
the Hamilton cycles from C3. Set D6 := D5 − 2|C3|. So
(4.7.11)

dG6(x)
(4.7.9)

= D6 + 2r for all x ∈ A ∪B and dG6(x)
(4.7.9)

= D6 for all x ∈ V0.

(Note that V0 = A0 ∪B0 = A∗0 ∪B∗0 .) Let G′6 denote the subgraph of G6 obtained
by deleting all those edges lying in the balanced exceptional systems from J ′. Thus
G′6 = G�, where G� is as defined in Corollary 4.3.10(iv). In particular, V0 is an
isolated set in G′6 and G′6 is bipartite with vertex classes A ∪A∗0 and B ∪B∗0 (and
thus also bipartite with vertex classes A′ = A ∪A0 and B′ = B ∪B0).

Consider any vertex v ∈ V0. Then v has degree D5 in G5, degree two in each
Hamilton cycle from C3, degree two in each balanced exceptional system from J ′
and degree zero in G′6. Thus

D6 + 2|C3| = D5
(4.7.9)

= dG5
(v) = 2|C3|+ 2|J ′|+ dG′6(v) = 2|C3|+ 2|J ′|

and so

(4.7.12) D6 = 2|J ′|.
Step 7: Approximate Hamilton cycle decomposition. Our next aim is to
apply Lemma 4.6.1 with G6, P2, K2, m2, J ′, ε′ playing the roles of G, P, K, m, J ,
ε0. Clearly, condition (c) of Lemma 4.6.1 is satisfied. In order to see that condition
(a) is satisfied, let µ := (rrob

0 − 2r)/4K2m2 and note that

0 ≤ γ1m1

4K2m2
≤ 7r1 − 2r

4K2m2

(4.7.5)

≤ µ
(4.7.5)

≤ 30r1

4K2m2
≤ 30γ1

K1
� 1.

Recall that every vertex v ∈ B satisfies

dG5
(v)

(4.7.9)
= D5 + 2r

(4.7.6),(4.7.8)
= D1− rrob

0 + 2r± 2ε0n
(4.7.2)

= |A|− rrob
0 + 2r± 4ε0n.

Moreover,

dG5
(v,A) = dG5

(v)− dG5
(v,B ∪B∗0)− |A∗0| ≥ dG5

(v)− 2ε′n,

where the last inequality holds since (G5, A,A
∗
0, B,B

∗
0) is an (ε0, ε

′,K2, D5)-bi-
framework (c.f. conditions (BFR4) and (BFR5)). Together with the fact that P2 is
a (K2,m2, ε0, ε1, ε2)-partition for G5 (c.f. condition (P2)), this implies that

dG5
(v,Ai) =

dG5(v,A)± ε1n

K2
=
|A| − rrob

0 + 2r ± 2ε1n

K2

=

(
1− rrob

0 − 2r

K2m2
± 5ε1

)
m2 = (1− 4µ± 5ε1)m2

= (1− 4µ± 1/K2)m2.

Recall that G6 is obtained from G5 by deleting all those edges lying in the Hamilton
cycles in C3 and that

|C3| = 10ε′4D5 ≤ 10ε′4D4

(4.7.4)

≤ 11ε′4|A|
(4.7.10)

≤ m2/K2.



142 4. THE BIPARTITE CASE

Altogether this implies that dG6
(v,Ai) = (1 − 4µ ± 4/K2)m2. Similarly one can

show that dG6(w,Bj) = (1 − 4µ ± 4/K2)m2 for all w ∈ A. So condition (a) of
Lemma 4.6.1 holds.

To check condition (b), note that

|J ′| (4.7.12)
=

D6

2
≤ D4

2

(4.7.6)

≤ D1 − rrob
0

2
≤ n

4
− µ · 2K2m2 − r ≤

(
1

4
− µ− γ

3K1

)
n.

Thus condition (b) of Lemma 4.6.1 holds with γ/3K1 playing the role of ρ.
Since the edges in J ′ lie in G5 and (G5, A,A

∗
0, B,B

∗
0) is an (ε0, ε

′,K2, D5)-bi-
framework, (BFR5) implies that each v ∈ A∪B is incident with an edge in J for at
most ε′n+ |V0| ≤ 2ε′n of the J ∈ J ′. (Recall that in a balanced exceptional system
there are no edges between A and B.) So condition (d) of Lemma 4.6.1 holds with
ε′ playing the role of ε0.

So we can indeed apply Lemma 4.6.1 to obtain a collection C4 of |J ′| edge-
disjoint Hamilton cycles in G6 which cover all edges of

⋃J ′.
Step 8: Decomposing the leftover and the robustly decomposable graph.
Finally, we can apply the ‘robust decomposition property’ of Grob guaranteed by
Corollary 4.5.4 to obtain a Hamilton decomposition of the leftover from the previous
step together with Grob.

To achieve this, let H ′ denote the subgraph of G6 obtained by deleting all
those edges lying in the Hamilton cycles from C4. Thus (4.7.11) and (4.7.12) imply
that every vertex in V0 is isolated in H ′ while every vertex v ∈ A ∪ B has degree
dG6

(v)−2|J ′| = D6 +2r−2|J ′| = 2r in H ′ (the last equality follows from (4.7.12)).
Moreover, H ′[A] and H ′[B] contain no edges. (This holds since H ′ is a spanning
subgraph of G6 −

⋃J ′ = G′6 and since we have already seen that G′6 is bipartite
with vertex classes A′ and B′.) Now let H := H ′[A,B]. Then Corollary 4.5.4(ii)(b)
implies that H + Grob has a Hamilton decomposition. Let C5 denote the set of
Hamilton cycles thus obtained. Note that H + Grob is a spanning subgraph of G
which contains all edges of G which were not covered by C1 ∪ C2 ∪ C3 ∪ C4. So
C1 ∪ C2 ∪ C3 ∪ C4 ∪ C5 is a Hamilton decomposition of G. �



CHAPTER 5

Approximate decompositions

In this chapter we prove the approximate decomposition results, Lemmas 2.5.4
and 4.6.1. Recall that Lemma 2.5.4 gives an approximate Hamilton decomposi-
tion of our graph (with some additional properties) in the two cliques case whilst
Lemma 4.6.1 gives an approximate Hamilton decomposition of our graph (with
some additional properties) in the bipartite case. After introducing some tools in
Section 5.1, we prove Lemma 2.5.4 in Sections 5.2–5.4. We then prove Lemma 4.6.1
using a similar approach in the final section. We remind the reader that many of
the relevant definitions for Lemmas 2.5.4 and 4.6.1 are stated in Sections 2.3 and 4.3
respectively.

In this chapter it is convenient to view matchings as graphs (in which every
vertex has degree precisely one).

5.1. Useful Results

5.1.1. Regular Spanning Subgraphs. The following lemma implies that
any almost complete balanced bipartite graph has an approximate decomposi-
tion into perfect matchings. The proof is a straightforward application of the
MaxFlowMinCut theorem.

Lemma 5.1.1. Suppose that 0 < 1/m� ε� ρ� 1, that 0 ≤ µ ≤ 1/4 and that
m,µm, ρm ∈ N. Suppose that Γ is a bipartite graph with vertex classes U and V
of size m and with (1− µ− ε)m ≤ δ(Γ) ≤ ∆(Γ) ≤ (1− µ+ ε)m. Then Γ contains
a spanning (1 − µ − ρ)m-regular subgraph Γ′. In particular, Γ contains at least
(1− µ− ρ)m edge-disjoint perfect matchings.

Proof. We first obtain a directed network N from Γ by adding a source s and a
sink t. We add a directed edge su of capacity (1 − µ − ρ)m for each u ∈ U and a
directed edge vt of capacity (1− µ− ρ)m for each v ∈ V . We give all the edges in
Γ capacity 1 and direct them from U to V .

Our aim is to show that the capacity of any (s, t)-cut is at least (1−µ− ρ)m2.
By the MaxFlowMinCut theorem this would imply that N admits an integer-valued
flow of value (1−µ− ρ)m2 which by construction of N implies the existence of our
desired subgraph Γ′.

Consider any (s, t)-cut (S, S) where S = {s}∪S1∪S2 with S1 ⊆ U and S2 ⊆ V .
Let S1 := U\S1 and S2 := V \S2. The capacity of this cut is

(1− µ− ρ)m(m− |S1|) + e(S1, S2) + (1− µ− ρ)m|S2|
and therefore our aim is to show that

e(S1, S2) ≥ (1− µ− ρ)m(|S1| − |S2|).(5.1.1)

143
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If |S1| ≤ (1− µ− ρ)m, then

e(S1, S2) ≥ ((1− µ− ε)m− |S2|) |S1|
= (1− µ− ρ)m(|S1| − |S2|) + (ρ− ε)m|S1|+ |S2| ((1− µ− ρ)m− |S1|)
≥ (1− µ− ρ)m(|S1| − |S2|).

Thus, we may assume that |S1| > (1−µ− ρ)m. Note that |S1| − |S2| = |S2| − |S1|.
Therefore, by a similar argument, we may also assume that |S2| > (1 − µ − ρ)m
and so |S2| ≤ (µ+ ρ)m. This implies that

e(S1, S2) ≥
∑
x∈S1

dΓ(x)−
∑
y∈S2

dΓ(y) ≥ (1− µ− ε)m|S1| − (1− µ+ ε)m|S2|

= (1− µ− ρ)m(|S1| − |S2|) + ρm(|S1| − |S2|)− εm(|S1|+ |S2|)
> (1− µ− ρ)m(|S1| − |S2|) + (1− 2µ− 2ρ)ρm2 − (1 + µ+ ρ)εm2

≥ (1− µ− ρ)m(|S1| − |S2|).
(Note that the last inequality follows as ε� ρ� 1 and µ ≤ 1/4.) So indeed (5.1.1)
is satisfied, as desired. �

5.1.2. Hamilton Cyles in Robust Outexpanders. Recall that, given 0 <
ν ≤ τ < 1, we say that a digraph G on n vertices is a robust (ν, τ)-outexpander,
if for all S ⊆ V (G) with τn ≤ |S| ≤ (1 − τ)n the number of vertices that have at
least νn inneighbours in S is at least |S| + νn. The following result was derived
in [20] as a straightforward consequence of the result from [25] that every robust
outexpander of linear minimum degree has a Hamilton cycle.

Theorem 5.1.2. Suppose that 0 < 1/n � γ � ν � τ � η < 1. Let G be a
digraph on n vertices with δ+(G), δ−(G) ≥ ηn which is a robust (ν, τ)-outexpander.
Let y1, . . . , yp be distinct vertices in V (G) with p ≤ γn. Then G contains a directed
Hamilton cycle visiting y1, . . . , yp in this order.

5.1.3. A Regularity Concept for Sparse Graphs. We now formulate a
concept of ε-superregularity which is suitable for ‘sparse’ graphs. Let G be a bi-
partite graph with vertex classes U and V , both of size m. Given A ⊆ U and
B ⊆ V , we write d(A,B) := e(A,B)/|A||B| for the density of G between A and B.
Given 0 < ε, d, d∗, c < 1, we say that G is (ε, d, d∗, c)-superregular if the following
conditions are satisfied:

(Reg1) Whenever A ⊆ U and B ⊆ V are sets of size at least εm, then d(A,B) =
(1± ε)d.

(Reg2) For all u, u′ ∈ V (G) we have |N(u) ∩N(u′)| ≤ c2m.
(Reg3) ∆(G) ≤ cm.
(Reg4) δ(G) ≥ d∗m.

Note that the above definitions also make sense if G is ‘sparse’ in the sense that
d < ε (which will be the case in our proofs). A bipartite digraph G = G[U, V ] is
(ε, d, d∗, c)-superregular if this holds for the underlying undirected graph of G.

The following observation follows immediately from the definition.

Proposition 5.1.3. Suppose that 0 < 1/m � d∗, d, ε, ε′, c � 1 and 2ε′ ≤ d∗.
Let G be an (ε, d, d∗, c)-superregular bipartite graph with vertex classes U and V of
size m. Let U ′ ⊆ U and V ′ ⊆ V with |U ′| = |V ′| ≥ (1 − ε′)m. Then G[U ′, V ′] is
(2ε, d, d∗/2, 2c)-superregular.
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The following two simple observations were made in [21].

Proposition 5.1.4. Suppose that 0 < 1/m � d∗, d, ε, c � 1. Let G be an
(ε, d, d∗, c)-superregular bipartite graph with vertex classes U and V of size m. Sup-
pose that G′ is obtained from G by removing at most ε2dm edges incident to each
vertex from G. Then G′ is (2ε, d, d∗ − ε2d, c)-superregular.

Lemma 5.1.5. Let 0 < 1/m � ν � τ � d ≤ ε � µ, ζ ≤ 1/2 and let G be an
(ε, d, ζd, d/µ)-superregular bipartite graph with vertex classes U and V of size m.
Let A ⊆ U be such that τm ≤ |A| ≤ (1 − τ)m. Let B ⊆ V be the set of all those
vertices in V which have at least νm neighbours in A. Then |B| ≥ |A|+ νm.

5.2. Systems and Balanced Extensions

5.2.1. Sketch Proof of Lemma 2.5.4. Roughly speaking, the Hamilton cy-
cles we find will have the following structure: let A1, . . . , AK ⊆ A and B1, . . . , BK ⊆
B be the clusters of the (K,m, ε0)-partition P of V (G) given in Lemma 2.5.4. So
K is odd. Let RA be the complete graph on A1, . . . , AK and RB be the complete
graph on B1, . . . , BK . Since K is odd, Walecki’s theorem [26] implies that RA has
a Hamilton decomposition CA,1, . . . , CA,(K−1)/2, and similarly RB has a Hamilton
decomposition CB,1, . . . , CB,(K−1)/2. Every Hamilton cycle C we construct in G
will have the property that there is a j so that almost all edges of C[A] wind around
CA,j and almost all edges of C[B] wind around CB,j . Below, we describe the main
ideas involved in the construction of the Hamilton cycles in more detail.

As indicated above, the first idea is that we can reduce the problem of finding
the required edge-disjoint Hamilton cycles (and possibly perfect matchings) in G
to that of finding appropriate Hamilton cycles on each of A and B separately.

More precisely, let J be a set of edge-disjoint exceptional systems as given
in Lemma 2.5.4. By deleting some edges if necessary, we may further assume
that J is an edge-decomposition of G − G[A] − G[B]. Thus, in order to prove
Lemma 2.5.4, we have to find |J | suitable edge-disjoint subgraphs HA,1, . . . ,HA,|J |
of G[A] and |J | suitable edge-disjoint subgraphs HB,1, . . . ,HB,|J | of G[B] such that
Hs := HA,s + HB,s + Js are the desired spanning subgraphs of G. To prove this,
for each J ∈ J , we consider the two corresponding auxiliary subgraphs J∗A and J∗B
defined at the beginning of Section 2.3. Thus J∗A and J∗B have the following crucial
properties:

(α1) J∗A and J∗B are matchings whose vertices are contained in A and B, re-
spectively;

(α2) the union of any Hamilton cycle C∗A in G[A] + J∗A containing J∗A (in some
suitable order) and any Hamilton cycle C∗B in G[B] + J∗B containing J∗B
(in some suitable order) corresponds to either a Hamilton cycle of G con-
taining J or to the union of two edge-disjoint perfect matchings of G
containing J .

Furthermore, J determines which of the cases in (α2) holds: If J is a Hamilton
exceptional system, then (α2) will give a Hamilton cycle of G, while in the case
when J is a matching exceptional system, (α2) will give the union of two edge-
disjoint perfect matchings of G. So roughly speaking, this allows us to work with
multigraphs G∗A := G[A] +

∑
J∈J J

∗
A and G∗B := G[B] +

∑
J∈J J

∗
B rather than G

in the two steps. Furthermore, the processes of finding Hamilton cycles in G∗A and
in G∗B are independent (see Section 5.3.1 for more details).
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By symmetry, it suffices to consider G∗A in what follows. The second idea of
the proof is that as an intermediate step, we decompose G∗A into blown-up Hamil-
ton cycles G∗A,j . Roughly speaking, we will then find an approximate Hamilton
decomposition of each G∗A,j separately.

More precisely, recall that RA denotes the complete graph whose vertex set is
{A1, . . . , AK}. As mentioned above, RA has a Hamilton decomposition CA,1, . . . ,
CA,(K−1)/2. We decompose G[A] into edge-disjoint subgraphs GA,1, . . . , GA,(K−1)/2

such that each GA,j corresponds to the ‘blow-up’ of CA,j , i.e. GA,j [U,W ] = G[U,W ]
for every edge UW ∈ E(CA,j). (The edges of G lying inside one of the clusters
A1, . . . , AK are deleted.) We also partition the set {J∗A : J ∈ J } into (K − 1)/2
sets J ∗A,1, . . . ,J ∗A,(K−1)/2 of roughly equal size. Set G∗A,j := GA,j + J ∗A,j . Thus in

order to prove Lemma 2.5.4, we need to find |J ∗A,j | edge-disjoint Hamilton cycles

in G∗A,j (for each j ≤ (K − 1)/2). Since G∗A,j is still close to being a blow-up of the
cycle CA,j , finding such Hamilton cycles seems feasible.

One complication is that in order to satisfy (α2), we need to ensure that each
Hamilton cycle in G∗A,j contains some J∗A ∈ J ∗A,j (and it must traverse the edges of

J∗A in some given order). To achieve this, we will both orient and order the edges
of J∗A. So we will actually consider an ordered directed matching J∗A,dir instead of

J∗A. (J∗A itself will still be undirected and unordered). We orient the edges of GA,j
such that the resulting oriented graph GA,j,dir is a blow-up of the directed cycle
CA,j .

However, J∗A,dir may not be ‘locally balanced with respect to CA,j ’. This means
that it is impossible to extend J∗A,dir into a directed Hamilton cycle using only edges
of GA,j,dir. For example, suppose that GA,j,dir is a blow-up of the directed cycle
A1A2 . . . AK , i.e. each edge of GA,j,dir joins Ai to Ai+1 for some 1 ≤ i ≤ K. If J∗A,dir

is non-empty and V (J∗A,dir) ⊆ A1, then J∗A,dir cannot be extended into a directed
Hamilton cycle using edges of GA,j,dir only. Therefore, each J∗A,dir will first be
extended into a ‘locally balanced path sequence’ PS. PS will have the property
that it can be extended to a Hamilton cycle using only edges of GA,j,dir. We will
call the set BEj consisting of all such PS for all J∗A ∈ J ∗A,j a balanced extension of

J ∗A,j . BEj will be constructed in Section 5.3.3, using edges from a sparse graph H ′

on A (which is actually removed from G[A] before defining GA,1, . . . , GA,(K−1)/2).
Finally, we find the required directed Hamilton cycles in GA,j,dir + BEj in

Section 5.4. We construct these by first extending the path sequences in BEj into
(directed) 1-factors, using edges which wind around the blow-up of CA,j . These are
then transformed into Hamilton cycles using a small set of edges set aside earlier
(again the set of these edges winds around the blow-up of CA,j).

5.2.2. Systems and Balanced Extensions. As mentioned above, the proof
of Lemma 2.5.4 requires an edge-decomposition and orientation of G[A] and G[B]
into blow-ups of directed cycles as well as ‘balanced extensions’. These are defined
in the current subsection.

Let k,m ∈ N. Recall that a (k,m)-equipartition Q of a set V of vertices is
a partition of V into sets V1, . . . , Vk such that |Vi| = m for all i ≤ k. The Vi
are called clusters of Q. (G,Q, C) is a (k,m, µ, ε)-cyclic system if the following
properties hold:

(Sys1) G is a digraph and Q is a (k,m)-equipartition of V (G).
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(Sys2) C is a directed Hamilton cycle on Q and G winds around C. Moreover,
for every edge UW of C, we have d+

G(u,W ) = (1−µ±ε)m for every u ∈ U
and d−G(w,U) = (1− µ± ε)m for every w ∈W .

So roughly speaking, such a cyclic system is a blown-up Hamilton cycle.
Let Q be a (k,m)-equipartition of V and let C be a directed Hamilton cycle

on Q. We say that a digraph H with V (H) ⊆ V is locally balanced with respect to
C if for every edge UW of C, the number of edges of H with initial vertex in U
equals the number of edges of H with final vertex in W .

Recall that a path sequence is a digraph which is the union of vertex-disjoint
directed paths (some of them might be trivial). Let M be a directed matching. We
say a path sequence PS is a Vi-extension of M with respect to Q if each edge of
M is contained in a distinct directed path in PS having its final vertex in Vi. Let
M := {M1, . . . ,Mq} be a set of directed matchings. A set BE of path sequences is a
balanced extension of M with respect to (Q, C) and parameters (ε, `) if BE satisfies
the following properties:

(BE1) BE consists of q path sequences PS1, . . . , PSq such that V (PSi) ⊆ V for
each i ≤ q, each PSi is locally balanced with respect to C and PS1 −
M1, . . . , PSq −Mq are edge-disjoint from each other.

(BE2) Each PSs is a Vis-extension of Ms with respect to Q for some is ≤ k.
Moreover, for each i ≤ k there are at most `m/k indices s ≤ q such that
is = i.

(BE3) |V (PSs)∩Vi| ≤ εm for all i ≤ k and s ≤ q. Moreover, for each i ≤ k, there
are at most `m/k path sequences PSs ∈ BE such that V (PSs) ∩ Vi 6= ∅.

Note that the ‘moreover part’ of (BE3) implies the ‘moreover part’ of (BE2).
Given an ordered directed matching M = {f1, . . . , f`}, we say that a directed

cycle C ′ is consistent with M if C ′ contains M and visits the edges f1, . . . , f` in this
order. The following observation will be useful: suppose that PS is a Vi-extension
of M and let xj be the final vertex of the path in PS containing fj . (So x1, . . . , x`
are distinct vertices of Vi.) Suppose also that C ′ is a directed cycle which contains
PS and visits x1, . . . , x` in this order. Then C ′ is consistent with M .

5.3. Finding Systems and Balanced Extensions for the Two Cliques
Case

Let G be a graph, let P be a (K,m, ε0)-partition of V (G) and let J be a set
of exceptional systems as given by Lemma 2.5.4. The aim of this section is to
decompose G[A] + G[B] into (k,m, µ, ε)-cyclic systems and to construct balanced
extensions as described in Section 5.2.1. First we need to define J∗A,dir and J∗B,dir for
each exceptional system J ∈ J . Recall from Section 5.2.1 that these are introduced
in order to be able to consider G[A] and G[B] separately (and thus to be able to
ignore the exceptional vertices in V0 = A0 ∪B0).

5.3.1. Defining the Graphs J∗A,dir and J∗B,dir. We recall the following def-
inition of J∗ from Section 2.3. Let A,A0, B,B0 be a partition of a vertex set V
on n vertices and let J be an exceptional system with parameter ε0. Since each
maximal path in J has endpoints in A ∪ B and internal vertices in V0, an excep-
tional system J naturally induces a matching J∗AB on A ∪ B. More precisely, if
P1, . . . , P`′ are the non-trivial paths in J and xi, yi are the endpoints of Pi, then we
define J∗AB := {xiyi : i ≤ `′}. Thus eJ∗AB

(A,B) is equal to the number of AB-paths
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in J . In particular, eJ∗AB
(A,B) is positive and even if J is a Hamilton exceptional

system, while eJ∗AB
(A,B) = 0 if J is a matching exceptional system. Without loss

of generality we may assume that x1y1, . . . , x2`y2` is an enumeration of the edges
of J∗AB [A,B], where xi ∈ A and yi ∈ B. Define

J∗A := J∗AB [A] ∪ {x2i−1x2i : 1 ≤ i ≤ `} and J∗B := J∗AB [B] ∪ {y2iy2i+1 : 1 ≤ i ≤ `}
(with indices considered modulo 2`). Let J∗ := J∗A + J∗B . So J∗ is a matching and
e(J∗) = e(J∗AB). Moreover, by (EC2), (EC3) and (ES3) we have

e(J∗) = e(J∗AB) ≤ |V0|+
√
ε0n.(5.3.1)

Recall that the edges in J∗ are called fictive edges, and that if J1 and J2 are two
edge-disjoint exceptional systems, then J∗1 and J∗2 may not be edge-disjoint.

Recall that we say that an (undirected) cycle C is consistent with J∗A if C
contains J∗A and (there is an orientation of C which) visits the vertices x1, . . . , x2`

in this order. In a similar way we define when a cycle is consistent with J∗B .
As mentioned in Section 5.2.1, we will orient and order the edges of J∗A and

J∗B in a suitable way to obtain J∗A,dir and J∗B,dir. Accordingly, we will need an
oriented version of Proposition 2.3.1. For this, we first orient the edges of J∗A
by orienting the edge x2i−1x2i from x2i−1 to x2i for all i ≤ ` and the edges of
J∗AB [A] arbitrarily. Next we order these directed edges as f1, . . . , f`A such that
fi = x2i−1x2i for all i ≤ `, where `A := e(J∗A). Define J∗A,dir to be the ordered

directed matching {f1, . . . , f`A}. Similarly, to define J∗B,dir, we first orient the
edges of J∗B by orienting the edge y2iy2i+1 from y2i to y2i+1 for all i ≤ ` and the
edges of J∗AB [B] arbitrarily. Next we order these directed edges as f ′1, . . . , f

′
`B

such
that f ′i = y2iy2i+1 for all i ≤ `, where `B := e(J∗B). Define J∗B,dir to be the ordered

directed matching {f ′1, . . . , f ′`B}. Note that if J is an (i, i′)-ES, then V (J∗A,dir) ⊆ Ai
and V (J∗B,dir) ⊆ Bi′ . Recall from Section 5.2.2 that a directed cycle CA,dir is
consistent with J∗A,dir if CA,dir contains J∗A,dir and visits the edges f1, . . . , f`A in
this order. The following proposition, which is similar to Proposition 2.8.1 follows
easily from Proposition 2.3.1.

Proposition 5.3.1. Suppose that A,A0, B,B0 forms a partition of a vertex set
V . Let J be an exceptional system. Let CA,dir and CB,dir be two directed cycles
such that

• CA,dir is a directed Hamilton cycle on A that is consistent with J∗A,dir;
• CB,dir is a directed Hamilton cycle on B that is consistent with J∗B,dir.

Then the following assertions hold, where CA and CB are the undirected cycles
obtained from CA,dir and CB,dir by ignoring the directions of all the edges.

(i) If J is a Hamilton exceptional system, then CA+CB−J∗+J is a Hamilton
cycle on V .

(ii) If J is a matching exceptional system, then CA+CB−J∗+J is the union
of a Hamilton cycle on A′ and a Hamilton cycle on B′. In particular, if
both |A′| and |B′| are even, then CA + CB − J∗ + J is the union of two
edge-disjoint perfect matchings on V .

5.3.2. Finding Systems. In this subsection, we will decompose (and orient)
G[A] into cyclic systems (GA,j,dir,QA, CA,j), one for each j ≤ (K − 1)/2. Roughly
speaking, this corresponds to a decomposition into (oriented) blown-up Hamilton
cycles. We will achieve this by considering a Hamilton decomposition of RA, where
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RA is the complete graph on {A1, . . . , AK}. So each CA,j corresponds to one of
the Hamilton cycles in this Hamilton decomposition. We will split the set {J∗A,dir :

J ∈ J } into subsets J ∗A,j and assign J ∗A,j to the jth cyclic system. Moreover, for

each j ≤ (K−1)/2, we will also set aside a sparse spanning subgraph HA,j of G[A],
which is removed from G[A] before the decomposition into cyclic systems. HA,j

will be used later on in order to find a balanced extension of J ∗A,j . We proceed

similarly for G[B].

Lemma 5.3.2. Suppose that 0 < 1/n � ε0 � 1/K � ρ � 1 and 0 ≤ µ � 1,
where n,K ∈ N and K is odd. Suppose that G is a graph on n vertices and P is
a (K,m, ε0)-partition of V (G). Furthermore, suppose that the following conditions
hold:

(a) d(v,Ai) = (1−4µ±4/K)m and d(w,Bi) = (1−4µ±4/K)m for all v ∈ A,
w ∈ B and 1 ≤ i ≤ K.

(b) There is a set J which consists of at most (1/4 − µ − ρ)n edge-disjoint
exceptional systems with parameter ε0 in G.

(c) J has a partition into K2 sets Ji,i′ (one for all 1 ≤ i, i′ ≤ K) such that
each Ji,i′ consists of precisely |J |/K2 (i, i′)-ES with respect to P.

(d) If J contains matching exceptional systems then |A′| = |B′| is even.

Then for each 1 ≤ j ≤ (K−1)/2, there is a pair of tuples (GA,j,QA,CA,j,HA,j,J ∗A,j)
and (GB,j ,QB , CB,j , HB,j ,J ∗B,j) such that the following assertions hold:

(a1) Each of CA,1, . . . , CA,(K−1)/2 is a directed Hamilton cycle on QA := {A1,
. . . , AK} such that the undirected versions of these Hamilton cycles form
a Hamilton decomposition of the complete graph on QA.

(a2) J ∗A,1, . . . ,J ∗A,(K−1)/2 is a partition of {J∗A,dir : J ∈ J }.
(a3) Each J ∗A,j has a partition into K sets J ∗A,j,i (one for each 1 ≤ i ≤ K) such

that |J ∗A,j,i| ≤ (1 − 4µ − 3ρ)m/K and each J∗A,dir ∈ J ∗A,j,i is an ordered

directed matching with e(J∗A,dir) ≤ 5K
√
ε0m and V (J∗A,dir) ⊆ Ai.

(a4) GA,1, . . . , GA,(K−1)/2, HA,1, . . . ,HA,(K−1)/2 are edge-disjoint subgraphs of
G[A].

(a5) HA,j [Ai, Ai′ ] is a 10K
√
ε0m-regular graph for all j ≤ (K − 1)/2 and all

i, i′ ≤ K with i 6= i′.
(a6) For each j ≤ (K − 1)/2, there exists an orientation GA,j,dir of GA,j such

that (GA,j,dir,QA, CA,j) is a (K,m, 4µ, 5/K)-cyclic system.
(a7) Analogous statements to (a1)–(a6) hold for CB,j ,J ∗B,j , GB,j , HB,j for all

j ≤ (K − 1)/2, with QB := {B1, . . . , BK}.

Proof. Since K is odd, by Walecki’s theorem the complete graph on {A1, . . . , AK}
has a Hamilton decomposition. (a1) follows by orienting the edges of each of these
Hamilton cycles to obtain directed Hamilton cycles CA,1, . . . , CA,(K−1)/2.

For each i, i′ ≤ K, we partition Ji,i′ into (K − 1)/2 sets Ji,i′,j (one for each
j ≤ (K − 1)/2) whose sizes are as equal as possible. Note that if J ∈ Ji,i′,j , then
J is an (i, i′)-ES and so V (J∗A,dir) ⊆ Ai. Since P is a (K,m, ε0)-partition of V (G),

|V0| ≤ ε0n and (1− ε0)n ≤ 2Km. Hence,

e(J∗A,dir) ≤ e(J∗)
(5.3.1)

≤ |V0|+
√
ε0n ≤ 5

√
ε0Km.
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(a2) is satisfied by setting J ∗A,j,i :=
⋃
i′≤K{J∗A,dir : J ∈ Ji,i′,j} and J ∗A,j :=⋃

i≤K J ∗A,j,i. Note that

|J ∗A,j,i| ≤
∑
i′≤K

(
2|Ji,i′ |
K − 1

+ 1

)
(c)
=

2|J |
K(K − 1)

+K
(b)

≤ (1/2− 2µ− 2ρ)n

K(K − 1)
+K

≤ (1− 4µ− 3ρ)m/K

as 2Km ≥ (1− ε0)n and 1/n� ε0 � 1/K � ρ. Hence (a3) holds.
For i, i′ ≤ K with i 6= i′, apply Lemma 5.1.1 with G[Ai, Ai′ ], 4/K, ρ, 4µ playing

the roles of Γ, ε, ρ, µ to obtain a spanning (1− 4µ− ρ)m-regular subgraph Hi,i′ of
G[Ai, Ai′ ]. Since Hi,i′ is a regular bipartite graph and ε0 � 1/K, ρ � 1 and 0 ≤
µ � 1, there exist (K − 1)/2 edge-disjoint 10K

√
ε0m-regular spanning subgraphs

Hi,i′,1, . . . ,Hi,i′,(K−1)/2 of Hi,i′ . Set HA,j :=
∑

1≤i,i′≤K Hi,i′,j for each j ≤ (K −
1)/2. So (a5) holds.

Define GA := G[A] − (HA,1 + · · · + HA,(K−1)/2). Note that, as ε0 � 1/K,
(a) implies that dGA

(v,Ai) = (1 − 4µ ± 5/K)m for all v ∈ A and all i ≤ K. For
each j ≤ (K − 1)/2, let GA,j be the graph on A whose edge set is the union of
GA[Ai, Ai′ ] for each edge AiAi′ ∈ E(CA,j). Define GA,j,dir to be the oriented graph
obtained from GA,j by orienting every edge in GA[Ai, Ai′ ] from Ai to Ai′ (for each
edge AiAi′ ∈ E(CA,j)). Note that (GA,j,dir,QA, CA,j) is a (K,m, 4µ, 5/K)-cyclic
system for each j ≤ (K − 1)/2. Therefore, (a4) and (a6) hold. (a7) can be proved
by a similar argument. �

5.3.3. Constructing Balanced Extensions. Let (GA,j ,QA,CA,j ,HA,j ,J ∗A,j)
be one of the 5-tuples obtained by Lemma 5.3.2. The next lemma will be applied
to find a balanced extension of J ∗A,j with respect to (QA, CA,j), using edges of

HA,j (after a suitable orientation of these edges). Consider any J∗A,dir ∈ J ∗A,j,i.
Lemma 5.3.2(a3) guarantees that V (J∗A,dir) ⊆ Ai, and so J∗A,dir is an Ai-extension
of itself. Therefore, in order to find a balanced extension of J ∗A,j , it is enough to ex-
tend each J∗A,dir ∈ J ∗A,j into a locally balanced path sequence by adding a directed

matching which is vertex-disjoint from J∗A,dir in such a way that (BE3) is satisfied
as well.

Lemma 5.3.3. Suppose that 0 < 1/m � ε � 1 and that m, k ∈ N with k ≥ 3.
Let Q = {V1, . . . , Vk} be a (k,m)-equipartition of a set V of vertices and let C =
V1 . . . Vk be a directed cycle. Suppose that there exist a set M and a graph H on V
such that the following conditions hold:

(i) M can be partitioned into k sets M1, . . . ,Mk such that |Mi| ≤ m/k
and each M ∈ Mi is an ordered directed matching with e(M) ≤ εm and
V (M) ⊆ Vi (for all i ≤ k).

(ii) H[Vi−1, Vi+1] is a 2εm-regular graph for all i ≤ k.

Then there exist an orientation Hdir of H and a balanced extension BE of M with
respect to (Q, C) and parameters (2ε, 3) such that each path sequence in BE is
obtained from some M ∈M by adding edges of Hdir.

Proof. Fix i ≤ k and write Mi := {M1, . . . ,M|Mi|}. We orient each edge in
H[Vi−1, Vi+1] from Vi−1 to Vi+1. By (ii), H[Vi−1, Vi+1] can be decomposed into 2εm
perfect matchings. Each perfect matching can be split into 1/2ε matchings, each
containing at least εm edges. Recall from (i) that |Mi| ≤ m/k and e(Mj) ≤ εm
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for all Mj ∈ Mi. Hence, H[Vi−1, Vi+1] contains |Mi| edge-disjoint matchings
M ′1, . . . ,M

′
|Mi| with e(M ′j) = e(Mj) for all j ≤ |Mi|. Define PSj := Mj ∪M ′j .

Note that PSj is locally balanced with respect to C. Also, PSj is a Vi-extension
of Mj (as Mj ∈Mi and so V (Mj) ⊆ Vi by (i)). Moreover,

|V (PSj) ∩ Vi′ | =


|V (Mj)| = 2e(Mj) ≤ 2εm if i′ = i,

e(Mj) ≤ εm if i′ = i+ 1 or i′ = i− 1,

0 otherwise.

(5.3.2)

For each i ≤ k, set PSi := {PS1, . . . , PS|Mi|}. Therefore, BE :=
⋃
i≤k PSi is a

balanced extension of M with respect to (Q, C) and parameters (2ε, 3). Indeed,
(BE3) follows from (5.3.2). As remarked after the definition of a balanced exten-
sion, this also implies the ‘moreover part’ of (BE2). Hence the lemma follows (by
orienting the remaining edges of H arbitrarily). �

5.4. Constructing Hamilton Cycles via Balanced Extensions

Recall that a cyclic system can be viewed as a blow-up of a Hamilton cycle.
Given a cyclic system (G,Q, C) and a balanced extension BE of a setM of ordered
directed matchings, our aim is to extend each path sequence in BE into a Hamilton
cycle using edges of G. Moreover, each Hamilton cycle has to be consistent with a
distinct M ∈M. This is achieved by the following lemma, which is the key step in
proving Lemma 2.5.4.

Lemma 5.4.1. Suppose that 0 < 1/m � ε0, ε
′, 1/k � 1/`, ρ ≤ 1, that 0 ≤

µ, ρ � 1 and that m, k, `, q ∈ N with q ≤ (1 − µ − ρ)m. Let (G,Q, C) be a
(k,m, µ, ε′)-cyclic system and let M = {M1, . . . ,Mq} be a set of q ordered directed
matchings. Suppose that BE = {PS1, . . . , PSq} is a balanced extension of M with
respect to (Q, C) and parameters (ε0, `) such that for each s ≤ q, Ms ⊆ PSs. Then
there exist q Hamilton cycles C1, . . . , Cq in G + BE such that for all s ≤ q, Cs
contains PSs and is consistent with Ms, and such that C1−PS1, . . . , Cq−PSq are
edge-disjoint subgraphs of G.

Lemma 5.4.1 will be used both in the two cliques case (i.e. to prove Lemma 2.5.4)
and in the bipartite case (i.e. to prove Lemma 4.6.1).

We now give an outline of the proof of Lemma 5.4.1, where for simplicity we
assume that the path sequences in the balanced extension BE are edge-disjoint
from each other. Our first step is to remove a sparse subdigraph H from G (see
Lemma 5.4.2), and set G′ := G−H. Next we extend each path sequence in BE into
a (directed) 1-factor using edges of G′ such that all these 1-factors are edge-disjoint
from each other (see Lemma 5.4.3). Finally, we use edges of H to transform the
1-factors into Hamilton cycles (see Lemma 5.4.6).

The following lemma enables us to find a suitable sparse subdigraph H of G.
Recall that (ε, d, d∗, c)-superregularity was defined in Section 5.1.3.

Lemma 5.4.2. Suppose that 0 < 1/m � ε′ � γ � ε � 1 and 0 ≤ µ � ε.
Let G be a bipartite graph with vertex classes U and W of size m such that d(v) =
(1 − µ ± ε′)m for all v ∈ V (G). Then there is a spanning subgraph H of G which
satisfies the following properties:

(i) H is (ε, 2γ, γ, 3γ)-superregular.
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(ii) Let G′ := G−H. Then dG′(v) = (1− µ± 4γ)m for all v ∈ V (G).

Proof. Note that δ(G) ≥ (1 − µ − ε′)m ≥ (1 − ε3)m as ε′, µ � ε � 1. Thus,
whenever A ⊆ U and B ⊆W are sets of size at least εm, then

eG(A,B) ≥ (|B| − ε3m)|A| ≥ (1− ε2)|A||B|.(5.4.1)

Let H be a random subgraph of G which is obtained by including each edge of G
with probability 2γ. (5.4.1) implies that whenever A ⊆ U and B ⊆ W are sets of
size at least εm then

2γ(1− ε2)|A||B| ≤ E(eH(A,B)) ≤ 2γ|A||B|.(5.4.2)

Further, for all u, u′ ∈ V (H),

E(|NH(u) ∩NH(u′)|) ≤ 4γ2m(5.4.3)

and

3γm/2 ≤ E(δ(H)),E(∆(H)) ≤ 2γm.(5.4.4)

Thus, (5.4.2)–(5.4.4) together with Proposition 1.4.4 imply that, with high proba-
bility, H is an (ε, 2γ, γ, 3γ)-superregular pair. Since ∆(H) ≤ 3γm by (Reg3) and
ε′ � γ, G′ satisfies (ii). �

5.4.1. Transforming a Balanced Extension into 1-factors. The next
lemma will be used to extend each locally balanced path sequence PS belong-
ing to a balanced extension BE into a (directed) 1-factor using edges from G′. We
will select the edges from G′ in such a way that (apart from the path sequences)
the 1-factors obtained are edge-disjoint.

Lemma 5.4.3. Suppose that 0 < 1/m � 1/k ≤ ε � ρ, 1/` ≤ 1, that ρ � 1,
that 0 ≤ µ ≤ 1/4 and that q,m, k, ` ∈ N with q ≤ (1− µ− ρ)m. Let (G,Q, C) be a
(k,m, µ, ε)-cyclic system, where C = V1 . . . Vk. Suppose that there exists a set PS
of q path sequences PS1, . . . , PSq satisfying the following conditions:

(i) Each PSs ∈ PS is locally balanced with respect to C.
(ii) |V (PSs) ∩ Vi| ≤ εm for all i ≤ k and s ≤ q. Moreover, for each i ≤ k,

there are at most `m/k PSs such that V (PSs) ∩ Vi 6= ∅.
Then there exist q directed 1-factors F1, . . . , Fq in G + PS such that for all s ≤ q
PSs ⊆ Fs and F1 − PS1, . . . , Fq − PSq are edge-disjoint subgraphs of G.

Proof. By changing the values of ρ, µ and ε slightly, we may assume that ρm, µm ∈
N. For each s ≤ q and each i ≤ k, let V s,−i (or V s,+i ) be the set of vertices in Vi
with indegree (or outdegree) one in PSs. Since each PSs is locally balanced with

respect to C, |V s,+i | = |V s,−i+1 | ≤ εm for all s ≤ q and all i ≤ k (where the inequality
follows from (ii)). To prove the lemma, it suffices to show that for each i ≤ k,
there exist edge-disjoint directed matchings M1

i , . . . ,M
q
i , so that each Ms

i is a

perfect matching in G[Vi \ V s,+i , Vi+1 \ V s,−i+1 ]. The lemma then follows by setting
Fs := PSs +

∑
i≤kM

s
i for each s ≤ q.

Fix any i ≤ k. Without loss of generality (by relabelling the PSs if necessary)

we may assume that there exists an integer s0 such that V s,+i 6= ∅ for all s ≤ s0

and V s,+i = ∅ for all s0 < s ≤ q. By (ii), s0 ≤ `m/k. Suppose that for some s
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with 1 ≤ s ≤ s0 we have already found our desired matchings M1
i , . . . ,M

s−1
i in

G[Vi, Vi+1]. Let

V ′i := Vi \ V s,+i , V ′i+1 := Vi+1 \ V s,−i+1 and Gs := G[V ′i , V
′
i+1]−

∑
s′<s

Ms′

i .

Note that each v ∈ V ′i satisfies

d+
Gs

(v) ≥ d+
G(v, Vi+1)− (|V s,−i+1 |+ s0) ≥ (1− µ− (2ε+ `/k))m ≥ (1− µ−√ε)m

by (Sys2) and the fact that 1/k ≤ ε � 1/`. Similarly, each v ∈ V ′i+1 satisfies

d−Gs
(v) ≥ (1−µ−√ε)m. Thus Gs contains a perfect matching Ms

i (this follows, for

example, from Hall’s theorem). So we can find edge-disjoint matchingsM1
i , . . . ,M

s0
i

in G[Vi, Vi+1].
Let G′ be the subdigraph of G[Vi, Vi+1] obtained by removing all the edges in

M1
i , . . . ,M

s0
i . Since V s,+i = ∅ for all s0 < s ≤ q (and thus also V s,−i+1 = ∅ for all

such s), in order to prove the lemma it suffices to find q − s0 edge-disjoint perfect
matchings in G′. Each v ∈ Vi satisfies

d+
G′(v) = d+

G(v, Vi+1)± s0 = d+
G(v, Vi+1)± `m/k = (1− µ±√ε)m

by (Sys2) and the fact that 1/k ≤ ε � 1/`. Similarly, each v ∈ Vi+1 satisfies
d−G′(v) = (1 − µ ± √ε)m. Set ρ′ := ρ + s0/m. Note that ρ′m ∈ N and ρ ≤ ρ′ ≤
ρ+ `/k ≤ 2ρ as 1/k � 1/`, ρ. Hence, ε� ρ′ � 1. Thus we can apply Lemma 5.1.1
with G′, ρ′,

√
ε playing the roles of Γ, ρ, ε to obtain (1 − µ − ρ′)m edge-disjoint

perfect matchings in G′. Since (1− µ− ρ′)m = (1− µ− ρ)m− s0 ≥ q − s0, there
exists q− s0 edge-disjoint perfect matchings Ms0+1

i , . . . ,Mq
i in G′. This completes

the proof of the lemma. �

5.4.2. Merging Cycles to Obtain Hamilton Cycles. Recall that we have
removed a sparse subdigraph H from G and that G′ = G−H. Our final step in the
proof of Lemma 5.4.1 is to merge the cycles from each of the 1-factors Fs returned
by Lemma 5.4.3 to obtain edge-disjoint (directed) Hamilton cycles. We will apply
Lemma 5.4.4 to merge the cycles of each Fs, using the edges in H. However, the
Hamilton cycles obtained in this way might not be consistent with the matching
Ms ∈M that lies in PSs. Lemma 5.4.5 is designed to deal with this issue.

Lemma 5.4.4 was proved in [21] and was first used to construct approximate
Hamilton decompositions in [31]. Roughly speaking, it asserts the following: sup-
pose that we have a 1-factor F where most of the edges wind around a cycle
C = V1 . . . Vk. Suppose also that we have a digraph H which winds around C.
(More precisely, H is the union of superregular pairs H[Vi, Vi+1].) Then we can
transform F into a Hamilton cycle C ′ by using a few edges of H. The crucial point
is that when applying this lemma, the edges in C ′ − F can be taken from a small
number of the superregular pairs H[Vi, Vi+1] (i.e. the set J in Lemma 5.4.4 will
be very small compared to k). In this way, we can transform many 1-factors F
into edge-disjoint Hamilton cycles without using any of the pairs H[Vi, Vi+1] too
often. This in turn means that we will be able to transform all of our 1-factors into
edge-disjoint Hamilton cycles by using the edges of a single sparse graph H.

Lemma 5.4.4. Suppose that 0 < 1/m � d′ � ε � d � ζ, 1/t ≤ 1/2. Let
V1, . . . , Vk be pairwise disjoint clusters, each of size m, and let C = V1 . . . Vk be
a directed cycle on these clusters. Let H be a digraph on V1 ∪ · · · ∪ Vk and let
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J ⊆ E(C). For each edge ViVi+1 ∈ J , let V 1
i ⊆ Vi and V 2

i+1 ⊆ Vi+1 be such that

|V 1
i | = |V 2

i+1| ≥ m/100 and such that H[V 1
i , V

2
i+1] is (ε, d′, ζd′, td′/d)-superregular.

Suppose that F is a 1-regular digraph with V1 ∪ · · · ∪ Vk ⊆ V (F ) such that the
following properties hold:

(i) For each edge ViVi+1 ∈ J the digraph F [V 1
i , V

2
i+1] is a perfect matching.

(ii) For each cycle D in F there is some edge ViVi+1 ∈ J such that D contains
a vertex in V 1

i .
(iii) Whenever ViVi+1, VjVj+1 ∈ J are such that J avoids all edges in the

segment Vi+1CVj of C from Vi+1 to Vj, then F contains a path Pij joining
some vertex ui+1 ∈ V 2

i+1 to some vertex u′j ∈ V 1
j such that Pij winds

around C.

Then we can obtain a directed cycle on V (F ) from F by replacing F [V 1
i , V

2
i+1] with

a suitable perfect matching in H[V 1
i , V

2
i+1] for each edge ViVi+1 ∈ J .

Lemma 5.4.5. Suppose that 0 < 1/m � γ � d′ � ε � d � ζ, 1/t ≤ 1/2.
Let V1, . . . , Vk be pairwise disjoint clusters, each of size m, and let C = V1 . . . Vk
be a directed cycle on these clusters. Let 1 ≤ i ≤ k be fixed and let V 1

i ⊆ Vi and
V 2
i+1 ⊆ Vi+1 be such that |V 1

i | = |V 2
i+1| ≥ m/100. Suppose that H = H[V 1

i , V
2
i+1] is

an (ε, d′, ζd′, td′/d)-superregular bipartite digraph. Let X = {x1, . . . , xp} ⊆ V 1
i with

|X| ≤ γm. Suppose that C ′ is a directed cycle with V1 ∪ · · · ∪ Vk ⊆ V (C ′) such that
C ′[V 1

i , V
2
i+1] is a perfect matching. Then we can obtain a directed cycle on V (C ′)

from C ′ that visits the vertices x1, . . . , xp in order by replacing C ′[V 1
i , V

2
i+1] with a

suitable perfect matching in H[V 1
i , V

2
i+1].

Proof. Pick ν and τ such that γ � ν � τ � d′. For every u ∈ V 1
i , starting at

u we move along the cycle C ′ (but in the opposite direction to the orientation of
the edges) and let f(u) be the first vertex on C ′ in V 2

i+1. (Note that f(u) exists

since C ′[V 1
i , V

2
i+1] is a perfect matching. Moreover, f(u) 6= f(v) if u 6= v.) Define

an auxiliary digraph A on V 2
i+1 such that N+

A (f(u)) := N+
H (u). So A is obtained

by identifying each pair (u, f(u)) into one vertex with an edge from (u, f(u)) to
(v, f(v)) if H has an edge from u to f(v). So Lemma 5.1.5 applied with d′, d/t
playing the roles of d, µ implies that A is a robust (ν, τ)-outexpander. Moreover,
δ+(A), δ−(A) ≥ ζd′|V 2

i+1| = ζd′|A| by (Reg4). Thus Theorem 5.1.2 implies that A
has a Hamilton cycle visiting f(x1), . . . , f(xp) in order, which clearly corresponds
to a perfect matching M in H with the desired property. �

The above proof idea is actually quite similar to that for Lemma 5.4.4 itself.
We now apply Lemmas 5.4.4 and 5.4.5 to each 1-factor Fs given by Lemma 5.4.3
and obtain edge-disjoint Hamilton cycles that are consistent with the Ms.

Lemma 5.4.6. Suppose that 0 < 1/m � ε0, 1/k � γ � ε � 1, that γ �
1/` ≤ 1 and that q,m, k, ` ∈ N. Let Q = {V1, . . . , Vk} be a (k,m)-equipartition of
a vertex set V and let C = V1 . . . Vk be a directed cycle. Let M = {M1, . . . ,Mq}
be a set of ordered directed matchings. Suppose that BE = {PS1, . . . , PSq} is a
balanced extension of M with respect to (Q, C) and parameters (ε0, `). Further-
more, suppose that there exist 1-regular digraphs F1, . . . , Fq on V such that for each
s ≤ q, PSs ⊆ Fs and such that Fs − PSs winds around C. Let H be a digraph
on V which is edge-disjoint from each of F1 − PS1, . . . , Fq − PSq and such that
H[Vi, Vi+1] is (ε, 2γ, γ, 3γ)-superregular for all i ≤ k. Then there exist q Hamilton
cycles C1, . . . , Cq in F1 + · · ·+Fq +H such that Cs contains PSs and is consistent



5.4. CONSTRUCTING HAMILTON CYCLES VIA BALANCED EXTENSIONS 155

with Ms for all s ≤ q and such that C1−F1, . . . , Cq−Fq are edge-disjoint subgraphs
of H.

Proof. Recall from (BE2) that for each s ≤ q there is some is ≤ k such that PSs
is a Vis-extension of Ms. In particular, Ms ⊆ PSs. Let Is be the set consisting
of all i ≤ k such that Vi ∩ V (PSs) 6= ∅. Since BE is a balanced extension with
parameters (ε0, `), (BE3) implies that for every i ≤ k we have

|{s : i ∈ Is}| ≤ `m/k.(5.4.5)

For each s ≤ q in turn, we are going to show that there exist Hamilton cycles
C1, . . . , Cs in F1 + · · ·+ Fs +H such that

(as) PSs′ ⊆ Cs′ and Cs′ is consistent with Ms′ for all s′ ≤ s,
(bs) E(Cs′ − Fs′) ⊆

⋃
i∈Is′

E(H[Vi, Vi+1]) for all s′ ≤ s,
(cs) C1 − F1, . . . , Cs − Fs are pairwise edge-disjoint.

So suppose that for some s with 1 ≤ s ≤ q we have already constructed C1, . . . , Cs−1.
We now construct Cs as follows. Let Hs := H −∑s′<s(Cs′ − Fs′). Define a new
constant d such that ε� d� 1.

Our first task is to apply Lemma 5.4.4 to Fs to merge all the cycles in Fs into a
Hamilton cycle using only edges of Hs. For each i ∈ Is, let V −i be the set of vertices
in Vi with indegree one in PSs and let V +

i be the set of vertices in Vi with outdegree
one in PSs. Set V 1

i := Vi\V +
i and V 2

i+1 := Vi+1\V −i+1. Since PSs is locally balanced,

|V +
i | = |V −i+1| ≤ ε0m for all i ∈ Is (where the inequality holds by (BE3)). By (bs−1)

and (5.4.5), Hs[Vi, Vi+1] is obtained from H[Vi, Vi+1] by removing at most |{s′ <
s : i ∈ Is′}| ≤ `m/k ≤ ε2γm edges from each vertex (as 1/k � ε, γ, 1/`). So by
Proposition 5.1.4, Hs[Vi, Vi+1] is still (2ε, 2γ, γ/2, 3γ)-superregular for each i ∈ Is.
Recall that |Vi \ V 1

i | = |Vi+1 \ V 2
i+1| ≤ ε0m. Hence Hs[V

1
i , V

2
i+1] is (4ε, 2γ, γ/4, 6γ)-

superregular by Proposition 5.1.3 and thus also (4ε, 2γ, γ/4, 4γ/d)-superregular.
Let Es := {ViVi+1 : i ∈ Is}. Our aim is to apply Lemma 5.4.4 with Fs,

Es, Hs, 4ε, 2γ, 2, 1/8 playing the roles of F , J , H, ε, d′, t, ζ. Our assumption
that Fs − PSs winds around C implies that for each i ∈ Is, Fs[V

1
i , V

2
i+1] is a

perfect matching. So Lemma 5.4.4(i) holds. Note that every final vertex of a
nontrivial path in PSs must lie in

⋃
i∈Is V

1
i , implying Lemma 5.4.4(ii). Finally,

recall that |V 1
i |, |V 2

i+1| ≥ (1 − ε0)m for all i ∈ Is. Together with our assumption
that Fs − PSs winds around C, this easily implies Lemma 5.4.4(iii). So we can
apply Lemma 5.4.4 to obtain a Hamilton cycle C ′s which is constructed from Fs
by replacing Fs[V

1
i , V

2
i+1] with a suitable perfect matching in Hs[V

1
i , V

2
i+1] for each

i ∈ Is. In particular, PSs ⊆ C ′s.
Let H ′s := Hs− (C ′s−Fs). Recall that Ms is an ordered directed matching, say

Ms = {e1, . . . , er}, and that PSs is a Vis -extension of Ms. For each j ≤ r, let Pj
be the path in PSs containing ej and let xj denote the final vertex of Pj . Hence
x1, . . . , xr are distinct and lie in V 1

is
. Together with (BE3) this implies that r ≤

ε0m. Note that H ′s[V
1
is
, V 2
is+1] is obtained from Hs[V

1
is
, V 2
is+1] by removing a perfect

matching, namely C ′s[V
1
is
, V 2
is+1]. So by Proposition 5.1.4, H ′s[V

1
is
, V 2
is+1] is still

(8ε, 2γ, γ/8, 4γ/d)-superregular. Apply Lemma 5.4.5 with C ′s, is, H
′
s[V

1
is
, V 2
is+1], ε0,

8ε, 2γ, 2, 1/16 playing the roles of C ′, i, H, γ, ε, d′, t, ζ to obtain a Hamilton cycle
Cs which visits x1, . . . , xr in this order and is constructed from C ′s by replacing the
perfect matching C ′s[V

1
is
, V 2
is+1] with a suitable perfect matching in H ′s[V

1
is
, V 2
is+1].

In particular, PSs ⊆ Cs.
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Note that E(Cs − Fs) ⊆
⋃
i∈Is E(Hs[Vi, Vi+1]), so (bs) and (cs) hold. Since

PSs ⊆ Cs and xj is the final vertex of Pj and since ej ∈ E(Pj), it follows that Cs
visits the edges e1, . . . , er in order. So Cs is consistent with Ms, implying (as).

�

Proof of Lemma 5.4.1. Let Q = {V1, . . . , Vk}. By relabeling the Vi if neces-
sary, we may assume that C = V1 . . . Vk. Define new constants γ and ε such that
ε0, ε

′, 1/k � γ � ε, ρ, 1/` and µ � ε � 1. For each i ≤ k we apply Lemma 5.4.2
to (the underlying undirected graph of) G[Vi, Vi+1] in order to obtain a spanning
subdigraph H of G which satisfies the following properties:

(i′) For each i ≤ k, H[Vi, Vi+1] is (ε, 2γ, γ, 3γ)-superregular.
(ii′) Let G′ := G−H. Then (G′,Q, C) is a (k,m, µ, 4γ)-cyclic system.

Indeed, (ii′) follows easily from Lemma 5.4.2(ii) and the definition of a (k,m, µ, 4γ)-
cyclic system. Recall that BE = {PS1, . . . , PSq} with Ms ⊆ PSs for all s ≤ q. Our
next aim is to apply Lemma 5.4.3 with G′, BE , 4γ playing the roles of G, PS,
ε to obtain 1-factors Fs extending the PSs. Note that (BE1) and (BE3) imply
that conditions (i) and (ii) of Lemma 5.4.3 hold. So we can apply Lemma 5.4.3
to obtain q (directed) 1-factors F1, . . . , Fq in G′ + BE such that PSs ⊆ Fs for all
s ≤ q and F1 − PS1, . . . , Fq − PSq are edge-disjoint subgraphs of G′. Recall from
(ii′) and (Sys2) that G′ (and thus also Fs − PSs) winds around C. So we can
apply Lemma 5.4.6 to obtain q Hamilton cycles C1, . . . , Cq in F1 + · · · + Fq + H
such that Cs contains PSs and is consistent with Ms for all s ≤ q, and such that
C1 − F1, . . . , Cq − Fq are edge-disjoint subgraphs of H. Since H and G′ are edge-
disjoint, C1 − PS1, . . . , Cq − PSq are edge-disjoint subgraphs of G. �

We can now put everything together to prove the approximate decomposition
lemma in the two cliques case. First we apply Lemma 5.3.2 to obtain cyclic systems
and sparse subgraphs HA,j and HB,j . Then we apply Lemma 5.3.3 to balance out
the exceptional systems into balanced extensions. Next, we apply Lemma 5.4.1 to
A and B separately to extend the balanced extensions into Hamilton cycles.

Proof of Lemma 2.5.4. Apply Lemma 5.3.2 to G,P and J to obtain (for each
1 ≤ j ≤ (K−1)/2) pairs of tuples (GA,j ,QA, CA,j , HA,j ,J ∗A,j) and (GB,j ,QB , CB,j ,
HB,j ,J ∗B,j) which satisfy (a1)–(a7). Fix j ≤ (K− 1)/2. Write J ∗A,j = {J∗A,dir,1, . . . ,

J∗A,dir,q}, where

(5.4.6) q := |J ∗A,j | ≤ (1− 4µ− 3ρ)m

by (a3). We now apply Lemma 5.3.3 with J ∗A,j ,QA, CA,j , HA,j ,K, 5K
√
ε0 playing

the roles ofM,Q, C,H, k, ε to obtain an orientation HA,j,dir of HA,j and a balanced
extension BEj of J ∗A,j with respect to (QA, CA,j) and parameters (10K

√
ε0, 3).

(Note that (a3) and (a5) imply conditions (i) and (ii) of Lemma 5.3.3.) Write
BEj := {PS1, . . . , PSq} such that J∗A,dir,s ⊆ PSs for all s ≤ q. So (BE1) implies
that PS1−J∗A,dir,1, . . . , PSq−J∗A,dir,q are edge-disjoint subgraphs of HA,j,dir. Since

(GA,j,dir,QA, CA,j) is a (K,m, 4µ, 5/K)-cyclic system by (a6), (5.4.6) implies that
we can apply Lemma 5.4.1 as follows:

GA,j,dir QA CA,j K J ∗A,j q 4µ 3ρ 10K
√
ε0 5/K 3

plays role of G Q C k M q µ ρ ε0 ε′ `
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In this way we obtain q directed Hamilton cycles C ′A,j,1, . . . , C
′
A,j,q in GA,j,dir +BEj

such that C ′A,j,s contains PSs and is consistent with J∗A,dir,s for all s ≤ q. Moreover,

C ′1 − J∗A,dir,1, . . . , C
′
q − J∗A,dir,q are edge-disjoint subgraphs of GA,j,dir + HA,j,dir.

Repeat this process for all j ≤ (K − 1)/2.
Write J = {J1, . . . , J|J |}. Recall from (a2) that the J ∗A,1, . . . ,J ∗A,(K−1)/2 par-

tition {J∗A,dir : J ∈ J }. Therefore, we have obtained |J | directed Hamilton cycles

C ′A,1, . . . , C
′
A,|J | on vertex set A. Moreover, by relabelling the Js if necessary, we

may assume that C ′A,s is consistent with (Js)
∗
A,dir for all s ≤ |J |. Furthermore, (a4)

implies that the undirected versions of C ′A,1− (J1)∗A,dir, . . . , C
′
A,|J |− (J|J |)

∗
A,dir are

edge-disjoint spanning subgraphs of G[A].
Similarly we obtain directed Hamilton cycles C ′B,1, . . . , C

′
B,|J | on vertex set B

so that (Js)
∗
B,dir ⊆ C ′B,s for all s ≤ |J |. Let Hs be the undirected graph obtained

from C ′A,s+C ′B,s−J∗s +Js by ignoring all the orientations of the edges. Recall that
J1, . . . , J|J | are edge-disjoint exceptional systems and that they are edge-disjoint
from the C ′A,s + C ′B,s − J∗s by (EC3). So H1, . . . ,H|J | are edge-disjoint spanning
subgraphs of G. Finally, Proposition 5.3.1 implies that H1, . . . ,H|J | are indeed as
desired in Lemma 2.5.4. �

5.5. The Bipartite Case

Roughly speaking, the idea in this case is to reduce the problem of finding
the desired edge-disjoint Hamilton cycles in G to that of finding suitable Hamilton
cycles in an almost complete balanced bipartite graph. This is achieved by consid-
ering the graphs J∗dir, whose definition we recall in the next subsection. The main
steps are similar to those in the proof of Lemma 2.5.4 (in fact, we re-use several of
the lemmas, in particular Lemma 5.4.1).

We will construct the graphs J∗dir, which are based on balanced exceptional
systems J , in Section 5.5.1. In Section 5.5.2 we describe a decomposition of G into
blown-up Hamilton cycles. We will construct balanced extensions in Section 5.5.3
(this is more difficult than in the two cliques case). Finally, we obtain the desired
Hamilton cycles using Lemma 5.4.1 (in the same way as in the two cliques case).

5.5.1. Defining the Graphs J∗dir for the Bipartite Case. In this section
we recall a number of definitions from Section 4.4.1. Let P be a (K,m, ε)-partition
of a vertex set V and let J be a balanced exceptional system with respect to P.
Since each maximal path in J has endpoints in A ∪ B and internal vertices in V0

by (BES1), a balanced exceptional system J naturally induces a matching J∗AB on
A ∪ B. More precisely, if P1, . . . , P`′ are the non-trivial paths in J and xi, yi are
the endpoints of Pi, then we define J∗AB := {xiyi : i ≤ `′}. Thus J∗AB is a matching
by (BES1) and e(J∗AB) ≤ e(J). Moreover, J∗AB and E(J) cover exactly the same ver-
tices in A. Similarly, they cover exactly the same vertices in B. So (BES3) implies
that e(J∗AB [A]) = e(J∗AB [B]). We can write E(J∗AB [A]) = {x1x2, . . . , x2s−1x2s},
E(J∗AB [B]) = {y1y2, . . . , y2s−1y2s} and E(J∗AB [A,B]) = {x2s+1y2s+1, . . . , xs′ys′},
where xi ∈ A and yi ∈ B. Define J∗ := {xiyi : 1 ≤ i ≤ s′}. Note that

e(J∗) = e(J∗AB) ≤ e(J).(5.5.1)
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As before, all edges of J∗ are called fictive edges. Recall that an (undirected) cycle
D is consistent with J∗ if D contains J∗ and (there is an orientation of D which)
visits the vertices x1, y1, x2, . . . , ys′−1, xs′ , ys′ in this order.

We will need a directed version of Proposition 4.4.1(ii). This directed version
immediately follows from Proposition 4.4.1(ii) and is similar to Proposition 4.4.2.
For this, define J∗dir to be the ordered directed matching {f1, . . . , fs′} such that fi
is a directed edge from xi to yi for all i ≤ s′. So J∗dir consists only of AB-edges.
Similarly to the undirected case, we say that a directed cycle Ddir is consistent with
J∗dir if Ddir contains J∗dir and visits the edges f1, . . . , fs′ in this order.

Proposition 5.5.1. Let P be a (K,m, ε)-partition of a vertex set V . Let G be
a graph on V and let J be a balanced exceptional system with respect to P such that
J ⊆ G. Suppose that Ddir is a directed Hamilton cycle on A ∪ B such that Ddir is
consistent with J∗dir. Furthermore, suppose that D − J∗ ⊆ G, where D is the cycle
obtained from Ddir after ignoring the directions of all edges. Then D− J∗ + J is a
Hamilton cycle of G.

5.5.2. Finding Systems. The following lemma gives a decomposition of an
almost complete bipartite graph G into blown-up Hamilton cycles (together with
an associated decomposition of exceptional systems). Its proof is almost the same
as that of Lemma 5.3.2, so we omit it here. The only difference is that instead of
Walecki’s theorem we use a result of Auerbach and Laskar [1] to decompose the
complete bipartite graph KK,K into Hamilton cycles, where K is even.

Lemma 5.5.2. Suppose that 0 < 1/n � ε0 � 1/K � ρ � 1 and 0 ≤ µ � 1,
where n,K ∈ N and K is even. Suppose that G is a graph on n vertices and P =
{A0, A1, . . . , AK , B0, B1, . . . , BK} is a (K,m, ε0)-partition of V (G). Furthermore,
suppose that the following conditions hold:

(a) d(v,Bi) = (1−4µ±4/K)m and d(w,Ai) = (1−4µ±4/K)m for all v ∈ A,
w ∈ B and 1 ≤ i ≤ K.

(b) There is a set J which consists of at most (1/4 − µ − ρ)n edge-disjoint
exceptional systems with parameter ε0 in G.

(c) J has a partition into K4 sets Ji1,i2,i3,i4 (one for all 1 ≤ i1, i2, i3, i4 ≤ K)
such that each Ji1,i2,i3,i4 consists of precisely |J |/K4 (i1, i2, i3, i4)-BES
with respect to P.

Then for each 1 ≤ j ≤ K/2, there is a tuple (Gj ,Q, Cj , Hj ,Jj) such that the
following assertions hold, where Q := {A1, . . . , AK , B1, . . . , BK}:

(a1) Each of C1, . . . , CK/2 is a directed Hamilton cycle on Q such that the undi-
rected versions of these cycles form a Hamilton decomposition of the com-
plete bipartite graph whose vertex classes are {A1, . . . , AK} and {B1, . . . ,
BK}.

(a2) J1, . . . ,JK/2 is a partition of J .

(a3) Each Jj has a partition into K4 sets Jj,i1,i2,i3,i4 (one for all 1 ≤ i1, i2, i3, i4
≤ K) such that Jj,i1,i2,i3,i4 consists of (i1, i2, i3, i4)-BES with respect to P
and |Jj,i1,i2,i3,i4 | ≤ (1− 4µ− 3ρ)m/K4.

(a4) G1, . . . , GK/2, H1, . . . ,HK/2 are edge-disjoint subgraphs of G[A,B].
(a5) Hj [Ai, Bi′ ] is a (11K + 248/K)ε0m-regular graph for all j ≤ K/2 and all

i, i′ ≤ K.
(a6) For each j ≤ K/2, there exists an orientation Gj,dir of Gj such that

(Gj,dir,Q, Cj) is a (2K,m, 4µ, 5/K)-cyclic system.
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5.5.3. Constructing Balanced Extensions. Let P = {A0, A1, . . . , AK , B0,
B1, . . . , BK} be a (K,m, ε)-partition of a vertex set V , let Q := {A1,. . . ,AK ,B1,. . . ,
BK} and let C = A1B1A2B2 . . . AKBK be a directed cycle. Given a set J of
balanced exceptional systems with respect to P, we write J ∗dir := {J∗dir : J ∈ J }.
So J ∗dir is a set of ordered directed matchings and thus it makes sense to construct a
balanced extension of J ∗dir with respect to (Q, C). (Recall that balanced extensions
were defined in Section 5.2.2.)

Now consider any of the tuples (Gj ,Q, Cj , Hj ,Jj) guaranteed by Lemma 5.5.2.
We will apply the following lemma to find a balanced extension of (Jj)∗dir with
respect to (Q, Cj), using edges of Hj (after a suitable orientation of these edges).
So the lemma is a bipartite analogue of Lemma 5.3.3. However, the proof is more
involved than in the two cliques case.

Lemma 5.5.3. Suppose that 0 < 1/n � ε � 1/K � 1, where n,K ∈ N. Let
P = {A0, A1, . . . , AK , B0, B1, . . . , BK} be a (K,m, ε)-partition of a set V of n ver-
tices. Let Q := {A1, . . . , AK , B1, . . . , BK} and let C := A1B1A2B2 . . . AKBK be a
directed cycle. Suppose that there exist a set J of edge-disjoint balanced exceptional
systems with respect to P and parameter ε and a graph H such that the following
conditions hold:

(i) J can be partitioned into K4 sets Ji1,i2,i3,i4 (one for all 1 ≤ i1, i2, i3, i4 ≤
K) such that Ji1,i2,i3,i4 consists of (i1, i2, i3, i4)-BES with respect to P and
|Ji1,i2,i3,i4 | ≤ m/K4.

(ii) For each v ∈ A∪B the number of all those J ∈ J for which v is incident
to an edge in J is at most 2εn.

(iii) H[Ai, Bi′ ] is a (11K + 248/K)εm-regular graph for all i, i′ ≤ K.

Then there exist an orientation Hdir of H and a balanced extension BE of J ∗dir with
respect to (Q, C) and parameters (12εK, 12) such that each path sequence in BE is
obtained from some J∗dir ∈ J ∗dir by adding edges of Hdir.

The proof proceeds roughly as follows. Consider any J ∈ Ji1,i2,i3,i4 . We extend
J∗dir into a locally balanced path sequence in two steps. For this, recall that J∗dir

consists only of edges from Ai1 ∪Ai2 to Bi3 ∪Bi4 . In the first step, we construct a
path sequence PS that is an Ai1 -extension of J∗dir by adding suitable Bi3Ai1 - and
Bi4Ai1 -edges from H to J∗dir. In the second step, we locally balance PS in such a
way that (BE1)–(BE3) are satisfied.

Proof. First we decompose H into H ′ and H ′′ such that H ′[Ai, Bi′ ] is a 11εKm-
regular graph for all i, i′ ≤ K and H ′′ := H−H ′. Hence H ′′[Ai, Bi′ ] is a 248εm/K-
regular graph for all i, i′ ≤ K.

Write J := {J1, . . . , J|J |}. For each s ≤ |J |, we will extend J∗s,dir := (Js)
∗
dir

into a path sequence PSs satisfying the following conditions:

(αs) Suppose that Js ∈ Ji1,i2,i3,i4 . Then PSs is an Ai1-extension of J∗s,dir

consisting of precisely e(J∗s ) vertex-disjoint directed paths of length two.
(βs) V (PSs) = V (J∗s,dir) ∪A′s, where A′s ⊆ Ai1 \ V (J∗s,dir) and |A′s| = e(J∗s ).

(γs) PSs − J∗s,dir is a matching of size e(J∗s ) from B′s to A′s, where B′s :=

V (J∗s,dir) ∩ (Bi3 ∪Bi4).

(δs) Let Ms be the set of undirected edges obtained from PSs−J∗s,dir after ig-
noring all the orientations. Then M1, . . . ,Ms are edge-disjoint matchings
in H ′.
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(εs) PSs consists only of edges from Ai1 ∪Ai2 to Bi3 ∪Bi4 , and from Bi3 ∪Bi4
to Ai1 .

Note that (βs) and (γs) together imply (εs). Suppose that for some s with 1 ≤ s ≤
|J | we have already constructed PS1, . . . , PSs−1. We will now construct PSs as
follows. Let i1, i2, i3, i4 be such that Js ∈ Ji1,i2,i3,i4 and let H ′s := H ′− (M1 + · · ·+
Ms−1). (BES4) implies that

e(J∗s,dir) = e(J∗s )
(5.5.1)

≤ e(Js) ≤ εn ≤ 3εKm and |V (J∗s,dir) ∩Ai1 | ≤ 3εKm.

(5.5.2)

Consider any s′ < s. Recall from the definition of J∗s′,dir that V (J∗s′,dir) is the set
of all those vertices in A ∪ B which are covered by edges of Js′ . Together with
(βs′) and (γs′) this implies that a vertex v ∈ B is covered by Ms′ if and only if v is
incident to an edge of Js′ . Together with (ii) this in turn implies that for all v ∈ B
we have

dH′s(v,Ai1) ≥ dH′(v,Ai1)−
∑
s′<s

dMs′ (v) ≥ 11Kεm− 2εn

≥ 11Kεm− 5Kεm
(5.5.2)

≥ |V (J∗s,dir) ∩Ai1 |+ e(J∗s ).

Note that e(J∗s ) = |V (J∗s,dir) ∩ (Bi3 ∪ Bi4)| = |B′s|. So we can greedily find a

matching Ms of size e(J∗s ) in H ′s[Ai1 \ V (J∗s,dir), B
′
s] (which therefore covers all

vertices in B′s). Orient all edges of Ms from B′s to Ai1 and call the resulting
directed matching Ms,dir. Set

PSs := J∗s,dir +Ms,dir.

Note that PSs consists of precisely e(J∗s ) directed paths of length two whose final
vertices lie in Ai1 , so (αs)–(εs) hold by our construction. This shows that we can
obtain path sequences PS1, . . . , PS|J | satisfying (αs)–(εs) for all s ≤ |J |.

The following claim provides us with a ‘reservoir’ of edges which we will use to
balance out the edges of each PSs and thus extend each PSs into a path sequence
PS′s which is locally balanced with respect to C.

Claim. H ′′ contains |J | subgraphs H ′′1 , . . . ,H
′′
|J | satisfying the following properties

for all s ≤ |J | and all i, i′ ≤ K:

(a1) If PSs contains an AiBi′-edge, then H ′′s contains a matching between Ai′

and Bi of size 30εKm.
(a2) If PSs contains a BiAi′-edge, then H ′′s contains a matching between Ai+1

and Bi′−1 of size 30εKm.
(a3) H ′′1 , . . . ,H

′′
|J | are edge-disjoint and for all s ≤ |J | the matchings guaran-

teed by (a1) and (a2) are edge-disjoint.

So if PSs contains both an AiBi′ -edge and a Bi′−1Ai+1-edge, then H ′′s contains a
matching between Ai′ and Bi of size 60εKm.

To prove the claim, first recall that H ′′[Ai, Bi′ ] is a 248εm/K-regular graph for
all i, i′ ≤ K. So H ′′[Ai, Bi′ ] can be decomposed into 248εm/K perfect matchings.
Each perfect matching can be split into 1/(31εK) matchings, each of size at least
30εKm. Therefore H ′′[Ai, Bi′ ] contains 8m/K2 edge-disjoint matchings, each of
size at least 30εKm. (i) and (εs) together imply that for any i, i′ ≤ K, the number
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of PSs containing an AiBi′ -edge is at most∑
(i1,i2,i3,i4) : i∈{i1,i2}, i′∈{i3,i4}

|Ji1,i2,i3,i4 | ≤ 4m/K2.

Recall that H ′′[Ai′ , Bi] contains 8m/K2 edge-disjoint matchings, each of size at
least 30εm. Thus we can assign a distinct matching in H ′′[Ai′ , Bi] of size 30εm to
each PSs that contains an AiBi′ -edge. Additionally, we can also assign a distinct
matching in H ′′[Ai+1, Bi′−1] of size 30εm to each PSs that contains a BiAi′ -edge.
For all s ≤ |J |, let H ′′s be the union of all those matchings assigned to PSs. Then
H ′′1 , . . . ,H

′′
|J | are as desired in the claim.

For each s ≤ |J |, we will now add suitable edges from H ′′s to PSs in order to
obtain a path sequence PS′s which is locally balanced with respect to C. So fix
s ≤ |J | and let e1, . . . , e` denote the edges of PSs. Note that ` = 2e(J∗s ) ≤ 6Kεm
by (γs) and (5.5.2). For each r ≤ `, we will find a directed edge fr satisfying the
following conditions:

(b1) If er is an AiBi′-edge, then fr is an Ai′Bi-edge.
(b2) If er is a BiAi′ -edge, then fr is a Bi′−1Ai+1-edge.
(b3) The undirected version of {f1, . . . , f`} is a matching in H ′′s and vertex-

disjoint from V (PSs).

Suppose that for some r ≤ ` we have already constructed f1, . . . , fr−1. Suppose
that er is an AiBi′ -edge. (The argument for the other case is similar.) By (a1),
H ′′s [Ai′ , Bi] contains a matching of size 30Kεm. Note by (αs) and (b3) that

|V (PSs ∪ {f1, . . . , fr−1})| ≤ 3e(J∗s ) + 2(r − 1) < 5` ≤ 30Kεm.

Hence there exists an edge in H ′′s [Ai′ , Bi] that is vertex-disjoint from PSs∪{f1, . . . ,
fr−1}. Orient one such edge from Ai′ to Bi and call it fr. In this way, we can
construct f1, . . . , f` satisfying (b1)–(b3).

Let PS′s be digraph obtained from PSs by adding all the edges f1, . . . , f`. Note
that PS′s is a locally balanced path sequence with respect to C. (Indeed, PS′s is
locally balanced since {er, fr} is locally balanced for each r ≤ `.) Let i1, i2, i3, i4
be such that J ∈ Ji1,i2,i3,i4 . Then the following properties hold:

(c1) PS′s is an Ai1 -extension of J∗s,dir.

(c2) |V (PS′s) ∩Ai|, |V (PS′s) ∩Bi| ≤ 12εKm for all i ≤ K.
(c3) If V (PS′s) ∩Ai 6= ∅, then i ∈ {i1, i2, i3, i4, i3 + 1, i4 + 1}.
(c4) If V (PS′s) ∩Bi 6= ∅, then i ∈ {i1 − 1, i1, i2, i3, i4}.

Indeed, (c1) is implied by (αs) and the definition of PS′s. Since e(PS′s) = 2e(PSs) =
4e(J∗s ), (c2) holds by (5.5.2). Finally, (c3) and (c4) are implied by (εs), (b1) and
(b2) as Js ∈ Ji1,i2,i3,i4 .

Note that PS′1 − J∗1,dir, . . . , PS
′
|J | − J∗|J |,dir are pairwise edge-disjoint and let

BE := {PS′1, . . . , PS′|J |}. We claim that BE is a balanced extension of J ∗dir with re-

spect to (Q, C) and parameters (12εK, 12). To see this, recall thatQ = {A1,. . . ,AK ,
B1,. . . ,BK} is a (2K,m)-equipartition of V ′ := V \ (A0∪B0). Clearly, (BE1) holds
with V ′ playing the role of V . (c3) and (i) imply that for every i ≤ K there are at
most 6m/K PS′s ∈ BE such that V (PS′s) ∩Ai 6= ∅. A similar statement also holds
for each Bi. So together with (c2), this implies (BE3), where 2K plays the role of
k in (BE3). As remarked after the definition of a balanced extension, this implies
the ‘moreover part’ of (BE2). So (BE2) holds too. Therefore BE is a balanced
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extension, so the lemma follows (by orienting the remaining edges of H arbitrar-
ily). �

Proof of Lemma 4.6.1. Apply Lemma 5.5.2 to obtain tuples (Gj ,Q, Cj , Hj ,Jj)
for all j ≤ K/2 satisfying (a1)–(a6). Fix j ≤ K/2 and write Jj := {Jj,1 . . . , Jj,|Jj |}.
Next, apply Lemma 5.5.3 with Jj , Cj , Hj , ε0 playing the roles of J , C,H, ε to obtain
an orientation Hj,dir of Hj and a balanced extension BEj of Jj with respect to
(Q, Cj) and parameters (12ε0K, 12). (Note that (a3) and (a5) imply conditions (i)
and (iii) of Lemma 5.5.3. Condition (ii) follows from Lemma 4.6.1(d).) So we can
write BEj := {PSj,1 . . . , PSj,|Jj |} such that (Jj,s)

∗
dir ⊆ PSj,s for all s ≤ |Jj |. Each

path sequence in BEj is obtained from some (Jj,s)
∗
dir by adding edges of Hj,dir.

Since (Gj,dir,Q, Cj) is a (2K,m, 4µ, 5/K)-cyclic system by Lemma 5.5.2(a6), we
can apply Lemma 5.4.1 as follows:

Gj,dir Q Cj 2K J ∗j,dir |Jj | 4µ 3ρ 12ε0K 5/K 12

plays role of G Q C k M q µ ρ ε0 ε′ `

This gives us |Jj | directed Hamilton cycles C ′j,1, . . . , C
′
j,|Jj | in Gj,dir +BEj such that

each C ′j,s contains PSj,s and is consistent with (Jj,s)
∗
dir. Moreover, (a4) implies that

C ′j,1−(Jj,1)∗dir, . . . , C
′
j,|Jj |−(Jj,|Jj |)

∗
dir are edge-disjoint subgraphs of Gj,dir +Hj,dir.

Repeat this process for all j ≤ K/2.
Recall from Lemma 5.5.2(a2) that J1, . . . ,JK/2 is a partition of J . Thus we

have obtained |J | directed Hamilton cycles C ′1, . . . , C
′
|J | on A∪B such that each C ′s

is consistent with (Js)
∗
dir for some Js ∈ J (and Js 6= Js′ whenever s 6= s′). Let Hs

be the undirected graph obtained from C ′s−J∗s +Js by ignoring all the orientations
of the edges. Since J1, . . . , J|J | are edge-disjoint exceptional systems, H1, . . . ,H|J |
are edge-disjoint spanning subgraphs of G. Finally, Proposition 5.5.1 implies that
H1, . . . ,H|J | are indeed as desired in Lemma 4.6.1. �
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[17] F. Knox, D. Kühn and D. Osthus, Edge-disjoint Hamilton cycles in random graphs, Ran-
dom Structures Algorithms, to appear.

[18] M. Krivelevich and W. Samotij, Optimal packings of Hamilton cycles in sparse random
graphs, SIAM J. Discrete Math. 26 (2012), 964–982.
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