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—— Abstract

We consider the complexity of the Hamilton cycle decision problem when restricted to k-uniform
hypergraphs H of high minimum codegree §(H). We show that for tight Hamilton cycles this
problem is NP-hard even when restricted to k-uniform hypergraphs H with §(H) > §—C, wheren
is the order of H and C'is a constant which depends only on k. This answers a question raised by
Karpinski, Rucinski and Szymanska. Additionally we give a polynomial-time algorithm which,
for a sufficiently small constant € > 0, determines whether or not a 4-uniform hypergraph H on n
vertices with 6(H) > § — en contains a Hamilton 2-cycle. This demonstrates that some looser
Hamilton cycles exhibit interestingly different behaviour compared to tight Hamilton cycles. A
key part of the proof is a precise characterisation of all 4-uniform hypergraphs H on n vertices
with §(H) > § —en which do not contain a Hamilton 2-cycle; this may be of independent interest.
As an additional corollary of this characterisation, we obtain an exact Dirac-type bound for the
existence of a Hamilton 2-cycle in a large 4-uniform hypergraph.

1998 ACM Subject Classification G.2.2 Graph Theory — Hypergraphs, Graph Algorithms
Keywords and phrases Hamilton cycles, hypergraphs, graph algorithms

Digital Object Identifier 10.4230/LIPIcs.STACS.2016.38

1 Introduction

The study of Hamilton cycles in graphs has been a topic of great significance in graph theory,
and continues to be well-studied. For example, the Hamilton cycle decision problem (given
a graph, determine whether it contains a Hamilton cycle) was one of Karp’s celebrated 21
NP-complete problems [9], whilst one very well-known classic result is Dirac’s theorem [4],
which states that any graph on n > 3 vertices with minimum degree at least 3 contains a
Hamilton cycle.

The problem of generalising these results to the hypergraph setting has been a highly-
active area of research over the past several years (see, for example, the recent surveys by
Kiihn and Osthus [15], R6dl and Rucifiski [16] and Zhao [21]). To describe these developments
we require the following standard definitions. A k-uniform hypergraph, or k-graph H consists
of a set of vertices V(H) and a set of edges E(H), where each edge consists of k vertices.
So a 2-graph is a (simple) graph. We say that a k-graph C' is an ¢-cycle if its vertices can
be cyclically ordered in such a way that each edge of C consists of k& consecutive vertices,
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and so that each edge intersects the subsequent edge in ¢ vertices. This naturally generalises
the notion of a cycle in a graph, and is the most commonly-used definition of a hypergraph
cycle. However, various other definitions have also been considered, such as a Berge cycle [1].
Note in particular that each edge of an ¢-cycle k-graph C has k — ¢ vertices which were
not contained in the previous edge, so the number of vertices of C must be divisible by
k — £. We say that a k-graph H on n vertices contains a Hamilton ¢-cycle if it contains an
n-vertex f-cycle as a subgraph; as before, this is only possible if k£ — ¢ divides n. We refer
to (k — 1)-cycles as tight cycles, and in the same way refer to tight Hamilton cycles. Given
a k-graph H and a set S C V(H), the degree of S, denoted degy (S) (or deg(S) when H is
clear from the context), is the the number of edges of H which contain S as a subset. The
minimum codegree of H, denoted §(H), is the minimum of deg(S) taken over all sets of k — 1
vertices of H, and the mazimum codegree of H, denoted A(H), is the maximum of deg(.5)
taken over all sets of k — 1 vertices of H. In the graph case the maximum and minimum
codegree are simply the maximum and minimum degree respectively.

An elementary reduction from the graph case demonstrates that for any k& > 3 and
1 < ¢ < k the Hamilton ¢-cycle decision problem (given a k-graph H, determine whether it
contains a Hamilton ¢-cycle) is also NP-complete. For this reason, many authors have asked
for conditions on H which render this problem tractable, or which guarantee the existence of
a Hamilton ¢-cycle in H. In particular, since a Hamilton cycle in H cannot exist if H has an
isolated vertex, it is natural to study minimum degree conditions on H.

1.1 Dirac-Type Results

The following theorem, whose various cases were proved by Roédl, Ruciniski and Szemerédi [17,
18], Kiithn and Osthus [14], Keevash, Kiithn, Osthus and Mycroft [12], Han and Schacht [6],
and Kiithn, Osthus and Mycroft [13], is an approximate hypergraph analogue of Dirac’s
theorem; for any k and £ it gives the asymptotically best-possible minimum codegree condition
which guarantees the existence of a Hamilton ¢-cycle in a k-graph.

» Theorem 1 ([6, 12, 13, 14, 17, 18]). For any k > 3, 1 < { <k —1 and n > 0, there
exists ng such that if n > ng is divisible by k — ¢ and H is a k-graph on n vertices with

(3+n)n if k — 0 divides k,
5(H) > 1 .
100 +n|n otherwise,

then H contains a Hamilton £-cycle.

Simple constructions show that for any k£ and ¢ this minimum codegree condition is
best possible up to the nn error term. More recently the exact threshold (for large n) has
been determined in some cases: for k = 3,¢ = 2 by Rodl, Rucinski and Szemerédi [19], for
k =3,¢ =1 by Czygrinow and Molla [2], and for k > 3 and ¢ < k/2 by Han and Zhao [8]. As
part of our work on the question of tractability (described in more detail in the next section),
we successfully characterised all 4-graphs H with 6(H) > % — en which do not contain a
Hamilton cycle. As a straightforward consequence of this, we add to the aforementioned
results the exact Dirac-type statement for the previously-open case k = 4, ¢ = 2.

» Theorem 2. There exists ng such that if n > ng is even and H is a 4-graph on n vertices
with

5(H) >

{g — if n is divisible by 8,

5 — 1 otherwise,
then H contains a Hamilton 2-cycle. Moreover, this condition is best-possible for any even
n > ng.
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1.2 Tractability of the Restricted Hamilton Cycle Decision Problem

We now turn to the primary focus of this paper: minimum degree conditions which render
the Hamilton cycle decision problem tractable. In the graph case, Dahlhaus, Hajnal and
Karpinski [3] showed that for any fixed ¢ > 0 this problem remains NP-complete when
restricted to graphs with minimum degree at least (1 —¢)%. More recently, Karpinski,
Rucinski and Szymanska [10] showed that for any & > 3 and any fixed e > 0 the tight
Hamilton cycle decision problem remains NP-complete when restricted to k-graphs with
minimum codegree (1—¢)%. They noted that, combined with Theorem 1, this left a ‘hardness
n n

gap’ of [, §] for which the hardness of the problem remained unknown. We answer this
question with the following theorem.

» Theorem 3. For any k > 3 there exists C such that the tight Hamilton cycle decision
problem remains NP-complete when restricted to k-graphs H with §(H) > § — C (where
n=|V(H)|)

Assuming that P # NP, Theorems 1 and 3 together imply that the minimum codegree
threshold at which the tight Hamilton cycle decision problem becomes tractable is asymp-
totically equal to the minimum codegree threshold for the existence of a tight Hamilton
cycle, mirroring the situation in the graph case. Interestingly, we can demonstrate that the
Hamilton 2-cycle problem exhibits significantly different behaviour; our next theorem shows
that there is a linear-size gap between the threshold at which the problem becomes tractable
and at which the existence of a cycle is guaranteed.

» Theorem 4. There exist a constant € > 0 and an algorithm which, given a 4-graph H on
n vertices with §(H) > % — en, determines in time O(n*°) whether H contains a Hamilton
2-cycle.

A slight adaptation of the argument of Karpinski, Rucinski and Szymariska [10] mentioned
above shows that for any fixed € > 0 the Hamilton 2-cycle problem remains NP-complete
when restricted to 4-graphs with minimum codegree at least (1 —¢)7%.

A key result in our proof of Theorem 4, which may be of independent interest, is
Theorem 6, which (for sufficiently small £ and large n) precisely characterises all 4-graphs
on n vertices which satisfy 0(H) > & — en but which do not contain a Hamilton 2-cycle. We
prove this result using recently developed techniques of extremal graph theory, in particular
the so-called ‘absorbing method’ of R6dl, Ruciriski and Szemerédi [17]. Establishing this
characterisation is the principal difficulty in the proof of Theorem 4, as then the algorithm
for Theorem 4 simply checks whether this characterisation is satisfied. Likewise, Theorem 2
follows from Theorem 6 by a case analysis.

1.3 Discussion

In the light of Theorem 4, it would be very interesting to know which other values of k
and ¢ also have the property that there is a linear-size gap between the minimum codegree
threshold which renders the k-graph Hamilton ¢-cycle problem tractable and the minimum
codegree threshold under which the problem becomes trivial. Theorem 3 shows that this
is not the case when ¢ = k — 1, whilst a slight adaptation to the arguments of Karpinski,
Rucinski and Szymanska [10] demonstrates that this is also not true if & — ¢ does not divide &k
(in which case the lower degree threshold of Theorem 1 applies); all other cases remain open.

We also note that Theorem 3 demonstrates an interesting difference between the perfect
matching problem and tight Hamilton cycle problem in k-graphs. Indeed, while the unrestric-
ted versions of both problems are NP-complete, Keevash, Knox and Mycroft [11] and Han [7]
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showed that the perfect matching problem can be solved in polynomial time in k-graphs
H with 6(H) > n/k; complementing a previous result of Szymanska [20], who showed that
for any & > 0 the problem remains NP-complete under the restriction §(H) > (% —¢)n. So,
assuming P =% NP, for any % <a< % the two problems lie in distinct complexity classes
when restricted to k-graphs with minimum codegree 6(H) > an.

Finally, whilst the constant € in Theorem 4 is quite small, we conjecture that Theorem 6
(the characterisation of 4-graphs H with 0(H) > § — en and no Hamilton 2-cycle) is in fact
valid under the weaker condition that §(H) > %. If true, this would imply that Theorem 4

would also hold under this weaker codegree assumption.

1.4 Notation

Given a set V, we write (Z) for the set of subsets of V' of size k. Also, we write x < y (“ is
sufficiently smaller than y”) to mean that for any y > 0 there exists ¢ > 0 such that for any
x < xg the subsequent statement holds. Similar statements with more variables are defined
accordingly.

2 Hamilton 2-Cycles

In this section we outline the proof of Theorem 4. The key to the proof is Theorem 6, which
precisely characterises all large 4-graphs H with §(H) > (% — &)n which do not contain a
Hamilton 2-cycle. This is presented in Section 2.1. Having established this characterisation,
it is fairly straightforward to exhibit a polynomial-time algorithm which tests whether a
4-graph has this property, as shown in Section 2.2. Instead, the difficult part of the proof is
to prove Theorem 6; we outline how this is done in Section 2.3. Finally, in Section 2.4 we

present the short deduction of Theorem 2 from Theorem 6.

2.1 A Characterisation of Dense 4-graphs with no Hamilton 2-Cycle

For 4-graphs H, our characterisation considers partitions of V(H) into two parts A and B.
Whenever we refer to, for example, ‘a partition (A, B) of V/(H)’, this should be interpreted
as meaning a partition of V(H) into two non-empty parts A and B. Given such a partition
of V(H), we say that an edge e € E(H) is odd if |e N A| is odd, and even if |e N A is even.
We write Heyen for the subgraph of H consisting only of even edges of H, and similarly write
H,q4q for the subgraph of H consisting only of odd edges of H. Also, we say that a pair
{z,y} of distinct vertices of H is a split pair if x € A and y € B or vice versa, and that
{z,y} is an equal pair if 2,y € A or x,y € B.

We define an ¢-path in a k-graph analogously to an f-cycle: a k-graph is an ¢-path if
its vertices can be linearly ordered vy, ..., v, such that every edge consists of k£ consecutive
vertices and successive edges intersect in precisely ¢ vertices. As for cycles we refer to
(k — 1)-paths as tight paths. The length of an ¢-path is the number of edges. Given a 4-graph
H, we define the total 2-pathlength of H to be the maximum sum of lengths of vertex-disjoint
2-paths in H. For example, H having total 2-pathlength 3 could be achieved by 3 disjoint
edges (i.e. 2-paths of length 1) in H, or a 2-path of length 3 in H, or two vertex-disjoint
2-paths in H, one of length 1 and one of length 2. Using these definitions we can now give
the central definition of our characterisation.

» Definition 5. Let H be a 4-graph on n vertices, where n is even. We say that a partition
(A, B) of V(H) is even-good if at least one of the following statements holds:
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(i) |A] is even or |A| = |B|.

(ii) H contains odd edges e and ¢’ such that either eNe’ =0 or eNe’ is a split pair.
(iii) |A| =|B|+ 2 and H contains odd edges e and €’ with ene’ € (;‘)
(iv) |B| = |A| +2 and H contains odd edges e and e’ with eNe’ € (123)

Now let m € {0,2,4,6} and d € {0,2} be such that m =n mod 8 and d = |A| — |B| mod 4.

Then we say that (A, B) is odd-good if at least one of the following statements holds.
(v) (m,d) €{(0,0),(4,2)}.
(vi) (m,d) € {(2,2),(6,0)} and H contains an even edge.
(vii) (m,d) € {(4,0),(0,2)} and Heyep, has total 2-pathlength at least two.
(viii) (m,d) € {(6,2),(2,0)} and either there is an edge e € E(H) with [eN A| = |eNn B| =2
or H.,en, has total 2-pathlength at least three.

A key observation is that if (A, B) is a partition of V/(H) which is not even-good, then

there exists a set X of at most four vertices of H such that every odd edge of H intersects X.

Indeed, if H contains an odd edge e, then we may take X = e, and otherwise we may take
X = (). Similarly, by choosing X to be the vertices of at most two disjoint even edges, or of
a 2-path of length two in Heyen, we find that if (A, B) is a partition of V(H) which is not
odd-good, then there exists a set X of at most 8 vertices of H such that every even edge
of H intersects X.

We now give our characterisation of 4-graphs of high minimum codegree with no Hamilton
2-cycle. Recall for this that any 2-cycle 4-graph has an even number of vertices.

» Theorem 6. There exist €,ng > 0 such that the following statement holds for any even
n >mng. Let H be a 4-graph on n vertices with 6(H) > (3 —e)n. Then H admits a Hamilton

2-cycle if and only if every partition (A, B) of V(H) is both even-good and odd-good.

2.2 The Algorithm

Our polynomial-time algorithm for determining the existence of a Hamilton 2-cycle in a
4-graph of high codegree makes use of a special case of a result of Keevash, Knox and
Mycroft [11]. This result allows us to efficiently list all partitions (A, B) of V(H) with no
odd edges, or all partitions with no even edges.

» Lemma 7 ([11], special case of Lemma 2.2). Let H be a 4-graph on n vertices with
0(H) > %, and let x € {even,odd}. Then there are at most 64 partitions (A, B) of V(H)
for which no edge of H has parity x with respect to (A, B). Moreover, there exists an
algorithm ListPartitions(H, z) with running time O(n®) which, given H and x, returns all

such partitions.

We now present an algorithm, Procedure GoodPartition(H, ), which determines whether
or not there exists an even-good/odd-good partition (A, B) for a 4-graph H. Note that,
given a 4-graph H and a partition (A, B) of V(H), the truth of the statements ‘(A, B) is
odd-good’ and ‘(A, B) is even-good’ depend only on the values of n and |A| and whether or
not Hogq or Heyen contain certain subgraphs with at most 12 vertices. It follows that the
validity of these statements (and therefore the condition of the ‘if’ statement in Procedure
GoodPartition) can be tested in time O(n!?).

» Proposition 8. Let H be a 4-graph on n vertices with 6(H) > %, where n is even, and
fix a parity « € {even,odd}. Then Procedure GoodPartition(H,x) will correctly determine
whether there exists a partition (A, B) of V(H) which is not x-good, with running time

O(n®).
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Procedure GoodPartition(H, )

Data: A 4-graph H with vertex set V and a parity = € {even,odd}.
Result: Determines if there is a partition (A, B) of V' which is not z-good.

for each set X C V(H) with | X| =8 do
Let V! =V \ X and H' = H[V'].
Run Procedure ListPartitions(H’, z) to obtain all partitions (A’, B") of V/ with no
edges not of parity x.
for each such partition (A’, B') do
for each partition (A, B) of V with A’ C A and B’ C B do
if (A, B) is not x-good then
| State ‘(A, B) is not z-good’, and terminate.

State ‘Every partition is z-good’, and terminate.

Proof. We first establish correctness of the algorithm; for this, fix H and z as in the
proposition statement. Clearly, if every partition (A, B) of V := V(H) is z-good, then
GoodPartition(H, ) will output this fact. So suppose that some partition (A4, B) of V' is not
z-good. As noted following Definition 5, we may then choose a set X of at most 8 vertices
of H which is intersected by every edge of H which does not have parity x. This means
that when GoodPartition(H, z) considers this set X, ListPartitions will return the partition
(A’,B’) where A’ = A\ X and B’ = B\ X, and at this point GoodPartition(H, even) will
return that (A, B) is not z-good, as required.

Finally we consider the running time of the algorithm. For this note that there are (g)
choices for X in the outside ‘for loop’, and for each of these Procedure ListPartitions(H’, x)
runs in time O(n®). The inside ‘for loops’ then range over sets of size at most 64 (by Lemma 7)
and 2% = 256 respectively. Finally, as noted above we may test whether a partition (4, B) is
2-good in time O(n!?); together these bounds combine to give the claimed running time. <«

Proof of Theorem 4. Let ng be sufficiently large and € > 0 sufficiently small for Theorem 6
to apply. Given a 4-graph H on n vertices with 6(H) > (% —¢&)n, we apply the following
algorithm. Firstly, if n is odd, then there can be no Hamilton 2-cycle in H, so we output this
fact and terminate. Secondly, if n < ng, then we use a brute-force approach, testing each of
the at most ng! orderings of V/(H) in turn to determine whether it yields a Hamilton 2-cycle in
H. We then output the appropriate answer and terminate. Finally, if n > ng is even, then we
first run Procedure GoodPartition(H, even), and then run Procedure GoodPartition(H, odd).
If either of these procedures yields a partition (A, B) of V(H) which is not even-good or
which is not odd-good, then we return that there is no Hamilton 2-cycle in H, otherwise
we return that there is such a cycle. Note that in the first two cases this algorithm runs in
constant time, whilst in the final case it runs in time O(n?®) by Proposition 8. Moreover
Theorem 6 ensures that this algorithm will always output the correct answer. |

2.3 Proof of Theorem 6

We begin by establishing the forward implication of Theorem 6, expressed in the following
proposition. In fact, the minimum codegree condition on H is not required for this direction.

» Proposition 9. If H is a 4-graph which contains a Hamilton 2-cycle, then every partition
(A, B) of V(H) is both even-good and odd-good.
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Proof. Let n be the order of H, let C' = (v1,va,...,v,) be a Hamilton 2-cycle in H and let
(A, B) be a partition of V/(H). Write P; = {vg;_1,v2} for each 1 <i < %, so the edges of C
are e; ;= P, U Py for 1 <i< 3 (with addition taken modulo %) The key observation is
that e; is even if P; and P41 are both split pairs or both equal pairs, and odd otherwise.

We first show that (A, B) is even-good. This holds by (ii) if H contains two disjoint
odd edges, so we may assume without loss of generality that all edges of H other than e;
and e,/ are even. It follows that the pairs P, Ps, ..., P, /o are either all split pairs or all
equal pairs. In the former case, if P; is a split pair then |A| = |B], so (i) holds, whilst if
Py C A then (iii) holds, and if P; C B then (iv) holds. In the latter case, if P; is an equal
pair then |A| is even, so (i) holds, whilst if P; is a split pair then (ii) holds. So in all cases
we find that (A, B) is even-good.

To show that (A, B) is odd-good, suppose first that 4 does not divide n, and note that
by our key observation the number of even edges in C' must then be odd. If C contains three
or more even edges or an edge with precisely two vertices in A, then (A, B) is odd-good by
(vi) and (viii), so we may assume without loss of generality that e, 5 is the unique even
edge in C' and that e, € A or e,/ C B. It follows that P, Ps,..., P,/; are equal pairs
and the remaining pairs are split, so |A| — |B| = 2[%] mod 4. We must therefore have
(m,d) € {(2,2),(6,0)}, and (A, B) is odd-good by (vi). On the other hand, if 4 divides n,
then by our key observation the number of even edges in C' is even. If this number is at least
two then (A, B) is odd-good by (v) and (vii). If instead every edge of C is odd, then exactly %
of the pairs P; are equal pairs, so |A| — [B| = § mod 4, and C' is odd-good by (v). <

To prove Theorem 6 it therefore suffices to prove the backwards implication. Our approach
for this is motivated by the observation that if H is a 4-graph and (A, B) is a partition of
V(H) which is not odd-good, then H must have very few even edges. Likewise, if (A, B) is
not even-good, then H has very few odd edges. We therefore consider three cases for H: two
‘near-extremal’ cases, in which V(H) admits a partition (A, B) with few even edges or with
few odd edges, and a ‘non-extremal’ case, in which there is no such partition. In the ‘non-
extremal case’ we proceed by the so-called ‘absorbing’ method, introduced by Rodl, Rucinski
and Szemerédi [19], in which we rely heavily on the fact that H is not ‘near-extremal’. On the
other hand, in the ‘near-extremal’ cases we have significant information about the structure of
H (specifically that there is a partition of V(H) with few even/odd edges). Making essential
use of this structural information, we proceed by ad hoc methods to construct a Hamilton
2-cycle in H.

The following definition formalises our two notions of ‘near-extremal’.

» Definition 10. Let ¢1,co > 0 and let H be a 4-graph on n vertices.

(a) We say that H is c1-even-extremal if there exists a partition (A, B) of V(H) such that
(3 —c1)n < |A| < (% + c1)n and H contains at most ¢; () odd edges.

(b) We say that H is co-odd-extremal, if there exists a partition (A, B) of V/(H) such that

L e)n <|A| < (2 + ¢y)n and H contains at most ¢y (™) even edges.
2 2 4

2.3.1 Non-Extremal 4-Graphs

As described above, in the case when H is not near-extremal, we proceed by the ‘absorbing’
method of Rédl, Rucinski and Szemerédi [19]. To do this we establish three key lemmas.
The first of these is a ‘connecting lemma’, which shows that since H is not even-extremal,
we can find a constant-length 2-path connecting any two disjoint pairs of vertices. For this,
we say that the ends of a 2-path 4-graph (vy,...,v,) are the pairs {vy,v2} and {v,—1,v,}.
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» Lemma 11 (Connecting lemma). Suppose that 1 < e < ¢ and that H is a 4-graph on n
vertices with 6(H) > (% — &)n which is not c-even-extremal. Then for every two disjoint
pairs {a1,az2}, {b1,b2} € (‘2/) there is a 2-path of length at most 3 whose ends are {a1, a2}

and {bl, b2}

Loosely speaking, our proof of Lemma 11 supposes that we have pairs {a1,as} and {b1, by}
for which no such 2-path exists. It follows that there is no pair {x,y} € (V(QH )) for which
{a1,a9,z,y} and {by, b, x,y} are both edges of H. Combined with the minimum codegree
condition of H this yields significant structural information on H, which we use to deduce
that H must be c-even-extremal and so prove the lemma.

The second key lemma is an ‘absorbing lemma’, which shows that since H is neither
even-extremal nor odd-extremal, we can find a short 2-path in H which can ‘absorb’ most
small collections of pairs of H.

» Lemma 12 (Absorbing lemma). Suppose that % LekLpKLPLKALc,u. Let H be a
4-graph on n vertices with 6(H) > & —en which is neither c-even-extremal nor c-odd-extremal.
Then there is a 2-path P in H and a graph G on V(H) with the following properties.
(i) P has at most un vertices.
(ii) Ewvery vertex of V(H) \ V(P) lies in at least (1 — A)n edges of G.
(iii) For any g < pn and any q disjoint edges e1,...,eq of G which do not intersect P there
is a 2-path P* in H with the same ends as P such that V(P*) =V (P)U U?zl ej.

Loosely speaking, to prove Lemma 12, we first show that provided H is not c-odd-extremal,
for almost every pair {z,y} € (‘2/) there are many 2-paths @ of length 3 which can ‘absorb’
{z,y}, in the sense that there is a 2-path Q* with vertex set V(Q) U {z,y} and with the
same ends as Q). We take G to be the graph of such pairs. We then randomly select a linear
number of 2-paths of length 3 and use Lemma 11 to connect these 2-paths into a single short
2-path P (this is where we require that H is not c-even-extremal). Next we extend P to
include the small number of vertices which lie in fewer than (1 — A\)n edges of G, so that (ii)
holds. Finally, we show that given any set of edges e1,..., e, of G as in (iii), we can match
these edges to the randomly chosen paths @), and absorb each edge into the corresponding
path to obtain P*.

Our final key lemma is a ‘path cover lemma’, which states that we can cover almost all
vertices of H by a constant number of vertex-disjoint 2-paths. In fact, we do not actually
need the requirement that H is not near-extremal, and can simply cite a result of Kiihn,
Mycroft and Osthus [13].

» Lemma 13 (Path cover lemma [13]). Suppose that 1 < & < v < n and that H is a 4-graph
on n vertices with §(H) > (3 +n)n. Then H contains a set of at most D vertez-disjoint
2-paths covering all but at most yn vertices of H.

For non-extremal 4-graphs H, combining these three lemmas proves the reverse implication
of Theorem 6, which we express in the following lemma.

» Lemma 14. Suppose that % < g < ¢ and that n is even, and let H be a 4-graph of order
n with §(H) > (3 —e)n. If H is neither c-odd-extremal nor c-even-estremal, then H contains
a Hamilton 2-cycle.

Proof sketch. Introduce constants with 1/n < 1/D,e K y < p K 8 K A < ¢, u < 1, and
apply Lemma 12 to obtain an absorbing 2-path Py in H and a graph G on V(H) with the
stated properties. Let V :=V(H) and U := V(P,), and now choose uniformly at random a
set R C V\ U of size pn. Next, apply Lemma 13 (with, say, n = 1/10) to obtain at most D
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vertex-disjoint 2-paths Pi,..., P, in H[V \ (U U R)] covering all but at most yn vertices.

By ¢ applications of Lemma 11 we can find vertex-disjoint 2-paths Qg, @1, ...,Q,, each
of length at most 3, such that Qy connects the end of Py to the start of P, ()1 connects
the end of P; to the start of P, and so forth, with (), connecting the end of F, to the
start of Py. Moreover, all vertices of ); except those in the end of P; or the start of P;;q
should be taken from R. (The random choice of R ensures that the conditions of Lemma 11
are satisfied for each application.) This yields a 2-cycle C = PyQoPi@Q1 P2 ... P,Q, in H
covering all vertices except the at most yn vertices not covered by P,..., P, and between
pn — 3D and pn unused vertices of R. So X := V \ V(C) has size pn — 3D < |X| < pn + yn.
Furthermore, |X| is even since n and |V (C)| are both even, and our random choice of R
ensures that every vertex x € X has degg(x)(7) > [X[/2. So there is a perfect matching
e1,...,ex|/2 in G[X]; since | X|/2 < pn we may ‘absorb’ X into Py to obtain a 2-path P*.
Replacing Py by P* in C gives a Hamilton 2-cycle in H. |

2.3.2 Extremal 4-Graphs

Having dealt with the ‘non-extremal’ case, it remains to deal with the two ‘near-extremal’
cases by proving the following two lemmas via an extremal case.

» Lemma 15. Suppose that % < eg,¢ < 1 and that n is even, and let H be a 4-graph of
order n with §(H) > (3 — &)n. If H is c-even-extremal and every partition of V(H) into two
parts A and B is even-good, then H contains a Hamilton 2-cycle.

» Lemma 16. Suppose that % <L g,c K 1 and that n is even, and let H be a 4-graph of
order n with 6(H) > (3 — €)n. If H is c-odd-extremal and every partition of V (H) into two
parts A and B is odd-good, then H contains a Hamilton 2-cycle.

Proof sketch. As is typical of this type of argument, each lemma is proved by a long and
detailed extremal case analysis, and so we limit ourselves here to a brief outline of the
argument for Lemma 15 (the outline for Lemma 16 is similar with ‘even’ and ‘odd’ reversed).
Let (A’, B’) be a partition of V(H) witnessing that H is c-even-extremal. We first observe
that the bound on §(H) implies that H has density at least (3 — ). Combined with the fact
that H has few odd edges, this implies that almost every set S C V(H) for which |4’ N S| is
even is an edge of H. However, it is possible that a small number of vertices may lie in very
few even edges, so we begin by ‘tidying up’ the partition: we move a few vertices of H from
one side to the other to ensure that, for instance, every vertex of H lies in many even edges.
Let (A, B) be the tidied partition. By assumption this partition (A, B) is even-good, and
this fact yields some structure in H with respect to this partition (precisely what structure
depends on the values of n and |A|). For example, we might obtain two disjoint odd edges in
H. We then form a short 2-path P from the given structure to satisfy the desired parity
conditions, and then (using even edges only) extend P to a Hamilton 2-cycle in H. <

Proof of Theorem 6. Fix a constant ¢ small enough for Lemmas 15 and 16. Having done so,
choose ¢ sufficiently small for us to apply Lemma 14 with this choice of ¢, and ng sufficiently
large that we may apply Lemmas 14, 15 and 16 with these choices of ¢ and € and any even
n > ng. Let H be a 4-graph on n vertices with §(H) > (3 — €)n, and suppose that every
partition (A, B) of V(H) is both even-good and odd-good. If H is either c-even-extremal or
c-odd-extremal then H contains a Hamilton 2-cycle by Lemma 15 or 16 respectively. On the
other hand, if H is neither c-odd-extremal nor c-even-extremal then H contains a Hamilton
2-cycle by Lemma 14. This completes the proof of the backwards implication of Theorem 6;

the proof of the forwards implication was Proposition 9. <
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2.4 Proof of Theorem 2

To conclude this section, we show how Theorem 2 can be deduced from Theorem 6. We begin
by justifying the claim that the degree bound of Theorem 2 is best-possible. To see this, fix
an even integer n > 6, and construct a 4-graph H* as follows. Let A and B be disjoint sets
with |[AU B| = n such that [A| = § — 1 if 8 divides n and |A| = § otherwise. Then the vertex
set of H* is AU B, and the edges of H* are all sets e € (AZB) such that |eN A] is odd. Then
it is easily checked that §(H*) = § — 3 if 8 divides n and § — 2 otherwise. Moreover, since
H* has no even edges, our choice of size of A implies that the partition (A, B) of V(H*) is
not odd-good. By Theorem 6 we conclude that there is no Hamilton 2-cycle in H*.

Proof of Theorem 2. Choose €,ng as in Theorem 6. Let n > ng be even and large enough
that 5 —2 > (% —¢)n, and let H be a 4-graph on n vertices which satisfies the minimum
codegree condition of Theorem 2. Also let (A, B) be a partition of V (H), and assume without
loss of generality that |A| < %. By Theorem 6 it suffices to prove that (A, B) is even-good
and odd-good. For this, note that if 8 divides n and |A| = 5 then (4, B) is even-good
by (i) and odd-good by (v). So we may assume that if 8 divides n then |A] < § —1 and
6(H) > % — 2, whilst otherwise we have |[A] < & and 0(H) > § — 1. Either way, we must
have 6(H) > |A| — 1. Also, for any distinct z,y,z € V(H), let Np(x,y,z) denote the set of
vertices w € B such that {z,y, 2z, w} € E(H).

To see that (A, B) must be even-good, arbitrarily choose vertices x1, 22, y1,y2, 21, 22 € A.
Then |Np(z1,y1,21)|, |INg(22,y2,22)| > 6(H) — (|A] — 3) > 2, so we may choose distinct
wy,wy € B with wy € Np(x1,y1,21) and we € Np(xa,y2, 22). The sets {x1,y1,21, w1} and
{2, Y2, 22, w2} are then disjoint odd edges of H, so (A, B) is even-good by (ii).

We next show that that (A, B) is also odd-good. For this, arbitrarily choose distinct
vertices aj,as,...,a9,ay,...,ay € A and by,...,bg € B. For any 1 < 4,5 < 9 we have
|Np(ai, aj, b;)| > 6(H) — (|A] — 2) > 1, so there must be b’ € B such that {a;, aj,b;, 0%} is
an (even) edge of H. If for each 1 < j <9 the vertices b; for 1 <i < 9 are all distinct, then
there is no set X C V(H) with | X| < 8 which intersects every even edge of H. However, as
observed immediately after Definition 5, such a set X must exist if (A, B) is not odd-good.
We may therefore assume that bé-/ = b} for some 1 <4,#',j <9 with 7 # i’. Tt follows that
{ai, ai, b;, b} is an even edge of H with exactly two vertices in A, whilst (a;, a, b;, b5, air, aj)
is a 2-path of length 2 in Heyen. So (A4, B) is odd-good by (v), (vi), (vii) or (viii), according
to the value of n modulo 8. <

3 Tight Hamilton Cycles

Our aim in this section is to explain the principal ideas of the proof of Theorem 3, which
proceeds by a series of reductions. We begin with a full proof of the case k = 3, in which
case we proceed from a theorem of Garey, Johnson and Stockmeyer [5], who proved that the
Hamilton cycle problem remains NP-complete when restricted to subcubic graphs (we say
that a graph G is subcubic if G has maximum degree A(G) < 3). The following proposition
is an immediate corollary of that theorem.

» Proposition 17 ([5]). The problem of determining whether a subcubic graph admits a
Hamilton path is NP-complete.

The next lemma is the k£ = 3 case of Theorem 3, which holds with C' = 9.

» Lemma 18. The 3-graph tight Hamilton cycle decision problem is NP-complete even when
restricted to 3-graphs H on m vertices with §(H) > & — 9.
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Proof. Let G be a subcubic graph on n vertices, and write X := V(G). Assume for simplicity
that n is even (a very similar argument handles the case where n is odd). Fix disjoint sets A
and B with [A| = 3 and |B| = 2 + 1 such that X C A, and define a 3-graph H with vertex
set A U B whose edges are

(i) all sets e € (AL;B) with |[ANe| <1,

(ii) all sets e € (AL:;B) with [ANel =2 and ANe € E(G) (note in particular that this

requires that ANe C X), and

(i) all sets e € (g) for which no ¢’ € E(G) satisfies e’ C e.
Observe first that H has m := 3n 4 1 vertices and minimum codegree 6(H) > 3 —9. To
see this, let z and y be distinct vertices of H. If either z € B or y € B then {z,y,z}
is an edge of H for any z € B\ {z,y}, so degy({z,y}) > |B] —2 = 3 — 1. Exactly
the same applies if z,y € A and zy € E(G). Finally, if z,y € A and zy ¢ E(G), then
{z,y, 2} is an edge of H for any z € A\ {x,y} except for those z such that xz € F(G) or
yz € E(G). So degy({z,y}) > |A| — 2 — deg(z) — degq(y); since G is subcubic this gives
degy({z,y}) > 22 —8> 2 —9, as claimed.

We claim that H contains a tight Hamilton cycle if and only if G contains a Hamilton

path. To see this, first suppose that G contains a Hamilton path (z1,--- ,2,). Enumerate
the vertices of A\ X and B as ay,as,...,a,/2 and by, by, ..., b3, /241 respectively. Then
(xh Z2, bl) I3, T4, b27 s Tn—1,Tn, b%7 b%+17 ai, b%+27 b%+3a az, -+, a/%?b%l7 bST"J,-l)

is a tight Hamilton cycle in H.
Now suppose instead that H contains a tight Hamilton cycle C. Note that our construction

of H ensures that there are no edges e, e’ € E(H) with |eNA| =3, |¢/NA| =2 and |ene’| = 2.

Since every edge of C intersects the subsequent edge of C in precisely two vertices, and
B # 0, it follows that C' cannot contain any edge e with [e N A| = 3. So there are at least %
vertices a € X which are succeeded in C' by a vertex of B. Now let A; be the set of vertices
of X for which the subsequent vertex of A on C is in X and As be the set of vertices of
X for which the subsequent vertex of A on Cisin A\ X. Also let A3 := A\ X, s0 A is
the disjoint union of A;, A and Aj. By construction of H, any vertex of A\ X must be
preceded in C' by two vertices of B and succeeded in C by two vertices of B; it follows that
any vertex of Ay U Aj is succeeded in C by two vertices of B, and so we obtain

|B| > (5 — [A2|) +2(|A2| + [A3]) = § + |A2| 4+ 2|A3| = 37" + | Aa.

Since A\ X is non-empty, we must have [A;| > 1. Combined with the fact that [B| = 22 +1
this implies that |A3] = 1, and all inequalities are in fact equalities. So precisely one
vertex of X is succeeded in C' by two vertices of B, 5 — 1 vertices of X are succeeded
by one vertex of B, and the remaining % vertices of X are succeeded by a vertex of A
(which must therefore be in X). This implies that C' contains a tight Hamilton path of

the form (z1,x2,b1,23,24,b2,...,by /21, Tn_1,%y), where X = {x1,...,2,} and b; € B for
1 <i < % — 1. By our construction of H it follows that (z1,z2,...,7,) is a Hamilton path
in G.

Altogether, this shows that any instance of the Hamilton cycle problem for subcubic
graphs can be reduced to a single instance of the problem of finding a tight Hamilton cycle in
a 3-graph on m vertices with 0(H) > % —9, where m = 3n+1. Together with Proposition 17,
this proves the lemma. |

We conclude by outlining the steps we use to prove Theorem 3 in full generality, using
the following notation. For a function f(n), we write HC(k, f(n)) (respectively HP(k, f(n)))
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to denote the k-graph tight Hamilton cycle (respectively Hamilton path) decision problem
restricted to k-graphs H on n vertices with minimum codegree §(H) > f(n). On the other
hand, for an integer D, we write HC(k, D) (respectively HP(k, D)) to denote the k-graph
tight Hamilton cycle (respectively Hamilton path) decision problem restricted to k-graphs H
with maximum codegree §(H) < D. So, for example, Proposition 17 states that HP(2,3) is
NP-complete, whilst Lemma 18 states that HC(3, § — 9) is NP-complete. We prove Theorem 3
by exhibiting the following polynomial-time reductions.

(i) For any k > 2 and D we give polynomial-time reductions from HC(k, D) to HP(k, D)
and from HP(k, D) and HC(k, D). These reductions are elementary and permit us the
convenience of treating the tight Hamilton cycle and tight Hamilton path problems in
graphs of low maximum codegree as being interchangeable.

(ii) For any k > 2 we give polynomial-time reductions from HC(k, D) to HC(2k — 1,2D)
and from HC(k, D) to HC(2k, D). In each case, given a k-graph H on a vertex set V/,
we take copies H; and Hy of H with disjoint vertex sets Vi and V5. For the former
reduction we define a (2k —1)-graph H* on V; UV; whose edges are those (2k — 1)-tuples
which consist of an edge e; from H; and the copies in Hy of k — 1 vertices of ey, or
the same with the roles of H; and Hs reversed. Likewise, for the latter reduction we
define a 2k-graph H* on V7 UV, whose edges are those 2k-tuples e; U es where e; is
an edge of Hi, e is an edge of Hy, and e contains the copies of at least k — 1 vertices
of e;. In either case it is not too hard to show that H* contains a tight Hamilton cycle
if and only if H does, and that A(H*) < 2A(H) in one case and A(H*) < A(H) in
the other.

(iii) Finally, for any k > 2 we present a polynomial-time reduction from HP(k, D) to
HC(2k — 1, %] — k(D + 1)) and from HC(k, D) to HC(2k, 2 — k(D + 1)). These are
similar to the reduction given in the proof of Lemma 18, except that G is now a k-graph
with A(G) < D, and H is a (2k — 1)-graph or 2k-graph (according to which reduction
we are presenting).

By induction on k, with Proposition 17 as the base case, the reductions of (i) and (ii)
combine to prove the following theorem, which can be seen as a generalisation to k-graphs of
the aforementioned theorem of Garey, Johnson and Stockmeyer.

» Theorem 19. For every k > 2 there exists D such that HC(k, D) and HP(k,D) are
NP-complete.

Theorem 3 follows immediately from Theorem 19 and the reductions of (iii).
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