Note

The difference and ratio of the fractional matching number and the matching number of graphs

Ilkyoo Choi ${ }^{\text {a }}$, Jaehoon Kim ${ }^{\text {b }}$, Suil O ${ }^{\text {c,* }}$
${ }^{\text {a }}$ Department of Mathematical Sciences, KAIST, Daejeon, South Korea
${ }^{\mathrm{b}}$ School of Mathematics, University of Birmingham, Edgbaston, Birmingham, United Kingdom
${ }^{\text {c }}$ Department of Mathematics, Simon Fraser University, Burnaby, BC, V5A 2R7, Canada

ARTICLE INFO

Article history:

Received 8 April 2015
Accepted 5 December 2015

Keywords:

Matching number
Fractional matching number

Abstract

Given a graph G, the matching number of G, written $\alpha^{\prime}(G)$, is the maximum size of a matching in G, and the fractional matching number of G, written $\alpha_{f}^{\prime}(G)$, is the maximum size of a fractional matching of G. In this paper, we prove that if G is an n-vertex connected graph that is neither K_{1} nor K_{3}, then $\alpha_{f}^{\prime}(G)-\alpha^{\prime}(G) \leq \frac{n-2}{6}$ and $\frac{\alpha_{f}^{\prime}(G)}{\alpha^{\prime}(G)} \leq \frac{3 n}{2 n+2}$. Both inequalities are sharp, and we characterize the infinite family of graphs where equalities hold.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

For undefined terms, see [5]. Throughout this paper, n will always denote the number of vertices of a given graph. A matching in a graph is a set of pairwise disjoint edges. A perfect matching in a graph G is a matching in which each vertex has an incident edge in the matching; its size must be $n / 2$, where $n=|V(G)|$. A fractional matching of G is a function $\phi: E(G) \rightarrow[0,1]$ such that for each vertex $v, \sum_{e \in \Gamma(v)} \phi(e) \leq 1$, where $\Gamma(v)$ is the set of edges incident to v, and the size of a fractional matching ϕ is $\sum_{e \in E(G)} \phi(e)$. Given a graph G, the matching number of G, written $\alpha^{\prime}(G)$, is the maximum size of a matching in G, and the fractional matching number of G, written $\alpha_{f}^{\prime}(G)$, is the maximum size of a fractional matching of G.

Given a fractional matching ϕ, since $\sum_{e \in \Gamma(v)} \phi(e) \leq 1$ for each vertex v, we have that $2 \sum_{e \in E(G)} \phi(e) \leq n$, which implies $\alpha_{f}^{\prime}(G) \leq n / 2$. By viewing every matching as a fractional matching it follows that $\alpha_{f}^{\prime}(G) \geq \alpha^{\prime}(G)$ for every graph G, but equality need not hold. For example, the fractional matching number of a k-regular graph equals $n / 2$ by setting weight $1 / k$ on each edge, but the matching number of a k-regular graph can be much smaller than $n / 2$. Thus it is a natural question to find the largest difference between $\alpha_{f}^{\prime}(G)$ and $\alpha^{\prime}(G)$ in a (connected) graph.

In Sections 3 and 4 , we prove tight upper bounds on $\alpha_{f}^{\prime}(G)-\alpha^{\prime}(G)$ and $\frac{\alpha_{f}^{\prime}(G)}{\alpha^{\prime}(G)}$, respectively, for an n-vertex connected graph G, and we characterize the infinite family of graphs achieving equality for both results. As corollaries of both results, we have upper bounds on both $\alpha_{f}^{\prime}(G)-\alpha^{\prime}(G)$ and $\frac{\alpha_{f}^{\prime}(G)}{\alpha^{\prime}(G)}$ for an n-vertex graph G, and we characterize the graphs achieving equality for both bounds.

Our proofs use the famous Berge-Tutte Formula [1] for the matching number as well as its fractional analogue. We also use the fact that there is a fractional matching ϕ for which $\sum_{e \in E(G)} \phi(e)=\alpha_{f}^{\prime}(G)$ such that $f(e) \in\{0,1 / 2,1\}$ for every edge e, and some refinements of the fact. We can prove both Theorems 6 and 8 with two different techniques, and for the sake of the readers we demonstrate each method in the proofs of Theorems 6 and 8 .

[^0]
2. Tools

In this section, we introduce the tools we used to prove the main results. To prove Theorem 6, we use Theorems 1 and 2. For a graph H, let $o(H)$ denote the number of components of H with an odd number of vertices. Given a graph G and $S \subseteq V(G)$, define the deficiency $\operatorname{def}(S)$ by $\operatorname{def}(S)=o(G-S)-|S|$, and let $\operatorname{def}(G)=\max _{S \subseteq V(G)} \operatorname{def}(S)$. Theorem 1 is the famous Berge-Tutte formula, which is a general version of Tutte's 1-factor Theorem [4].

Theorem 1 ([1]). For any n-vertex graph $G, \alpha^{\prime}(G)=\frac{1}{2}(n-\operatorname{def}(G))$.
For the fractional analogue of the Berge-Tutte formula, let $i(H)$ denote the number of isolated vertices in H. Given a graph G and $S \subseteq V(G)$, let $\operatorname{def}_{f}(S)=i(G-S)-|S|$ and $\operatorname{def}_{f}(G)=\max _{S \subseteq V(G)} \operatorname{def}_{f}(S)$. Theorem 2 is the fractional version of the Berge-Tutte Formula. This is also the fractional analogue of Tutte's 1 -Factor Theorem saying that G has a fractional perfect matching if and only if $i(G-S) \leq|S|$ for all $S \subseteq V(G)$ (implicit in Pulleyblank [2]), where a fractional perfect matching is a fractional matching f such that $2 \sum_{e \in E(G)} f(e)=n$.

Theorem 2 ([3] See Theorem 2.2.6). For any n-vertex graph $G, \alpha_{f}^{\prime}(G)=\frac{1}{2}\left(n-\operatorname{def}_{f}(G)\right)$.
When we characterize the equalities in the bounds of Theorems 6 and 8, we need the following proposition. Recall that $G[S]$ is the graph induced by a subset of the vertex set S.

Proposition 3 ([3] See Proposition 2.2.2). The following are equivalent for a graph G.
(a) G has a fractional perfect matching.
(b) There is a partition $\left\{V_{1}, \ldots, V_{n}\right\}$ of the vertex set $V(G)$ such that, for each i, the graph $G\left[V_{i}\right]$ is either K_{2} or Hamiltonian.
(c) There is a partition $\left\{V_{1}, \ldots, V_{n}\right\}$ of the vertex set $V(G)$ such that, for each i, the graph $G\left[V_{i}\right]$ is either K_{2} or Hamiltonian graph on an odd number of vertices.

Theorem 4 and Observation 5 are used to prove Theorem 8.
Theorem 4 ([3] See Theorem 2.1.5). For any graph G, there is a fractional matching f for which

$$
\sum_{e \in E(G)} f(e)=\alpha_{f}^{\prime}(G)
$$

such that $f(e) \in\{0,1 / 2,1\}$ for every edge e.
Given a fractional matching f, an unweighted vertex v is a vertex with $\sum_{e \in \Gamma(v)} f(e)=0$, and a full vertex v is a vertex with $f(v w)=1$ for some vertex w. Note that w is also a full vertex. An i-edge e is an edge with $f(e)=i$. Note that the existence of an 1-edge guarantees the existence of two full vertices. A vertex subset S of a graph G is independent if $E(G[S])=\emptyset$, where $G[S]$ is the graph induced by S.

Observation 5. Among all the fractional matchings of an n-vertex graph G satisfying the conditions of Theorem 4, let f be a fractional matching with the greatest number of edges e with $f(e)=1$. Then we have the following:
(a) The graph induced by the $\frac{1}{2}$-edges is the union of odd cycles. Furthermore, if C and C^{\prime} are two disjoint cycles in the graph induced by $\frac{1}{2}$-edges, then there is no edge $u u^{\prime}$ such that $u \in V(C)$ and $u^{\prime} \in V\left(C^{\prime}\right)$.
(b) The set S of the unweighted vertices is independent. Furthermore, every unweighted vertex is adjacent only to a full vertex.
(c) $\alpha^{\prime}(G) \geq w_{1}+\sum_{i=1}^{\infty} i c_{i}, \alpha_{f}^{\prime}(G)=w_{1}+\sum_{i=1}^{\infty}\left(\frac{2 i+1}{2}\right) c_{i}$, and $n=w_{0}+2 w_{1}+\sum_{i=1}^{\infty}(2 i+1) c_{i}$, where w_{0}, w_{1}, and c_{i} are the number of unweighted vertices, the number of 1-edges, and the number of odd cycles of length $2 i+1$ in the graph induced by $\frac{1}{2}$-edges in G, respectively.
Proof. (a) The graph induced by the $\frac{1}{2}$-edges cannot have a vertex with degree at least 3 since $\sum_{e \in \Gamma(v)} f(e) \leq 1$ for each vertex v. Thus the graph must be a disjoint union of paths or cycles. If the graph contains a path or an even cycle, then by replacing weight $1 / 2$ on each edge on the path or the even cycle with weight 1 and 0 alternatively, we can have a fractional matching with the same fractional matching number and more edges with weight 1 , which contradicts the choice of f. Thus the graph induced by the $\frac{1}{2}$-edges is the union of odd cycles. If there is an edge $u v$ such that $u \in V(C)$ and $v \in V\left(C^{\prime}\right)$, where C and C^{\prime} are two different odd cycles induced by some $\frac{1}{2}$-edges, then $f(u v)=0$, since $\sum_{e \in \Gamma(x)} f(e) \leq 1$ for each vertex x. By replacing weights 0 and $1 / 2$ on the edge $u v$ and the edges on C and C^{\prime} with weight 1 on $u v$, and 0 and 1 on the edges in $E(C)$ and $E\left(C^{\prime}\right)$ alternatively, not violating the definition of a fractional matching, we have a fractional matching with the same fractional matching number with more edges with weight 1 , which is a contradiction. Thus we have the desired result.
(b) If two unweighted vertices u and v are adjacent, then we can put a positive weight on the edge $u v$, which contradicts the choice of f. If there exists an unweighted vertex x, which is not incident to any full vertex, then x must be adjacent to a vertex y such that $f\left(y y_{1}\right)=1 / 2$ and $f\left(y y_{2}\right)=1 / 2$ for some vertices y_{1} and y_{2}. By replacing the weights $0,1 / 2$, and $1 / 2$ on $x y, y y_{1}$, and $y y_{2}$ with $1,0,0$, respectively, we have a fractional matching with the same fractional matching number with more edges with weight 1 , which is a contradiction.
(c) By the definitions of w_{0}, w_{1}, and c_{i}, we have the desired result.

Fig. 1. All 5-vertex graphs in Theorems 6(i) and 8(i).

Fig. 2. All graphs in Theorems 6(ii) and 8(ii).

3. Sharp upper bound for $\alpha_{f}^{\prime}(G)-\alpha^{\prime}(G)$

What are the structures of the graphs having the maximum difference between the fractional matching number and the matching number in an n-vertex connected graph? The graphs may have big fractional matching number and small matching number. So, by the Berge-Tutte Formula and its fractional version, they may have a vertex subset S such that almost all of the odd components of $G-S$ have at least three vertices in order to get S to have small fractional deficiency and big deficiency. This is our idea behind the proof of Theorem 6.

Theorem 6. For $n \geq 5$, if G is a connected graph with n vertices, then $\alpha_{f}^{\prime}(G)-\alpha^{\prime}(G) \leq \frac{n-2}{6}$, and equality holds only when either (i) $n=5$ and either C_{5} is subgraph of G or $K_{2}+K_{3}$ is a subgraph of G (see Fig. 1), or
(ii) G has a vertex v such that the components of $G-v$ are all K_{3} except one single vertex (see Fig. 2).

Proof. Among all the vertex subsets with maximum deficiency, let S be the largest set. By the Berge-Tutte Formula, $\alpha^{\prime}(G)=\frac{1}{2}(n-\operatorname{def}(S))$, and by the choice of S, all components of $G-S$ have an odd number of vertices. Let x be the number of isolated vertices of $G-S$, and let y be the number of other components of $G-S$. This implies $n \geq|S|+x+3 y$. If $S=\emptyset$, then $\alpha^{\prime}(G) \in\left\{\frac{n}{2}, \frac{n-1}{2}\right\}$, depending on the parity of n. In this case, $\alpha_{f}^{\prime}(G)-\alpha^{\prime}(G) \leq \frac{n}{2}-\frac{n-1}{2}=\frac{1}{2} \leq \frac{n-2}{6}$, since $n \geq 5$. Now, assume that S is non-empty.
Case 1: $x=0$. Since $\operatorname{def}_{f}(G) \geq 0,|S| \geq 1$, and $n \geq|S|+3 y$, we have

$$
\begin{aligned}
\alpha_{f}^{\prime}(G)-\alpha^{\prime}(G) & =\frac{1}{2}\left(n-\operatorname{def}_{f}(G)\right)-\frac{1}{2}(n-\operatorname{def}(S))=\frac{1}{2}\left(\operatorname{def}(S)-\operatorname{def}_{f}(G)\right) \\
& \leq \frac{1}{2}(y-|S|-0) \leq \frac{1}{2}\left(\frac{n-|S|}{3}-|S|\right)=\frac{n-4|S|}{6} \leq \frac{n-4}{6}<\frac{n-2}{6}
\end{aligned}
$$

Case 2: $x \geq 1$. Since $n \geq|S|+x+3 y,|S| \geq 1$, and $x \geq 1$, we have

$$
\begin{aligned}
\alpha_{f}^{\prime}(G)-\alpha^{\prime}(G) & =\frac{1}{2}\left(n-\operatorname{def}_{f}(G)\right)-\frac{1}{2}(n-\operatorname{def}(S))=\frac{1}{2}\left(\operatorname{def}(S)-\operatorname{def}_{f}(G)\right) \\
& \leq \frac{1}{2}(x+y-|S|-(x-|S|)) \leq \frac{y}{2}=\frac{n-x-|S|}{6} \leq \frac{n-2}{6}
\end{aligned}
$$

Equality in the bound requires equality in each step of the computation. When $n=5$, we conclude that (i) follows by Proposition 3. In Case 1, we cannot have equality, and in Case 2, we have $|S|=1, x=1$, and $n=|S|+x+3 y=2+3 y$.

Since G is connected, the components of $G-S$ are P_{3} or K_{3} except only one single vertex. If a component of $G-S$ is a copy of P_{3}, then by choosing the central vertex u of the path, we have $\operatorname{def}(S \cup\{u\})=o(G-(S \cup\{u\}))-|S \cup\{u\}|=o(G-S)-|S|$, yet $|S \cup\{u\}|>|S|$, which contradict the choice of S. Thus we have the desired result.

Corollary 7. For any n-vertex graph G, we have $\alpha_{f}^{\prime}(G)-\alpha^{\prime}(G) \leq \frac{n}{6}$, and equality holds only when G is the disjoint union of copies of K_{3}.
Proof. First, we show that if $n \leq 4$ and G is connected, then $\alpha_{f}^{\prime}(G)-\alpha^{\prime}(G) \leq \frac{n}{6}$, and equality holds only when $G=K_{3}$. If $n \leq 2$, then $G \in\left\{K_{1}, K_{2}\right\}$, which implies that $\alpha_{f}^{\prime}(G)-\alpha^{\prime}(G)=0<n / 6$. If $n=3$, then $G \in\left\{P_{3}, K_{3}\right\}$. Note that $\alpha_{f}^{\prime}\left(P_{3}\right)-\alpha^{\prime}\left(P_{3}\right)=1-1=0<3 / 6$ and $\alpha_{f}^{\prime}\left(K_{3}\right)-\alpha^{\prime}\left(K_{3}\right)=3 / 2-1=1 / 2 \leq 3 / 6$. Furthermore, equality holds only when $G=K_{3}$. If $n=4$, then either $G=K_{1,3}$ or G contains P_{4} as a subgraph. Since $\alpha_{f}^{\prime}\left(K_{1,3}\right)-\alpha^{\prime}\left(K_{1,3}\right)=1-1=0<4 / 6$ and $\alpha_{f}^{\prime}\left(P_{4}\right)-\alpha^{\prime}\left(P_{4}\right)=2-2=0<4 / 6$, we conclude that for any positive integer $n, \alpha_{f}^{\prime}(G)-\alpha^{\prime}(G) \leq \frac{n}{6}$. In fact, if $n \geq 5$, then by Theorem 6 , the difference must be at most $\frac{n-2}{6}$. Thus, for connected graphs, equality holds only when $G=K_{3}$.

Now, if we assume that G is disconnected, then G is the disjoint union of connected graphs G_{1}, \ldots, G_{k}. Let $\left|V\left(G_{i}\right)\right|=n_{i}$ for $i \in[k]$. Since

$$
\begin{aligned}
\alpha_{f}^{\prime}(G)-\alpha^{\prime}(G) & =\left[\alpha_{f}^{\prime}\left(G_{1}\right)+\cdots+\alpha_{f}^{\prime}\left(G_{k}\right)\right]-\left[\alpha^{\prime}\left(G_{1}\right)+\cdots+\alpha^{\prime}\left(G_{k}\right)\right] \\
& =\left[\alpha_{f}^{\prime}\left(G_{1}\right)-\alpha^{\prime}\left(G_{1}\right)\right]+\cdots+\left[\alpha_{f}^{\prime}\left(G_{k}\right)-\alpha^{\prime}\left(G_{k}\right)\right] \leq \frac{n_{1}}{6}+\cdots+\frac{n_{k}}{6}=\frac{n}{6}
\end{aligned}
$$

equality holds only when each G_{i} is a copy of K_{3} for $i \in[k]$.

4. Sharp upper bound for $\frac{\alpha_{f}^{\prime}(G)}{\alpha^{\prime}(G)}$

To prove the upper bound of Theorem 8, we still can use the Berge-Tutte formula and its fractional analogue. However, we provide an alternative way to prove the theorem.
Theorem 8. For $n \geq 5$, if G is a connected graph with n vertices, then $\frac{\alpha_{f}^{\prime}(G)}{\alpha^{\prime}(G)} \leq \frac{3 n}{2 n+2}$, and equality holds only when either
(i) $n=5$ and either C_{5} is a subgraph of G or $K_{2}+K_{3}$ is a subgraph of G (see Fig. 1), or
(ii) G has a vertex v such that the components of $G-v$ are all K_{3} except one single vertex (see Fig. 2).

Proof. Among all the fractional matchings of an n-vertex graph G with the size equal to $\alpha_{f}^{\prime}(G)$, let f be a fractional matching such that the number of edges e with $f(e)=1$ is maximized. We follow the notation in Observation 5.
Case 1: $w_{0}=w_{1}=0$. Since G is connected and $n \geq 5$, there exists only one i such that $i \geq 2$ and c_{i} is not zero, and $\alpha^{\prime}(G)=i c_{i} \neq 0$. Then we have

$$
\frac{\alpha_{f}^{\prime}(G)}{\alpha^{\prime}(G)} \leq \frac{\left(\frac{2 i+1}{2}\right) c_{i}}{i c_{i}}=1+\frac{1}{2 i} \leq \frac{5}{4}
$$

Case 2: $w_{0} \geq 1$ and $w_{1}=0$. By part (b) of Observation 5, this cannot happen.
Case 3: $w_{0}=0$ and $w_{1} \geq 1$. Since $\sum_{i=1}^{\infty} c_{i} \leq \frac{n-2 w_{1}}{3}$, by part (c) of Observation 5 , we have

$$
\frac{\alpha_{f}^{\prime}(G)}{\alpha^{\prime}(G)} \leq \frac{w_{1}+\sum_{i=1}^{\infty}\left(\frac{2 i+1}{2}\right) c_{i}}{w_{1}+\sum_{i=1}^{\infty} i c_{i}}=\frac{\frac{n-w_{0}}{2}}{\frac{n-w_{0}-\sum_{i=1}^{\infty} c_{i}}{2}}=\frac{n}{n-\sum_{i=1}^{\infty} c_{i}} \leq \frac{n}{n-\frac{n-2 w_{1}}{3}}=\frac{3 n}{2 n+2 w_{1}} \leq \frac{3 n}{2 n+2}
$$

Case 4: $w_{0} \geq 1$ and $w_{1} \geq 1$. Since $\sum_{i=1}^{\infty} c_{i} \leq \frac{n-2 w_{1}-w_{0}}{3}$, by part (c) of Observation 5, we have

$$
\frac{\alpha_{f}^{\prime}(G)}{\alpha^{\prime}(G)} \leq \frac{\frac{n-w_{0}}{2}}{\frac{n-w_{0}-\sum_{i=1}^{\infty} c_{i}}{2}} \leq \frac{n-w_{0}}{n-w_{0}-\frac{n-2 w_{1}-w_{0}}{3}}=\frac{3\left(n-w_{0}\right)}{2\left(n+w_{1}-w_{0}\right)}<\frac{3 n}{2\left(n+w_{1}\right)} \leq \frac{3 n}{2(n+1)}
$$

Equality in the bound requires equality in each step of the computation; we only need to check Case 1 and Case 2 . In Case 1 , we have $i=2$, which means that $n=5$ and G contains a copy of C_{5}. In Case 3 , we have $w_{1}=1$ and $\sum_{i=1}^{\infty} c_{i}=\frac{n-2}{3}$, which means that the graph induced by the $\frac{1}{2}$-edges is the union of K_{3}. Thus G has $K_{2}+k K_{3}$ as a subgraph for some positive integer k. Note that there is an edge between the copy of K_{2} and any copy of K_{3} by part (b) of Observation 5 . Also, there are no edges between any pair of two triangles by part (a) of Observation 5. Let u and v be the two vertices corresponding to the copy of K_{2}. If there are two different triangles C and C^{\prime} in G such that u and v are incident to C and C^{\prime}, respectively, then we have $\alpha^{\prime}(G)>w_{1}+c_{1}$, which implies that we cannot have equality in the first inequality in Case 3 . Thus, we conclude that G contains a copy of either $K_{2}+K_{3}$ as a subgraph or a vertex v such that the components of $G-v$ are all K_{3} except only one single vertex.

Corollary 9. For any n-vertex graph G with at least one edge, we have $\frac{\alpha_{f}^{\prime}(G)}{\alpha^{\prime}(G)} \leq \frac{3}{2}$, and equality holds only when G is the disjoint union of copies of K_{3}.
Proof. By the proof of Corollary 7, if $n \leq 4$ and G is connected, then $\frac{\alpha_{f}^{\prime}(G)}{\alpha^{\prime}(G)} \leq \frac{3}{2}$, and equality holds only when $G=K_{3}$. If we assume that G is disconnected, then G is the disjoint union of connected graphs G_{1}, \ldots, G_{k}. Let $\left|V\left(G_{i}\right)\right|=n_{i}$ for $i \in[k]$. Without loss of generality, we may assume that $\frac{\alpha_{f}^{\prime}\left(G_{1}\right)}{\alpha^{\prime}\left(G_{1}\right)} \geq \frac{\alpha_{f}^{\prime}\left(G_{i}\right)}{\alpha^{\prime}\left(G_{i}\right)}$ for all $i \in[k]$. Then we have

$$
\frac{\alpha_{f}^{\prime}(G)}{\alpha^{\prime}(G)}=\frac{\alpha_{f}^{\prime}\left(G_{1}\right)+\cdots+\alpha_{f}^{\prime}\left(G_{k}\right)}{\alpha^{\prime}\left(G_{1}\right)+\cdots+\alpha^{\prime}\left(G_{k}\right)} \leq \frac{\alpha_{f}^{\prime}\left(G_{1}\right)}{\alpha^{\prime}\left(G_{1}\right)} \leq \frac{3}{2}
$$

and equality holds only when each G_{i} is a copy of K_{3} for $i \in[k]$.

Acknowledgments

First author was partially supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (NRF-2015R1C1A1A02036398). Second author research was partially supported by the European Research Council under the European Union's Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreements No. 306349.

References

[1] C. Berge, Sur le couplage maximum d'un graphe, C. R. Acad. Sci. Paris 247 (1958) 258-259.
[2] W.R. Pulleyblank, Minimum node covers and 2-bicritical graphs, Math. Program. 17 (1) (1979) 91-103.
[3] E.R. Scheinerman, D.H. Ullman, Fractional Graph Theory: A Rational Approach to the Theory of Graphs, Wiley \& Sons, 2008.
[4] W.T. Tutte, The factorization of linear graphs, J. Lond. Math. Soc. 22 (1947) 107-111.
[5] D.B. West, Introduction to Graph Theory, Prentice Hall, Inc., Upper Saddle River, NJ, 2001.

[^0]: * Corresponding author.

 E-mail addresses: ilkyoo@kaist.ac.kr (I. Choi), kimJS@bham.ac.uk (J. Kim), suilo@gsu.edu (S. O).

