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Abstract

An r-dynamic proper k-coloring of a graph G is a proper k-coloring of G such that
every vertex in V (G) has neighbors in at least min{d(v), r} different color classes. The
r-dynamic chromatic number of a graph G, written χr(G), is the least k such that G
has such a coloring. By a greedy coloring algorithm, χr(G) ≤ r∆(G) + 1; we prove
that equality holds for ∆(G) > 2 if and only if G is r-regular with diameter 2 and
girth 5. We improve the bound to χr(G) ≤ ∆(G) + 2r − 2 when δ(G) > 2r lnn and
χr(G) ≤ ∆(G) + r when δ(G) > r2 lnn.

In terms of the chromatic number, we prove χr(G) ≤ rχ(G) when G is k-regular
with k ≥ (3 + o(1))r ln r and show that χr(G) may exceed r1.377χ(G) when k = r.
We prove χ2(G) ≤ χ(G) + 2 when G has diameter 2, with equality only for complete
bipartite graphs and the 5-cycle. Also, χ2(G) ≤ 3χ(G) when G has diameter 3, which
is sharp. However, χ2 is unbounded on bipartite graphs with diameter 4, and χ3 is
unbounded on bipartite graphs with diameter 3 or 3-colorable graphs with diameter 2.
Finally, we study χr on grids and toroidal grids.

1 Introduction

A k-coloring of a graph G is a map c : V (G) → S, where |S| = k; it is proper if adjacent

vertices receive different labels. An r-dynamic k-coloring is a proper k-coloring c of G such

that on each vertex neighborhood N(v) at least min{r, d(v)} colors are used. The r-dynamic

chromatic number, introduced by Montgomery [16] and written as χr(G), is the minimum k

such that G has an r-dynamic k-coloring.
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The 1-dynamic chromatic number of a graph G is its chromatic number χ(G). The 2-

dynamic chromatic number was introduced as dynamic chromatic number by Montgomery [16];

he conjectured χ2(G) ≤ χ(G)+2 when G is regular, which remains open. Alishahi [4] showed

that for all k there is a k-chromatic regular graph G with χ2(G) ≥ χ(G) + 1. Akbari et

al. [1] proved Montgomery’s conjecture for bipartite regular graphs. Lai, Montgomery, and

Poon [11] proved χ2(G) ≤ ∆(G) + 1 for ∆(G) ≥ 3 when no component is the 5-cycle C5.

Akbari et al. [2] strengthened this to the list context: ch2(G) ≤ ∆(G)+1 under the same

conditions, where chr(G) is the least k such that an r-dynamic coloring can be chosen from

any lists of size k assigned to the vertices. Kim and Park [9] proved ch2(G) ≤ 4 for planar

G with girth at least 7, and ch2(G) ≤ k when k ≥ 4 and G has maximum average degree

at most 4k
k+2

(both results are sharp). Kim, Lee, and Park [10] proved χ2(G) ≤ 4 when G

is planar and no component is C5; also, ch2(G) ≤ 5 whenever G is planar. Loeb, Mahoney,

Reiniger and Wise [12] proved ch3 ≤ 10 for planar and toroidal graphs and in general gave

an upper bound on chr for graphs with genus g.

Given a graph G, form G2 by adding edges joining nonadjacent vertices having a common

neighbor in G. One motivation for the study of r-dynamic chromatic number is that it

provides a spectrum of parameters between χ(G) and χ(G2).

Observation 1.1. Always χ(G) = χ1(G) ≤ · · · ≤ χ∆(G)(G) = χ(G2). If r ≥ ∆(G), then

χr(G) = χ∆(G)(G).

Observation 1.2. χr(G) ≥ min{∆(G), r}+ 1 (equality holds for trees).

We begin in Section 2 with an analogue of Brooks’ Theorem [7]: we prove χr(G) ≤
r∆(G) + 1 for r ≥ 2 and characterize the graphs achieving equality. The characterization

does not reduce to Brooks’ Theorem when r = 1; for r ≥ 2, equality holds if and only if G

is an r-regular graph with diameter 2 and girth 5. Such graphs, known as Moore graphs, are

quite rare; they exist only when r is 2, 3, 7, and possibly 57.

When the minimum degree is not too small, we can greatly improve the upper bound

r∆(G). For an n-vertex graphG, we show that δ(G) > r+s
s+1

r lnn implies χr(G) ≤ ∆(G)+r+s.

In particular, δ(G) > 2r lnn implies χr(G) ≤ ∆(G) + 2r − 2 (setting s = r − 2), and

δ(G) > r2 lnn implies χr(G) ≤ ∆(G) + r (setting s = 0).

In Section 3, we study bounds on χr for k-regular graphs in terms of the chromatic

number, motivated by Montgomery’s conjecture. Akbari et al. [1] proved χ2(G) ≤ 2χ(G)

for every k-regular graph G. Alishahi [3] proved χ2(G) ≤ χ(G) + 14.06 ln k + 1 (and later

χ2(G) ≤ χ(G) + 2 ⌈4 ln k + 1⌉ [4]) for k-regular graphs without 4-cycles (when k ≥ 35),

which Taherkhani [18] improved to χ2(G) ≤ χ(G) + ⌈5.437 ln k + 2.721⌉. For general r, we

prove χr(G) ≤ rχ(G) for k-regular graphs G with k ≥ (3 + o(1))r ln r. The thesis of the

third author [17] contains the same conclusion when k ≥ 7r ln r, and later Taherkhani [18]

obtained a similar result by essentially the same method as ours. When k is not sufficiently
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large in terms of r, the ratio χr(G)/χ(G) can grow superlinearly in r; we provide an example

using Kneser graphs where k = r and χr(G) > r1.37744χ(G).

In Section 4 we consider k-chromatic graphs with small diameter (the diameter of G,

written diam(G), is the maximum distance between any two vertices of G). We first give a

short proof of χ2(G) ≤ χ(G) + 2 when diam(G) = 2. Furthermore, equality holds only for

complete bipartite graphs and C5. For regular graphs with χ(G) ≥ 4, Alishahi [4] proved

χ2(G) ≤ χ(G) + α(G2), where α(G) is the maximum size of an independent set of vertices

in G; note that α(G2) = 1 when diam(G) = 2.

We also prove χ2(G) ≤ 3χ(G) when diam(G) ≤ 3, and this is sharp. However, χ2(G) is

unbounded when diam(G) = 4 even for χ(G) = 2; form G by subdividing every edge of the

complete graph Kn. Also, χ3 is unbounded with diam(G) = 2 and χ(G) = 2.

Finally, in Section 5 we study χr on grids and toroidal grids, providing some partial

results. For example, consider the m-by-n grid graph Pm,n with m,n ≥ 3 (the vertex set is

{0, . . . ,m− 1} × {0, . . . , n− 1}, with (a, b) adjacent to (a′, b′) when |a− a′| + |b− b′| = 1).

When r ≥ 4, always χr(Pm,n) = 5. For r = 3, we have χ3(Pm,n) = 4 ifm and n are both even,

and otherwise χ3(Pm,n) = 5 except possibly when mn ≡ 2 mod 4. The case mn ≡ 2 mod 4

was resolved by Kang, Müller, and West [8], completing the proof that χ3(Pm□Pn) = 5

whenever m and n are not both even.

2 Bounds in Terms of Maximum Degree

We prove an upper bound on χr(G) in terms of ∆(G) and characterize (for r ≥ 2) when

equality holds. The idea is similar to a well-known proof of Brooks’ Theorem by Lovász [13].

Theorem 2.1. χr(G) ≤ r∆(G)+1, with equality for r ≥ 2 if and only if G is r-regular with

diameter 2 and girth 5.

Proof. When G is r-regular, vertices with a common neighbor need distinct colors in an r-

dynamic coloring. Thus χr(G) = |V (G)| when diam(G) = 2. The maximum value of |V (G)|
is r2 + 1, which occurs if and only if G has girth 5. Hence equality holds for Moore graphs.

For the upper bound, it suffices to consider connected G. We use a vertex ordering

v1, . . . , vn. First let vn be a vertex of minimum degree, and if G is regular let vn lie on a

shortest cycle. Complete the ordering so that each vertex before vn has a higher-indexed

neighbor (this is an increasing ordering to vn. Color the vertices in the order v1, . . . , vn.

When coloring vi, avoid each color used on its neighborhood N(vi) or on a neighbor of a

vertex in N(vi) not yet having r colors in its neighborhood. Note that the first min{d(v), r}
colors used on N(v) are distinct. At most r colors must be avoided for vertex of N(vi).

For i < n, the uncolored higher-indexed neighbor of vi means that at most r∆(G) − 1

colors need to be avoided when coloring vi. If G is not regular, then at most r(∆(G) − 1)
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colors need to be avoided at vn. If G is regular and ∆(G) > r, then when vn is colored, its

neighbors already have r distinct colors in their neighborhoods, so only ∆(G) colors need

to be avoided in coloring vn. If ∆(G) < r, then Observation 1.1 yields χr(G) = χ(G2) ≤
∆(G2) + 1 ≤ ∆(G)2 + 1 < r∆(G).

Hence we may assume thatG is r-regular; at most r2 colors are used in coloring v1, . . . , vn−1.

Recall that vn lies on a shortest cycle C. If C has length at most 4, then when coloring vn,

the two neighbors of vn on C generate at least one common color to be avoided (on a vertex

of C), leaving at most r2 − 1 colors to be avoided. Thus r2 colors suffice.

Hence we may assume that G has girth at least 5, which yields r2 distinct other vertices

within distance 2 of each vertex. If diam(G) = 2, then we are finished, so assume diam(G) ≥
3. Let u and w be vertices at distance 3, with ⟨u, x, y, w⟩ an induced path. Let T1, . . . , Tk

be the components of G− {u,w}, with x, y ∈ Tk.

Color u and w first (each get color 1), and then use an increasing ordering in each Ti to

a neighbor of u or w, leaving Tk last with an increasing ordering to x. As usual, at most

r2− 1 colors must be avoided on any vertex of Ti before the last. For i < k, the last vertex v

in Ti has an uncolored vertex at distance 2 (it is x or y), so it needs to avoid at most r2 − 1

colors. Finally, when coloring x, the two vertices u and w have the same color, so again at

most r2 − 1 colors need to be avoided on x.

We believe that also there is no graph G with χr(G) = r∆(G) other than cycles whose

length is not divisible by 3 (when r = 2); that is, when ∆(G) > 2 and Moore graphs are

excluded, the upper bound should improve further. It is known for example that χ2(G) ≤
∆(G) + 1 when ∆(G) ≥ 3 and no component of G is C5 [11]. We present a restricted

construction for special ∆(G) where the bound cannot be improved by much.

Example 2.2. Graphs with χr(G) = r∆(G)− 1 when r = ∆(G) and ∆(G) ∈ {3, 7}. When

r = ∆(G), deleting an edge uv from a Moore graph with ∆(G) > 2 yields a graph G with

χr(G) = r∆(G) − 1 = r2 − 1. For the lower bound, any two vertices in V (G) − {u, v}
are adjacent or have a common neighbor, so they must have distinct colors. For the upper

bound, give distinct colors to V (G) − {u, v}, give u a color in N(v), and give v a color in

N(u); now no color is on two vertices with a common neighbor in G.

Let Gi for i ∈ Zk be a copy of this graph G. Add the edges joining the copy of v in

Gi to the copy of u in Gi+1, for all i ∈ Zk. Since ∆(G) > 2, the duplicated colors in

successive copies of G can be chosen to be distinct. Thus infinitely many 2-connected graphs

are constructed with r-dynamic chromatic number r∆(G) − 1, but only for ∆(G) = r and

r ∈ {3, 7} (and possibly 57), since those are the only degrees of Moore graphs.

Question 2.3. For fixed r and k, what is the best bound on χr(G) that holds for all but

finitely many graphs G with maximum degree k?
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Related to this question, Taherkhani [18] proved that if 2 ≤ r ≤ δ(G)/ log(2er(∆2 + 1)),

then χr(G) ≤ χ(G) + (r − 1)⌈e∆(G)
δ(G)

log(2er(∆(G)2 + 1))⌉. This gives an upper bound for

χr(G) when r is substantially smaller than δ(G).

We show next that if the minimum degree is not too small relative to the number of

vertices (for fixed r), then the bound in Theorem 2.1 can be improved by replacing the

product with a sum involving ∆(G) and r. The idea is to modify the greedy coloring

algorithm used in Theorem 2.1. There we ensured that the first r neighbors of a vertex

would have distinct colors. Now we allow r distinct colors to be obtained at any time.

Theorem 2.4. If G is an n-vertex graph, and δ(G) > r+s
s+1

r lnn, then χr(G) ≤ ∆(G)+ r+ s.

In particular, δ(G) > 2r lnn implies χr(G) ≤ ∆(G) + 2r − 2, and δ(G) > r2 lnn implies

χr(G) ≤ ∆(G) + r.

Proof. The special cases arise by setting s = r − 2 and s = 0 in the general statement.

If n ≤ ∆(G) + r + s, then we can give the vertices distinct colors, so we may assume

n > ∆(G)+ r+ s. Let v1, . . . , vn be any vertex ordering of G. Color v1, . . . , vn in order using

∆(G) + r + s colors. Give vi a color chosen uniformly at random among those not used on

its earlier neighbors; at least r + s colors are available. This produces a proper coloring.

We claim that with positive probability the coloring is also r-dynamic. This fails at a

vertex v only if the colors in N(v) are confined to a particular set of r − 1 colors. The

probability that this happens with a particular set of r − 1 colors is bounded by ( r−1
r+s

)δ(G),

which in turn is bounded by e−δ(G) s+1
r+s . There are

(
∆(G)+r+s

r−1

)
choices of a set of r − 1 colors,

which is less than nr−1 since ∆(G) + r + s < n.

Since G has n vertices, the probability of having a bad vertex is less than nre−δ(G) s+1
r+s .

The constraint on δ(G) bounds this by nrn−r, which equals 1.

3 Regular Graphs and Chromatic Number

To strengthen χr(G) ≤ r∆(G) for non-Moore graphs, we want to replace ∆(G) with a value

no larger. In general, rχ(G) would be a better upper bound, since χ(G) ≤ ∆(G) by Brooks’

Theorem when ∆(G) ≥ 3 and G is not complete. We prove χr(G) ≤ rχ(G) for regular graphs

with sufficiently large degree in terms of r. The Petersen graph shows that the inequality

does not hold for all G when r = 3.

When G is k-regular with k sufficiently large in terms of r, some r-coloring of V (G) puts

r distinct colors into each vertex neighborhood. Giving each vertex a pair consisting of its

color under such an r-coloring and its color under a proper χ(G)-coloring produces an r-

dynamic coloring with rχ(G) colors. The dynamic part follows from a standard probabilistic

computation: a random r-coloring succeeds with high probability. The computation appears

for example in [15].
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Lemma 3.1. Let H be a hypergraph in which each edge has size at least k and each vertex

appears in at most D edges. If ep(k(D− 1)+1) ≤ 1, where p = re−k/r, then some r-coloring

of V (H) puts all r colors into each edge of H.

Theorem 3.2. If G is a k-regular graph with k ≥ (3 + x)r ln r, where x− 2 ln ln r
ln r

is a small

positive constant, then χr(G) ≤ rχ(G).

Proof. Let H be the hypergraph with vertex set V (G) whose edges are the vertex neighbor-

hoods in G; H is k-uniform, with each vertex in k edges. Let p = re−k/r. If ep(k(k−1)+1) ≤
1, then by Lemma 3.1 there is an r-coloring of V (H) such that every edge in E(H) has r

colors on it. Pairing this coloring with a proper coloring of G yields an r-dynamic coloring

of H with rχ(G) colors.

For the needed inequality, note that k ≥ (3+x)r ln r with x > 2 ln ln r
ln r

implies ere−k/rk2 ≤
1, which suffices.

Taherkhani [18] independently used essentially the same argument as Lemma 3.1 but did

not simplify the resulting threshold on k in terms of r. The thesis [17] gave the threshold

k ≥ 7r ln r by a similar method. We do not know the least k to guarantee χr(G) ≤ rχ(G)

when G is k-regular, but we can show that when k = r the ratio χr(G)/χ(G) can grow

superlinearly in r. Let [n] denote {1, . . . , n}.

Theorem 3.3. For infinitely many r, there is an r-regular graph G such that χr(G) >

r1.37744χ(G).

Proof. The Kneser graph K(n, t) is the graph whose vertices are the t-element subsets of

[n], with two sets adjacent when they are disjoint. Each vertex is adjacent to
(
n−t
t

)
other

vertices. Given t ∈ N, let G = K(3t− 1, t) and r =
(
n−t
t

)
. Any two nonadjacent vertices in

G have a common neighbor, since two intersecting t-sets in [3t− 1] omit at least t elements,

so diam(G) = 2. Since G is r-regular, we thus have χr(G) = |V (G)| =
(
3t−1
t

)
. On the other

hand, Lovász [14] and Bárany [6] proved χ(K(n, t)) = n− 2t+ 2, so χ(G) = t+ 1.

It remains to express χr(G) in terms of r and χ(G). In terms of t, we have r =
(
2t−1
t

)
=

1
2

(
2t
t

)
and χr(G) =

(
3t−1
t

)
= 2

3

(
3t
t

)
. What is important is the ratio between χr(G) and r as a

function of r. For c ∈ {1
2
, 1
3
}, we use the approximation

(
m
cm

)
≈ (cc(1−c)1−c)−m√

c(1−c)2πm
from Stirling’s

Formula to compute

χr(G)

rχ(G)
≈

2
3

(
3t
t

)
(t+ 1)1

2

(
2t
t

) ≈ 4

3t

(27
4
)t
√
πt

4t
√

(4/3)πt
≈ 1

t

√
4

3

(
27

16

)t

.

Setting this ratio to be rx, where r ≈ 1
2
4t/

√
πt, we take logarithms to obtain t lg(27/16) =

(1+o(1))tx lg 4, which simplifies to x = 1
2
(lg 27−4) > .37744. Thus χr(G) > r1.37744χ(G).

Theorems 3.2 and 3.3 suggest the following question.
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Question 3.4. As a function of r, what is the least k such that χr(G)
χ(G)

is at most linear in r

when G is k-regular? What is the least k such that χr(G)
χ(G)

is bounded by r(ln r)c for some c?

4 Diameter and Chromatic Number

In this section we study the relationship between χr(G) and χ(G) whenG has small diameter.

We first prove χ2(G) ≤ χ(G)+2 when diam(G) = 2, regardless of whether G is regular, and

we characterize when equality holds. Alishahi [4] proved that χ2(G) ≤ χ(G)+1 when G has

diameter 2 and chromatic number at least 4 and satisfies e(∆2(G)−∆(G) + 1) ≤ 2δ(G).

Proving the desired bound is easy; characterizing equality is harder. Given a coloring f of

a graph, say that a vertex is f -monochromatic if its neighbors have the same color under f .

Theorem 4.1. If diam(G) = 2, then χ2(G) ≤ χ(G) + 2, with equality only when G is a

complete bipartite graph or C5.

Proof. The claim holds for stars. For a non-star G with minimum degree 1, deleting all

vertices of degree 1 yields a graph G′ with χ(G′) = χ(G), and a 2-dynamic coloring of G′

extends to a 2-dynamic coloring of G. Hence we may assume δ(G) ≥ 2. We claim

(∗) If f is a proper coloring of a graph with diameter 2, and v is f -monochromatic

with neighborhood of color a, then N(v) = {u : f(u) = a}. In particular, nonadjacent

f -monochromatic vertices have the same neighborhood.

To prove (∗), note that the set of vertices with color a is independent, so a vertex outside

N(v) with color a cannot have a common neighbor with v. For the second statement,

nonadjacent vertex must have a common neighbor, and then being f -monochromatic makes

both adjacent to all vertices of that color.

We next prove the upper bound. Let f be a proper χ(G)-coloring of a graph G with

diameter 2; note that G is connected. If f is not 2-dynamic, then some vertex v is f -

monochromatic, with color a on all of N(v). Modify f by giving a new color α to v and

another new color β to one vertex x in N(v).

The resulting coloring f ′ is a proper (χ(G) + 2)-coloring. If f ′ is not 2-dynamic, then

some vertex z is f ′-monochromatic. By construction, z cannot be v or a neighbor of v (each

neighbor of v has color α on exactly one neighbor). If z is not a neighbor of v, then by (∗)
we have N(z) = N(v), and colors a and β both appear in N(z).

For the characterization of equality, note first that if no vertex ofN(v) is f -monochromatic,

then we do not need to introduce a new color on v, and we obtain χ2(G) ≤ χ(G)+ 1. Hence

we may assume that two adjacent vertices v and u are f -monochromatic. If no vertex lies

outside N(v) ∪ N(u), then G is the complete bipartite graph with parts N(v) and N(u),

since those sets are independent and diam(G) = 2.
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Hence if G is not a complete bipartite graph, then there is a vertex w outside N(v)∪N(u).

Let a and b be the colors on N(v) and N(u), respectively. Since diam(G) = 2, vertex w

has neighbors in both N(v) and N(u) and hence has a third color, c. Let W be the set of

all vertices with color c under f . Let U and V be the set of all f -monochromatic vertices

having the same color as u and v, respectively; note that U ⊆ N(v) and V ⊆ N(u). By (∗),
there are no other f -monochromatic vertices.

All vertices in U have the same neighborhood, as do all vertices in V . If |U | > 1, then we

change the color of u to c and use a new color d on v. This produces a 2-dynamic coloring

with χ(G)+1 colors, since the neighbors of u now have colors a and c in their neighborhood.

Similarly, if |V | > 1 we can change the color of v to c and use d on u.

Hence we may assume |U | = |V | = 1. The change still works unless N(u) contains a

vertex x whose neighbors other than u all have color c, and similarly N(v) contains a vertex

y whose neighbors other than v all have color c. In particular, x and y are not adjacent.

Now changing x and y to a new color d produces the desired 2-dynamic coloring of G with

χ(G) + 1 colors, unless there is a vertex w ∈ W whose only neighbors are x and y.

In this case, reaching N(u)− {v, x} in two steps from w requires N(u)− {v, x} ⊆ N(y),

and similarly N(v)− {u, y} ⊆ N(x). Since vertices of N(x)− {u} and N(y)− {v} all have

color c, we have N(u) = {v, x} and N(v) = {u, y}. Now G = C5 unless G has a vertex

outside the 5-cycle induced by w, x, u, v, y in order. Since u and v have no other neighbors,

and all other neighbors of x and y have color c, reaching u and v in two steps requires that

all other vertices have neighborhood {x, y}. Now we use colors 1, 2, 3, 4 in order on the path

⟨x, u, v, y⟩ and use colors 2 and 3 on the remaining independent set, each at least once.

The graph obtained by subdividing every edge of an n-vertex complete graph has diameter

4. Its chromatic number is 2, but its 2-dynamic chromatic number is n. Hence for diameter

4 there is no bound in terms of the chromatic number, while for diameter 2 the bound is

very tight. For diameter 3 we determine the best bound.

To study χ2 on graphs with diameter 3 we use a related notion from hypergraph coloring.

A vertex coloring of a hypergraph is c-strong if every edge e has at least min{c, |e|} distinct

colors; this concept was introduced by Blais, Weinstein, and Yoshida [5]. Like χr, this concept

yields a spectrum of parameters, from ordinary hypergraph coloring to “strong coloring”,

where all vertices in an edge have distinct colors.

A coloring of a graph G is r-dynamic if it is proper and is an r-strong coloring of the

“neighborhood hypergraph” on V (G) whose edges are the vertex neighborhoods in G. Fur-

thermore, combining a proper coloring of G with an r-strong coloring of the neighborhood

hypergraph yields an r-dynamic coloring of G. Thus s ≤ χr(G) ≤ sχ(G), where s is the

minimum number of colors in an r-strong coloring of the neighborhood hypergraph of G.

Theorem 4.2. If G is a k-chromatic graph with diameter at most 3, then χ2(G) ≤ 3k, and

this bound is sharp when k ≥ 2.
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Proof. We begin with sharpness. Let F be a subgraph of K3k consisting of disjoint triangles

T1, . . . , Tk. Form G from K3k by subdividing each edge of F . In G the vertices belonging

to Ti can receive color i, and their neighbors of degree 2 can receive another color. In a 2-

dynamic coloring, all 3k original vertices must have distinct colors, so 3k colors are needed.

The diameter is 3, because any two vertices of degree 2 have neighbors that are adjacent.

Now let G be any k-chromatic graph with diameter at most 3. We have noted that

χr(G) ≤ sk, where s is the minimum number of colors in an r-strong coloring of the neigh-

borhood hypergraph H of G. More precisely, we give each vertex v a color pair (f(v), h(v)),

where f is a proper k-coloring of G and h is an r-strong coloring of the subhypergraph H ′

of H whose edges are the edges of H that do not already have r colors under f .

Thus it suffices to show that H ′ has a 2-strong 3-coloring when diam(G) ≤ 3. Call a

hypergraph with such a coloring good. A hypergraph is good if it has a minimal edge e that

intersects all other edges; use colors 1 and 2 on e and use color 3 on all vertices not in e.

Given the proper k-coloring f of G, we define k subhypergraphs of H ′. Let Vi = {v ∈
V (G) : f(v) = i}. The subhypergraph Hi has vertex set Vi, and its edges are the vertex

neighborhoods in G in which f colors every vertex with i. Since each vertex in Hi has color

i under f , the vertex sets of these subhypergraphs are disjoint. Hence if each is good, then

their union is good, with an r-strong coloring h. Extend h arbitrarily for v /∈ V (H ′); these

vertices are not needed to make neighborhoods r-dynamic.

It suffices to show that the edges of Hi are pairwise intersecting when diam(G) ≤ 3.

Consider x, y ∈ V (G) such that N(x), N(y) ∈ E(Hi) and N(x) ∩N(y) = ∅. If xy ∈ E(G),

then y ∈ N(x) and x ∈ N(y), and hence f(x) = f(y) = i, contradicting that f is a proper

coloring of G. Similarly, no edge of G can join N(x) and N(y), since all of N(x)∪N(y) has

color i under f . Hence a shortest path in G from x to y visits N(x) and N(y) and some

other vertex between them. Such a path has length at least 4, contradicting diam(G) ≤ 3.

We conclude that the edges of Hi are pairwise intersecting and Hi is good, as desired.

These results are sharp in various ways. For larger r, there is no bound, not even on

bipartite graphs with diameter 3 or on 3-chromatic graphs with diameter 2. Note that

the only bipartite graphs with diameter 2 are complete bipartite graphs, where r-dynamic

chromatic number does not exceed 2r.

Theorem 4.3. For 3 ≤ k < r, the r-dynamic chromatic number is unbounded on the graphs

with minimum degree k + 1 that are bipartite and have diameter 3, and also on those that

are 3-colorable and have diameter 2.

Proof. Let H be the incidence graph of the k-subsets of [n], where n > k + 1. That is, H is

bipartite, with one part being [n] and the other being the family of k-subsets, and element j

is adjacent to set A if j ∈ A. Form G by adding a single vertex v adjacent to all the k-sets,

giving them degree k+ 1. The graph G is bipartite, with the added vertex in the same part
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as [n]. Any two elements of [n] lie in a common k-set, so the distance between them is 2, and

the distance between any k-set and an element not in it is 3. The added vertex has distance

2 from all of [n] and ensures distance 2 between any two k-sets. Hence diam(G) = 3.

In an r-dynamic coloring, the neighbors of any vertex with degree at most r receive

distinct colors. In G, any two vertices of [n] ∪ {v} have a common neighbor with degree at

most r, so χr(G) ≥ n+ 1 (equality holds).

For a construction with diameter 2, let the added vertex v be adjacent also to all of [n].

Now v is a dominating vertex, so the diameter is 2, but the chromatic number increases to

3. However, each k-set vertex still has k + 1 neighbors, so the argument for χr(G) ≥ n + 1

remains the same.

5 Grids

In this final section, we study r-dynamic coloring of grids and toroidal grids. Restricting to

m,n ≥ 3, set V (Pm,n) = [m]× [n] and V (Cm,n) = Zm × Zn; vertices are adjacent when they

have equal values in one coordinate and consecutive values in the other. (Indeed, Pm,n is the

cartesian product of paths Pm and Pn, and Cm,n is the product of cycles Cm and Cn.)

Akbari, Ghanbari, and Jahanbekam [2] showed that χ2(Pm,n) = 4 and that χ2(Cm,n) = 3

when 3 | mn, and that otherwise χ2(Cm,n) = 4. Since these graphs have maximum degree

4, by Observation 1.1 the r-dynamic chromatic number equals the 4-dynamic chromatic

number when r ≥ 4. Hence we consider r ∈ {3, 4}.

Theorem 5.1. If m and n are at least 2, then

χ4(Pm,n) =

{
4 if min{m,n} = 2

5 otherwise
and χ3(Pm,n) =

{
4 min{m,n} = 2

4 m and n are both even.

Proof. The lower bounds follow from Observation 1.2: χr(G) ≥ min{∆(G), r} + 1. For the

upper bounds, index the vertices as {(i, j) : 0 ≤ i ≤ m − 1, 0 ≤ j ≤ n − 1}, adjacent when
they differ by 1 in one coordinate.

First consider χ4(Pm,n) with min{m,n} > 2. Define a coloring c on V (Pm,n) by c(i, j) =

i+2j mod 5. By construction, c is a proper 5-coloring of Pm,n. It is 4-dynamic because the

neighbors of any vertex have distinct colors. Thus χ4(Pm,n) = 5.

For min{m,n} = 2 and r ≥ 3, we have ∆(Pm,n) = 3, so χr(Pm,n) ≥ 4; the coloring shown

below for m = 2 achieves equality and illustrates the coloring h defined below.

0 1 2 3 0 · · ·
2 3 0 1 2 · · ·

Now consider χ3(Pm,n) when both m and n are even; at least four colors are needed.

Define g by g(4k) = 0, g(4k + 1) = 2, g(4k + 2) = 1, and g(4k + 3) = 3 for k ∈ Z. Define h
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by setting h(i, j) = g(i) + j mod 4 when i or i − 1 is divisible by 4 and h(i, j) = g(i) − j

mod 4 otherwise. By construction, h is a proper 4-coloring of Pm,n. Also h is 3-dynamic.

The case r = 3 with m,n ≥ 3 and m,n not both even remains. Theorem 5.1 yields

χ3(Pm,n) = 5, since always χr(G) ≤ χr+1(G). In the next lemma we prove equality when

also mn ̸≡ 2 mod 4. The more difficult case mn ≡ 2 mod 4 is completed in [8].

Lemma 5.2. A 3-dynamic 4-coloring of Pm,n when m,n ≥ 3 and m,n are not both even

requires mn ≡ 2 mod 4.

Proof. Let A be the matrix with color ai,j in position (i, j), representing the coloring. By

symmetry, we let m (the number of rows) be odd. The four upper-left vertices have distinct

colors, since the vertices on the edges of the matrix have degree at most 3. Let a = a1,1,

b = a1,2, c = a2,1, and d = a2,2. The neighbors of a vertex of degree 3 must have the other

three colors. This determines the first two rows and first two columns. Once the argument

for the first two rows and columns reaches their ends, the same argument determines the

elements of the last two rows and columns.

The matrices below, in the two cases m ≡ 1 mod 4 and m ≡ 3 mod 4, exhibit all the

cases for m. In the bottom row the first two elements agree with the top row when m ≡ 1

mod 4 and reverse those two elements when m ≡ 3 mod 4. The diagram shows that the

last two columns exhibit the same behavior.

a b c d a b c d a b c d a b
c d a b c d a b c d a b c d
b a b a
d c a b d c a b d c a b d c
a b d c a b d c a b d c a b

1 1 4 4 3 3 2 2

a b c d a b c d a b c d a b
c d a b c d a b c d a b c d
b a b a
d c d c
a b a b
c d b a c d b a c d b a c d
b a c d b a c d b a c d b a

1 1 4 4 3 3 2 2

This property of the last two columns occurs for each congruence class of n modulo 4.

The numbers below the grid designate where the rows end when n is congruent to 1, 4, 3,

or 2, respectively. In the first three cases, the relationship between the top row and bottom

row is not as would be required by the last two columns if the rows ended there. Hence in

those cases no 3-dynamic 4-coloring can exist.

The proof of Lemma 5.2 shows that consistency around the borders can be achieved when

m is odd and n ≡ 2 mod 4, leaving the possibility of a 3-dynamic 4-coloring in such cases.

Using other structural arguments, Kang, Müller, and West [8] found a proof for all (m,n)

with mn ≡ 2 mod 4 that χ3(Pm,n) > 4. Their result completes the following theorem.

Theorem 5.3. When m and n are not both even, χ3(Pm,n) = 5.
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Finally, consider χr(Cm,n) for r ≥ 3. Since Cm,n
∼= Cn,m, we may assume that the

remainder upon dividing m by 4 is no larger than when dividing n by 4.

Theorem 5.4. Always χ3(Cm,n) ≥ 4. For m ≡ s mod 4 and n ≡ t mod 4 with 0 ≤ s ≤
t ≤ 3, equality holds when s = 0 and t ̸= 3.

Proof. Since Cm,n is 4-regular, Observation 1.1 yields χ3(Cm,n) ≥ 4. For the upper bound,

we construct colorings. Write V (Cm,n) as Zm × Zn, with vertices adjacent when they agree

in one coordinate and differ by 1 in the other.

Recall g and h from Theorem 5.1: g(4k) = 0, g(4k + 1) = 2, g(4k + 2) = 1, and

g(4k + 3) = 3 for k ∈ Z. Also h(i, j) = g(i) + j mod 4 when i or i− 1 is divisible by 4, and

h(i, j) = g(i)− j mod 4 otherwise. Indexing of the rows and columns begins with 0. Below

we illustrate h and two modifications of h used when s = 0. Also let A denote the 4-by-4

matrix appearing in the first four columns of the first matrix below. Note that h is a tiling

by copies of A when s = t = 0, and otherwise it uses portions of A in the rows and columns

after the last multiple of 4.

0 1 2 3 0 1
2 3 0 1 2 3
1 0 3 2 1 0
3 2 1 0 3 2

0 1 2 3 1
2 3 0 1 3
1 0 3 2 0
3 2 1 0 2

0 1 2 3 0 1 2
4 3 0 1 2 3 0
1 0 3 2 1 0 3
3 2 1 0 3 2 4

As shown above on the left, each column is periodic, so each vertex has vertically neigh-

boring colors distinct and different from its own. When t = 0, the coloring is 4-dynamic (for

the same reason) and hence also 3-dynamic. When t = 2, the coloring is still proper, but

the vertices in the last column have horizontal neighbors with the same color; the coloring

is still 3-dynamic.

When t = 1, modify h by changing the colors on column n− 1 (the last column) to agree

with those on column 1 (the second column). Colors on vertices in the last column now differ

by 2 from the color to their left, so the coloring is proper. Vertices in the last two columns

have three distinct colors in their neighborhoods; other vertices have four.

In the remaining cases, explicit constructions yield χ3(Cm,n) ≤ 6 (see [17]), but we have

not determined the optimal values. Similarly, for r ≥ 4 we have χr(Cm,n) = χ4(Cm,n) ≥
5, with equality when m and n are both divisible by 5, and explicit constructions yield

χ4(Cm,n) ≤ 9 (see [17]). Note that χ4(C3,3) = 9, since (C3,3)
2 is a complete graph.
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