
GRAPH EMBEDDING LECTURE NOTE

JAEHOON KIM

Abstract. In this lecture, we aim to learn several techniques to find sufficient conditions
on a dense graph G to contain a sparse graph H as a subgraph. In particular, for a given
graph H, we investigate conditions on e(G) or δ(G) to guarantee an embedding of H
into G.

1. Basic probabilistic methods

Materials in this lecture note come from several sources which are listed in the reference
at the end of the lecture note.

For each n ∈ N, we define [n] := {1, 2, . . . , n}. We write a = b ± c if we have b − c ≤
a ≤ b + c. We define

(
X
k

)
:= {A ⊆ X : |A| = k} and

(
X
≤k
)

:= {A ⊆ X : |A| ≤ k}. If a set

A has size k, then we say that A is a k-set.
A tuple H = (V,E) is a k-uniform hypergraph or k-graph if V = V (H) is a finite set

and E = E(H) ⊆
(
V
k

)
. In particular, if G = (V,E) is a 2-graph, then we call it a graph.

For k-graph H, we let v(H) := |V (H)| and e(H) := |E(H)|. For graph G and u, v ∈ V ,
we denote the edges {u, v} ∈ E(G) as uv or vu. If uv ∈ E(G), we say that u and v are
adjacent and v is a neighbor of u. We say that a set U ⊆ V (G) is an independent set if
there are no edges uv of G with {u, v} ⊆ U . We say that a set U is a clique of G if every
pair uv in U is an edge of G.

For a graph G and two vertices u and v, we let distG(u, v) be the minimum length of
paths between u and v, where the length of a path is the number of edges in the path.
For sets U = {u1, . . . , ut} ⊆ V (G), A ⊆ V (G) and k ∈ N, we write

NG(U ;A) := NG(u1, . . . , uk;A) := A ∩
⋂
v∈U

NG(v)

Nk
G(U) := {v ∈ V (G) : dist(v, u) = k for some u ∈ U}

N≤kG (U) :=
k⋃
i=0

Nk
G(U)

NG(U) := NG(u1, . . . , uk) := NG(U ;V (G)) and dG(U ;A) := |NG(U ;A)|.

Sometimes, we omit the subscripts if it’s clear from the context. Note that NG(U) denotes
the set of vertices adjacent to all vertices in U while N1

G(U) denotes the set of vertices
adjacent to at least one vertex in U .

We denote the maximum degree of G as ∆(G) = maxv∈V (G) dG(v) and the mini-
mum degree of G as δ(G) = minv∈V (G) dG(v) and the average degree of G as d(G) =

1
v(G)

∑
v∈V (G) dG(v) = 2e(G)

n . We say that a graph G is an r-partite graph or an r-chromatic

graph if V (G) can be partitioned into r independent sets. We say that a partition V1, . . . , Vr
of V (G) is an r-partition if each Vi is an independent set. χ(G) denote the minimum nat-
ural number r where G is r-partite. We say that G is a complete r-partite graph with
vertex partition V1, . . . , Vr if uv is an edge for all u ∈ Vi, v ∈ Vj and i 6= j.

Definition 1.1. We say that H embeds into G, or equivalently G contains H as a subgraph
if there exists an injective function φ : V (H)→ V (G) satisfying φ(u)φ(v) ∈ E(G) for each
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uv ∈ E(H). We say φ is an embedding of H into G. If such an embedding exists, we
write H ⊆ G.

We will frequently use the probabilistic method in this lecture. The probabilistic method
is a powerful tool to prove an existence of a structure with certain properties. The basic
philosophy for the probabilistic method is the following.

Define an appropriate probability space of structures. Show that the desired properties
hold in this space with positive probability. Then this proves the existence of a desired
structure.

To illustrate this method, we prove a theorem regarding Ramsey number. The Ramsey
number r(H) is the smallest n such that in any 2 edge-coloring of a complete graph Kn

on n vertices by red and blue, either H embeds into the red graph or H embeds into the
blue graph. Erdős first used this method to prove the following simple theorem.

Theorem 1.2 (Erdős, 1947). For each r ∈ N, we have r(Kr) > 2r/2.

Proof. Consider a complete graph Kn on vertex set V with |V | = n = 2r/2 and a 2-edge-
coloring of Kn by red and blue as follows. For each edge of Kn, we choose its color as
red or blue with probability 1/2 independently at random. For each U ∈

(
V
r

)
, the set U

induces a monochromatic Kr with probability 2 · 2−(r2). The probability that Kn with the
edge-coloring contains a monochromatic Kr is at most∑

U∈(Vr )

2 · 2−(r2) ≤
(
n

r

)
21−(r2) < 1.

Here, it is easy to check the last inequality. This implies that, with positive probability,
the edge-coloring contains no monochromatic Kr. Thus there exists an edge-coloring of
Kn with no monochromatic Kr. �

Note that in the above, we use the union bound, which says that at least one of the

events E1, . . . , Ek holds with probability at most
∑k

i=1 Pr[Ei].

A random variable is a function X : S → R from a probability space S to real numbers.
For a random variableX, we write E[X] for the expectation ofX. For two random variables
X and Y , we have E[X + Y ] = E[X] + E[Y ] and this is called linearity of expectation.
Note that if E[X] = µ, then there exists an element S ∈ S with X(S) ≥ µ. To see this,
imagine a set of numbers with average µ, then at least one number in the set must be at
least as large as µ.

Another useful inequality we will use is Markov’s inequality. Which says that for a

non-negative random variable X and t ≥ 1, we have Pr[X ≥ t] ≤ E[X]
t .

By using linearity of expectation, we can prove the following theorem.

Theorem 1.3 (Caro 1979, Wei 1981). Let n, r ∈ N with n ≥ r and n = qr + k with

0 ≤ k < r. Any n-vertex graph G with less than k
(
q+1

2

)
+ (r − k)

(
q
2

)
edges contains an

independent set of size at least r + 1.

Proof. Let m be the number of edges of G. We choose an ordering σ = (v1, . . . , vn) of V (G)
uniformly at random. In other words, each ordering is chosen with the same probability
1
n! . In this ordering, we choose the set U(σ) of all vertices which comes before all their
neighbors. Then U(σ) is an independent set of G. Let X be the random variable such
that X(σ) = |U(σ)|. For each v ∈ V (G), let Iv be the indicator random variable such that

Iv(σ) :=

{
1 if v ∈ U(σ),
0 if v /∈ U(σ).
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We have X =
∑

v∈V (G) Iv. Since the ordering is chosen uniformly at random, the proba-

bility that v appears before all of its neighbors is Pr[Iv = 1] = (d(v) + 1)−1.

E[X] =
∑

v∈V (G)

E[Iv] =
∑

v∈V (G)

1

d(v) + 1
.

As
∑

v∈V (G)(d(v) + 1) = 2e(G) + n is fixed, the final expression above is minimized when

degrees of vertices in V (G) are as even as possible. Note that 2(k
(
q+1

2

)
+ (r−k)

(
q
2

)
) +n >

2m + n is a sum of (r − k)q terms of q and k(q + 1) terms of q + 1, total n terms. Thus
we have

E[X] > (r − k)q · 1

q
+ k(q + 1) · 1

q + 1
= r.

This implies that there exist an ordering σ such that |U(σ)| ≥ r + 1, meaning that G
contains an independent set of size r + 1. �

By analyzing the above proof, we can characterize all extremal graphs. In other words,
we can characterize all graphs with minimum number of edges containing no independent
set of size r + 1.

Proposition 1.4. Let n, r ∈ N with n ≥ r and n = qr + k with 0 ≤ k < r. Let G be
an n-vertex graph with k

(
q+1

2

)
+ (r − k)

(
q
2

)
edges whose largest independent set has size

exactly r. Then G is a vertex-disjoint union of k complete graphs on q + 1 veritces and
r − k complete graphs on q vertices.

Proof. Note that we have

E[X] =
∑

v∈V (G)

E[Iv] =
∑

v∈V (G)

1

d(v) + 1
≥ r. (1.1)

On the other hand, as G has no independent set of size r + 1, we must have E[X] ≤ r,
thus we have E[X] = r. Hence, we have the equality in (1.1). The final equality in (1.1)
implies that d(v) must be as close together as possible. Moreover, X must be a constant
random variable. (Otherwise, thre exists a choice σ such that X(σ) > E[X].) Suppose
that G is not union of cliques. Then there exists x, y, z ∈ V with xy, xz ∈ E(G) and
yz /∈ E(G). Consider orderings σ = (x, y, z, . . . ) and σ′ = (y, z, x, . . . ) in such a way
that they are identical on V (G) \ {x, y, z}. Then U(σ) and U(σ′) are the same except
x ∈ U(σ), y, z /∈ U(σ) and x /∈ U(σ′), y, z ∈ U(σ′). Hence, we conclude that X = |U(σ)|
is not constant, this implies that G is the union of cliques. As degrees of G are as even as
possible, we prove the proposition. �

The main theme of this lecture series is to answer the following question.

In order to guarantee an embedding of H into G, how dense G must be?

First natural choice of the graph H is a complete graph. Let Tr(n) be the n-vertex
complete r-partite graph such that each part has size either bnr c or dnr e. Let tr(n) be
the number of edges in Tr(n). It is easy to see that Tr(n) does not contain Kr+1 as a
subgraph. Note that by considering a complement of a graph G (which is a graph with

vertex set V (G) and edge set
(
V (G)

2

)
\E(G)), Theorem 1.3 implies the following theorem.

Theorem 1.5 (Turán, 1941). Let n, r ∈ N with n ≥ r+ 1. If G is an n-vertex graph with
more than tr(n) edges, then G contains Kr+1 as a subgraph.
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Note that tr(n) ≤ (1− 1
r )n

2

2 . This means that if G is dense enough, then we can embed
Kr into G. Moreover, Tr(n) is the only graph having the maximum number of edges
containing no copy of Kr+1. In other words, we can characterize all Kr-free graphs with
the maximum number of edges.

By Proposition 1.4, the following holds.

Theorem 1.6. Let n, r ∈ N with n ≥ r + 1. If G is an n-vertex Kr+1-free graph with
exactly tr(n) edges, then G must be isomorphic to Tr(n).

We will explore more for graphs other than complete graphs.

The following is another useful probabilistic method. When a random variable X =
X1 + X2 + · · · + Xn is a sum of mutually independent random variables X1, . . . , Xn,
then it’s often possible to prove that the value of X is close to its expectation with high
probability. To see this, imagine that tossing a fair coin n times with large n, then the
number of times we get head is almost surely very close to n/2. The following lemma
describes this phenomenon.

Lemma 1.7 (Chernoff’s inequality, see [2]). Suppose X1, . . . , Xn are independent random
variables such that Pr[Xi = 0] = pi and Pr[Xi = 1] = 1 − pi for all i ∈ [n]. Let

X := X1 + · · ·+Xn. Then for all t > 0, Pr[|X − E[X]| ≥ t] ≤ 2e−t
2/(2n).

To illustrate that this lemma is useful, we give a proof of the following easy proposition.

Proposition 1.8. There exists n0 ∈ N satisfying the following for all n ≥ n0. Let G be a
graph then there exists a set U ⊆ V (G) with |U | = n/2±n2/3 such that for each v ∈ V (G),

|NG(v) ∩ U | ≥ 1

2
dG(v)± n2/3.

Proof. For each v ∈ V (G), we add v to U independently at random with probability 1/2.
Then for a vertex v ∈ V (G), let Iv be the indicator function such that

Iv :=

{
1 if v ∈ U,
0 if v /∈ U.

Then, for a vertex v ∈ V (G), the random variable |NG(v) ∩ U | =
∑

u∈NG(v) Iu is a sum

of independent random variables with Pr[Iu = 1] = 1/2 and Pr[Iu = 0] = 1/2. Then we
have

E
[
|NG(v) ∩ U |

]
=

∑
u∈NG(v)

Pr[u ∈ U ] =
1

2
dG(v).

Thus Chernoff inequality (Lemma 1.7) with the fact that dG(v) ≤ n implies that

Pr
[
|NG(v) ∩ U | 6= 1

2
dG(v)± n2/3

]
≤ 2e−n

4/3/(2dG(v)) ≤ 2e−n
1/3/2.

By union bound, the probability that |NG(v)∩U | = 1
2dG(v)±n2/3 does not hold for some

vertex v ∈ V (G) is at most 2ne−n
1/3/2. If we take n0 large enough, this probability is

strictly smaller than 1. Thus there exists a desired set U . �

Exercises with asterisk (*) will be used later in the lecture. I recommend you to think
about those exercises. You must at least understand the statement of those exercises with
asterisk.

Exercise 1.1 (*). Prove that for each 0 < ε, δ < 1 with ε < δ/2, there exists n0 such
that the following holds for all n ≥ n0. Let G be an n-vertex graph with average degree
d(G) = δn. Then G contains a subgraph G′ on n′ with δ(G′) ≥ (δ − ε)n′ and n′ ≥ εn/4.
(Hint. if there’s a low degree vertex, delete. Repeat and see how many vertices are left)
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Exercise 1.2. Suppose that G is an n-vertex graph with m edges having no triangles.

(a) Prove that if m > n2/4, then G contains a vertex v such that G− v has more than
(n− 1)2/4 edges.

(b) Prove that m ≤ n2/4.

Exercise 1.3. [25]Suppose that G is an n-vertex Kr+1-free graph with maximum number
of edges.

(a) Prove that G contains a copy of Kr.
(b) Prove that G contains at most tr(n) edges, and characterize all graphs achieving

the bound. (Hint. Use induction on n.)

Exercise 1.4. [21] Prove that every graph G with m edges has a bipartite subgraph with
at least m/2 edges. (Hint. Consider a random partition of vertices.)

Exercise 1.5. [21] On n vertices, we select each pair of vertices to be an edge, indepen-
dently at random, with probability 1/2. Let the resulting graph be G. Show that there exists
n0 ∈ N such that the following holds for all n ≥ n0. With probability at least 0.99, G does
not contain a bipartite subgraph with more than n2/8 + n2/3 edges. This shows that the
results in Exercise 1.4 is close to best possible.

Note that G(n, p) is called a random graph which is obtained by selecting each pair of
vertices to be an edge, independently at random, with probability p. (To be precise, it is
a probability space rather than just a graph.)

Exercise 1.6 (*). Prove that for given ε > 0, there exists n0, C ∈ N satisfying the
following for all n ≥ n0. If p ≥ C

n , with probability at least 0.99, the number of edges of

random graph G(n, p) is (1± ε)
(
n
2

)
p.
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2. Extremal number

2.1. Erdős-Stone-Simonovits Theorem. Theorem 1.5 implies that the maximum num-
ber of edges in an n-vertex graph without Kr+1 is exactly tr(n). We can ask the same
question for more general graphs than just a complete graph. For given graph H, we
define

ex(n,H) := max{e(G) : v(G) = n and H * G}.
This is called the extremal number of H or the Turán number of H. The definition implies
that, if an n-vertex graph G has more than ex(n,H) edges, then we can embed H into G
while there exists an n-vertex graph G′ with exactly ex(n,H) edges such that H does not
embed into G′.

The following Erdős-Stone-Simonovits Theorem provides an understanding of extremal
number of a graph H.

Theorem 2.1 (Erdős-Stone 1946, Erdős-Simonovits 1966). Let H be a graph with χ(H) =
r. For given δ > 0 and H, there exists n0 ∈ N such that the following holds for all n ≥ n0.

ex(n,H) ≤ (1− 1

r − 1
+ δ)

n2

2
.

Note that the graph Tr−1(n) does not contain any subgraph H with χ(H) = r. This
theorem implies that

lim
n→∞

ex(n,H)(
n
2

) = 1− 1

r − 1
.

Note that ex(n,H)/
(
n
2

)
is the maximum density of an n-vertex graph having no H as a

subgraph. Thus, extremal number of a graph H does not depend very much on what H
is, but rather to the chromatic number χ(H).

Proof of Theorem 2.1. If χ(H) = r, then H is contained in a large complete r-partite
graph. The idea of the proof is to find a large complete r-partite graph using induction
on r.

First, we prove the following claim.

Claim 1. For r, h ∈ N and δ > 0, there exists n′0 = n′0(r, h, δ) such that the following
holds for all n′ > n′0. If G′ is an n′-vertex graph with δ(G′) ≥ (1− 1

r−1 + δ/2)n′, then G′

contains a complete r-partite graph with each part having size at least h as a subgraph.

Proof. We use induction on r. For r = 1, clearly n′0(r, h, δ) = h would work. Assuem r ≥ 2

and we will show that n′0(r, h, δ) = n′0(r − 1, t, δ) · t
(
t
h

)r−1
would work where t := d4h

δ e.
Let n′0 = n′0(r − 1, t, δ) · t

(
t
h

)r−1
, then the induction hypothesis gives r − 1 disjoint

sets A1, . . . , Ar−1 of size t such that G′[Ai, Aj ] forms a complete bipartite graph for all
i 6= j ∈ [r− 1]. Let U = V (G′) \

⋃
i∈[r−1]Ai. We will count the vertices in U which has at

least h neighbors in each Ai. Let

U ′ := {u ∈ U : dG′(u;Ai) ≥ h for each i ∈ [r − 1]}.
To estimate the size of U ′, we define for each u ∈ U ,

Wu :=
{

(v1, . . . , vr−1, u) : vi ∈ NG′(u;Ai) for each i ∈ [r − 1]
}

and W :=
⋃
u∈U

Wu.

Then, for each u ∈ U \ U ′, we have that

|Wu| < htr−2.

This implies that

|W | ≤
∑
u∈U ′

tr−1 +
∑

u∈U\U ′
htr−2 ≤ tr−1|U ′|+ n′htr−2. (2.1)
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On the other hand, to obtain a lower bound on |W |, we observe that every (v1, . . . , vr−1) ∈
A1 × · · · ×Ar−1, we have dG′(v1, . . . , vr−1) ≥ (r − 1)δ(G′)− (r − 2)n′ ≥ rδn′/2. Hence

|W | ≥
∑

(v1,...,vr−1)∈A1×···×Ar−1

rδn′/2 ≥ rtr−1δn′/2.

This with (2.1) implies that |U ′| ≥ rδn′/4. For each u ∈ U ′, we consider a tuple f(u) :=
(V u

1 , . . . , V
u
r−1) such that V u

i ⊆ NG′(u;Ai) and |V u
i | = h for each i ∈ [r − 1]. Then by

pigeonhole principle, there exists a tuple (V1, . . . , Vr−1) ∈
(
A1

h

)
× · · · ×

(Ar−1

h

)
, such that

|f−1(V1, . . . , Vr−1)| = |{u ∈ U ′ : f(u) = (V1, . . . , Vr−1)}| ≥ |U ′|(
t
h

)r−1 ≥ h.

Here we get the final inequality by the definition of n′0. Hence, such a choice of disjoint
vertex sets V1, . . . , Vr−1, f

−1(V1, . . . , Vr−1) form a complete r-partite graph with each part
having size at least h, this proves the Claim. �

Now we prove the theorem. Let h := v(H) and n0 = 4δ−1n′0(r, h, δ). Assume that

n ≥ n0 and G is an n-vertex graph with at least (1− 1
r−1 + δ)n

2

2 edges. By Exercise 1.1,

there exists a subgraph G′ of G with v(G′) = n′ ≥ δn/4 ≥ n′0(r, h, δ) and δ(G′) ≥
(1− 1

r−1 +δ/2)n′. By Claim 1, the graph G′ contains a complete r-partite graph each having
size h. Since H is an r-chromatic graph with h vertices, it is easy to see that H embeds
into the complete r-partite graph with each part size h. This prove the theorem. �

2.2. Complete bipartite graphs. The Erdős-Stone-Simonovits theorem approximately
determines extremal number of any graph H. However, if H is a bipartite graph, the
theorem only tells us that ex(n,H) is subquadratic. (Note that 1 − 1

2−1 = 0.) In other
words, for any δ > 0, there exists n0 such that for n ≥ n0, any n-vertex graph with at least
δn2 edges contains H as a subgraph. Thus, we say that bipartite graphs are ‘degenerate
cases’ for extremal problems. For bipartite graphs, we deal with each class of bipartite
graphs in different ways. We introduce some results.

Theorem 2.2 (Kövari-Sós-Turán). Let s, t ∈ N with s ≤ t. Then we have

ex(n,Ks,t) ≤ tn2−1/s.

Proof. Let G be an n-vertex graph with at least tn2−1/s edges and let V = V (G).∑
v∈V
|
(
N(v)

s

)
| =

∑
v∈V

(
d(v)

s

)
≥ n

( 1
n

∑
v d(v)

s

)
≥ n

(
2tn1−1/s

s

)
≥ (tn)s

s!
≥ t
(
n

s

)
.

Here, we obtain the first inequality from the convexity of function x→
(
x
s

)
. By pigeonhole

principle, there exists a set S ⊆ V (G) of size s which belongs to N(v) for at least t distinct
vertices v ∈ V (G). Thus we obtain a copy of Kt,s. �

This result gives an upper bound on ex(n,Ks,t). As every bipartite graph H is a
subgraph of Ks,t for some s, t, this gives an upper bound of extremal numbers of all
bipartite graphs. However, most of the cases the bound is not sharp. It is not known
whether the above result is sharp up to constant. In other words, we don’t know whether
there exists a Ks,t-free graph G with at least cn2−1/s edges. However, if t is much larger
than s, then we know the above bound is tight up to constant. Kollár, Rónyai and Szabó
[11] proved that the bound is tight if t ≥ s! + 1 and Alon, Rónyai and Szabó improved
this to t ≥ (s− 1)! + 1.

By using a simple probabilistic method, we can prove the following weaker lower bound.
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Theorem 2.3. Let s ∈ N. Then, there exists n0 such that the following holds for all
n ≥ n0. There exists an n-vertex graph G with e(G) ≥ 1

100n
2−2/s which does not have Ks,s

as a subgraph.

Proof. Consider a random graph G(n, p) on vertex set V with p = 1
10n
−2/s. For a fixed

pair (A,B) of disjoint subsets of V with |A| = |B| = s, the probability that (A,B) induces

a complete bipartite graph is ps
2
. Let X be the number of distinct copies of Ks,s in G(n, p).

By linearity of expectation, we have

E[X] =
∑

A,B∈(Vs),A∩B=∅

ps
2 ≤

(
n

s

)(
n− s
s

)
ps

2 ≤ n2sps
2

2s2s
≤ 1/10.

Hence, by Markov’s inequality, X ≥ 1 with probability less than 1/10. On the other hand,

Exercise 1.6 implies that G(n, p) has less than n2−2/s/100 edges with probability less than

1/2. There union bound gives that there exists a graph G with e(G) ≥ n2−2/s/100 which
does not have Ks,s as a subgraph. �

Exercise 2.1. Prove that for given δ > 0 there exists n0 ∈ N such that the following holds
for all n ≥ n0.

ex(n,Ks,t) ≤ (1 + δ)(t− 1)1/sn2−1/s.

Exercise 2.2.

(a) (*) Consider G(n, p) with p = n−2/(s+1). Compute the expected number of copies
of Ks,s in G(n, p).

(b) Prove that for large n, there exists an n-vertex graph G with e(G) ≥ n2p/3 which
has at most n2p/4 copies of Ks,s.

(c) By using the graph G in (b), prove that ex(n,Ks,s) ≥ n2−2/(s+1)/100 for sufficiently
large n.

Exercise 2.3.

(a) (*) Prove that if d is a positive integer and an n-vertex graph G has dn edges, then
G contains a subgraph G′ with δ(G′) ≥ d+ 1.

(b) Prove that for a tree T with d+ 1 vertices, we have ex(n, T ) ≤ (t− 1)n.
(c) Prove that for a tree T with d + 1 vertices and n ∈ N divisible by d, we have

ex(n, T ) ≥ (d− 1)n/2.

2.3. Even cycles. Another important graph other than complete graph and complete
bipartite graph are cycles. As odd cycles are not bipartite, their extremal number is
approximately determined by Theorem 2.1. However, this still leaves cycles with even
length. In this section we study the extremal number of even cycles.

We call a cycle with length at least 2k with a chord (an edge between two non-adjacent
vertices in a cycle) Θk-graph. The following is an easy lemma we can prove.

Lemma 2.4. For k ≥ 2, any graph H with the average degree at least 4k contains a
Θk-graph.

Proof. By Exercise 2.3 (a), H contains a subgraph H ′ with δ(H ′) ≥ 2k.
Take a longest path P = (x1 . . . xm) in H ′. The vertex x1 has at least 2k neighbors in

H. As P is a longest path, all neighbors of x1 are in P , say xi1 , . . . , xi2k are neighbors of
x1 with 1 < i1 < · · · < i2k. As i2k > 2k the path (x1, . . . , xi2k) with the edge x1xi2 and
x1xi2k forms a Θk-graph. �
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We consider this Θk-graph because it satisfies the following good property.

Lemma 2.5. Let k ≥ 2 and F be a Θk-graph. Let A ∪B be a partition of V (F ) into two
non-empty sets such that at least one of A and B is not an independent set in F . Then
there exists a path of any length between 1 to v(F )− 1 from A to B.

Proof. Let V (F ) = Zn such that i is adjacent to i−1 and i+1 and assume that ` ∈ [n−1]
is the an integer such that there is no path of length ` from A to B. Let the chord be
between 0 and r. Let c(i) = 1 if i ∈ A and c(i) = 2 if i ∈ B. Let

P := {m ∈ Zn : for all i ∈ Zn, c(i) = c(i+m)}.
If ` /∈ P , then we are done. Choose a smallest positive integer m ∈ P , then it is easy to
see that P = {mi : i ∈ N} and m divides both ` and n. Thus we have ` ≤ n−m.

If m = 1, then either A or B is the emptyset. If m = 2 and c(r) 6= c(0), then both A
and B are independent sets, a contradiction. If m = 2 and c(r) = c(0), then it is easy to
find a path between A and B of length ` containing the chord.

Hence, we may assume that m > 2. At least one of r or n − r are not congruent to 1
modulo m, we assume that r is not congruent to 1 modulo m. As r − 1 /∈ P , there exists
j ∈ Zn such that c(j) 6= c(j+r−1). As c(j) = c(j+mi) and c(j+r−1) = c(j+r−1+mi)
for all i ∈ Z, we may assume that −m < j ≤ 0. We consider the following two cases.
Case 1. 1 < r ≤ m. Note that j + ` + r − 1 ≤ j + n −m + r − 1 < n + j as ` ≤ n −m.
Then the path (j, j + 1, . . . , 0, r, r + 1, . . . , j + `+ r − 1) is a path between A and B with
length `, a contradiction.
Case 2. m < r ≤ n − m. For each −m < i < 0, consider paths (i, i + 1, . . . , 0, r, r −
1, . . . , r − i −m + 1) and (m + i,m + i − 1, . . . , 0, r, r + 1, . . . , r − i − 1). Also, consider
paths (0, r, r−1, . . . , r−m+1) and (0, r, r+1, . . . , r+m−1). As c(i) = c(i+m), we have
c(r− i+ 1) = c(r− i−m+ 1) = c(r− i−1) and c(r−m+ 1) = c(0) = c(r+m−1). These
facts with the fact that m ∈ P implies that c(i+ 2) = c(i) for all i ∈ Zn, thus m ∈ {1, 2},
a contradiction. �

Theorem 2.6 (Bondy and Simonovits). For k ≥ 2, there exists a constant c such that

ex(n,C2k) ≤ cn1+1/k.

Proof. Our proof is a simplified version of the proof by Pikhurko [22]. Assume that G is an

n′-vertex graph with 100kn′1+1/k edges, having no C2k as a subgraph. By using Exercise 1.4
and 2.3, we can obtain an n-vertex bipartite subgraph G′ with δ(G′) ≥ 20kn1/k and n ≤ n′.

Note that our goal is to find a copy of C2k in G′ (and hence in G) to derive a contra-
diction. If our goal was to find any even cycles of length at most 2k, then the situation
is easier. We choose one vertex x and for each i ≤ k consider Vi := N i

G′(x), the set of
all vertices of G′ that is distance i from x in G′. If we don’t find any cycle of length at
most 2k, then it is easy to see two vertices u 6= v ∈ N i

G′(x) does not have same neighbor

in Vi+1. Thus |Vi+1| ≥ (δ(G′) − 1)|Vi|, hence |Vk| ≥ (δ(G′) − 1)k > n = |V (G)| which
is a contradiction. However, as we only want to find a copy of C2k, not a smaller cycle,
our situation is more complicated than this. However, we will still prove that |Vi+1| is
significantly bigger than |Vi| to derive a contradiction.

Fix an arbitrary vertex x of G′. For each i ∈ [k], let Vi := N i
G′(x) consist of those

vertices of G′ that distance i from x in G′. Hence V0 = {x} and V1 = NG′(x). For each
i ∈ [k − 1], let Hi := G′[Vi, Vi+1].

Claim 2. For each i ∈ [k − 1], Hi does not contain a Θk-graph.

Proof. Suppose that Hi contains a Θk-graph F . As Hi is a bipartite graph, F is also a
bipartite graph. Moreover, F has a unique bipartition (A′, B′) of F into two independent
sets. Assume that A′ ⊆ Vi.
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Let T ⊆ G′ be a breadth-first-search tree in G′ with the root x. Let y be the vertex
farthest from x such that every vertex of A′ is a descendant of y ∈ Vj in this tree T with
j < i. Let z be a child of y in T , such that some (but not all) vertices in A′ are descendants
of z. Let A ⊆ A′ be the set of vertices of A′ which are also descendants of z in T , and let
B = B′ ∪ (A′ \A).

Note that (A,B) is a partition of V (F ) with two sets and B is not an independent
set. By Lemma 2.5, there exists a path P of length exactly 2k − 2(i − j) < 2k starting
from w ∈ A and ending at w′ ∈ B. As F is a bipartite graph and P has an even length,
w′ ∈ A′ \ A. Hence by definition of y and z, there exists a path in T ⊆ G′ of length
(i − j − 1) from w and z and path in T ⊆ G′ of length (i − j − 1) from w′ and z′ 6= z,
where z′ is a child of y These paths with edges yz and yz′ gives us a cycle of length 2k, a
contradiction. �

Note that we have the following for all 0 ≤ i ≤ k − 1.

e(Hi) < 5k(|Vi|+ |Vi+1|). (2.2)

Indeed, if e(Hi+1) ≥ 5k(|Vi+1|+ |Vi+2|) = 5k|V (Hi+1)|, thus Lemma 2.4 implies that Hi+1

contains a Θk-graph, a contradiction to Claim 2. So, we have (2.2).
Now we prove that the following holds for all 0 ≤ i ≤ k − 1

e(Hi) ≥ 10kn1/k|Vi| and |Vi+1| > n1/k|Vi|. (2.3)

We use induction on i to prove (2.3). Note that (2.3) holds for i = 0. Assume that
(2.3) holds for some i ∈ [k − 1]. As G′ is a bipartite graph, we know that G′[Vi+1] is an
independent set. Hence, we have

e(Hi+1) ≥
∑

v∈Vi+1

(dG′(v)− dHi(v)) ≥ 20kn1/k|Vi+1| − e(Hi) ≥ 20kn1/k|Vi+1| − 5k(|Vi|+ |Vi+1|)

≥ 10kn1/k|Vi+1|.

Here, we obtain the final inequality because |Vi+1| > 5kn1/k|Vi|. Hence, this with (2.2)
imply that

|Vi+2| ≥
1

5k
e(Hi+1)− |Vi+1| ≥

10kn1/k|Vi+1|
5k

− |Vi+1| ≥ n1/k|Vi+1|.

Thus (2.3) holds for i + 1, this completes the induction. However, this implies that

|Vk| > n1/k|Vk−1| > · · · > n|V0| ≥ n, a contradiction. Hence, every graph G with at least

100kn1+1/k edges contain a copy of C2k. �

Note that the above argument with more careful calculations show that ex(n,C2k) ≤
(k − 1)n1+1/k + 16(k − 1)n. See [22]. Bukh and Jiang [4] recently improved this into

ex(n,C2k) ≤ 80
√
k(log k)n1+1/k +O(n).

For a lower bound, it is known that ex(n,C2k) ≥ cn1+1/k for k ∈ {2, 3, 5}.

Theorem 2.7. For infinitely many values of n, there exists a graph on n vertices and
cn3/2 edges containing no C4.

Proof. Let p be a prime and consider F3
p \ {(0, 0, 0)}. We say that two points (a1, a2, a3)

and (b1, b2, b3) are equivalent if and only if there exists k ∈ Fp such that bi = kai for
each i ∈ [3]. For a point (a1, a2, a3), let [a1, a2, a3] be the equivalence class containing
(a1, a2, a3).

Let

V := {[a1, a2, a3] : (a1, a2, a3) ∈ F3
p \ {(0, 0, 0)}}.
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Let G be a graph over the vertex set V where [a1, a2, a3] and [b1, b2, b3] are adjacent if and
only if a1b1 + a2b2 + a3b3 = 0. For two distinct vertices u = [a1, a2, a3] and v = [b1, b2, b3]
of G, if [x, y, z] is adjacent to both u and v only if

a1x+ a2y + a3z = 0 and b1x+ b2y + b3z = 0.

As u and v are distinct, the set of points in F3
p satisfying both equations forms a line in F3

p.
Hence, the solutions define a single equivalence class. Hence, there exists unique common
neighbor of u and v, implying that G does not contain any C4.

Note that G contains n = p2 + p+ 1 = p3−1
p−1 vertices. It is easy to see that every vertex

of G is adjacent to p2−1
p−1 = p+ 1 ≥

√
n− 1 other vertices. �

Exercise 2.4. Prove that for k ≥ 2, there exists a constant c such that ex(n,C2k) ≥
cn1+1/(2k−1). (Hint. consider a random graph.)
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3. Dependent random choice

This section is based on [9]. Consider a bipartite graph H with a vertex partition X∪Y .
A very natural way to embed a graph H into G is the following. We order the vertices
in X into (x1, . . . , xh) and we embed xi into a vertex φ(xi) ∈ V (G) one by one. While
doing this, we make sure that for all y ∈ Y , the common neighborhood of vertices in
φ(NH(y)) is large. As X is an independent set, this is a partial embedding, and there are
many choices of vertices in G for y to embed. Hence, we can embed vertices in Y one by
one into different vertices. Hence, the ideal situation is when we have a set U ⊆ V (G)
of vertices which satisfies the following property for some large r,m. Then we can freely
embed vertices in X into U .

Every r vertices of U have at least m common neighbors.

If r,m > h, then we can arbitrarily embed each xi into U to obtain an embedding of H
into G. How can we obtain such a set U? We can use such a set by choosing vertices in a
clever random way.

Lemma 3.1. Let a, d,m, n, r ∈ N. Let G be an n-vertex graph with d(G) = d. If there
exists t ∈ N satisfying

dt

nt−1
−
(
n

r

)
(
m

n
)t ≥ a,

then there exists a subset U ⊆ V (G) with |U | ≥ a such that every r vertices in U have at
least m common neighbors in G.

Proof. We will randomly choose vertices, and prove that chosen vertices have the desired
property with positive probability.

Assume that we have for two sets W1 and W2 of size r with dG(W1) > dG(W2). In order
to increase the probability of obtaining a desired set, we want W1 to be more likely to be
included in U than W2 (as our goal is to make all r-subsets of U to have many common
neighbors). For this, we can randomly choose some vertex, say v, and we let U be the
neighborhood NG(v). In this way, we can ensure that W1 is more likely to be included in
U than W2 as

Pr[W1 ⊆ U ] = Pr[v ∈ NG(W1)] =
dG(W1)

n
>
dG(W2)

n
= Pr[v ∈ NG(W2)] = Pr[W3 ⊆ U ].

Now we start the proof. For each i ∈ [t], we choose a random vertex vi ∈ V (G)
independently uniformly at random. Note that two vertex vi and vj may be the same as
we choose independently. Let A = NG(v1, . . . , vt) and X = |A| be the random variable
denoting the size of A. Linearity of expectation implies

E[X] =
∑

v∈V (G)

(
|NG(v)|

n
)t = n−t

∑
v∈V (G)

dG(v)t ≥ n1−t(
1

n

∑
v∈V (G)

dG(v))t ≥ dt

nt−1
.

Here, we obtain the penultimate inequality by the convexity of the function z → zt.
Let

R := {R ∈
(
V (G)

r

)
: |NG(R)| ≤ m}.

Let Y be the random variable counting the number of subsets R ⊆ A of size r such that

|NG(R)| ≤ m. For given R ∈ R, we have Pr[R ⊆ A] = ( |N(R)|
n )t. Thus

E[Y ] <
∑
R∈R

(
|N(R)|
n

)t ≤
(
n

r

)
(
m

n
)t.
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By linearity of expectation,

E[X − Y ] ≥ dt

nt−1
−
(
n

r

)
(
m

n
)t ≥ a.

This implies that there exists a choice of x1, . . . , xt which yields a set A satisfying X−Y ≥
a. Consider such a set A and delete one vertex from each subset R ∈ R lying inside A.
Let U be the set of remaining vertices, then U has size at least X − Y ≥ a, and U is our
desired subset. �

Observe that we choose U in a dependent way. By choosing something else, and the
choice of U depends from the earlier choice. Hence we call it dependent random choice.
By this, we achieve that certain sets will be included in U more likely that some other
sets. By using this lemma, we can extend the Theorem 2.2 into the following.

Theorem 3.2. Let s ∈ N and let H be a bipartite graph with vetex partition A,B such that
all vertices in B has degree at most s. Then there exists c = c(H) such that ex(n,H) ≤
cn2−1/s.

Proof. Let a := |A|, b := |B|,m := a + b, d := 2cn1−1/s and c ≥ 3ma. Suppose that G is

an n-vertex graph with e(G) ≥ cn2−1/s, hence d(G) ≥ d. We have

ds

ns−1
−
(
n

s

)
(
m

n
)s ≥ 2cs − ns

s!
(
m

n
)s ≥ cs ≥ a.

Thus Lemma 3.1 implies that there exists a set U with |U | = a such that any s vertices
in U has at least m common neighbors.

We take an arbitrary injective map φ : A → U . Let B = {x1, . . . , xb}. We embed
x1, . . . , xb one by one in order. Right before we embed xi, we have |NG(φ(NH(xi)))| ≥
m = a + b, thus there exists a vertex vi ∈ NG(φ(NH(xi)) which is not an image of any
vertices in A ∪ {x1, . . . , xi−1}. We embed xi to vi. By repeating this, we obtain an
embedding of H into G. This prove the theorem. �

So far, we try to embed graph H with fixed size into a graph G with n vertices. While
we consider a large number n, the graph H has been always fixed. What if we want to
embed large graph H which contains at least cn vertices for some c > 0 into an n-vertex
graph G? By using dependent random choice, we can prove several results on embedding
H with cn vertices into an n-vertex graph G.

In the above theorem, we require that all s-sets in U have large common neighborhood.
However, even if some s-sets in U have small common neighborhood, it is ok if we can
somehow avoid using the sets. By using this idea, we can prove the following result
regarding embedding linear size H into G.

Theorem 3.3. Let ε > 0 and ∆ ∈ N. Let G be an n-vertex graph with e(G) ≥ ε
(
n
2

)
. If H

is an 1
8∆−1ε∆n-vertex bipartite graph with ∆(H) ≤ ∆, then H embeds into G.

To prove this theorem, we prove the following lemma using dependent random choice.
Let n′ := 1

8∆−1ε∆n.

Lemma 3.4. Let ε > 0,∆, n, n′ ∈ N such that n′ := 1
8∆−1ε∆n and ∆ ≤ n′. If G is an

n-vertex graph with at most ε
(
n
2

)
edges, then there exists a set U ⊆ V (G) with |U | ≥ 2n′

such that less than (2∆)−∆
(|U |

∆

)
sets S ∈

(
U
∆

)
satisfies |NG(S)| < n′.

Exercise 3.1. Let ε,∆, n, n′ as in Lemma 3.4. Choose ∆ vertices v1, . . . , v∆ in V (G)
independently uniformly at random with repetitions, and let U = NG(v1, . . . , v∆). Let

X,Y be random variables with X := |U | and Y := |{S ∈
(
U
∆

)
: |N(S)| < n′}|.

(a) Compute µ = E[X] and ν = E[Y ].
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(b) By using the fact E[X∆] ≥ µ∆, prove that there’s a choice of v1, . . . , v∆ which make

|U |∆ ≥ 1
2µ

∆ and Y ≤ 2|U |∆νµ−∆. (Hint. Fist prove E[X∆ − µ∆

2 −
µ∆

2ν Y ] ≥ 0.)
(c) Prove Lemma 3.4.

Proof of Theorem 3.3. Assume that H is a bipartite graph with vertex partition A ∪ B
and ∆(H) ≤ ∆. By Lemma 3.4, there exists a set U with |U | ≥ 2n′ such that less

than (2∆)−∆
(|U |

∆

)
sets S ∈

(
U
∆

)
satisfies |N(S)| < n′. We call a subset S ∈

(
U
∆

)
good if

|N(S)| ≥ n′, and we call a subset S′ ⊆ U nice if it has size at most ∆ − 1 and S is

contained in more than (1− (2∆)|S
′|−∆)

( |U |
∆−|S′|

)
good sets.

Exercise 3.2. For a nice set S′, there are at least (1 − 1/(2∆))|U | vertices u in U \ S′
such that S′ ∪ {u} is either nice or good.

It is easy to see that for every nice set S′, we have dG(S′) ≥ n′.
Our aim is to find an injective function f : A → U such that f(NH(y)) is nice or

good for every y ∈ B. Then, for each y ∈ B, the common neighborhood of images of its
neighbors, NG(f(NH(y))) is large, so we can embed y into it. To obtain f , we order A
into x1, . . . , xt, and embed vertices one by one.

Let Li := {x1, . . . , xi} for each i ∈ [t]. Assume we have defined f : Li → U such that
f(NH(y)∩Li) is nice or good for all y ∈ B. Now we will determine f(xi+1), where we should
embed xi+1. For each y ∈ NH(xi+1), the set f(NH(y) ∩ Li) is nice. Thus Exercise 3.2
implies that there are at least |U |/2 ≥ n′ vertices w ∈ U such that f((NH(y)∩Li))∪ {w}
is nice or good for every y ∈ NH(xi+1). Since t < n′ = |V (H)|, there exists a vertex w′

among those n′ vertices such that w′ /∈ f(Li). Let f(xi+1) := w′.
Then for all y ∈ NH(xi+1), the set f(NH(y)∩Li+1) = f((NH(y)∩Li)∪ {xi+1}) is nice

or good. For all y ∈ B \NH(xi+1), the set f(NH(y)∩Li+1) = f(NH(y)∩Li) is also nice or
good. By repeating this, we obtain an injective function f : A → U such that f(NH(y))
is nice or good for each y ∈ B.

Now, order the vertices in B into y1, . . . , yt′ . For each i ∈ [t′], we embed yi into
NG(f(NH(yi))) in such a way that yi is not embedded to the same vertex as yj with
1 ≤ j ≤ i − 1. It is possible because f(NH(yi)) is nice or good, thus |NG(f(NH(yi)))| ≥
n′ > t′ + |A|. This proves the theorem. �

As a consequence of this theorem, we can prove the following.

Exercise 3.3. Let H be a bipartite graph with r vertices and maximum degree ∆. Then
the Ramsey number r(H) satisfies r(H) ≤ ∆2∆+3r.

Note that this shows that Ramsey number of H is linear in terms of |V (H)| when H is
sparse bipartite graph, contrast to Theorem 1.2 which shows the Ramsey number of some
dense graphs is exponential in |V (H)|. See [9] for more applications of dependent random
choice.

Exercise 3.4. Suppose G is a graph with n vertices with e(G) ≥ εn2. Prove that G

contains a 1-subdivision of a complete graph with ε3/2n1/2 vertices.

Exercise 3.5 ([24]). Let ε > 0 and suppose G is an n-vertex graph with e(G) ≥ n1−ε. If
n is sufficiently large compared to 1/ε, prove that either G contains K4 or an independent
set of size n1−ε.
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4. Regularity

Imagine we have disjoint vertex sets V1, . . . , Vr of size n. For all i 6= j ∈ [r] and
(u, v) ∈ Vi×Vj , we add an edge uv to a graph G independently at random with probability
p > 0. If n is sufficiently large compare to 1/p, then with high probability, the resulting
graph contains many copies of any small r-partite graph. In other words, it is easy to
embed any small r-partite graph H into such a random graph G. What makes such a
graph G to have this ‘good’ property?

Indeed, the reason why we can easily embed H into G is because such a graph G satisfies
some ‘pseudo-random’ condition, called ε-regularity. For a graph G and disjoint vertex
sets A and B, let eG(A,B) be the number of edges of G between A and B and let

denG(A,B) :=
eG(A,B)

|A||B|
be the density of G between A and B.

Definition 4.1. A pair (A,B) of disjoint sets of vertices is (ε, d)-regular in a graph G if
the following holds. For any A′ ⊆ A,B′ ⊆ B of sizes |A′| ≥ ε|A| and |B′| ≥ ε|B|,

|denG(A′, B′)− d| ≤ ε.

We say (A,B) is ε-regular if it is (ε, d)-regular for some real number d. We say (A,B) is
(ε, d+)-regular if it is (ε, d′)-regular for some real number d′ ≥ d.

Note that a complete bipartite graph is (0, 1)-regular. Moreover, a random graph sat-
isfies ε-regularity condition as below.

Exercise 4.1. Consider two disjoint vertex sets U and V of size n and a real number
0 ≤ p ≤ 1 and ε > 0. For each pair u ∈ U and v ∈ V , we include an edge uv into G
independently at random with probability p. Show that if n is sufficiently larger than 1/p
and 1/ε, then (U, V ) is (ε, p)-regular pair in G with probability at least 1− 1/n.

The condition of ε-regularity ensures that local density of the given graph at any part is
close to its global density. This guarantees some ‘uniformity’ of the graph. This uniformity
further gives the following property, which says that almost all vertices in G has “almost
correct” degrees.

Lemma 4.2. If (A,B) is (ε, d)-regular pair in a graph G and B′ ⊆ B with |B′| ≥ ε|B|,
then

|{a ∈ A : dG(a;B′) 6= (d± ε)|B′|}| < 2ε|A|.

Proof. Let

A− = {a ∈ A : dG(a;B′) < (d− ε)|B′|} and A+ = {a ∈ A : dG(a;B′) > (d+ ε)|B′|}.

If |A−| ≥ ε|A|, then

denG(A−, B′) =

∑
a∈A− dG(a;B′)

|A−||B′|
<

∑
a∈A−(d− ε)|B′|
|A−||B′|

≤ d− ε.

Thus |denG(A−, B′)−d| > ε. It is a contradiction to the definition of ε-regularity because
|A−| ≥ ε|A| and |B′| ≥ ε|B|. Thus we conclude |A−| < ε|A|. Similarly, we can show that
|A+| < ε|A|. �

The following lemma shows that this notion of ε-regularity is useful for embedding a
graph H into a graph G which admits an appropriate partition with ε-regularity.
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Lemma 4.3 (Embedding lemma). Let ∆, n ∈ N, d > 0 and ε < 1
∆+2(d − ε)∆. Suppose

V (G) = V1 ∪ · · · ∪ Vr with |Vi| = n for all i ∈ [r] and (Vi, Vj) is (ε, d+)-regular for all
i 6= j ∈ [r]. Let H be an r-partite graph with partition X1 ∪ · · · ∪Xr with maximum degree
at most ∆ and |Xi| ≤ εn for each i ∈ [r]. Then there exists an embedding φ of H into G
with φ(Xi) ⊆ Vi.

Proof. Let x1, . . . , xh be the vertices of H, and let ψ(i) ∈ [r] be the index such that xi ∈
Xψ(i). We will construct an embedding φ by selecting images v1 = φ(x1), v2 = φ(x2), . . .
one by one. We will denote Ci(j) to be the set of possible candidates of vj after we
determined v1, . . . , vi−1.

We want to embed vertices in Xi into Vi. Hence, we initially have C1(j) = Vψ(j).
Assume we have already determined v1, . . . , vi−1, and we have |Ci(j)| ≥ (∆ + 1)εn for all
j ≥ i. We want to select vi from Ci(i). Consider the set A of neighbors of xi in H, where

A = {xj ∈ NH(xi) : j > i} = {xs1 , . . . , xsp}.

Since (Vψ(i), Vψ(s`)) is (ε, d+)-regular for all ` ∈ [p], Lemma 4.2 implies that all but at
most εn vertices in Ci(i) have at least (d− ε)|Ci(s`)| neighbors in Ci(s`). Hence, at least
|Ci(i)| − ∆εn ≥ εn vertices in Ci(i) has at least (d − ε)|Ci(s`)| neighbors in Ci(s`) for
all ` ∈ [p]. Among them, at most εn − 1 vertices are already in {v1, . . . , vi−1}. Since
|Ci(i)| −∆εn− (ε− 1) ≥ (∆ + 1)εn−∆εn− εn+ 1 ≥ 1. Thus we can choose one of such
vertex as vi /∈ {v1, . . . , vi−1} which has at least (d − ε)|Ci(s`)| neighbors in Ci(s`) for all
` ∈ [p]. Let φ(xi) := vi. After choosing vi, we update

Ci+1(j) :=

{
Ci(j) ∩NG(vi) if xj ∈ NH(xi)
Ci(j) \ {vi} if xj /∈ NH(xi)

This will shrink Ci(j) by the factor at least (d−ε). Note that xj has at most ∆ neighbors,
thus |Ci(j)| ≥ (d − ε)∆n − εn ≥ (∆ + 1)εn. Thus we can choose vi as long as i ≤ h. By
repeating this, we can select v1, . . . , vh and it is easy to see that φ(xi) = vi is an embedding
of H into G. �

There is another reason why this notion of ε-regularity is so useful. The following
theorem asserts that any graph can be partitioned into bounded number of vertex sets, so
that most of pairs of vertex sets are ε-regular.

Theorem 4.4 (Szemerédi’s regularity lemma). For every ε > 0 and t ∈ N, there exist
integers N and T such that the following holds for every n ≥ N . Every n-vertex graph G
admits a partition V0 ∪ V1 ∪ · · · ∪ Vr satisfying the following.

(R1) t ≤ r ≤ T .
(R2) |Vi| = |Vj | for all i, j ∈ [r],
(R3) |V0| ≤ εn,
(R4) for each i ∈ [r], the pairs (Vi, Vj) are ε-regular in G for all j ∈ [r] except at most

εr indices.

We call such a partition satisfying (R2)–(R4) a ε-regular partition. Note that T depends

on the value of ε. (It’s at most tower of twos, 222.
..

2

with height in polynomial of 1/ε.)
However, it does not depend on n.

For a given ε-regular partition V0 ∪ · · · ∪ Vr of G, let R be a graph on vertex set [r]
such that ij ∈ E(R) if and only if (Vi, Vj) is an (ε, δ+)-regular pair. We say such R is
(ε, δ)-reduced graph. For appropriate δ, this graph R contains a lot of information about
the original graph G. For example, the density of G is somewhat inherited into R as
below.
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Exercise 4.2 (*). Suppose 0 < 1/n � ε, 1/r � δ < 0. Let V0 ∪ V1 ∪ · · · ∪ Vr be an ε-
regular partition of an n-vertex graph G and R is an (ε, δ)-reduced graph for this ε-regular
partition. Show that if e(G) ≥ (d+ 2δ)

(
n
2

)
, then e(R) ≥ d

(
r
2

)
.

By using regularity lemma, we can provide an easy proof of Theorem 2.1.

Proof of Theorem 2.1. Suppose 1/n0 � ε� δ. Assume that G is an n-vertex graph with

e(G) ≥ (1 − 1
k−1 + δ)n

2

2 . Apply the regularity lemma to G with t = 1/ε, then we obtain

an ε-regular partition V0 ∪ V1 ∪ · · · ∪ Vr of G, and let R be a (ε, δ/3)-reduced graph for
this ε-regular partition. By Exercise 4.2, we have e(R) ≥ (1 − 1

r−1 + δ/3)r2/2. Turán’s
theorem implies that R contains a copy of Kk. Without loss of generality, assume that
R[{1, 2, . . . , k}] ' Kk. By embedding lemma (Lemma 4.3), we can find a copy of H in
G[V1 ∪ · · · ∪ Vk]. �

There are many applications of regularity lemma. For any graph H, the Ramsey number
r(H) is the minimum number n such that for any edge-coloring of the complete graph Kn

contains a monochromatic copy of H. For example, it is well known that r(H) exists for
any graph H. For general graphs H, r(H) is exponential in terms of |V (H)|. For example,

we know 2d/2 ≤ r(Kd) ≤ 4d. However, the following result of Chvátal, Rödl, Szemerédi
and Trotter [6] says that r(H) is only linear in |V (H)| if H has bounded maximum degree.

Theorem 4.5. Let ∆ > 0 and let H be a graph of maximum degree at most ∆. Then
there exists a constant C = C(∆) such that r(H) ≤ C|V (H)|.

Proof. Let k = r(K∆+1) be the Ramsey number of K∆+1. In other words, every 2-edge-
coloring of Kk contains a monochromatic K∆+1. Take ε = 1/(2∆+1k), and t = k + 1.
There exists N = N(ε, t) and T = T (ε, t) as stated in the regularity lemma. Let C =
C(∆) = 3ε−1TN . Note that C only depends on ∆.

Take n ≥ C|V (H)| = 3ε−1TN |V (H)| and we want to show that any 2-edge-coloring of
Kn contains a monochromatic copy ofH. For a red/blue 2-edge coloring ofKn, letG be the
red graph. By applying regularity lemma to G with parameters ε and t, we have ε-regular
partition V0∪V1∪· · ·∪Vr for G with t ≤ r ≤ T and |Vi| ≥ 2ε−1|V (H)| for i ∈ [r]. Consider
a (ε, 0)-reduced graph R on vertex set [r] such that ij ∈ E(R) if and only if (Vi, Vj) is ε-
regular. Since V0∪. . . Vr is ε-regular partition, we obtain E(R) > (1−ε)

(
r
2

)
> (1− 1

k−1)
(
r
2

)
.

Thus Turán’s theorem implies that R contains Kk.
Consider the copy of Kk in R, and color the edge ij of Kk red if (Vi, Vj) is (ε, 1/2+)-

regular and otherwise color it blue. By the definition of k, there is a monochromatic copy
of K∆+1 in Kk. By re-indexing, assume that {1, 2, . . . ,∆ + 1} forms such monochromatic
copy of K∆+1 in R. If it is red-monochromatic, then let G′ = G, otherwise let G′ = G.
Note that G′ is a monochromatic subgraph of Kn.

For each i, j ∈ [∆ + 1] with i 6= j, (Vi, Vj) is (ε, 1/2+)-regular in G′ (check this as
an exercise). Also H is (∆ + 1)-partite graph with each partition class has size at most
|V (H)| ≤ ε|Vi|/2. Thus we may apply lemma 4.3 with d = 1/2 and m = |V (H)| to find a
copy of H in G′. This gives us a monochromatic copy of G in Kn and it concludes that
r(H) ≤ 3ε−1TN |V (H)| where ε, T,N are all determined by ∆. �

The above proof gives tower type large constant C(∆). A stronger approach to the

problem using Dependent Random Choice gives a better constant C(∆) ≤ 2C
′∆ log(∆) for

some constant C ′.(see [8]). In [19], Lee showed that for d-degenerate graph G, there exists
C(d) such that r(G) ≤ C(d)|G| holds.
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Exercise 4.3 (*). Suppose 0 ≤ ε < α ≤ 1. If (A,B) is (ε, d)-regular pair in G and
|A′| ≥ α|A| and |B′| ≥ α|B|, then prove that (A′, B′) is ( εα , d)-regular pair in G.

Exercise 4.4 (*). Suppose 0 < 1/n � ε � d ≤ 1. Suppose that (A,B) is (ε, d)-regular
pair in G. Sets A,B,A′, B′ are four pairwise disjoint sets in V (G) such that |A| = |B| = n,

|A′| ≤ ε|A| and |B′| ≤ ε|B|. Prove that (A ∪A′, B ∪B′) is (4ε1/2, d)-regular pair in G.

Exercise 4.5. Let V (G) be a 3-partite graph with partition V1 ∪ V2 ∪ V3 such that (Vi, Vj)
is (ε, d)-regular pair in G for all 1 ≤ i < j ≤ 3. How many triangles does G have? Find
an upper bound and a lower bound on the number of triangles in G.

Exercise 4.6 (*). Suppose 0 < 1/n � ε, 1/r � δ. Let V0 ∪ V1 ∪ · · · ∪ Vr be an ε-
regular partition of an n-vertex graph G. Let R be a (ε, δ)-reduced graph of the partition
V0 ∪ V1 ∪ · · · ∪ Vr. Show that if δ(G) ≥ (d+ 2δ)n, then δ(R) ≥ dr.

Exercise 4.7 (*). Let ∆, n ∈ N with 0 < 1/n� ε� d, 1/∆. Suppose V (G) = V1∪· · ·∪Vr
with ni := |Vi| = (1 ± ε)n for all i ∈ [r] and R is a (ε, d)-reduced graph for the partition
V1∪· · ·∪Vr. Let H be an r-partite graph with partition X1∪· · ·∪Xr with maximum degree
at most ∆ and |Xi| = ni for each i ∈ [r], and H[Xi, Xj ] induces no edges for ij /∈ E(R).
For each i ∈ [r], we have a set Yi ⊆ Xi with |Yi| ≤ εn and let Y =

⋃
i∈[r] Yi. Prove that

there exists an embedding φ : H[Y ]→ G such that the following hold.

(a) φ(Yi) ⊆ Vi.
(b) For all i ∈ [r] and x ∈ Xi \ Yi, we have |

⋂
z∈NH(x;Y )NG(φ(z))| ≥ (d− 2ε)∆n.
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5. Embedding large graphs

So far, we have proved that if an n-vertex graph G is dense enough, then it contains a
small graph H as a subgraph. For this, n is always sufficiently large compared to |V (H)|.
What if we want to find a subgraph H which has n vertices, in other words, V (H) has
the same size as |V (G)|. In this case, density condition on G alone is not sufficient.

To see this, consider a sparse n-vertex graph H without isolated vertex, say an n-vertex
cycle, and an n-vertex graph G containing disjoint union of Kn−1 and one isolated vertex.
Even if G is extremely dense, the graph G does not contain H as a subgraph. To avoid
this condition, we usually seek for minimum degree conditions on G.

The simplest spanning subgraph we can consider is a perfect matching of G, which is
a collection of disjoint edges covering all vertices of G. The following is a useful theorem
for finding a perfect matching. We omit the proof as it is well-known.

Theorem 5.1 (Hall’s theorem). Suppose that G is a bipartite graph with vertex partition
(A,B) such that for each A′ ⊆ A, we have |N1

G(A′)| ≥ |A′|. Then G contains a matching
covering all vertices of A.

Exercise 5.1. Suppose 0 ≤ ε < d/2. Suppose that G is a bipartite graph on vertex
partition (A,B) with |A| = |B| = n. Prove that if (A,B) is an (ε, d)-regular pair in G and
δ(G) ≥ dn/2, then G contains a perfect matching.

As mentioned before, we seek for a minimum degree condition on n-vertex graph G to
contain an n-vertex graph H as a subgraph. One interesting graph H is when it is a cycle.
We say that a cycle is Hamilton cycle of G if it contains every vertex of G.

Theorem 5.2 (Dirac’s theorem). If an n-vertex graph G satisfies δ(G) ≥ n/2, then G
contains a Hamilton cycle.

Proof. It is easy to see that G is connected. Let P = x1 . . . xs be a longest path in G.
Then every vertices in NG(x1) and NG(xs) are in V (P ), otherwise we obtain a longer
path. As |NG(x1)|, |NG(xs)| ≥ n/2, we have

|{i ∈ [s− 1] : xi+1 ∈ NG(x1)} ∩ {i ∈ [s− 1] : xi ∈ NG(xs)}| ≥ n/2 + n/2− (s− 1) ≥ 1.

There exists k ∈ [s− 1] such that x1xk+1 ∈ E(G), xkxs ∈ E(G). Consider a cycle

C = x1xk+1xk+2 . . . xsxkxk−1 . . . x2x1.

If C is not Hamilton cycle, as G is connected, there exists a vertex y ∈ V (G) \ V (C) and
j ∈ [s] such that yxj ∈ E(G). However, C with and edge xjy contains a path longer than
P , a contradiction. Hence C is a Hamilton cycle of G, so G contains a Hamilton cycle. �

Exercise 5.2. For given n ∈ N, find an n-vertex graph G with δ(G) ≥ n
2 − 1 such that G

does not contain a Hamilton cycle.

As we have seen in the small graph embedding results, embedding a complete graph is
an important case. So, it is natural to consider embedding vertex disjoint union of Kr

covering (almost) all vertices of G. The following theorem provides a sufficient condition
on the minimum degree of G to contain many vertex-disjoint copies of Kr. For our
convenience, we will consider a complement G of G, and we will try to find vertex-disjoint
independent sets of size r in G. We say that a coloring f : V (G) → [k] is an equitable
k-coloring if it is a proper coloring such that the sizes of the color classes differ by at most
one. The following proof is due to Kierstead and Kostochka [10].
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Theorem 5.3 (Hajnal-Szemerédi). If an n-vertex graph G has maximum degree less than
k, then there exists an equitable k-coloring of G. In particular, if G′ is an n-vertex graph
with δ(G′) ≥ (1− 1

r )n, then G′ contains bnr c copies of Kr.

Proof. It is easy to see that G has k-equitable coloring if and only if G∪Kk′ has k-equitable
coloring for 0 ≤ k′ < k with n ≡ −k′ (mod k). Hence we may assume that n = kr. We
use induction on m = |E(G)|, it is easy to see that the theorem holds when m = 0. We
say that a coloring f : V (G) → [k] is a near-equitable k-coloring if it is a proper coloring
with color class sizes r − 1, r, . . . , r, r + 1.

Assume a minimum counterexample G which has no equitable k-coloring, with |E(G)| >
0.

Exercise 5.3. Such a graph G has an near-equitable k-coloring.

For a given near-equitable k-coloring f , let V1, . . . , Vk be color classes with |V1| = r− 1

and |Vk| = r+1. We consider a digraphDf with vertices V1, . . . , Vk such that
−−→
ViVj ∈ E(Df )

if there exists a vertex v ∈ Vi having no neighbor in Vj . A vertex Vi of Df is accessible if

Df has a path from Vi to V1. If Vk is accessible, then G has an equitable k-coloring, by
shifting a vertex of G from each class on the path to the next class on the path. We say
that Vi blocks Vj if Df − Vi does not contain a path from Vj to V1, and an accessible class
is free if it blocks no other accessible classes.

Among all near-equitable k-colorings of G, choose one coloring f with the fewest inacces-
sible vertices in Df . WLOG we let V1, . . . , Va be accessible vertex classes and Va+1, . . . , Vk
be inaccessible vertex classes with |V1| = r − 1 and |Vk| = r + 1, and assume that
V1, . . . , Va−a′ are not free and Va−a′+1, . . . , Va are free. Let b := k − a. Let

A =
a⋃
i=1

Vi, A
′ :=

a⋃
i=a−a′+1

Vi, and B :=
k⋃

i=a+1

Vi.

For x ∈ Vi ⊆ A′, we say that x is movable if there exist j ∈ [a] \ {i} such that x has no
neighbor in Vj . And an edge xy with x ∈ Vi ⊆ A′ and y ∈ B is a solo edge if y has only
one neighbor in Vi which is x.

Claim 3. If xy is a solo edge with x ∈ Vi ⊆ A′ and y ∈ V` ⊆ B and x is movable, then G
has an equitable k-coloring.

Proof. There exists j ∈ [a] \ {i} such that x has no neighbor in Vj . We move x to Vj and
y into Vi, then we obtain a near-equitable a-coloring f ′ of G[A∪{y}] and a near equitable
b-coloring g of G[B − {y}].

Since Vi was free in the original coloring, Vj remains accessible under f ′. Hence Df ′

has a path from Vj to V1, thus G[A ∪ {y}] has an equitable a-coloring.
For z ∈ Vs ⊆ B, as Vs is inaccessible, we know dG(z;A) ≥ a, hence dG(z;B) < k−a = b.

Then G[B − {y}] has maximum degree less than b, the induction hypothesis implies that
G[B − {y}] has an equitable b-coloring. Together, these two coloring combined gives an
equitable k-coloring of G. �

Exercise 5.4. If xy and xy′ are solo edges with x ∈ Vi ⊆ A′, but x is not movable and
yy′ /∈ E(G), then G has a near-equitable k-coloring with more accessible vertex classes
than a. (Hint. Obtain a new equitable coloring g′ of G[B − {y}] and add x to one of the
color class of g′. Replace Vi with Vi − x+ y. Check it contains more accessible classes.)

By using Claim 3 and Exercise 5.4, it suffices to find a solo edge with its endpoint in A′

is movable, or two solo edges having a common endpoint in A′ whose the other endpoints
are non-adjacent. We consider two cases.
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Case 1. a′ ≤ b. Assume that each of V2, . . . , Va−a′ has a lower-indexed neighbor in
Df . The set Va−a′ blocks some class Vj with a − a′ < j ≤ a, then for each x ∈ Vj ,
we have dG(x;A) ≥ a − a′ − 1 as x is not movable to any Vi with i < a − a′. Hence
dG(x;B) ≤ k − (a− a′) ≤ b+ a′ ≤ 2b. Let

U := {x ∈ Vj : x is incident to a solo edge} and U ′ := Vj \ U.
Let m be the number of edges joining U ′ to B, so m ≤ 2b|U ′|. On the other hand, as
classes in B are inaccessible, every vertex of B has a neighbor in Vj . The vertices in
B \NG(U ;B) have at least two such neighbors in U ′, so m ≥ 2(|B| − |N1

G(U) ∩ B|). We
have∑
x∈U

dG(x;A) ≤ (k − 1)|U | − |N1
G(U) ∩B| = (a− 1)|U |+ br − b|U ′| − |N1

G(U) ∩B|

≤ (a− 1)|U |+ (|B| − 1)−m/2− |N1
G(U) ∩B|

≤ (a− 1)|U |+ |B| − 1− (|B| − |N1
G(U) ∩B|)− |N1

G(U) ∩B| = (a− 1)|U | − 1.

Hence there exists a vertex x ∈ U such that dG(x;A) < a− 1, hence x is movable. Since
x ∈ U , we have a solo edge incident to x.
Case 2. b ≤ a′. Let I be a maximum independent subset of B, then we have |I| ≥ r. For
each y ∈ B, let σ(y) be the number of solo edges incident to y, then we have dG(y;A) ≥
a + (a′ − σ(y)), thus we have σ(y) ≥ a′ + a − dG(y;A) ≥ a′ − b + dG(y;B) + 1. As I is
maximal, we have ∑

y∈I
(dG(y;B) + 1) ≥ |B| = br + 1.

Thus ∑
y∈I

σ(y) ≥
∑
y∈I

(a′ − b+ dG(y;B) + 1) ≥ |I|(a′ − b) +
∑
y∈I

(dG(y;B) + 1)

≥ r(a′ − b) + |B| ≥ a′r + 1 > |A′|.

Hence, a vertex in A′ is incident to at least two solo edges, a contradiction. �

What if H is more general graphs, other than cycle or clique-factors? What would be a
minimum degree condition on G guarantees a subgraph H in G? The following theorem
by Sauer and Spencer gives us a bound on this question.

Theorem 5.4. Suppose that G and H are n-vertex graph and δ(G) > (1 − 1
2∆(H))n − 1.

Then G contains H as a subgraph.

Proof. Note that we have ∆(H)∆(G) < n/2. We may assume that n ≥ 3. Consider a
bijection φ : V (H) → V (G) which maps the most number of edges of H into edge in G.
Let V (H) = {x1, . . . , xn}, V (G) = {v1, . . . , vn} and φ(xi) = vi for each i ∈ [n]. We call an
edge e of H is good for φ if φ(e) ∈ E(G), and we call it bad for φ otherwise. If every edges
of H are good for φ, then we are done. Otherwise, we may assume that x1xn ∈ E(H) and
v1vn /∈ E(G).

We try to find k ∈ [n− 1] \ {1} such that we can change the image of xk and xn of φ to
obtain a better bijection φk such that φk(xk) = vn, φk(xn) = vk and φk(xi) = vi for each
i ∈ [n] \ {k, n}.

If for some j ∈ [n− 1], we have xjxn ∈ E(H) and vjvk /∈ E(G), then φk maps an edge
xjxn into non-edge in G, so xjxn is bad for φk. As it could be a new bad edge, we want to

avoid this, and there are at most ∆(H)∆(G)− 1 such choices of (j, k) other than (1, n).
Similarly, if for some j ∈ [n−1], we have xjxk ∈ E(H) and vjvn /∈ E(G), then we could

introduce a new bad edge. Again there are at most ∆(H)∆(G)− 1 such choices of (j, k)
other than (1, n).
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For each such (j, k) we exclude k. As there are at most 2∆(H)∆(G)− 2 < n− 2 such
choices of (j, k) other than (1, n), there exists k ∈ [n− 1] \ {1} which is not excluded. It is
easy to check that every good edge for φ is still good for φk. Moreover, x1xn is a bad edge
for φ but good edge for φk, a contradiction to the definition of φ. Thus φ is an embedding
of H into G, thus G contains H as a subgraph. �

Conjecture 5.5 ( Bollobás-Eldridge 1978, Catlin 1976). If G and H are n-vertex graphs
with δ(G) ≥ (1− 1

∆(H)+1)n, then H embeds into G.

Kaul, Kostochka and Yu proved that if δ(G) ≥ (1 − 3
5(∆(H)+1))n, then H embeds into

G.

Exercise 5.5. Let H and G be two n-vertex graphs with |E(H)||E(G)| <
(
n
2

)
. Prove

that H embeds into G. (Hint. Count the number of bijections mapping an edge into a
non-edge.)

Exercise 5.6. Prove that if an n-vertex graph G satisfies |E(G)| < n/2, then G contains
a copy of every n-vertex tree.

Exercise 5.7. Suppose that H and G are 2n-vertex graphs such that each of them has an
equitable 2-coloring. Prove that if δ(G) ≥ (1− 1

2∆(H))n, then H embeds into G.
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6. The blow-up lemma

Lemma 4.3 together with regularity lemma helps us to find an embedding of a small
graph H with bounded maximum degree into a dense graph G. Can we prove a similar
statement for graphs H which has the same number of vertices with G? Let’s first consider
the simplest case, when H is a perfect matching.

Does (ε, d)-bipartite graph on vertex partition (A,B) with |A| = |B| has a perfect
matching? The answer is no. As ε-regularity does not restrict the local behavior of the
graph, there could be isolated vertices in A∪B. Thus, we need a stronger notion to ensure
a perfect matching as follows.

Definition 6.1. Let G be a graph. A disjoint pair (A,B) of sets of vertices is (ε, d)-super-
regular if it is (ε, d+)-regular and

dG(a;B) ≥ (d− ε)|B| and dG(b;A) ≥ (d− ε)|A|
for all a ∈ A and b ∈ B.

This notion of super-regularity is sufficient for having a perfect matching.

Exercise 6.1. Let 0 < 2ε < d ≤ 1 and n ≥ 2/ε. Let G be a graph. If (A,B) is (ε, d)-
super-regular pair in G with |A| = |B| = n, then G[A,B] contains a perfect matching.

Indeed, we can extend Lemma 4.3 into the following blow-up lemma proved by Komlós,
Sárközy and Szemerédi.

Theorem 6.2 (The blow-up lemma). [12] Suppose 0 < 1/n � ε � 1/r, d, 1/∆ ≤ 1. Let
H be a vertex graph with vertex partition X1 ∪ · · · ∪ Xr with ∆(H) ≤ ∆. Let G be a
graph with vertex partition V1 ∪ · · · ∪ Vr such that |Vi| = |Xi| = n and (Vi, Vj) is (ε, d+)-
super-regular for all i 6= j ∈ [r]. Then there exists an embedding φ of H into G such that
φ(Xi) = Vi.

This is a simplified version. Actually we can do more than this.

Remark on blow-up lemma.

1. X1 ∪ · · · ∪ Xr does not have to be equitable partition. Some sets can have size
bigger than n.

2. In the above, the ‘(ε, d)-reduced graph’ for G is a complete r-vertex graph Kr.
However, we can find the embedding even when the reduced graph R is not com-
plete, if H has a structures compatible to R. (If ij /∈ E(R), then H[Xi, Xj ] must
have no edges.)

3. We want to use the blow-up lemma after applying regularity lemma. However,
regularity lemma provides an ε-regular partition V0 ∪ · · · ∪ Vr with 1/r � ε. On
the other hand, in the above blow-up lemma, we assumed ε � 1/r for complete
reduced graph R. This causes a problem.

However, the blow-up lemma works as long as R has maximum degree ∆R and
ε � 1/∆R. For example, if R is a cycle of length r, then blow-up lemma still
works even if we have 1/r � ε.

4. For each i ∈ [r] and vertex sets X ′i ⊆ Xi of size at most εn, we can roughly specify
where x ∈ X ′i should be embedded. Specifically, for all x ∈ X ′i, we can specify a
set V ′x ⊆ Vi such that |V ′x| ≥ d′|Vi| for some d′ with ε � d′. Then we can find an
embedding φ of H into G such that φ(x) ∈ V ′x.

Our goal is to apply the regularity lemma to obtain an ε-regular partition G, and use
it to apply the blow-up lemma with the partition and H. For this, we need to take care
of two problems.
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• ε-regular partition may not give ε-super-regularity.
• Reduced graphs usually are big and have large maximum degree.

We can overcome the first problem by deleting (or moving) some vertices from the
ε-regular partition. See Exercise 4.4 and the following two exercises.

Exercise 6.2 (*). Suppose 0 < ε � d ≤ 1. If (A,B) is (ε, d)-regular pair in G, then
there exists A′ ⊆ B,A′ ⊆ B such that |A′| ≥ (1 − ε)|A|, |B′| ≥ (1 − ε)|B| and (A′, B′) is
(2ε, d)-super-regular pair in G

Exercise 6.3 (*). Suppose 0 < ε � d ≤ 1. If (A,B) is (ε, d)-super-regular pair in
G, then for any A′ ⊆ A,B′ ⊆ B with |A′| ≥ (1 − ε)|A|, |B′| ≥ (1 − ε)|B|, (A′, B′) is
(2ε, d)-super-regular pair in G.

Exercise 6.4 (*). Supose 0 < 1/m � ε � δ, 1/∆ ≤ 1. Let V0 ∪ V1 ∪ · · · ∪ Vr be an
ε-regular partition of G with |Vi| = (1 ± ε)m for each i ∈ [r], and let R be an (ε, δ)-
reduced graph of the ε-regular partition with ∆(R) ≤ ∆. Let m′ be an integer such that
(1 − 3∆ε)m ≤ m′ ≤ (1 − 2∆ε)m. Prove that there exists subsets Ui ⊆ Vi for each i ∈ [r]
such that |Ui| = m′ and (Ui, Uj) is a (6∆ε, δ+)-super-regular pair in G for all ij ∈ E(R).

The following theorem is known as Alon-Yuster conjecture. It is proved by Komlós,
Sárközy and Szemerédi. Here, F -factor means vertex-disjoint copies of F which covers all
vertices in another graph G.

Theorem 6.3. [13] For given k-partite f -vertex graph F , there exist n0 and C such that
the following holds for n ≥ n0. If an n-vertex graph G satisfies

δ(G) ≥ (1− 1

k
)n+ C

and n is multiple of f , then G contains an F -factor.

The above bound δ(G) ≥ (1− 1
k )n+C is sharp as there exists a k-chromatic graph F and

an graph G with minimum degree at least (1− 1
k )n−C such that F does not embed into

G. However, there are some k-chromatic graphs F such that a minimum degree bounds
on G lower than (1− 1

k )n suffices to guarantees an embedding of F into G. In [?], Kühn
and Osthus determined the sharp (up to additive constant) minimum degree threshold on
G for guaranteeing an embedding of F into G for each graph F .

Here we introduce an application of blow-up lemma to prove the following approximate
version of Alon-Yuster conjecture.

Theorem 6.4. For given k-colorable h-vertex graph F and real number α > 0, there exist
n0 such that the following holds for n ≥ n0. If an n-vertex graph G satisfies

δ(G) ≥ (1− 1

k
+ α)n,

then G contains at least (1− α)n/|V (F )| vertex-disjoint copies of F .

Proof. Take F ′ which is a disjoint union of k copies of F . Then it is easy to check that F ′

has a vertex partition X1 ∪ · · · ∪Xk such that |Xi| = f for all i ∈ [k].
Consider ε, t = ε−2 such that 0 < 1/n0 � ε� δ � α, 1/k ≤ 1. Apply regularity lemma

toG with parameters ε, t, and obtain ε-regular partition V0∪· · ·∪Vr with 1/n0 � 1/r < 1/t
and consider (ε, δ)-reduced graph R on vertex set [r] of the partition. Let m := |Vi| for
each i ∈ [r]. By moving vertices in Vr−k+2, . . . , Vr to V0 if necessary, we may assume that
r is multiple of k and |V0| ≤ 2εn. (Note that m = (1± 2ε)n/r.)
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In G, we delete all edges incident to V0, and all edges between Vi and Vj with ij /∈ E(R)
(i.e. all edges between non-regular pairs, and all edges between pairs of density at most
δ) and all edges inside each Vi. Let G′ be the resulting graph after this deletion.

Since α ≥ 2δ, by using Exercise 4.6, we have δ(R) ≥ (1− 1
k )r. Thus Hajnal-Szemerédi

Theorem implies that we can find r/k vertex disjoint copies of Kk in R.
Consider R′ ⊆ R which is union of r/k vertex-disjoint copies of Kks in R. By applying

Exercise 6.4 with R′ and V1, . . . , Vr, we can find Ui ⊆ Vi such that m′ := |Ui| = (1−3kε)m′

and (Ui, Uj) is (6kε, δ+)-super-regular for all ij ∈ E(R′). We put all vertices in Vi \ Ui
into V0, then |V0| ≤ 3kεn.

We let F ′′ be b m′

|V (F )|c disjoint union of the copies of F ′, which has equitable vertex k-

partition. Let K be a copy of Kk in R′, and let VK :=
⋃
i∈K Ui. By using blow-up lemma,

we can embed F ′′ into G′[VK ] for each K which is a copy of Kk in R′. After doing this, the
only unpacked vertices are vertices in V0 and vertices in V ′i which is not packed. Note that

|V0| ≤ 2kεn, since the number of deleted vertices are at most r × 2kεn
r ≤ 3kεn, and the

number of vertices in VK which is not packed is at most k×m′−|V (F ′)|× m′

|V (F )| ≤ r|V (F ′)|.
Thus the number of unpacked vertices is at most

2kεn+ r|V (F )| ≤ αn.
Thus we found (1− α)n/|V (F )| vertex disjoint copies of F in G′ ⊆ G. �

Exercise 6.5. For given α > 0, show that there exists n0 such that the following holds
for n ≥ n0. If G is an n-vertex graph with δ(G) ≥ (2

3 + α)n and H is an (1− α)n-vertex
graph with ∆(H) ≤ 2, then H embeds into G. (Hint. Can we partition V (G) into U1 and
U2 such that δ(G[Ui]) ≥ (2

3 + α/2)|Ui| for each i ∈ [2]?.)

The proof of Theorem 6.4 illustrates how we can use the blow-up lemma to prove graph
embedding problems. However, the situation was simple because H contains less vertices
than n, and H is very disconnected. What about more general graph, spanning and
connected? In order to obtain a spanning copy of H in G, we also need to use vertices in
the exceptional set V0.

For k ≥ 2, we defined Gk, k-th power of G such that

V (Gk) = V (G) and E(Gk) = {uv : distance between u and v in G is at most k}.
For a graph G, we call G2 the square of G. A classical results of Dirac asserts that
any n-vertex graph with minimum degree at least n/2 contains a Hamilton cycle. As a
generalization of this Pósa and Seymour conjectured the followings.

Conjecture 6.5 (Pósa, 1962). Let G be an n-vetex graph with δ(G) ≥ 2n/3, then G
contains the square of a Hamilton cycle.

Conjecture 6.6 (Seymour, 1974). Let G be an n-vetex graph with δ(G) ≥ kn/(k + 1),
then G contains the k-th power of a Hamilton cycle.

Komlós, Sárközy and Szemerédi [14] proved Pósa’s conjecture for sufficiently large n.
In [16] Komlós, Sárközy and Szemerédi proved that for large n the Seymour’s conjecture
holds. Both proofs of the theorems use the regularity lemma and the blow-up lemma. In
fact, there is a more general theorem than this, which is called ‘bandwidth theorem’. We
will not define what bandwidth is but we will define the following more general concept
of ‘separability’. (For bounded degree graphs, low separability and low bandwidth are
roughly equivalent. So we will use the concept of separability in this lecture.)
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Definition 6.7. An n-vertex graph H is η-separable if it contains a set S ⊆ V (H) with
|S| ≤ ηn such that every component of H − S has size at most ηn.

It is easy to see that n-vertex cycle or k-th power of an n-vertex cycle is η-separable for
any η, assuming n is sufficiently large.

Theorem 6.8 (Böttcher, Schacht and Taraz [3]). For given k,∆ ∈ N and α > 0, there
exists η > 0 and n0 such that the following holds for all n ≥ n0. If H is an n-vertex
k-chromatic graph with ∆(H) ≤ ∆ which is η-separable. If G is an n-vertex graph with
δ(G) ≥ (1− 1

k + α)n, then H embeds into G.

This theorem is originally stated using the concept of ‘bandwidth’, thus it is called
the bandwidth theorem. Again, the proof utilizes the regularity lemma and the blow-up
lemma. Now we prove the theorem for bipartite graphs as follows. The following proof
is a simplified version of the proof in [5]. The theorem in [5] deals with finding many
edge-disjoint copies of H in G, hence much more complicated than the proof here.

Theorem 6.9. For given ∆ ∈ N and α > 0, there exists η > 0 and n0 such that the
following holds for all n ≥ n0. If H is an n-vertex bipartite graph with ∆(H) ≤ ∆ which
is η-separable. If G is an n-vertex graph with δ(G) ≥ (1

2 + α)n, then H embeds into G.

Proof. We choose constants n0, η,M, ε, d as follows.

0 < 1/n0 � η � 1/M � ε� d� α, 1/∆.

Note that η is very small, so that η � 1/r holds when r is the size of the ε-regular partition
we obtain from the regularity lemma applied with the parameter ε,M .

First, we apply the regularity lemma to G with parameters ε,M , and obtain ε-regular
partition V0 ∪ · · · ∪ Vr with 1/n0 � η � 1/r < 1/M � ε and consider (ε, d)-reduced
graph R on vertex set [r] of the partition. Let m := |Vi| for each i ∈ [r]. By moving
vertices in Vr to V0 if necessary, we may assume that r is even and |V0| ≤ 2εn. (Note that
m = (1± 2ε)n/r.) Since α ≥ 2d, by using Exercise 4.6, we have

δ(R) ≥ (
1

2
+ α/2)r. (6.1)

By Dirac’s theorem, R contains a perfect matching. By permuting indices, assume that
the perfect matching is R′ = {12, 34, . . . (r − 1)r}. For each i ∈ [r], let i∗ be the unique
number in [r] such that ii∗ ∈ R′.

By applying Exercise 6.4 with R′ and V1, . . . , Vr, we can find Ui ⊆ Vi such that m′ :=
|Ui| = (1 − 4ε)n/r and (Ui, Ui∗) is (6ε, d+)-super-regular for all i ∈ [r]. We move all
vertices in Vi \ Ui into V0, then |V0| ≤ 5εn.

For each v ∈ V0, we have dG(v) ≥ (1/2 + α)n, thus there exists at least (1/2 + α/2)r
indices i ∈ [r] such that dG(v;Ui) ≥ dm′. Observe that, by Exercise 4.4, if we add v to
Ui∗ , then (Ui, Ui∗) is still super-regular with slightly worse parameter. With that purpose
in mind, we distribute vertices in V0 into sets U ′1, . . . , U

′
r such that the following holds.

(U′1) For each i ∈ [r] and v ∈ U ′i , we have dG(v′;Ui∗) ≥ dm′.
(U′2) For each i ∈ [r], we have |U ′i | ≤

10|V0|
r ≤ 100εm′.

(U′3) For each ii∗ ∈ E(R′), we have |U ′i | = |U ′i∗ | ± 1.

Exercise 6.6. Prove that such distribution is possible. (Hint. For each v ∈ V (G), there
are at least αr/2 indices i ∈ [r] such that dG(v;Vi) ≥ dm′ and dG(v;Vi∗) ≥ dm′.)

Define
U∗i := Ui ∪ U ′i and ni := |U∗i |.

Then by Exercise 4.4, we have the following.
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(U∗1) For each ii∗ ∈ E(R′), the graph G[U∗i , U
∗
i∗ ] is (ε1/2, d+)-super-regular with ni =

ni∗ ± 1.
(U∗2) ni = (1± ε1/2)n/r.

Now we have a desired partition of G, and we aim to partition the vertices of H into
appropriate vertex sets with size n1, . . . , nr and apply the blow-up lemma.

In order to prepare H, first we partition H by using its separability. Let A1∪A2 be the
vertex partition of V (H) into two independent sets. As H is η-separable, we can partition
H into W0,W1, . . . ,Wt such that the following holds.

(W1) For each s ∈ [t] ∪ {0}, we have |Ws| ≤ ηn.
(W2) For all s 6= s′ ∈ [t], H has no edges between Ws and Ws′ .
(W3) η−1 ≤ t ≤ 10η−1.

All edges of H are either within each Ws or between W0 and Ws. For each s ∈ [t] ∪ {0},
we define

Ws,1 := Ws ∩A1 and Ws,2 := Ws ∩A2

be the corresponding bipartition.
We will first partition {W0,1,W0,2,W1,1,W1,2,W2,1, . . . ,Wt,2} into collectionsW1, . . . ,Wr

as follows. Later when we apply the blow-up lemma, we aim to embed the most of vertices
in
⋃
W∈Wi

W into U∗i .

(W1) For all ii∗ ∈ E(R′) and s ∈ [t] ∪ {0} and ` ∈ [2], if Ws,` ∈ Wi then Ws,3−` ∈ Wi∗ .

(W2) For all i ∈ [r], we have
∑

W∈Wi
|W | = (1± η1/2)ni.

Indeed, we can find such a partition. For each s ∈ [t], we independently at random choose
a number i ∈ [r/2] such that i ∈ [r/2] is chosen with probability (n2i−1 + n2i)/n, and
choose ` ∈ [2] with probability 1/2. If ` = 1, then we add Ws,1 and Ws,2 to W2i−1 and
W2i, respectively and if ` = 2, then we Ws,2 and Ws,1 to W2i−1 and W2i, respectively. By
using Azuma’s inequality, we may prove the following.

Exercise 6.7. Prove that in the above random experiment, both properties (W1) and (W2)
holds with probability at least 0.99.

By permuting indices again, assume that W0,1 ∈ W1 and W0,2 ∈ W2. For each i ∈ [r],
let W ∗i :=

⋃
W∈Wi

W . If later we embed W ∗i into U∗i , then the edges inside each Ws

embeds into G[U∗i , U
∗
j ] which is super-regular, which is what we want. However, the edges

between W0 and Ws can be problematic. Hence, we want to further modify the partition.
Assign vertices in W0,1 to Y1 and W0,2 to Y2. For each s ∈ [t] and i ∈ [r], assume that

Ws,1 belongs toWi and Ws,2 belongs toWi∗ . By using (6.1), we know dR(2, i∗) ≥ dr, thus
we can find the following index q(s).

(Q1) q(s) ∈ NR(2, i∗).

Now, we assign vertices in Ws,1 ∪Ws,2 which is close to W0,1 ∪W0,2 as follows.

• Assign vertices in N1
H(W0,1) ∩Ws,2 to Y2.

• Assign vertices in N1
H(W0,2) ∩Ws,1 to Yq(s).

• Assign vertices in N2
H(W0,1) ∩Ws,1 to Yq(s).

• Assign the rest of vertices of Ws,1 to Xi and the rest of the vertices of Ws,2 to Xi∗ .

By (Q1),

If there exists an edge between Yi and Yj ∪Xj, then ij ∈ E(R) and if there exists
an edge between Xi and Xj, then ij ∈ E(R′).

Note that every vertices in Yi is distance at most two away from W0. As ∆(H) ≤ ∆
and |W0| ≤ ηn, we have |Yi| ≤ 2∆2ηn. Thus, for each i ∈ [r], by (U∗2) and (W2), we have

n′i := |Xi ∪ Yi| = (1± η1/3)ni. (6.2)
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Now we have sets Xi ∪ Yi which has ‘almost correct’ sizes. However, we want to obtain
sets with ‘exactly correct’ sizes. For this, we will not move vertices in H anymore, but
instead, we will move some vertices in U∗i to some U∗j , so that the resulting partition

Ũ1, . . . , Ũr have size exactly n′1, . . . , n
′
r while G[Ũi, Ũj ] is still super-regular with slightly

worse parameters. For this, we consider the following directed graph D such that
−→
ij ∈ D

implies that we can move some in U∗i to U∗j .

Claim 4. There exists a multi-directed graph D on vertex set [r] satisfying the following.

(D1) |E(D)| ≤ η1/5n.
(D2) For each i ∈ [r], we have d+

D(i)− d−D(i) = ni − n′i.
(D3) For each

−→
ij ∈ E(D), we have ij∗ ∈ E(R).

Proof. Let D′ be a directed graph on the vertex set [r] such that
−→
ij ∈ E(D′) if and only

if ij∗ ∈ E(R).

Exercise 6.8. Use (6.1) to prove that D′ is strongly connected. (For any i ∈ [r] and
j ∈ [r], there exists a directed path from i to j)

Note that
∑

i∈[r] ni =
∑

i∈[r] n
′
i = n. Let

I+ := {i ∈ [r] : ni > n′i} and I− := {i ∈ [r] : ni < n′i}.
Then

∑
i∈I+ ni − n′i =

∑
i∈I− n

′
i − ni. This shows that we can find a collection of (not

necessarily distinct) pairs P := {(i1, j1), . . . , (ja, ja)} such that each pair is in I+ × I−
such that the following holds.

(P1) |P| =
∑

i∈I+ ni − n′i =
∑

i∈I− n
′
i − ni

(6.2)

≤ rη1/3n.
(P2) For each i ∈ I+, we have |{b ∈ [a] : ib = i}| = ni − n′i.
(P3) For each i ∈ I−, we have |{b ∈ [a] : jb = i}| = n′i − ni.

By Exercise 6.8, for each (i, j) ∈ P, we can find a path Pi,j of D′ with length at most
r. We take a disjoint union of all paths of Pib,jb for each b ∈ [a] to obtain a path. In
other words, we consider a multi-directed graph D on vertex set [r] such that for each
(i, j) ∈ [r]× [r], the multi-digraph D contains exactly

|{b ∈ [a] :
−→
ij ∈ Pib,jb}|

directed edges from i to j.
As each path has length at most r, (P1) implies that |E(D)| ≤ r2η1/3n ≤ η1/5n, thus

(D1) holds. For each i ∈ [r], we have

d+
D(i)−d−D(i) = |{b ∈ [a] : i is in Pib,jb−{jb}}|−|{b ∈ [a] : i is in Pib,jb−{ib}}|

(P2),(P3)
= ni−n′i.

We obtain the final equality by considering two cases of i ∈ I+ and i ∈ I− separately.
Thus (D2) holds. It is easy to see that the definition of D and D′ implies (D3). This
proves the claim. �

Now we use Claim 4 to modify the partition U∗1 , . . . , U
∗
r into the following partition. For

each −→e ∈ E(D) from i to j, we know that ij∗ ∈ E(R). As U∗i is a slightly modification of

Vi, we know that G[U∗i , U
∗
j∗ ] is still (ε1/3, d+)-regular. By Exercise 6.2, at least (1−ε1/3)ni

vertices in U∗i has at least (d− ε1/3)n/r neighbors in U∗k . We move one such vertex to U∗j .

We do this for all
−→
ij ∈ E(D), and we indicate the resulting vertex set Ũi.

By (D1), for ij ∈ E(R′), we have moved at most η1/5n < εn/(2r) vertices, we obtain Ũi
from U∗i by removing at most ε|U∗i | vertices and adding at most ε|U∗i | new vertices which

all has at least (d − 2ε1/3)n/r − ε|U∗j | neighbors in Ũj . Hence Exercise 4.3, Exercise 4.4
and the definition of super-regularity together imply that
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(Ũ1) For each i ∈ [r], G[Ũi, Ũi∗ ] is (ε1/5, d/2)-super-regular.

(Ũ2) For each ij ∈ E(R), G[Ũi, Ũj ] is (ε1/5, d+)-regular.

(Ũ3) For each i ∈ [r], we have |Ũi|
(D2)
= n′i.

Now, we use Exercise 4.7 to embed all vertices in Yi into Ũi by an embedding φ in such a
way that the following holds where Y :=

⋃
i∈[r] Yi.

For all i ∈ [r] and x ∈ Xi, we have |Ax| ≥ (d− 2ε1/5)∆n′i, where Ax :=
⋂

z∈NH(x;Y )

NG(φ(z); Ũi)

(6.3)

Now, we want to embed Xi into Ũi \φ(Yi) by using the blow-up lemma. As all edges in

H[
⋃
i′∈[r]Xi′ ] are between Xi and Xj with ij ∈ E(R′), and |Xi| = ni−|Yi| = |Ũi \φ(Yi)| =

(1 ± ε1/10)n/r, we can use the blow-up lemma(Theorem 6.2). Furthermore, by using the
Remark 4 after the blow-up lemma, we can ensure that x ∈ Xi embeds into Ax. Recall
that every vertices in Y is distance at most two away from W0. By (W1), there are at
most ∆|Y | ≤ 2∆3ηn < ε|Xi| vertices in Xi which has a neighbor in Y , thus those vertices
we need to specify its ‘target set’ is small. By (6.3), such a target set has not too small
size. Further if x embeds into Ax, then this gives us an embedding of the entire graph H
into G. This finishes the proof of the Theorem. �

Exercise 6.9. In the proof of Theorem 6.9, replace the Dirac’s theorem with Hajnal-
Szemeredi’s theorem to prove the following weakening of the Theorem 6.8. (Hint. replace
q(s) with an appropriate sequence of numbers and change the definition of D′ in an ap-
propriate way.)

For given k,∆ ∈ N and α > 0, there exists η > 0 and n0 such that the following holds
for all n ≥ n0. If H is an n-vertex k-chromatic graph with ∆(H) ≤ ∆ which is η-separable.
If G is an n-vertex graph with δ(G) ≥ (1− 1

2(k−1) + α)n, then H embeds into G.

Exercise 6.10. Read Section 3.1 in [16] and prove Theorem 6.8. (Hint. Again replace
q(s) with a sequence of numbers as in [16]. In this case, D′ might not be strongly connected.
Can we still find a specific index i ∈ [r] such that there exists a direct path from i to j for
every j ∈ [r]? How can we change the above proof to complete the task?)
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7. The absorbing method

One downside of using the regularity lemma and the blow-up lemma is that it requires
the number of vertices in the host graph G to be huge. To overcome this disadvantage, the
absorbing method has been introduced. The absorbing method aims to do the following.

• Build an absorber with good properties.
• Build and approximate structures.
• Use absorber to convert the approximate structure into an optimal structure. (The

absorber ‘absorbs’ the remaining vertices into the approximate structure.)

Now we will prove the following approximate version of Pósa’s conjecture by using
absorbing method. This will illustrate the absorbing method. This proof is a simplified
version of the proof in [20]. Note that the proof in [20] proves Theorem 7.1 with α = 0,
verifying Pósa’s conjecture for large n.

We say that for given a square (u1, u2, . . . , u`−1, u`) of path P , we say that (u1, u2) and
(u`−1, u`) are endpairs of P .

Theorem 7.1. For given α > 0, there exists n0 such that the following holds for all
n ≥ n0. If G is an n-vertex graph with δ(G) ≥ (2/3 + α)n, then G contains a square of
Hamilton cycle.

To prove this theorem, we first prove the following lemmas.

Lemma 7.2 (Connecting lemma). For given 0 < β < 1/100, there exists an n0 such that
the following holds for all n ≥ n0. If H is an n-vertex graph with δ(H) ≥ (2/3 +β)n, then
for two disjoint edges ab, cd ∈ E(H), there exists a square of path (a, b, u1, . . . , uj , c, d) in
H with j ≤ 20β−2.

Proof. For a, b, we consider the following sets A0, A1, . . . and bipartite graph G1, . . . such
that Gi is a bipartite graph on Ai−1 ∪ Ai. Let A0 := {b} and A1 = NH(a, b), and let G1

be a complete bipartite graph between A0 and A1, note that |A1| ≥ (1/3 + 2β)n. Let

A′2 :=
⋃
x∈A1

NH(b, x) and G′2 := {xy ∈ A1 ×A′2 : y ∈ NH(b, x)}.

For each x ∈ A1, we have dG′2(x) ≥ (1/3 + β)n. Let

A2 := {y ∈ A′2 : dG′2(y) > β2n} and G2 := G′2[A1 ∪A2].

Note that y ∈ A2 has many choices of x such that yxba forms a square of path. It is easy
to verify that |A2| ≥ n/3 holds.

Assume that we have constructed A0, . . . , Aj and G1, . . . , Gj with j ≥ 2, and we con-
struct Aj+1 and graph Gj+1 between Aj and Aj+1.

We further aim that for any yz ∈ E(Gj+1) with y ∈ Aj , we want to make sure that
there are many choices of vertex x ∈ Aj−1 (moreover xy ∈ E(Gj)) such that x ∈ NH(y, z).
In this way, we can ‘climb back’ to Aj , Aj−1, . . . A0 to form a square of path zyx . . . ba. To

this purpose, we first define Bj
y and A′i+1, G

′
i+1 as follows.

For each y ∈ Aj , let

E(Bj
y) := {xz : x ∈ NGj (y), z ∈ V (H) and z ∈ NH(x, y)},

A′j+1 := {z : ∃y ∈ Aj such that d
Bj

y
(z) ≥ β4n} and

G′j+1 := {yz ∈ E(H) : y ∈ Aj , dBj
y
(z) ≥ β4n}.

In other words, yz ∈ G′+j1 if there are many vertices x in NGj (y) such that xyz forms a
triangle. Note that d

Bj
y
(z) ⊆ NGj (y). Let

Aj+1 := {z ∈ A′j+1 : dG′j+1
(z) > β2n} and Gj+1 := G′j+1[Aj ∪Aj+1].
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Note that Aj+1 is obtained by deleting vertices z which does not have many choices of
y ∈ Aj to ‘climb up’. So, for every vertex z ∈ Aj+1, there are many choices of y ∈ Aj and
x ∈ Aj−1 to ‘climb up’.

Note that the sets A0, A1, A2, . . . may not be disjoint. We ensured the ‘many choices’
because we want to avoid using an already-used vertices again when we ‘climb up’ to
extend the square of the path.

Our strategy is to consider the above sets and graphs and use two vertices c, d analo-
gously to consider another sets C0, C1, . . . and bipartite graphs F1, . . . . This will give us
two squares of paths, but the problem is how to merge them into a one square of path.
For this we first prove the following Claim.

Claim 5. For all j ≥ 2 and y ∈ Aj, we have dG′j+1
(y) ≥ (1/3 + β)n.

Proof. Let s be the number of vertices z ∈ V (H) with d
Bj

y
(z) < β4n, then n−s = dG′j+1

(y).

Then we have

sβ4n+ (n− s)|NGj (y)| ≥ |E(Bj
y)| =

∑
x∈NGj

(y)

dH(y, x) ≥ |NGj (y)|(1/3 + 2β)n.

Note that |NGj (y)| > β2n and s ≤ n, hence we obtain

n− s ≥ (1/3 + 2β)n− sβ4n

|NGj (y)|
≥ (1/3 + β)n.

This proves the claim. �

We say that a vertex y ∈ Aj is j-heavy if dGj (y) ≥ n/3. The purpose of Claim 5 is to
find a heavy vertex. We consider this definition of heavy vertex for the following reason.

If y is j-heavy, then there are many choices of x so that we can obtain a square of path
yx . . . ba. One advantage of y being a heavy vertex is that dGj (y) ≥ n/3 and δ(H) ≥
(2/3 + β)n, we can freely choose a vertex z, then |NGj (y) ∩ NH(z)| ≥ βn. Hence, there
are still many choices of x such that there is a square of path zyx . . . ba.

Hence, we hope to find heavy vertex ya for a and b, and another heavy vertex yc for
d and c. And choose appropriate vertices za, zc, u (recall that we have much freedom to
choose these vertices as ya, yc are heavy vertices) so that yazauzcyc can ‘merge’ two square
of paths. The following claim provides the existence of heavy vertices.

Claim 6. There exists j ≤ 5β−2 such that Aj contains a j-heavy vertices.

Proof. Suppose not. We will show that

|Aj | ≥ (1 + β2)|Aj−1| (7.1)

holds for all j ≤ 5β−2 to derive a contradiction. Choose smallest j > 2 such that (7.1)
does not hold. By the choice, |Aj−1| ≥ n/3 as |A2| ≥ n/3.

For each j ≤ 5β−2, Claim 5 implies that

|E(Gj)| =
∑

y∈Aj−1

dG′j (y)−
∑

z∈A′j\Aj

dG′j (z) ≥ (1/3 + β)n|Aj−1| − β2n2.

On the other hand, as there are no heavy vertices, we have

|E(Gj)| ≤
∑

z∈Aj , not heavy

dGj+1(z) ≤
∑
z∈Aj

n/3 ≤ (n/3)|Aj |.

From this and the fact that |Aj−1| ≥ n/3, we conclude that

|Aj | ≥ (1 + β2)|Aj−1|.
this proves (7.1). On the other hand, then for j0 := b5β−2c, we have |Aj0 | ≥ (1 +
β2)j0−2|A2| > n, a contradiction. This proves the claim. �
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By Claim 6, we have j(1) ≤ 5β−2 and sets A0, A1, . . . and graphs G1, . . . such that Aj(1)

contains a heavy vertex ya. Similarly, for and edge cd, we can construct sets C0, C1, . . . ,
and graphs F1, . . . and j(2) ≤ 5β−2 such that Cj(2) contains a heavy vertex yc.

Choose a vertex u /∈ {a, b, c, d} which is a common neighbor of ya and yc. As ya and yc
are heavy, both NGj(1)

(ya) and NGj(2)
(yc) has size at least n/3. As δ(H) ≥ (2/3 + β)n,

every vertex z ∈ NH(ya) has at least βn neighbors in NGj(1)
(ya), thus z is also a neighbor

of ya in G′j(1)+1, by the definition of G′j(1)+1. Hence

dG′
j(1)+1

(ya) ≥ 2n/3 and dG′
j(1)+1

(yc) ≥ 2n/3.

Thus we can find an edge zazc ofH between two setsNG′
j(1)+1

(ya)∩NH(u) andNG′
j(1)+1

(yc)∩
NH(u) of size at least n/3 (because δ(H) ≥ (2/3 + β)n). Then note that yazauzcyc is a
part of square of a path. By the definition of A0, A1, . . . and C0, C1, we can extend this
into a square of a path of a form (a, b, u1, . . . , uj , c, d) with j ≤ 20β−2. This proves the
lemma. �

Next, we consider the following Absorbing lemma.

Lemma 7.3 (Absorbing lemma). For given 0 < β < 1/100, there exists an n0 such that
the following holds for all n ≥ n0. If G is an n-vertex graph with δ(G) ≥ (2/3 + β)n,
there is a square-path PA in G with at most β10n vertices such that for every subset
U ⊆ V (G) \ V (PA) of size at most β20n, there exists a square-path PA,U in G such that
V (PA,U ) = V (PA) ∪ U and PA,U has the same endpairs as PA.

Proof. We say that an (ordered) 5-tuple (x, a, b, c, d) of vertices absorbs v, if all five vertices
are neighbors of v and all a, b, c, d are neighbors of x and a, b, c, d forms a path in G.

Claim 7. For each v ∈ V (G), there are at least 2β5n5 many 5-tuples absorbing v.

Proof. For given v, we can choose x in at least (2/3 + β)n different ways. Consider the
vertex set U = NG(v, x), which has size at least (1/3 + 2β)n. By the minimum degree
condition, we have δ(G[U ]) ≥ 3βn. We can choose a ∈ U in |U | different ways and choose
b ∈ NG[U ](a), c ∈ NG[U ](b) and d ∈ NG[U ](c) in each 3βn different ways. Hence, there are
at least

(2/3 + β)n|U |(3βn)3 ≥ 2β5n5

5-tuples absorbing v. This proves the claim. �

Let Av be the family of all 5-tuples absorbing v. Then we have |Av| ≥ 2β5n5 for all
v ∈ V (G). Now we prove the following claim.

Claim 8. There exists a family F of at most 2β14n disjoint 5-tuples of vertices of G such
that for every v ∈ V (G), we have |Av ∩ F| ≥ β20n.

Proof. We select a family F ′ of 5-tuples of vertices at random by including each of n(n−
1)(n− 2)(n− 3)(n− 4) tuples independently with probability β14n−4.

Exercise 7.1. Use Chernoff’s inequality, show that we have the following with probability
at least 0.99.

(F1) |F ′| ≤ 2β14n and
(F2) for each v ∈ V (G), we have |Av ∩ F ′| ≥ β19n.

Furthermore, the expected number of intersecting pairs of 5-tuples in F ′ is at most

n5 × 5× 5× n4 × (β14n−4)2 = 25β28n.

By Markov’s inequality, with probability at least 1/2,

(F3) there are at most 50β28n pairs of intersecting 5-tuples in F ′.
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Thus, with probability at least 0.99 + 1/2 − 1 ≥ 0.49, a random family F ′ satisfies all
(F1)–(F3). Hence, there exists a family F ′ satisfying all three. From this, we delete all
5-tuples that intersect other 5-tuples and all 5-tuples which does not absorb any vertices,
and let F be the resulting collection. By using (F2), for each v ∈ V (G), we have

|Av ∩ F| ≥ β19n− 50β28n ≥ β20n.

It is easy to check that F has the correct size. This proves the claim. �

Now, we consider a collection F = {F1, . . . , Ff} as Claim 8. For each end pairs of (a, b)
of Fi and (c, d) of Fj+1, as |F| ≤ 2β14n, for any set U ′ ⊆ V (G) with |U ′| ≤ βn/2, the
graph

G[(V (G) \ (
⋃
i∈[f ]

V (Fi) ∪ U)) ∪ {a, b, c, d}]

has minimum degree at least (2/3 + β/3)n. Hence, we can use the Connecting Lemma to
find vertices Ci such that Fi, Ci and Fi+1 forms a square of path, and |Ci| ≤ 20β−2. By
include Ci to U and repeating this, we may obtain a path PA, which has length at most

(20β−2 + 5)× f ≤ 2β14 × 30β−2n ≤ β10n.

It is easy to check that this is the desired path. This proves the lemma. �

Exercise 7.2 (Reservoir Lemma). For given 0 < β < 1/100, there exists n0 such that the
following holds for all n ≥ n0. If G is an n-vertex graph with δ(G) ≥ (2/3 + β)n, then

there exists a subset R ⊆ G with |R| = β20n/2 ± n2/3 such that for every v ∈ V (G), we
have

dG(v;R) ≥ (2/3 + β/2)|R|.

Proof of Theorem 7.1. Assume that α < 1/100 and β = α/3, and ε := α100. Assume that
n0 is large enough so that three previous lemmas all holds whenever n ≥ n0/2.

By applying the Absorbing Lemma 7.3, we find an absorbing square-path PA with
|PA| ≤ α10n.

Note that G \ V (PA) has minimum degree at least (2/3 + β)|G \ V (PA)|. Thus we can
apply exercise 7.2 to G \ V (PA) to obtain a set R satisfying the following.

(R1) |R| = (1 ± 1/2)β20n/2 and every vertex v ∈ V (G) satisfies dG(v;R) ≥ (2/3 +
β/2)|R|.

Note that for any set |U | ≤ β|R|/10 and four vertices a, b, c, d ∈ G \ R, the graph
G′ = G[(R \ U) ∪ {a, b, c, d}] has minimum degree at least (2/3 + β)|V (G′)| (note that
|V (PA) ∪ R| ≤ 2βn), thus the Connecting Lemma implies that we can connect the pairs
ab and cd through the vertices in R.

Now, we will extend PA into a longer path covering all vertices in V (G) \ R except at
most α20n/2 vertices and some vertices in R. By repeatedly taking common neighbors of
an end pair of the current path, we can extend PA into a square-path P which has length
at least n/3 and shares an end pair with PA.

Let P ′ := P \PA and P ′ = (x1, . . . , x`). Let T := V (G) \ (V (P )∪R). If |T | < εn, then
we are done.

For a given vertex a ∈ T , we define a string Ia = (i1, . . . , i`) ∈ {0, 1}` such that ij = 1
if and only if xj is a neighbor of a. We may suppose that Ia contains no four consecutive
ones, otherwise we can extend P ′ by inserting a in the middle of its four neighbors.

We call a zero followed by a maximal consecutive ones a j-block if the maximum con-
secutive ones has size j. We call a zero followed by another a 0-block. Then Ia consists of
disjoint j-blocks for j ∈ {0, 1, 2, 3}. We call a substring of Ia an interval if it starts with a
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3-block and it ends right before the next 3-block. Then Ia = I1
a . . . I

`′
a such that each Ija is

an interval. We call an interval heavy if all blocks are 2-blocks except the leading 3-block.
Assume that the following holds.

(S1) There exists i ∈ [`] such that Si := {a ∈ T : Ia has a heavy interval starting at x1}
and the minimum length of the heavy intervals beginning at xi is less than 3|Si|−2.

If (S1) holds, then we define the operation SWAP. Let a ∈ Si be a vertex whose heavy
internal beginning at xi is of minimum length, say 3k + 1. Take a subpath Q′ ⊆ P ′ of
length 3k + 4 consisting of vertices right after xi,

Q′ = (y1, y2, y3, z1, y4, y5, z2, y6, y7, . . . , zk−1, y2k, y2k+1, zk, y2k+2, y2k+3, y2k+4).

We have yi ∈ NG(a) and zi /∈ NG(a), and the substring of Ia corresponding to Q′ is

(1, 1, 1, 0, 1, 1, 0, 1, 1, . . . , 0, 1, 1, 0, 1, 1, 1).

In fact, by the minimality of a, for every b ∈ Si, the substring of Ib corresponding to Q′

is the same except the last one. As |Si| ≥ k + 1, we can choose b1, . . . , bk ∈ Si. Then we
can replace Q′ in P with the following

Q′′ := (y1, y2, b1, y3, y4, b2, y5, y6, b3, . . . , y2k, bk, y2k+1, y2k+2, a, y2k+3, y2k+4).

Then we obtain a path longer than P ′. By using this operation, we can prove the following
claim.

Claim 9. If there exists a subset U ⊆ T of size εn such that for all a ∈ U , we have
dG(a;V (P ′)) ≥ (2/3 + ε)`, then we can extend P .

Proof. For a ∈ U , assume Ia contains t heavy intervals, such that the size of the union of
the heavy intervals is s. Then we have

dG(a;V (P ′)) ≤ 2

3
(s− t) + t+

2

3
(`− s) ≤ 2`/3 + t/3.

Thus
t ≥ 3(dG(a;V (P ′)− 2`/3) ≥ 3ε`.

Hence, for every a ∈ U , the string Ia contains at least ε`/3 heavy intervals. Let a heavy
interval short if it is of length less than 10ε−1. Then for each a ∈ U , there are at least
ε`/2 short heavy interval in Ia, otherwise, the size of the union of heavy interval is longer
than

(ε`− ε`/2) · 10ε−1 ≥ 5` > n,

a contradiction as ` ≥ n/3. By pigeonhole principle, there exists i ∈ [`] such that short
heavy interval begins at xi for at least (|U | · ε`/2)/` ≥ ε2n/2 distinct vertices in T . Let
Si be those vertices, then as |Si| ≥ ε2n/2 > 3 · 10ε−1 − 2, we can perform the operation
SWAP at i. This proves the claim. �

Let U := {a ∈ T : dG(a;V (P ′)) ≥ (2/3 + ε)`}. Note that by Claim 9, we can assume
that |U | ≤ εn. Then, for a ∈ T \ U , we have

dG(a;T \ U) ≥ (
2

3
+ α)n− (

2

3
+ ε)`− |R| − |PA| ≥

2

3
|T |+ αn/3.

Thus, this implies that any pair of vertices in T \U has at least αn/3 common neighbors.
This guarantees a square-path in T \ U of length αn/3. Let (a, b) be an end pair of this
path. Use Connecting Lemma to find a square-path between (b, a) and (x`, x`−1) of length
at most 20β−2 in G[R∪{a, b, x`, x`−1}], then this extends P ′ by adding at least αn/3 more
vertices.

Note that by repeating the above procedure, we use Connecting Lemma at most 3α−1

times, as P ′ can not be longer than n. Hence, we only use at most 3α−1 × 20β−2 ≤ α−4,
we can keep using the Connecting Lemma until the path P covers all but at most εn
vertices in V (G) \R.
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By repeating this we can obtain a path P covering all but εn vertices in V (G) \R and
at most α−4 vertices in R. Let ab and cd be the endpairs of P . We use Connecting Lemma
to find a square-path between ab and cd through R \ V (P ), then we obtain a square-cycle
C. Note that PA is a subpath of C. Since |V (G) \ V (C)| < α20n, by Absorbing Lemma,
there exists a path PA,V (G)\V (C) sharing both endpairs with PA covering all vertices of
V (PA) ∪ (V (G) \ V (C)). This gives a square of Hamilton cycle.

�

This absorbing method was successful in proving other graph embedding results and hy-
pergraph embedding results. See [17] or [23] for more results using the absorbing method.
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