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Abstract

A graph G is (j, k)-colorable if V (G) can be partitioned into two sets Vj and Vk so that the
maximum degree of G[Vj ] is at most j and of G[Vk] is at most k. While the problem of verifying
whether a graph is (0, 0)-colorable is easy, the similar problem with (j, k) in place of (0, 0) is
NP-complete for all nonnegative j and k with j + k ≥ 1.

Let Fj,k(g) denote the supremum of all x such that for some constant cg every graph G with
girth g and |E(H)| ≤ x|V (H)| + cg for every H ⊆ G is (j, k)-colorable. It was proved recently
that F0,1(3) = 1.2. In a companion paper we find the exact value F0,1(4) = F0,1(5) = 11

9 . In
this paper, we show that increasing g from 5 further on does not increase F0,1(g) much. Our
constructions show that for every g, F0,1(g) ≤ 1.25. We also find exact values of Fj,k(g) for all
g and all k ≥ 2j + 2.

1 Introduction

A proper k-coloring of a graph G is a partition of V (G) into k independent sets V1, . . . , Vk. A
(d1, d2, · · · , dk)-coloring of a graph G is a partition of V (G) into sets V1, V2, · · · , Vk such that for
every 1 ≤ i ≤ k, the subgraph G[Vi] of G induced by Vi has maximum degree at most di. If
d1 = . . . = dk = 0, then a (d1, d2, · · · , dk)-coloring is simply a proper k-coloring. If at least one of
the di is positive, then a (d1, d2, · · · , dk)-coloring is called improper or defective. Several papers on
improper colorings of planar graphs with restrictions on girth and of sparse graphs have appeared.

In [11] and this paper we consider improper colorings with just two colors, the (j, k)-colorings.
Even such colorings are not simple if (j, k) 6= (0, 0). In particular, Esperet, Montassier, Ochem
and Pinlou [8] proved that the problem of verifying whether a given planar graph of girth 9 has a
(0, 1)-coloring is NP-complete. Since the problem is hard, it is natural to consider related extremal
problems.

The maximum average degree, mad(G), of a graph G is the maximum of 2|E(H)|
|V (H)| over all sub-

graphs H of G. It measures sparseness of G. Kurek and Ruciński [12] called graphs with low
maximum average degree globally sparse. In particular,

if G is a planar graph of girth g, then mad(G) < 2g
g−2 . (1)
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We will use the following slight refinement of the notion of mad(G). For a, b ∈ R, a graph G is
(a, b)-sparse if |E(H)| < a|V (H)|+ b for all H ⊆ G. For example, every forest is (1, 0)-sparse, and
every graph G with mad(G) < a is (a/2, 0)-sparse. We also say that G is almost (a, b)-sparse if
|E(G)| = a|V (G)| + b and |E(H)| < a|V (H)| + b for all H ( G. For example, every connected
k-regular connected graph G is almost (k/2, 0)-sparse. Note that every almost (a, b)-sparse graph is
(a, b′)-sparse for all b′ > b. Almost (a, b)-sparse graphs could be considered as critical: they become
(a, b)-sparse after deleting any edge.

Glebov and Zambalaeva [9] proved that every planar graph G with girth at least 16 is (0, 1)-
colorable. Then Borodin and Ivanova [1] proved that every graph G with mad(G) < 7

3 is (0, 1)-
colorable. By (1), this implies that every planar graph G with girth at least 14 is (0, 1)-colorable.
Borodin and Kostochka [2] proved that every graph G with mad(G) < 12

5 is (0, 1)-colorable, and
this is sharp. This implies that every planar graph G with girth at least 12 is (0, 1)-colorable. As
mentioned above, Esperet et al. [8] proved that the problem of verifying whether a given planar
graph of girth 9 has a (0, 1)-coloring is NP-complete. Dorbec, Kaiser, Montassier, and Raspaud [6]
mention that because of these results, the remaining open question is whether all planar graphs
with girth 10 or 11 are (0, 1)-colorable. Our results in [11] yield the positive answer for planar
graphs with girth 11.

In [11] and this paper, instead of considering planar graphs with given girth, we consider graphs
with given girth that are (a, b)-sparse for small a. A recent result by Borodin and Kostochka [3]
can be stated in the language of (a, b)-sparse graphs as follows.

Theorem 1.1 ([3]). Let k ≥ 2j+ 2 and G be a graph. If G is
(

2− k+2
(j+2)(k+1) ,

1
k+1

)
-sparse, then it

is (j, k)-colorable. Moreover, the result is sharp in the sense that there are infinitely many almost(
2− k+2

(j+2)(k+1) ,
1

k+1

)
-sparse graphs that are not (j, k)-colorable.

Our first result gives triangle-free sharpness examples for Theorem 1.1.

Theorem 1.2. Let j ≥ 0 and k ≥ j + 1. Then there are infinitely many triangle-free almost(
2− k+2

(j+2)(k+1) ,
1

k+1

)
-sparse graphs that are not (j, k)-colorable. Furthermore, for every k ≥ 1,

there are infinitely many almost
(

2− k+2
2(k+1) ,

1
k+1

)
-sparse graphs of girth 5 that are not (0, k)-

colorable.

When k ≥ 2j+2, the graphs we construct in Theorem 1.2 are (j, k)-critical in the sense that each
proper subgraph of every such graph is (j, k)-colorable by Theorem 1.1 but the graphs themselves
are not.

Let Fj,k(g) denote the supremum of all positive a such that there is some (possibly negative)
b with the property that every (a, b)-sparse graph G with girth g is (j, k)-colorable. The above
mentioned result in [2] implies F0,1(3) = 12

5 = 1.2. In [11] we prove the exact result that F0,1(4) =
F0,1(5) = 11

9 and also find the best possible value of b. In this paper we extend this result in two
directions: to large girth and to (j, k)-colorings instead of (0, 1)-colorings.

Since F0,0(4) and F0,1(4) are already known, with Theorem 1.2 we have the values of F0,k(4)
for all k ≥ 0.

Our second result concerns graphs with large girth.

Theorem 1.3. For all k ≥ j ≥ 0 and g ≥ 3, Fj,k(g) ≤ 2− (k+2)
(j+2)(k+1) .
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So, we have F0,1(3) = 1.2, F0,1(4) = F0,1(5) = 11
9 = 1.222 . . ., F0,1(g) ≤ 1.25 for all g, and if

k ≥ 2j + 2 then Fj,k(g) = 2− (k+2)
(j+2)(k+1) for all g.

Remark. The case j = k seems to be quite different. Apart from the trivial equality F0,0(g) =
1, the only known to us exact result is F1,1(3) = 7

5 [4]. The value 7
5 does not fit the formula in

Theorem 1.1 and differs from the lower bound by Havet and Sereni in [10]. Even F2,2(3) is not
known.

2 On (j, k)-coloring of triangle-free graphs

For a graph G and W ⊆ V (G), 0 ≤ j ≤ k, let the (j, k)-potential of W in G be defined as

φ(W,G) = φj,k(W,G) = (2− k + 2

(j + 2)(k + 1)
)|W | − |E(G[W ])|.

(We will drop the subscripts j, k and G if they are clear from the context.)
Note that for a graph G, the condition

φj,k(W,G) > − 1
k+1 for all W ⊆ V (G), (2)

is equivalent to the statement that G is
(

2− k+2
(j+2)(k+1) ,

1
k+1

)
-sparse.

In this section we prove Theorem 1.2, i.e. we show that for all k ≥ j+1 there are infinitely many
triangle-free graphs G with φj,k(W,G) ≥ − 1

k+1 for all W ⊆ V (G), but not (j, k)-colorable. We

also show that for all k ≥ 2 there are infinitely many graphs G of girth 5 with φ0,k(W,G) ≥ − 1
k+1

for all W ⊆ V (G), and not (0, k)-colorable. Together with Theorem 1.1, this means that for all
k ≥ 2j+ 2, Fj,k(4) = Fj,k(3). Recall that this is not the case for (j, k) = (0, 1) by our result in [11].

For j 6= k, we consider a (j, k)-coloring of a graph G as a 2-coloring of V (G) with color j and
color k such that the vertices of color j (respectively, k) induce a subgraph with maximum degree
at most j (respectively, k). We remark that this convention does not apply to the case j = k.

Let graph L(j, k) be defined as follows. Let

V (L(j, k)) = {x,w} ∪ {u1, . . . , uj+1} ∪
k+1⋃
i=1

{yi,1, . . . , yi,j+1, yi}.

Vertex x is adjacent to all vertices in {u1, . . . , uj+1} ∪ {y1, . . . , yk+1}, vertex w is adjacent to all

vertices in {u1, . . . , uj+1}∪
⋃k+1
i=1 {yi,1, . . . , yi,j+1}, for every i ∈ [1, k+ 1], vertex yi is adjacent to all

vertices in {yi,1, . . . , yi,j+1}, and there are no other edges (See Fig 1). We will call x the base and
w the top of L(j, k).
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Base x

y1 y2 y3 y4
u1 u2

yi,q

Top w

Figure 1 : Graph L(1, 3).

By construction, L(j, k) is triangle-free and L(0, k) has girth 5. We need the following simple
property of L(j, k).

Claim 2.1. In every (j, k)-coloring f of L(j, k), x has a neighbor of color k.

Proof. Suppose f(y1) = . . . = f(yk+1) = f(u1) = . . . = f(uj+1) = j. Then for every
1 ≤ i ≤ k + 1 at least one of yi,1, . . . , yi,j+1 must be colored with k. So, w has at least k + 1
neighbors of color k and j + 1 neighbors u1, . . . , uj+1 of color j, a contradiction to the definition of
(j, k)-coloring. �

A (j, k)-flag in a graph G is a pendant block isomorphic to L(j, k) whose unique cut vertex is
the base vertex x in L(j, k). Claim 2.1 immediately implies the following.

Claim 2.2. In every (j, k)-coloring f of a graph G, for any x ∈ V (G),
(a) if x is the base of k + 1 distinct (j, k)-flags, then f(x) = j;
(b) if x is the base of k distinct (j, k)-flags and f(x) = k, then x has no neighbors of color k outside
of these k blocks.

Another helpful property of (j, k)-flags is that they are sparse:

Claim 2.3. Let graph G consist of q distinct (j, k)-flags, W1,W2, · · · ,Wq, with a common base x,
and for i = 1, . . . , q, let wi be the top of Wi.

(a) If ∅ 6= W ⊆Wi, then φ(W ) ≥ φ({x})− 1
k+1 , and equality holds only for W = Wi.

(b) If ∅ 6= W ⊆ V (G), then φ(W ) ≥ φ({x})− q
k+1 and equality holds only for W = V (G).

Proof. To prove (a), choose among the nonempty subsets of Wi a set W of the smallest potential
φ(W ). Since deleting an isolated or pendant vertex from a set decreases the potential and the claim
holds for a 1-element W , we may assume

δ(G[W ]) ≥ 2. (3)

If ∅ 6= W ⊂Wi and wi /∈W , then W induces a forest, a contradiction to (3). So wi ∈W .
Since adding to a set U of vertices a vertex with at least two neighbors in U decreases the

potential, by (3),

for all 1 ≤ h ≤ j + 1 and 1 ≤ h′ ≤ k + 1, uh ∈W if and only if x ∈W
and yh′,h ∈W if and only if yh′ ∈W .

(4)

4



Suppose x /∈W . Then by (4), W ∩{u1, . . . , uj+1} = ∅. Also, if in this case yh ∈W then by (4),
all yh,1, . . . , yh,j+1 are in W and

φ(W )− φ(W − {yh,1, . . . , yh,j+1, yh}) ≥
(

2− k + 2

(j + 2)(k + 1)

)
(j + 2)− (2j + 2) =

k

k + 1
,

a contradiction to the choice of W . Thus x ∈ W . Then by (4), {u1, . . . , uj+1} ⊂ W . Also adding
each yh together with yh,1, . . . , yh,j+1 decreases the potential by exactly 1

k+1 . So, the unique subset
of Wi with the minimum possible potential is Wi itself and

φ(Wi)− φ({x}) =

(
2− k + 2

(j + 2)(k + 1)

)
(|Wi| − 1)− |E(G[Wi])|

=

(
2− k + 2

(j + 2)(k + 1)

)
(j + 2)(k + 2)− ((2j + 3)(k + 2)− 1) = − 1

k + 1
,

as claimed. This proves (a).
To prove (b), suppose that W intersects exactly r > 0 of W1, . . . ,Wq. If x /∈W , then

φ(W ) =

q∑
i=1

φ(W ∩Wi) > r(φ({x})− 1

k + 1
) ≥ φ({x})− r

k + 1
.

If x ∈W , then r = q and

φ(W ) =

q∑
i=1

φ(W ∩Wi)− (q − 1)φ({x}) ≥ φ({x})− q

k + 1
. (5)

By (a), equality in (5) holds only when W ∩Wi = Wi for all i, which means W = V (G). �

Basic construction. We construct a graph H0 = H0(j, k) from a star K1,j+1 with the center
x0 and leaves x1, . . . , xj+1 by adding k + 1 (j, k)-flags to each of x0, x1, . . . , xj+1. (When we say
”add (j, k)-flags to a vertex x”, we mean that x will be the base of the added flags.)

By construction, H0(j, k) is triangle-free and H0(0, k) has girth 5. If H0 has a (j, k)-coloring
f , then by Claim 2.2(a), f(x0) = . . . = f(xj+1) = j, and vertex x0 of color j has j + 1 neighbors
x1, . . . , xj+1 of color j, a contradiction. Thus

H0 is not (j, k)-colorable. (6)

Now we want to prove that H0 satisfies (2).

Claim 2.4. If W ⊆ V (H0), then φ(W ) ≥ − 1
k+1 , and equality holds only for W = V (H0).

Proof. Choose a largest W ⊂ V (H0) among the sets with minimum φ(W ). As in the proof of
Claim 2.3, δ(H0[W ]) ≥ 2. By Claim 2.3(a), if L is any (j, k)-flag in H0 and W ∩L 6= ∅, then L ⊆W
otherwise φ(W ∪ L) < φ(W ).

It follows that if we know which vertices in X = {x0, . . . , xj+1} are in W , then we know W .
Similarly, if x0 ∈ W and xi /∈ W for some i, then by Claim 2.3(b), adding to W vertex xi and all
the k + 1 (j, k)-flags containing xi we get a set W ′ with

φ(W ′) ≤ φ(W ) + φ({xi})−
k + 1

k + 1
− 1 < φ(W ),
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a contradiction to the minimality of φ(W ). So, W = V (H0) is the unique set of minimum potential
among the sets containing x0.

If x0 /∈ W , then every component of H0[W ] is a subgraph of a graph G described in Claim 2.3
and so has a nonnegative potential. So in this case φ(W ) ≥ 0. �

Thus H0 is the first in the series of examples proving Theorem 1.2.

In order to generalize H0, we need one more notion. A vertex v in a graph G is a remote
(j, k)-base if it is the base of k + 1 (j, k)-flags W1, . . . ,Wk+1 in G and has exactly one neighbor
outside of W1 ∪ . . . ∪Wk+1. This unique neighbor of v will be called the main neighbor of v.

Claim 2.5. Suppose a graph H has no (j, k)-colorings, and v ∈ V (H) is a remote (j, k)-base
contained in (j, k)-flags W1, . . . ,Wk+1 with the main neighbor x.
(a) for any (j, k)-coloring f ′ of H ′ = H − (W1 − v) (if it exists), f ′(v) = k and v has k neighbors
of color k in H ′;
(b) for any (j, k)-coloring f ′′ of H ′′ = H −

⋃k+1
i=1 Wi (if it exists), f ′′(x) = j and x has j neighbors

of color j in H ′′.

Proof. If H ′ has a (j, k)-coloring f ′ with f ′(v) = j, then f ′ can be extended to W1 by coloring all
neighbors of v in W1 and the top vertex of W1 with k and the remaining vertices with j. But H
has no (j, k)-colorings. Thus if a (j, k)-coloring f ′ of H ′ exists, then f ′(v) = k, and by Claim 2.1
each of W2, . . . ,Wk+1 contains a neighbor of v of color k. This proves (a).

Similarly, if H ′′ has a (j, k)-coloring f ′′ with either f ′′(x) = k or with f ′′(x) = j and at most
j − 1 neighbors of color j, then we can extend f ′′ to the whole H by letting f ′′(v) = j, coloring all
its neighbors in W1 ∪ . . . ∪Wk+1 and the tops of W1, . . . ,Wk+1 with k, and the remaining vertices
in W1 ∪ . . . ∪Wk+1 with j. �

General construction. Recall that H = H0 has the following properties:
(P1) H is not (j, k)-colorable;
(P2) H has no triangles and if j = 0, then H has girth 5;
(P3) φ(W ) ≥ − 1

k+1 for each W ⊆ V (H), and equality holds only for W = V (H);
(P4) H has at least two remote bases (if j = 0, then x0 also is a remote base in H0(0, k)).
We now show how to use a graph H satisfying (P1)–(P4) to construct a larger graph satisfying

(P1)–(P4). Take two copies, H1 and H2 of H. For h = 1, 2, choose in Hh a remote base vh
contained in (j, k)-flags Wh,1, . . . ,Wh,k+1 with the main neighbor xh. Let H ′ = H1 − (W1,1 − v1)
and H ′′ = H2−

⋃k+1
i=1 W2,i. We get the new graph H̃ by adding to H ′∪H ′′ a new vertex z adjacent

to v1 in V (H ′) and to x2 in V (H ′′).
Property (P2) for H̃ directly follows from (P2) for H1 and H2. Since H1 ∪H2 had at least four

remote bases and we destroyed only two of them when creating H ′ and H ′′, (P4) holds for H̃.
Suppose H̃ has a (j, k)-coloring f . Then by Claim 2.5(a), f(v1) = k and v1 has k neighbors of

color k in V (H ′). Thus we need f(z) = j. But by Claim 2.5(b), f(x2) = j and x2 has j neighbors
of color j in V (H ′′). This contradiction proves (P1) for H̃.

To prove (P3), consider a set W of minimum potential in H̃. If z /∈ W , then by (P3) for H,
φ(W ) = φ(W ∩ V (H ′)) + φ(W ∩ V (H ′′)) ≥ 0 + 0 = 0 since each of W ∩ V (H ′) and W ∩ V (H ′′) is
proper subset of V (H ′) and V (H ′′) respectively. Suppose z ∈W . Then, similarly to (3), v1, x2 ∈W .
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Let W ′ = W ∩ V (H ′) and W ′′ = W ∩ V (H ′′). Since adding to W ′′ vertex v2 together with all
k + 1 (j, k)-flags containing v2 would decrease the potential of W ′′ by k+2

(j+2)(k+1) , we conclude

that φ(W ′′) ≥ k+2
(j+2)(k+1) −

1
k+1 with equality only when W ′′ = V (H ′′). Similarly, φ(W ′) ≥ 0 with

equality only when W ′ = V (H ′). Thus

φ(W ) ≥ φ(W ′)+φ(W ′′)+φ({z})−2 ≥ 0+
k + 2

(j + 2)(k + 1)
− 1

k + 1
+(2− k + 2

(j + 2)(k + 1)
)−2 ≥ −1

k + 1
,

with equality only when W = V (H̃).
This construction yields Theorem 1.2.

3 On (j, k)-coloring of graphs with large girth

In this section, we prove Theorem 1.3.
First, we inductively define the tree T ′d(j, k) which will be a gadget to construct graphs we want.

For i = 0, 1, . . . , k, let Si be a copy of the star K1,j+1 with the center ci. We subdivide each of
the j + 1 edges of each star Si once and add edges c0ci for i = 1, 2, 3, · · · , k. The resulting tree is
T1(j, k) and c0 is called the center of T1(j, k). Note that T1(j, k) has (k+ 1)(j + 1) leaves. Assume
we already have defined the tree Td−1(j, k) and it has (k + 1)d−1(j + 1)d−1 leaves. Let T 0 be a
copy of T1(j, k) with the center c0 and T 1, . . . , T (k+1)(j+1) be disjoint copies of Td−1(j, k) with the
centers c1, . . . , c(k+1)(j+1). Let x1, . . . , x(k+1)(j+1) be the leaves of T 0. The tree Td(j, k) with the
center c0 is obtained by gluing ci with xi for all i = 1, . . . , (k + 1)(j + 1). Finally, the tree T ′d(j, k)
is obtained from two disjoint copies of Td(j, k) by adding an edge connecting their centers. The
example of T ′1(2, 3) is in Fig. 2.

c0

c1 c2 c3

Figure 2 : T ′1(2, 3).

Claim 3.1. For d ≥ 1, let f be a (j, k)-coloring of Td(j, k) with the center c0 such that every
neighbor of a leaf has color j. Then f(c0) = k and c0 has k neighbors of color k.

Proof. We use induction on d.
Let L be the set of all leaves of T1(j, k). If all the neighbors of L are all colored with the color

j, then each of the remaining non-leaf vertices is adjacent to j + 1 vertices of color j, and thus has
color k. These vertices form a star K1,k with the center c0, which yields the claim for d = 1.

Assume the statement holds for d−1. Let T 0, T 1, . . . , T (k+1)(j+1) be the trees from the definition
of Td(j, k) and c0, c1, . . . , c(k+1)(j+1) be their centers. Let f be a (j, k)-coloring of Td(j, k) such that
every neighbor of a leaf has color j. By the induction assumption, for each i = 1, . . . , (k+1)(j+1),
f(ci) = k and ci has k neighbors of color k in T i. It follows that the neighbor of ci in T 0 has color
j. Again by the induction assumption, the conclusion holds for c0. �
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Claim 3.2. For k ≥ j and d ≥ 1, in every (j, k)-coloring of T ′d(j, k), some neighbor of a leaf has
color k.

Proof. Tree T ′d(j, k) contains two disjoint copies T1 and T2 of Td(j, k) with centers c1, c2 connected
by edge c1c2. If f is a (j, k)-coloring of T ′d(j, k) such that every neighbor of a leaf has color j,
then by the Claim 3.1, for i = 1, 2 the center ci of T i has color k and has k neighbors of color k in
T i. Since c1 and c2 are adjacent, each of them has k+1 neighbors of the color k, a contradiction. �

Claim 3.3. Let k ≥ j. Let L be the set of leaves in Td(j, k) and B = V (Td(j, k)) − L. Then for
every subgraph T of Td(j, k),

|E(T )| ≤ (2− (k + 2)

(j + 2)(k + 1)
)|B ∩ V (T )|. (7)

Proof. First, suppose that d = 1. Recall that in this case, B = C∪D, where D is the set of vertices
of degree 2 adjacent to L, |D| = |L| = (j + 1)(k + 1), C = {c1, . . . , ck+1} is the set of centers
of the original stars, each ci is adjacent to j + 1 vertices in D, and in addition c1 is adjacent to
each vertex in C − c1. Thus there are three types of edges: Type 1 — the edges connecting D
with L, Type 2 — the edges connecting D with C, and Type 3 — the edges connecting c1 with
C − c1. We will prove (7) using discharging. Let every e ∈ E(T ) have charge ch(e) = 1 so that∑

e∈E(T ) ch(e) = |E(T )|. Now each e ∈ E(T ) distributes its charge to its endvertices according to
the following rules.

Rule 1: Each edge d` of Type 1 gives all its charge to the end d ∈ D.
Rule 2: Each edge cid of Type 2 gives charge 1 − (k+2)

(j+2)(k+1) to the end d ∈ D and charge
(k+2)

(j+2)(k+1) to the end ci ∈ C.

Rule 3: Each edge c1ci of Type 3 gives charge k
k+1 to ci ∈ C − c1 and charge 1

k+1 to c1.
By the rules, only vertices of V (T )∩B may receive a positive charge and total charge on them

will be exactly |E(T )|. Thus it is enough to prove that for every v ∈ V (T ) ∩B,

ch(v) ≤ 2− (k + 2)

(j + 2)(k + 1)
. (8)

If v ∈ D, then it gets at most 1 by Rule 1 and at most 1− (k+2)
(j+2)(k+1) by Rule 2, so (8) holds for v.

If v = ci for some 2 ≤ i ≤ k + 1, then it gets at most (j + 1) (k+2)
(j+2)(k+1) by Rule 2 and at most k

k+1
by Rule 3, so

ch(v) ≤ (j + 1)
(k + 2)

(j + 2)(k + 1)
+

k

k + 1
= 2− (k + 2)

(j + 2)(k + 1)
.

Finally, if v = c1, then it again gets at most (j + 1) (k+2)
(j+2)(k+1) by Rule 2 and at most k 1

k+1 by Rule

3, so again (8) holds for v. This proves Case d = 1.
Suppose now that d ≥ 2. Then Td(j, k) is obtained from several copies of T1(j, k) by gluing

leaves of some copies with the centers of some others. So if we do the discharging from E(T ) to
V (T )∩B in each copy of T1(j, k) forming Td(j, k) by the Rules 1–3 above, then again only vertices
of V (T ) ∩ B may receive a positive charge and the total charge on them will be exactly |E(T )|.
Moreover, since by Rule 1 the leaves of each copy of T1(j, k) will get zero charge from this copy, as
we have checked above, (8) will hold for every v ∈ V (T ) ∩B. This proves the claim. �
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Proof of Theorem 1.3. Our goal is to show that for any ε > 0, g ≥ 3 and k ≥ j ≥ 0,

there is an (2− (k+2)
(j+2)(k+1) + ε, 0)-sparse non-(j, k)-colorable graph G of girth g. (9)

Recall that G is (2− (k+2)
(j+2)(k+1) + ε, 0)-sparse if and only if mad(G) < 4− 2(k+2)

(j+2)(k+1) + ε. We use

induction on j + k. If j = k = 0, then any odd cycle of length at least g is almost (1, 0)-sparse and
not (0, 0)-colorable. Assume that k ≥ 1 and (9) is proved for all pairs (j′, k′) with j′ + k′ < j + k
and j′ ≤ k′.

CASE 1: j < k. Then there is a graph G0 with girth g which is not (j, k − 1)-colorable and
with

mad(G0) < 4− 2(k + 1)

(j + 2)k
+ 2ε ≤ 4− 2(k + 2)

(j + 2)(k + 1)
+ 2ε. (10)

Let V (G0) = {v1, v2, · · · , vn}. Fix an integer d > 1
ε . Let M be the number of leaves in T ′d(j, k).

By an old result of Erdős and Hajnal [7], there exists a non-n-colorable nM -uniform hypergraph
H with girth g. We construct our graph G using H and many copies of G0 and T ′d(j, k) as follows:

(i) Partition each e ∈ E(H) into n subsets e1, . . . , en of size M ;
(ii) Replace each vertex x in H with a copy G0(x) of G0;
(iii) For each e ∈ H and 1 ≤ i ≤ n, if ei = {x1, . . . , xM}, we take a copy T (e, i) of T ′d(j, k)

with the set of leaves, say, L(e, i) = {`1, . . . , `M} and for h = 1, . . . ,M , glue `h with the vertex vi
in the copy G0(xh) of G0. We will say that T (e, 1), . . . , T (e, n) belong to e and denote B(e, i) =
V (T (e, i))− L(e, i).

Let us check that the obtained graph G has the properties we need: (a) the girth of G is at

least g, (b) G is not (j, k)-colorable, and (c) mad(G) < 4− 2(k+2)
(j+2)(k+1) + 2ε.

For an edge e ∈ E(H), let G(e) denote the subgraph of G formed by the copies G0(x) of G0 for
all nM vertices x ∈ e plus all the copies T (e, i) of T ′d(j, k) for i = 1, . . . , n. If G has a cycle C of
length less than g, then C is not contained in a copy of G0 since G0 has girth g. Moreover, then
C is not contained in any G(e), since all edges of G(e) in

⋃n
i=1 T (e, i) are cut-edges in G(e). Since

H is a linear hypergraph, C yields a (hypergraph) cycle in H, and any such cycle has at least g
edges, a contradiction to the choice of C. This proves (a).

Suppose we have a (j, k)-coloring f of G. Since G0 is not (j, k− 1)-colorable, each graph G0(x)
has a vertex vi of color k with k neighbors in G0(x) of color k in f . Let i(x) be the minimum i
such that G0(x) has a vertex vi of color k with k neighbors in G0(x) of color k in f . We define a
coloring φ of H as follows: for each x ∈ V (H), let φ(x) = i(x). Then φ is an n-coloring of H, and
H has no proper n-colorings. Thus there is a monochromatic e ∈ E(H). Suppose f(x) = i for each
x ∈ e. By construction, all the leaves of the copy T (e, i) of T ′d(j, k) are in ei; each of these leaves is
of color k and has k neighbors of color k in

⋃
x∈ei G0(x). Thus none of these leaves has a neighbor

of color k in T (e, i). This contradicts Claim 3.2. Thus (b) holds.

In order to prove (c), consider some W ⊆ V (G) with the largest |E(G[W ])|
|W | . If this ratio is at most

1, then (c) holds; otherwise by the maximality of the average degree, G[W ] has no isolated vertices
and no leaves. Let W ′ =

⋃
x∈V (H)(W ∩ V (G0(x))). Then W −W ′ =

⋃
e∈E(H)

⋃n
i=1(W ∩ B(e, i)).

Since each component of G[W ′] is contained in some G0(x), by (10), the average degree of G[W ′] is

less than 4− 2(k+2)
(j+2)(k+1) +2ε. We can obtain W from W ′ by a sequence of adding the sets W ∩B(e, i),

one by one. We will show that after every such step,

the average degree of the obtained subgraph remains less than 4− 2(k+2)
(j+2)(k+1) + 2ε. (11)
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Indeed, suppose it is the turn to add to a current set W ′′ the set W ∩B(e, i). Let c1c
′
1 be the edge

in T (e, i) connecting the centers c1 and c′1 of the two disjoint copies of Td(j, k). If {c1, c′1} 6⊂ W ,

then by Claim 3.3, adding W ∩ B(e, i) to W ′′ adds at most (2− (k+2)
(j+2)(k+1))|W ∩ B(e, i)| edges, as

claimed. So let {c1, c′1} ⊂ W . Since G[W ] has no leaves, W contains the vertices of disjoint paths
from c1 and c′1 to L(e, i) and thus |W ∩ B(e, i)| ≥ 6d. Again by Claim 3.3, adding W ∩ B(e, i) to

W ′′ adds at most 1 + (2− (k+2)
(j+2)(k+1))|W ∩B(e, i)| edges. Since d > 1/ε and |W ∩B(e, i)| ≥ 6d, the

last expression is less than (2− (k+2)
(j+2)(k+1) + ε)|W ∩B(e, i)|, as claimed. This proves (c).

CASE 2: 0 < j = k. Then there is a graph G0 with girth g which is not (k− 1, k)-colorable and
with

mad(G0) < 4− 2(k + 2)

(k + 1)2
+ 2ε ≤ 4− 2(k + 2)

(j + 2)(k + 1)
+ 2ε. (12)

Now we simply repeat the proof of Case 1 with the only twist that using j = k, we consider G0 as
not (k, k − 1)-colorable instead of not (k − 1, k)-colorable. �

Concluding remark. Studying improper colorings with more colors, one can consider the
function Fa1,a2,··· ,at(g) generalizing Fj,k(g). Using similar techniques, we can prove the following
extension of Theorem 1.3.

Theorem 3.4. Let a1 ≤ a2 ≤ · · · ≤ at, t ≥ 2 and g ≥ 3. Then Fa1,a2,··· ,at(g) ≤ t− (a2+2)
(a1+2)(a2+1) .

Since we do not know how sharp is this bound, we do not supply a proof of Theorem 3.4.
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