L-Shaped Tiles

Today we ask the question, can all but one square of any 2^n by 2^n board be covered by L-shaped tiles? We will ponder this question using a set of 22 puzzle pieces: 1 square and 21 L-shaped pieces.

1. Use **1** square tile and **1** L-shaped tile to make a **2** by **2** square. Color in your solution below.

2. Use ${\bf 1}$ square tile and ${\bf 5}$ L-shaped tiles to make a ${\bf 4}$ by ${\bf 4}$ square. Color in your solution below.

3. Use **1** square tile and **21** L-shaped tiles to make an **8 by 8** square. Color in your solution below.

4. Can you use 4 L-tiles to make a single larger L, lets call it piece A? Color in your solution below.
5. Can you use 1 square and 1 L-tile to form a square, lets call it B?

 \mathbf{A}

piece A? Color in form a square, lets call it B?

 \mathbf{B}

6. Can you use **4** of your A pieces to make an even larger L? Can you use **1** of your A pieces and **1** B piece to form a square? Color in your solution below.

Solution to L-Shaped Tiles: Induction

