L-Shaped Tiles

Today we ask the question, can all but one square of any 2^{n} by 2^{n} board be covered by L-shaped tiles? We will ponder this question using a set of 22 puzzle pieces: 1 square and 21 L-shaped pieces.

1. Use $\mathbf{1}$ square tile and $\mathbf{1}$ L-shaped tile to make a $\mathbf{2}$ by $\mathbf{2}$ square. Color in your solution below.

2. Use 1 square tile and 5 L-shaped tiles to make a $\mathbf{4}$ by $\mathbf{4}$ square. Color in your solution below.

3. Use 1 square tile and 21 L-shaped tiles to make an $\mathbf{8}$ by $\mathbf{8}$ square. Color in your solution below.

4. Can you use 4 L-tiles to make a single larger L, lets call it piece A? Color in your solution below.

5. Can you use 1 square and 1 L-tile to form a square, lets call it B?

B

6. Can you use $\mathbf{4}$ of your A pieces to make an even larger L? Can you use 1 of your A pieces and 1 B piece to form a square? Color in your solution below.

Solution to L-Shaped Tiles: Induction

