Part One: Coloring Graphs

Remember, the chromatic number of a graph is the least number of colors needed to properly color the vertices!

1. Below (on the left) is a graph that has been 3-colored, but it is not a proper coloring. Explain why, and then find a proper 3-coloring on the other copy of the graph (on the right).

2. For each of the following graphs, find a proper coloring that uses as few colors as possible. Can you explain why that really is the graph's chromatic number?

3. In the graph below, each vertex represents a class offered in the Spring 2013 semester. Two vertices are adjacent if and only if there is a student who is taking both classes. How many final exam timeslots are needed?

4. The complete graph K_{n} has n vertices and every possible edge. What is the chromatic number of K_{n} ? (Below is a picture of K_{5}).

5. If my graph has a copy of K_{4} in it (we call this a subgraph) then of course my graph has chromatic number at least 4. Is that the only way for a graph to have chromatic number 4?

Part Two: Coloring Maps

Properly color the following maps with as few colors as you possibly can.

