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Singular integrals on Rn

If T : L2(Rn)→ L2(Rn) is a convolution operator with kernel
k : Rn \ {0} → C s.t.

supy 6=0

∫
|x |≥2|y | |k(x − y)− k(x)|dx < ∞ ,

then T is of weak type (1, 1) and bounded on Lp(Rn), p ∈ (1, ∞) .

The key ingredient is the classical Calderón–Zygmund theory which relies on
the doubling property, i.e.

V (2B) ≤ C V (B) for every ball B .



Singular integrals on Rn

TWO EXAMPLES: ∆ = −∑n
j=1 ∂2

j =
∫ ∞

0 λ dE (λ)

I Riesz transforms

Rj = ∂j ◦ ∆−1/2 Rj f = cn f ∗ p.v .
xj
|x |n+1

Rj is of weak type (1, 1) and bounded on Lp(Rn), p ∈ (1, ∞)

I Spectral multipliers of Mihlin-Hörmander type

F : R+ → C bounded

F (∆) =
∫ ∞

0 F (λ)dE (λ) F (∆)f = f ∗ F−1F (| · |2)

If supt>0 ‖F (t·)φ(·)‖W s
2
< ∞ for some s > n

2 and 0 6= φ ∈ C∞
c (0, ∞),

then F (∆) is of weak type (1, 1) and bounded on Lp(Rn), p ∈ (1, ∞)

(Ex.: F ∈ C∞(R+) s.t. |DkF (λ)| ≤ Ck λ−k ∀λ > 0, k ∈N )
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Singular integrals on Lie groups

G connected noncompact Lie group

µ right Haar measure

X0, . . . ,Xq left-invariant vector fields satisfying Hörmander’s condition

∆ = −∑q
j=0 X

2
j (sub)Laplacian s.a. on L2(G ) = L2(G , µ)

hypoelliptic and positive

QUESTIONS:

I boundedness of Riesz transforms Rj = Xj∆−1/2

I boundedness of spectral multipliers of ∆, i.e. find conditions on

F : R+ → C bounded s.t.

F (∆) =
∫ +∞

0 F (λ)dE (λ) is bounded on Lp(G ) for some p 6= 2



I G Lie group of polynomial growth
I Rj is of weak type (1, 1) and bounded on Lp(G ), p ∈ (1, ∞)

[Christ-Geller (1984), Lohoué-Varopoulos (1985), Alexopoulos (1992)]
I a Mihlin-Hörmander type theorem holds

[Mauceri-Meda (1990), Christ (1991), Alexopoulos (1994),. . . ]

In these cases G is unimodular and G is a doubling measured space
⇒ the classical CZ theory applies

I G = Rn−1 o R 'Hn(R)

X0, . . . ,Xn−1 basis of g = Lie(G ) ∆ = −∑n−1
j=0 X 2

j complete Laplacian

G is a nonunimodular group of exponential growth ⇒ G is nondoubling ⇒
Hebisch and Steger (2003) developed a new CZ theory to prove that

I Rj is of weak type (1, 1) and bounded on Lp(G ), p ∈ (1, 2]
(see also Sjögren (1999))

I a Mihlin-Hörmander type theorem holds
(see also Hebisch (1993), Cowling-Giulini-Hulanicki-Mauceri (1994))
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NA groups

G = N oA

I N stratified group
Lie(N) = n = V1 ⊕ · · · ⊕ Vs [Vi ,Vj ] ⊆ Vi+j (Vk = 0 if k > s)

δt ∈ Aut(n) automorphic dilations s.t. δt |Vj
= t j IdVj

∀t > 0

det δt = tQ Q = ∑s
j=1 j dimVj homogeneous dimension of N

I A = R acting on N via automorphic dilations

(z , u) · (z ′, u′) = (z · δeuz ′, u + u′) ∀z , z ′ ∈ N, u, u′ ∈ R

dµ(z , u) = dz du right Haar measure

m(z , u) = e−Qu modular function

E0 = ∂u basis of a ' R E1, . . . ,Eq basis of the first layer V1 of n

X0 = ∂u Xj = euEj j = 1, . . . , q left invariant v.f. on G

∆ = −∑q
j=0 X

2
j subLaplacian



G = N oA

I N stratified group of homogeneous dimension Q

I A = R acting on N via automorphic dilations

THEOREM 1. [Martini-Ottazzi-V.]

Rj = Xj∆−1/2 is of weak type (1, 1) and bounded on Lp(G ), p ∈ (1, 2] .

THEOREM 2. [Martini-Ottazzi-V.]
If F : R+ → C bounded s.t.

sup
0<t≤1

‖F (t·)φ(·)‖W s0
2

< ∞ s0 >
3

2

sup
t≥1
‖F (t·)φ(·)‖W s∞

2
< ∞ s∞ >

Q + 1

2
,

then F (∆) is of weak type (1, 1) and bounded on Lp(G ), p ∈ (1, ∞) .
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REMARKS:

I when N is abelian, G = N oA 'Hn(R), ∆ is a complete Laplacian
related with the hyperbolic Laplacian: THEOREMS 1 and 2 were proved
by Hebisch and Steger using spherical harmonic analysis and explicit
formulae for the heat kernel

I if F ∈ Cc (R) ∩W s
2 (R) with s > 2, then F (∆) is bounded on L1(G )

[Mustapha (1998), Gnewuch (2002)]
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THEOREM 2. [Martini-Ottazzi-V.]
If F : R+ → C bounded s.t.

sup
0<t≤1

‖F (t·)φ(·)‖W s0
2

< ∞ s0 >
3

2

sup
t≥1
‖F (t·)φ(·)‖W s∞

2
< ∞ s∞ >

Q + 1

2
,

then F (∆) is of weak type (1, 1) and bounded on Lp(G ), p ∈ (1, ∞) .

REMARKS:

I when N is abelian, G = N oA 'Hn(R), ∆ is a complete Laplacian
related with the hyperbolic Laplacian: THEOREMS 1 and 2 were proved
by Hebisch and Steger using harmonic spherical analysis and explicit
formulae for the heat kernel

I if F ∈ Cc (R) ∩W s
2 (R) with s > 2, then F (∆) is bounded on L1(G )

[Mustapha (1998), Gnewuch (2002)]

I boundedness of Rj for p > 2?



Ingredients of the proofs

I X0, . . . ,Xq defines a sub-Riemannian structure on G with associated
left-invariant Carnot-Carathéodory distance $

cosh |x |$ = cosh $
(
x , eG

)
= cosh u + eu |z |2N/2 ∀x = (z , u) ∈ N oA ,

where | · |N is the Carnot-Carathéodory distance on N
I formula known when N is abelian and stated without proof for stratified N

by Hebisch (1999)
I solutions to Hamilton’s equations on N can be re-parametrized and lifted to

solutions to Hamilton’s equations on G
I length-minimizing curves need not be solutions to to Hamilton’s equations .

But points that can be joined to the identity via length-minimizing solution
to Hamilton’s equations are dense [Agrachev (2009)]

I µ(B$(eG , r)) .

{
rQ+1 r ≤ 1

eQr r > 1
⇒ (G , $, µ) is nondoubling

We develop a Calderón–Zygmund theory on the nondoubling
subRiemannian space (G , $, µ)



Ingredients of the proofs

I Boundedness result for convolution operators on G

T right convolution operator bounded on L2(G ), i.e., Tf = f ∗ k
⇒ the integral kernel of T is K (x , y) = k(y−1x)m(y)

If k = ∑n∈Z kn with

(i)
∫
G
|kn(x)| (1 + 2−n/2|x |$)dµ(x) . 1

(ii)
∫
G
|kn(y−1x)m(y)− kn(x)|dµ(x) . 2−n/2 |y |$ ∀y ∈ G ,

then T is of weak type (1, 1) and bounded on Lp(G ), p ∈ (1, 2] .
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Ingredients of the proofs

I Gradient estimates of the heat kernel ht of ∆

LEMMA. For every t > 0

∫
G |Xjht (x)| dµ(x) ≤ C t−1/2 .

It follows from the formula [Mustapha 1998, Gnewuch 2006]

ht (z , u) =
∫ ∞

0
Ψt (ξ) exp

(
− cosh u

ξ

)
hNeuξ/2(z)dξ ,

where

Ψt (ξ) =
ξ−2

√
4π3t

exp

(
π2

4t

) ∫ ∞

0
sinh θ sin

πθ

2t
exp

(
− θ2

4t
− cosh θ

ξ

)
dθ ,

estimates for the derivative of the heat kernel on N and various integration
by parts (delicate cancellation occurs)
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Ingredients of the proofs

I Gradient estimates of the heat kernel ht of ∆

LEMMA. For every ε ≥ 0 and t > 0

∫
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Sketch of the proof of THEOREM 1

Rj = Xj∆−1/2 =
1

Γ(1/2)

∫ ∞

0
t−1/2Xje

−t∆ dt

kj =
1

Γ(1/2)

∫ ∞

0
t−1/2Xjhtdt = ∑

n∈Z

knj

knj = 1
Γ(1/2)

∫ 2n+1

2n t−1/2Xjht dt

∫
G
|knj (x)| (1 + 2−n/2|x |$)dµ(x)

.
∫ 2n+1

2n
t−1/2

∫
G
|Xjht (x)| (1 + t−1/2|x |$)dµ(x)dt

.
∫ 2n+1

2n
t−1/2 t−1/2dt . 1 .
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Using

ht = ht/2 ∗ ht/2 Xjht = ht/2 ∗ Xjht/2 ht/2(x
−1) = ht/2(x)m(x−1)

∫
G
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.
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Sketch of the proof of THEOREM 1

Rj = Xj∆−1/2 =
1

Γ(1/2)

∫ ∞

0
t−1/2Xje

−t∆ dt

kj =
1
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0
t−1/2Xjht dt = ∑

n∈Z

knj

knj = 1
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∫ 2n+1

2n t−1/2Xjht dt

⇒ knj satisfy the integral estimates of the boundedness theorem for
convolution operators

⇒ Rj is of weak type (1, 1) and bounded on Lp(G ), p ∈ (1, 2]



Related problems

I we also introduce a Hardy type space H1(G ) and prove an endpoint result
on H1(G ) both for Riesz transforms and MH spectral multipliers of ∆

I Rj : Lp(G )→ Lp(G ) p ∈ (2, ∞)?
m

R∗j = −∆−1/2Xj : Lp(G )→ Lp(G ) p ∈ (1, 2)?

I if G = R o R:
R∗1 : Lp(G )→ Lp(G ) p ∈ (1, 2) and is of weak type (1, 1)
[Gaudry-Sjögren (1999)]
R∗0 : Lp(G )→ Lp(G ) p ∈ (1, 2) and is NOT of weak type (1, 1) [Hebisch]

I if G = R2 o R, then R∗j is NOT bounded from H1(G ) to L1(G )

[Sjögren-V. (2008)]

I Riesz transforms of the second order
I Xi∆−1Xj are of weak type (1, 1) and bounded on Lp(G , ∀(i , j) 6= (0, 0)

[Martini-Ottazzi-V.]
I If ∆ is a distinguished Laplacian on NA groups arising from the Iwasawa

decomposition of a semisimple Lie group of rank one, then Xi∆−1Xj are

bounded on Lp(G ), p ∈ (1, ∞), and of weak type (1, 1) but XiXj∆−1 and

∆−1XiXj are NOT bounded on Lp(G ), p ∈ [1, ∞) [Gaudry-Sjögren (1996)]
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[Martini-Ottazzi-V.]
I If ∆ is a distinguished Laplacian on NA groups arising from the Iwasawa

decomposition of a semisimple Lie group of rank one, then Xi∆−1Xj are

bounded on Lp(G ), p ∈ (1, ∞), and of weak type (1, 1) but XiXj∆−1 and

∆−1XiXj are NOT bounded on Lp(G ), p ∈ [1, ∞) [Gaudry-Sjögren (1996)]



Related problems

I we also introduce a Hardy type space H1(G ) and prove an endpoint result
on H1(G ) both for Riesz transforms and MH spectral multipliers of ∆

I Rj : Lp(G )→ Lp(G ) p ∈ (2, ∞)?
m

R∗j = −∆−1/2Xj : Lp(G )→ Lp(G ) p ∈ (1, 2)?

I Riesz transforms of the second order

I Lp-spectral multipliers for subLaplacian with drift ∆− X (holomorphic
functional calculus)

I more general NA groups



Sketch of the proof of THEOREM 2

F (∆) = ∑
n∈Z

F (∆) φ(2−n∆) = ∑
n∈Z

Fn(2
−n∆)

φ ∈ C∞
c (R+), ∑

n
φ(2nλ) = 0, supp(φ) ⊂ [1/4, 4]

The kernel kn of Fn(2−n∆) satisfy the conditions of the boundedness theorem.
This follows from various facts:

I ∆ and ∆̃ on G̃ = RQ o R have the same Plancherel measure, i.e.∫
G
|kF (∆)(z , u)|2dzdu =

∫ ∞

0
|F (λ)|2|cQ(λ)|−2dλ ∼

∫ ∞

0
|F (λ)|2(λ2 +λQ )dλ

cQ Harish-Chandra function on HQ+1(R)

I weighted L2-estimates on G for kF (∆) can be reduced to weighted

L2-estimates for kF (∆̃) on G̃∫
G
|kF (∆)(z , u)|2 |z |2aN dzdu ≤

∫
G̃
|kF (∆̃)(z , u)|2 |z |2a

RQ dzdu ,

where m̃−1/2kF (∆̃)(z , u) is radial (and one can use spherical analysis on G̃)
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I ∆ and ∆̃ on G̃ = RQ o R have the same Plancherel measure

I weighted L2-estimates on G for kF (∆) can be reduced to weighted

L2-estimates for kF (∆̃) on G̃

I if the Fourier transform of M is supported in [−R,R ], then

‖kM(∆)‖1 . min{R3/2,R(Q+1)/2} ‖kM(∆)‖2

I Fn(2−n·) can be decomposed as the sum of functions whose Fourier
transform is compactly supported in order to apply previous estimate



Sketch of the proof of THEOREM 2
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c (R+), ∑

n
φ(2nλ) = 1, supp(φ) ⊂ [1/4, 4]

The kernel kn of Fn(2−n∆) satisfy the conditions of the boundedness theorem

⇒ F (∆) is of weak type (1, 1) and bounded on Lp(G ), p ∈ (1, ∞)



THANK YOU!


