Singular integrals on NA groups

joint work with Alessio Martini and Alessandro Ottazzi

> Maria Vallarino
> Dipartimento di Scienze Matematiche
> Politecnico di Torino

LMS Midlands Regional Meeting and Workshop on Interactions of Harmonic Analysis and Operator Theory, Birmingham, 13-16 September 2016

Singular integrals on \mathbb{R}^{n}

If $T: L^{2}\left(\mathbb{R}^{n}\right) \rightarrow L^{2}\left(\mathbb{R}^{n}\right)$ is a convolution operator with kernel $k: \mathbb{R}^{n} \backslash\{0\} \rightarrow \mathbb{C} \quad$ s.t.

$$
\sup _{y \neq 0} \int_{|x| \geq 2|y|}|k(x-y)-k(x)| \mathrm{d} x<\infty,
$$

then T is of weak type $(1,1)$ and bounded on $L^{p}\left(\mathbb{R}^{n}\right), p \in(1, \infty)$.
The key ingredient is the classical Calderón-Zygmund theory which relies on the doubling property, i.e.

$$
V(2 B) \leq C V(B) \quad \text { for every ball } B
$$

Singular integrals on \mathbb{R}^{n}

TWO EXAMPLES: $\quad \Delta=-\sum_{j=1}^{n} \partial_{j}^{2}=\int_{0}^{\infty} \lambda \mathrm{d} E(\lambda)$

- Riesz transforms

$$
R_{j}=\partial_{j} \circ \Delta^{-1 / 2} \quad R_{j} f=c_{n} f * p . v \cdot \frac{x_{j}}{\mid x^{n+1}}
$$

R_{j} is of weak type $(1,1)$ and bounded on $L^{p}\left(\mathbb{R}^{n}\right), p \in(1, \infty)$

- Spectral multipliers of Mihlin-Hörmander type
$F: \mathbb{R}^{+} \rightarrow \mathbb{C}$ bounded
$F(\Delta)=\int_{0}^{\infty} F(\lambda) \mathrm{d} E(\lambda) \quad F(\Delta) f=f * \mathcal{F}^{-1} F\left(|\cdot|^{2}\right)$
If $\sup _{t>0}\|F(t \cdot) \phi(\cdot)\| W_{2}^{s}<\infty$ for some $s>\frac{n}{2}$ and $0 \neq \phi \in C_{c}^{\infty}(0, \infty)$,
then $F(\Delta)$ is of weak type $(1,1)$ and bounded on $L^{p}\left(\mathbb{R}^{n}\right), p \in(1, \infty)$

Singular integrals on \mathbb{R}^{n}

TWO EXAMPLES: $\quad \Delta=-\sum_{j=1}^{n} \partial_{j}^{2}=\int_{0}^{\infty} \lambda \mathrm{d} E(\lambda)$

- Riesz transforms

$$
R_{j}=\partial_{j} \circ \Delta^{-1 / 2} \quad R_{j} f=c_{n} f * p . v \cdot \frac{x_{j}}{\mid x^{n+1}}
$$

R_{j} is of weak type $(1,1)$ and bounded on $L^{p}\left(\mathbb{R}^{n}\right), p \in(1, \infty)$

- Spectral multipliers of Mihlin-Hörmander type
$F: \mathbb{R}^{+} \rightarrow \mathbb{C}$ bounded
$F(\Delta)=\int_{0}^{\infty} F(\lambda) \mathrm{d} E(\lambda) \quad F(\Delta) f=f * \mathcal{F}^{-1} F\left(|\cdot|^{2}\right)$
If $\sup _{t>0}\|F(t \cdot) \phi(\cdot)\|_{W_{2}^{s}}<\infty$ for some $s>\frac{n}{2}$ and $0 \neq \phi \in C_{c}^{\infty}(0, \infty)$,
then $F(\Delta)$ is of weak type $(1,1)$ and bounded on $L^{p}\left(\mathbb{R}^{n}\right), p \in(1, \infty)$
(Ex.: $\quad F \in C^{\infty}\left(\mathbb{R}^{+}\right) \quad$ s.t. $\left.\quad\left|D^{k} F(\lambda)\right| \leq C_{k} \lambda^{-k} \quad \forall \lambda>0, k \in \mathbb{N}\right)$

Singular integrals on Lie groups

G connected noncompact Lie group
μ right Haar measure
X_{0}, \ldots, X_{q} left-invariant vector fields satisfying Hörmander's condition
$\Delta=-\sum_{j=0}^{q} X_{j}^{2}$ (sub)Laplacian s.a. on $L^{2}(G)=L^{2}(G, \mu)$ hypoelliptic and positive

QUESTIONS:

- boundedness of Riesz transforms $R_{j}=X_{j} \Delta^{-1 / 2}$
- boundedness of spectral multipliers of Δ, i.e. find conditions on $F: \mathbb{R}^{+} \rightarrow \mathbb{C}$ bounded s.t.
$F(\Delta)=\int_{0}^{+\infty} F(\lambda) \mathrm{d} E(\lambda)$ is bounded on $L^{p}(G)$ for some $p \neq 2$
- G Lie group of polynomial growth
- R_{j} is of weak type $(1,1)$ and bounded on $L^{p}(G), p \in(1, \infty)$ [Christ-Geller (1984), Lohoué-Varopoulos (1985), Alexopoulos (1992)]
- a Mihlin-Hörmander type theorem holds
[Mauceri-Meda (1990), Christ (1991), Alexopoulos (1994),...]
In these cases G is unimodular and G is a doubling measured space \Rightarrow the classical CZ theory applies
- G Lie group of polynomial growth
- R_{j} is of weak type $(1,1)$ and bounded on $L^{p}(G), p \in(1, \infty)$ [Christ-Geller (1984), Lohoué-Varopoulos (1985), Alexopoulos (1992)]
- a Mihlin-Hörmander type theorem holds
[Mauceri-Meda (1990), Christ (1991), Alexopoulos (1994),...]
In these cases G is unimodular and G is a doubling measured space
\Rightarrow the classical CZ theory applies
- $G=\mathbb{R}^{n-1} \rtimes \mathbb{R} \simeq \mathbb{H}^{n}(\mathbb{R})$
X_{0}, \ldots, X_{n-1} basis of $\mathfrak{g}=\operatorname{Lie}(G) \quad \Delta=-\sum_{j=0}^{n-1} X_{j}^{2}$ complete Laplacian
G is a nonunimodular group of exponential growth $\Rightarrow G$ is nondoubling \Rightarrow Hebisch and Steger (2003) developed a new CZ theory to prove that
- R_{j} is of weak type $(1,1)$ and bounded on $L^{p}(G), p \in(1,2]$ (see also Sjögren (1999))
- a Mihlin-Hörmander type theorem holds (see also Hebisch (1993), Cowling-Giulini-Hulanicki-Mauceri (1994))
$G=N \rtimes A$
- N stratified group

$$
\operatorname{Lie}(N)=\mathfrak{n}=V_{1} \oplus \cdots \oplus V_{s} \quad\left[V_{i}, V_{j}\right] \subseteq V_{i+j} \quad\left(V_{k}=0 \text { if } k>s\right)
$$ $\delta_{t} \in \operatorname{Aut}(\mathfrak{n})$ automorphic dilations s.t. $\delta_{t} \mid v_{j}=t^{j} l d v_{j} \quad \forall t>0$ $\operatorname{det} \delta_{t}=t^{Q} \quad Q=\sum_{j=1}^{s} j \operatorname{dim} V_{j}$ homogeneous dimension of N

- $A=\mathbb{R}$ acting on N via automorphic dilations
$(z, u) \cdot\left(z^{\prime}, u^{\prime}\right)=\left(z \cdot \delta_{e^{u}} z^{\prime}, u+u^{\prime}\right) \quad \forall z, z^{\prime} \in N, u, u^{\prime} \in \mathbb{R}$ $\mathrm{d} \mu(z, u)=\mathrm{d} z \mathrm{~d} u \quad$ right Haar measure $m(z, u)=e^{-Q u}$ modular function
$E_{0}=\partial_{u}$ basis of $\mathfrak{a} \simeq \mathbb{R} \quad E_{1}, \ldots, E_{q}$ basis of the first layer V_{1} of \mathfrak{n} $X_{0}=\partial_{u} \quad X_{j}=e^{u} E_{j} \quad j=1, \ldots, q \quad$ left invariant v.f. on G
$\Delta=-\sum_{j=0}^{q} X_{j}^{2}$ subLaplacian
$G=N \rtimes A$
- N stratified group of homogeneous dimension Q
- $A=\mathbb{R}$ acting on N via automorphic dilations

THEOREM 1. [Martini-Ottazzi-V.]
$R_{j}=X_{j} \Delta^{-1 / 2}$ is of weak type $(1,1)$ and bounded on $L^{p}(G), p \in(1,2]$.
THEOREM 2. [Martini-Ottazzi-V.]
If $F: \mathbb{R}^{+} \rightarrow \mathbb{C}$ bounded s.t.

$$
\begin{aligned}
\sup _{0<t \leq 1}\|F(t \cdot) \phi(\cdot)\|_{W_{2}^{s_{0}}}<\infty & s_{0}>\frac{3}{2} \\
\sup _{t \geq 1}\|F(t \cdot) \phi(\cdot)\|_{W_{2}^{s_{0}}}<\infty & s_{\infty}>\frac{Q+1}{2}
\end{aligned}
$$

then $F(\Delta)$ is of weak type $(1,1)$ and bounded on $L^{p}(G), p \in(1, \infty)$.

THEOREM 1. [Martini-Ottazzi-V.]
$R_{j}=X_{j} \Delta^{-1 / 2}$ is of weak type $(1,1)$ and bounded on $L^{p}(G), p \in(1,2]$.
THEOREM 2. [Martini-Ottazzi-V.]
If $F: \mathbb{R}^{+} \rightarrow \mathbb{C}$ bounded s.t.

$$
\begin{aligned}
\sup _{0<t \leq 1}\|F(t \cdot) \phi(\cdot)\|_{W_{2}^{s_{0}}<\infty} & s_{0}>\frac{3}{2} \\
\sup _{t \geq 1}\|F(t \cdot) \phi(\cdot)\|_{W_{2}^{s \infty}}<\infty & s_{\infty}>\frac{Q+1}{2}
\end{aligned}
$$

then $F(\Delta)$ is of weak type $(1,1)$ and bounded on $L^{p}(G), p \in(1, \infty)$.
REMARKS:

- when N is abelian, $G=N \rtimes A \simeq \mathbb{H}^{n}(\mathbb{R}), \Delta$ is a complete Laplacian related with the hyperbolic Laplacian: THEOREMS 1 and 2 were proved by Hebisch and Steger using spherical harmonic analysis and explicit formulae for the heat kernel
- if $F \in C_{c}(\mathbb{R}) \cap W_{2}^{s}(\mathbb{R})$ with $s>2$, then $F(\Delta)$ is bounded on $L^{1}(G)$ [Mustapha (1998), Gnewuch (2002)]

THEOREM 1. [Martini-Ottazzi-V.]
$R_{j}=X_{j} \Delta^{-1 / 2}$ is of weak type $(1,1)$ and bounded on $L^{p}(G), p \in(1,2]$.
THEOREM 2. [Martini-Ottazzi-V.]
If $F: \mathbb{R}^{+} \rightarrow \mathbb{C}$ bounded s.t.

$$
\begin{aligned}
\sup _{0<t \leq 1}\|F(t \cdot) \phi(\cdot)\|_{W_{2}^{s_{0}}}<\infty & s_{0}>\frac{3}{2} \\
\sup _{t \geq 1}\|F(t \cdot) \phi(\cdot)\|_{W_{2}^{s_{\infty}}}<\infty & s_{\infty}>\frac{Q+1}{2}
\end{aligned}
$$

then $F(\Delta)$ is of weak type $(1,1)$ and bounded on $L^{p}(G), p \in(1, \infty)$.

REMARKS:

- when N is abelian, $G=N \rtimes A \simeq \mathbb{H}^{n}(\mathbb{R}), \Delta$ is a complete Laplacian related with the hyperbolic Laplacian: THEOREMS 1 and 2 were proved by Hebisch and Steger using harmonic spherical analysis and explicit formulae for the heat kernel
- if $F \in C_{c}(\mathbb{R}) \cap W_{2}^{s}(\mathbb{R})$ with $s>2$, then $F(\Delta)$ is bounded on $L^{1}(G)$ [Mustapha (1998), Gnewuch (2002)]
- boundedness of R_{j} for $p>2$?

Ingredients of the proofs

- X_{0}, \ldots, X_{q} defines a sub-Riemannian structure on G with associated left-invariant Carnot-Carathéodory distance ϱ

$$
\cosh |x|_{\varrho}=\cosh \varrho\left(x, e_{G}\right)=\cosh u+e^{u}|z|_{N}^{2} / 2 \quad \forall x=(z, u) \in N \rtimes A
$$

where $|\cdot|_{N}$ is the Carnot-Carathéodory distance on N

- formula known when N is abelian and stated without proof for stratified N by Hebisch (1999)
- solutions to Hamilton's equations on N can be re-parametrized and lifted to solutions to Hamilton's equations on G
- length-minimizing curves need not be solutions to to Hamilton's equations . But points that can be joined to the identity via length-minimizing solution to Hamilton's equations are dense [Agrachev (2009)]
- $\mu\left(B_{\varrho}\left(e_{G}, r\right)\right) \lesssim\left\{\begin{array}{ll}r^{Q+1} & r \leq 1 \\ e^{Q r} & r>1\end{array} \quad \Rightarrow \quad(G, \varrho, \mu)\right.$ is nondoubling

We develop a Calderón-Zygmund theory on the nondoubling subRiemannian space (G, ϱ, μ)

Ingredients of the proofs

- Boundedness result for convolution operators on G
T right convolution operator bounded on $L^{2}(G)$, i.e., $T f=f * k$ \Rightarrow the integral kernel of T is $K(x, y)=k\left(y^{-1} x\right) m(y)$

If $k=\sum_{n \in \mathbb{Z}} k^{n}$ with

$$
\begin{aligned}
& \text { (i) } \int_{G}\left|k^{n}(x)\right|\left(1+2^{-n / 2}|x|_{\varrho}\right) \mathrm{d} \mu(x) \lesssim 1 \\
& \text { (ii) } \int_{G}\left|k^{n}\left(y^{-1} x\right) m(y)-k^{n}(x)\right| \mathrm{d} \mu(x) \lesssim 2^{-n / 2}|y| \varrho \quad \forall y \in G,
\end{aligned}
$$

then T is of weak type $(1,1)$ and bounded on $L^{p}(G), p \in(1,2]$.

Ingredients of the proofs

- Boundedness result for convolution operators on G
T right convolution operator bounded on $L^{2}(G)$, i.e., $T f=f * k$ \Rightarrow the integral kernel of T is $K(x, y)=k\left(y^{-1} x\right) m(y)$

If $k=\sum_{n \in \mathbb{Z}} k^{n}$ with

$$
\begin{aligned}
& \text { (i) } \int_{G}\left|k^{n}(x)\right|\left(1+2^{-n / 2}|x| \varrho\right) \mathrm{d} \mu(x) \lesssim 1 \\
& \text { (ii) } \int_{G}\left|K^{n}(x, y)-K^{n}\left(x, e_{G}\right)\right| \mathrm{d} \mu(x) \lesssim 2^{-n / 2}|y| \varrho \quad \forall y \in G
\end{aligned}
$$

then T is of weak type $(1,1)$ and bounded on $L^{p}(G), p \in(1,2]$.

Ingredients of the proofs

- Gradient estimates of the heat kernel h_{t} of Δ

LEMMA. For every $t>0$

$$
\int_{G}\left|X_{j} h_{t}(x)\right| \mathrm{d} \mu(x) \leq C t^{-1 / 2}
$$

Ingredients of the proofs

- Gradient estimates of the heat kernel h_{t} of Δ

LEMMA. For every $t>0$

$$
\int_{G}\left|X_{j} h_{t}(x)\right| \mathrm{d} \mu(x) \leq C t^{-1 / 2}
$$

It follows from the formula [Mustapha 1998, Gnewuch 2006]

$$
h_{t}(z, u)=\int_{0}^{\infty} \Psi_{t}(\xi) \exp \left(-\frac{\cosh u}{\xi}\right) h_{e^{u} \xi / 2}^{N}(z) \mathrm{d} \xi,
$$

where

$$
\Psi_{t}(\xi)=\frac{\xi^{-2}}{\sqrt{4 \pi^{3} t}} \exp \left(\frac{\pi^{2}}{4 t}\right) \int_{0}^{\infty} \sinh \theta \sin \frac{\pi \theta}{2 t} \exp \left(-\frac{\theta^{2}}{4 t}-\frac{\cosh \theta}{\xi}\right) \mathrm{d} \theta
$$

estimates for the derivative of the heat kernel on N and various integration by parts (delicate cancellation occurs)

Ingredients of the proofs

- Gradient estimates of the heat kernel h_{t} of Δ

LEMMA. For every $\varepsilon \geq 0$ and $t>0$

$$
\int_{G}\left|X_{j} h_{t}(x)\right| \exp \left(\varepsilon t^{-1 / 2}|x| \varrho\right) \mathrm{d} \mu(x) \lesssim C_{\varepsilon} t^{-1 / 2}
$$

It follows from the formula [Mustapha 1998, Gnewuch 2006]

$$
h_{t}(z, u)=\int_{0}^{\infty} \Psi_{t}(\xi) \exp \left(-\frac{\cosh u}{\xi}\right) h_{e^{u} \xi / 2}^{N}(z) \mathrm{d} \xi,
$$

where

$$
\Psi_{t}(\xi)=\frac{\xi^{-2}}{\sqrt{4 \pi^{3} t}} \exp \left(\frac{\pi^{2}}{4 t}\right) \int_{0}^{\infty} \sinh \theta \sin \frac{\pi \theta}{2 t} \exp \left(-\frac{\theta^{2}}{4 t}-\frac{\cosh \theta}{\xi}\right) \mathrm{d} \theta
$$

estimates for the derivative of the heat kernel on N and various integration by parts (delicate cancellation occurs)

Sketch of the proof of THEOREM 1

$$
\begin{aligned}
& R_{j}=X_{j} \Delta^{-1 / 2}=\frac{1}{\Gamma(1 / 2)} \int_{0}^{\infty} t^{-1 / 2} X_{j} e^{-t \Delta} \mathrm{~d} t \\
& k_{j}=\frac{1}{\Gamma(1 / 2)} \int_{0}^{\infty} t^{-1 / 2} X_{j} h_{t} \mathrm{~d} t=\sum_{n \in \mathbb{Z}} k_{j}^{n}
\end{aligned}
$$

$$
k_{j}^{n}=\frac{1}{\Gamma(1 / 2)} \int_{2^{n}}^{2^{n+1}} t^{-1 / 2} X_{j} h_{t} \mathrm{~d} t
$$

Sketch of the proof of THEOREM 1

$$
\begin{aligned}
& \quad R_{j}=X_{j} \Delta^{-1 / 2}=\frac{1}{\Gamma(1 / 2)} \int_{0}^{\infty} t^{-1 / 2} X_{j} e^{-t \Delta} \mathrm{~d} t \\
& k_{j}=\frac{1}{\Gamma(1 / 2)} \int_{0}^{\infty} t^{-1 / 2} X_{j} h_{t} \mathrm{~d} t=\sum_{n \in \mathbb{Z}} k_{j}^{n} \\
& k_{j}^{n}=\frac{1}{\Gamma(1 / 2)} \int_{2^{n}}^{2^{n+1}} t^{-1 / 2} X_{j} h_{t} \mathrm{~d} t \\
& \\
& \int_{G}\left|k_{j}^{n}(x)\right|\left(1+2^{-n / 2}|x| \varrho\right) \mathrm{d} \mu(x) \\
& \lesssim \int_{2^{n}}^{2^{n+1}} t^{-1 / 2} \int_{G}\left|X_{j} h_{t}(x)\right|\left(1+t^{-1 / 2}|x| \varrho\right) \mathrm{d} \mu(x) \mathrm{d} t \\
& \lesssim \int_{2^{n}}^{2^{n+1}} t^{-1 / 2} t^{-1 / 2} \mathrm{~d} t \lesssim 1 .
\end{aligned}
$$

Sketch of the proof of THEOREM 1

$$
\begin{gathered}
R_{j}=X_{j} \Delta^{-1 / 2}=\frac{1}{\Gamma(1 / 2)} \int_{0}^{\infty} t^{-1 / 2} X_{j} e^{-t \Delta} \mathrm{~d} t \\
k_{j}=\frac{1}{\Gamma(1 / 2)} \int_{0}^{\infty} t^{-1 / 2} X_{j} h_{t} \mathrm{~d} t=\sum_{n \in \mathbb{Z}} k_{j}^{n} \\
k_{j}^{n}=\frac{1}{\Gamma(1 / 2)} \int_{2^{n}}^{2^{n+1}} t^{-1 / 2} X_{j} h_{t} \mathrm{~d} t
\end{gathered}
$$

Using

$$
\begin{aligned}
& h_{t}=h_{t / 2} * h_{t / 2} \quad X_{j} h_{t}=h_{t / 2} * X_{j} h_{t / 2} \quad h_{t / 2}\left(x^{-1}\right)=h_{t / 2}(x) m\left(x^{-1}\right) \\
& \int_{G}\left|k_{j}^{n}\left(y^{-1} x\right) m(y)-k_{j}^{n}(x)\right| \mathrm{d} \mu(x) \\
& \lesssim \int_{2^{n}}^{2^{n+1}} t^{-1 / 2} \int_{G}\left|X_{j} h_{t}\left(y^{-1} x\right) m(y)-X_{j} h_{t}(x)\right| \mathrm{d} \mu(x) \mathrm{d} t \\
& \lesssim|y|_{\varrho} \int_{2^{n}}^{2^{n+1}} t^{-1 / 2} \sum_{i=0}^{q}\left\|X_{i} h_{t / 2}\right\|_{1}\left\|X_{j} h_{t / 2}\right\|_{1} \mathrm{~d} t \\
& \lesssim|y|_{\varrho} \int_{2^{n}}^{2^{n+1}} t^{-1 / 2} t^{-1 / 2} t^{-1 / 2} \mathrm{~d} t \lesssim 2^{-n / 2}|y|_{\varrho}
\end{aligned}
$$

Sketch of the proof of THEOREM 1

$$
\begin{gathered}
R_{j}=X_{j} \Delta^{-1 / 2}=\frac{1}{\Gamma(1 / 2)} \int_{0}^{\infty} t^{-1 / 2} X_{j} e^{-t \Delta} \mathrm{~d} t \\
k_{j}=\frac{1}{\Gamma(1 / 2)} \int_{0}^{\infty} t^{-1 / 2} X_{j} h_{t} \mathrm{~d} t=\sum_{n \in \mathbb{Z}} k_{j}^{n} \\
k_{j}^{n}=\frac{1}{\Gamma(1 / 2)} \int_{2^{n}}^{2^{n+1}} t^{-1 / 2} X_{j} h_{t} \mathrm{~d} t
\end{gathered}
$$

$\Rightarrow k_{j}^{n}$ satisfy the integral estimates of the boundedness theorem for convolution operators
$\Rightarrow R_{j}$ is of weak type $(1,1)$ and bounded on $L^{p}(G), p \in(1,2]$

Related problems

- we also introduce a Hardy type space $H^{1}(G)$ and prove an endpoint result on $H^{1}(G)$ both for Riesz transforms and MH spectral multipliers of Δ
- $R_{j}: L^{p}(G) \rightarrow L^{p}(G) \quad p \in(2, \infty) ?$
$R_{j}^{*}=-\Delta^{-1 / 2}{\stackrel{\mathbb{\imath}}{\underset{X}{X}}}_{j}: L^{p}(G) \rightarrow L^{p}(G) \quad p \in(1,2) ?$
- if $G=\mathbb{R} \rtimes \mathbb{R}$:
$R_{1}^{*}: L^{p}(G) \rightarrow L^{p}(G) \quad p \in(1,2)$ and is of weak type $(1,1)$
[Gaudry-Sjögren (1999)]
$R_{0}^{*}: L^{p}(G) \rightarrow L^{p}(G) \quad p \in(1,2)$ and is NOT of weak type $(1,1)$ [Hebisch]
- if $G=\mathbb{R}^{2} \rtimes \mathbb{R}$, then R_{j}^{*} is NOT bounded from $H^{1}(G)$ to $L^{1}(G)$ [Sjögren-V. (2008)]

Related problems

- we also introduce a Hardy type space $H^{1}(G)$ and prove an endpoint result on $H^{1}(G)$ both for Riesz transforms and MH spectral multipliers of Δ
- $R_{j}: L^{p}(G) \rightarrow L^{p}(G) \quad p \in(2, \infty) ?$

$$
R_{j}^{*}=-\Delta^{-1 / 2} \stackrel{\Uparrow}{X}_{j}: L^{p}(G) \rightarrow L^{p}(G) \quad p \in(1,2) ?
$$

- if $G=\mathbb{R} \rtimes \mathbb{R}$:
$R_{1}^{*}: L^{p}(G) \rightarrow L^{p}(G) \quad p \in(1,2)$ and is of weak type $(1,1)$ [Gaudry-Sjögren (1999)]
$R_{0}^{*}: L^{p}(G) \rightarrow L^{p}(G) \quad p \in(1,2)$ and is NOT of weak type $(1,1)$ [Hebisch]
- if $G=\mathbb{R}^{2} \rtimes \mathbb{R}$, then R_{j}^{*} is NOT bounded from $H^{1}(G)$ to $L^{1}(G)$ [Sjögren-V. (2008)]
- Riesz transforms of the second order
- $X_{i} \Delta^{-1} X_{j}$ are of weak type $(1,1)$ and bounded on $L^{p}(G, \forall(i, j) \neq(0,0)$ [Martini-Ottazzi-V.]
- If Δ is a distinguished Laplacian on NA groups arising from the Iwasawa decomposition of a semisimple Lie group of rank one, then $X_{i} \Delta^{-1} X_{j}$ are bounded on $L^{p}(G), p \in(1, \infty)$, and of weak type $(1,1)$ but $X_{i} X_{j} \Delta^{-1}$ and $\Delta^{-1} X_{i} X_{j}$ are NOT bounded on $L^{p}(G), p \in[1, \infty)$ [Gaudry-Sjögren (1996)]

Related problems

- we also introduce a Hardy type space $H^{1}(G)$ and prove an endpoint result on $H^{1}(G)$ both for Riesz transforms and MH spectral multipliers of Δ
- $R_{j}: L^{p}(G) \rightarrow L^{p}(G) \quad p \in(2, \infty) ?$

$$
R_{j}^{*}=-\Delta^{-1 / 2} X_{j}: L^{p}(G) \rightarrow L^{p}(G) \quad p \in(1,2) ?
$$

- Riesz transforms of the second order
- L^{p}-spectral multipliers for subLaplacian with drift $\Delta-X$ (holomorphic functional calculus)
- more general NA groups

Sketch of the proof of THEOREM 2

$$
\begin{aligned}
& F(\Delta)=\sum_{n \in \mathbb{Z}} F(\Delta) \phi\left(2^{-n} \Delta\right)=\sum_{n \in \mathbb{Z}} F_{n}\left(2^{-n} \Delta\right) \\
& \phi \in C_{c}^{\infty}\left(\mathbb{R}^{+}\right), \sum_{n} \phi\left(2^{n} \lambda\right)=0, \operatorname{supp}(\phi) \subset[1 / 4,4]
\end{aligned}
$$

The kernel k^{n} of $F_{n}\left(2^{-n} \Delta\right)$ satisfy the conditions of the boundedness theorem. This follows from various facts:

- Δ and $\tilde{\Delta}$ on $\tilde{G}=\mathbb{R}^{Q} \rtimes \mathbb{R}$ have the same Plancherel measure, i.e.

$$
\int_{G}\left|k_{F(\Delta)}(z, u)\right|^{2} \mathrm{~d} z \mathrm{~d} u=\int_{0}^{\infty}|F(\lambda)|^{2}\left|\mathbf{c}_{\mathbf{Q}}(\lambda)\right|^{-2} \mathrm{~d} \lambda \sim \int_{0}^{\infty}|F(\lambda)|^{2}\left(\lambda^{2}+\lambda^{Q}\right) \mathrm{d} \lambda
$$

$\mathbf{c}_{\mathbf{Q}}$ Harish-Chandra function on $\mathbb{H}^{Q+1}(\mathbb{R})$

- weighted L^{2}-estimates on G for $k_{F(\Delta)}$ can be reduced to weighted L^{2}-estimates for $k_{F(\tilde{\Delta})}$ on \tilde{G}

$$
\int_{G}\left|k_{F(\Delta)}(z, u)\right|^{2}|z|_{N}^{2 a} \mathrm{~d} z \mathrm{~d} u \leq \int_{\tilde{G}}\left|k_{F(\tilde{\Delta})}(z, u)\right|^{2}|z|_{\mathbb{R}}^{2 a} \mathrm{~d} z \mathrm{~d} u
$$

where $\tilde{m}^{-1 / 2} k_{F(\tilde{\Delta})}(z, u)$ is radial (and one can use spherical analysis on \tilde{G})

Sketch of the proof of THEOREM 2

$$
\begin{aligned}
& F(\Delta)=\sum_{n \in \mathbb{Z}} F(\Delta) \phi\left(2^{-n} \Delta\right)=\sum_{n \in \mathbb{Z}} F_{n}\left(2^{-n} \Delta\right) \\
& \phi \in C_{c}^{\infty}\left(\mathbb{R}^{+}\right), \sum_{n} \phi\left(2^{n} \lambda\right)=1, \operatorname{supp}(\phi) \subset[1 / 4,4]
\end{aligned}
$$

The kernel k^{n} of $F_{n}\left(2^{-n} \Delta\right)$ satisfy the conditions of the boundedness theorem.
This follows from various facts:

- Δ and $\tilde{\Delta}$ on $\tilde{G}=\mathbb{R}^{Q} \rtimes \mathbb{R}$ have the same Plancherel measure
- weighted L^{2}-estimates on G for $k_{F(\Delta)}$ can be reduced to weighted L^{2}-estimates for $k_{F(\tilde{\Delta})}$ on \tilde{G}
- if the Fourier transform of M is supported in $[-R, R]$, then

$$
\left\|k_{M(\Delta)}\right\|_{1} \lesssim \min \left\{R^{3 / 2}, R^{(Q+1) / 2}\right\}\left\|k_{M(\Delta)}\right\|_{2}
$$

- $F_{n}\left(2^{-n}.\right)$ can be decomposed as the sum of functions whose Fourier transform is compactly supported in order to apply previous estimate

Sketch of the proof of THEOREM 2

$$
\begin{aligned}
& F(\Delta)=\sum_{n \in \mathbb{Z}} F(\Delta) \phi\left(2^{-n} \Delta\right)=\sum_{n \in \mathbb{Z}} F_{n}\left(2^{-n} \Delta\right) \\
& \phi \in C_{c}^{\infty}\left(\mathbb{R}^{+}\right), \sum_{n} \phi\left(2^{n} \lambda\right)=1, \operatorname{supp}(\phi) \subset[1 / 4,4]
\end{aligned}
$$

The kernel k^{n} of $F_{n}\left(2^{-n} \Delta\right)$ satisfy the conditions of the boundedness theorem $\Rightarrow F(\Delta)$ is of weak type $(1,1)$ and bounded on $L^{P}(G), p \in(1, \infty)$

THANK YOU!

