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Dilations and CZ theory on nilpotent groups

In the classical extension of Calderón-Zygmund theory to nilpotent groups

(Folland-Stein, Korányi) it is important to assume that the scale-invariance

properties of the singular kernels be adapted to dilations which are group

automorphisms.

This is a strong constraint. For instance, the isotropic dilations on the

underlying vector space structure on the Lie algebra are not allowed as soon

as the group is not abelian.

However, several situations have been encountered in the past where

non-automorphic dilations must be considered, at least locally.

The typical case is that of the isotropic dilations on the Heisenberg group:

Phong-Stein, 1982

Müller, R., Stein, 1995

Nagel, Stein, 2006

Müller, Peloso, R., 2015
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Product theory

More precisely, the common theme in the above mentioned papers is the

simultaneous presence of isotropic dilations and the standard automorphic

(parabolic) dilations and their combination in a (non-automorphic)

two-parameter dilation structure calling for some adaptation of the product

theory of singular integrals on Rn.

The limitations imposed by the compatibility with the group structure have

produced a restricted form of product theory in which the two dilation

parameters are subject to a one-sided limitation (flag kernels, Nagel, R.,

Stein, 2001, Nagel, R., Stein, Wainger, 2012).
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General dilations on Rn

For a = (a1, a2, . . . , an) ∈ Rn
+ define the a-dilations

x = (x1, x2, . . . , xn) 7−→ (t1/a1 x1, t1/a2 x2, . . . , t1/an xn) = δa(t)x

Homogenous norm:

|x |a = |x1|a1 + |x2|a2 + · · ·+ |xn|an .

Homogeneous dimension:

Qa =
1
a1

+
1
a2

+ ·+ 1
an

Let k = (k1, k2, . . . , kn) ∈ Nn be a multiindex. We set

∂k
x = ∂

k1
x1
∂

k2
x2
· · · ∂kn

xn .



Calderón-Zygmund kernels adapted to the a-dilations

Definition
A smooth CZ kernel of type a is a distribution K which is C∞ away from 0

and satisfies

• differential inequalities: for any k and any x 6= 0,∣∣∂k
x K (x)

∣∣ ≤ Ck|x |−Qa−[k]a
a ,

with [k]a =
∑

kj/aj ;

• cancellations: ∣∣∣ ∫ K (x)ϕ
(
δa(t)x

)
dx
∣∣∣ ≤ C‖ϕ‖C1 ,

for all ϕ ∈ C1
c (B), B a fixed “unit ball”, and every t > 0.
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Equivalent characterizations

Theorem
For a distribution K ∈ S ′ the following are equivalent:

(i) K is a CZ kernel of type a;

(ii) the Fourier transform K̂ = m is a bounded function, smooth away from

the origin and satisfying∣∣∂k
ξm(ξ) ≤ Ck|ξ|

−
∑

kj/aj
a ;

(iii)

K =
∑

j∈Z
2Qa jϕj

(
δa(2j )x

)
=
∑

j∈Z
ϕ

(j)
j (x) ,

where the ϕj are C∞ functions supported on the unit ball B, bounded in

any Cm-norm and with ∫
ϕj (x) dx = 0 .
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Proper kernels

In the rest of this talk we want to restrict our attention to “proper” kernels,

which exhibit a CZ singularity at the origin, but combined with a Schwartz

decay at infinity.

This involves modifying the previous conditions in the following way:

• differential inequalities of the kernel K :∣∣∂k
x K (x)

∣∣ ≤ Ck,N |x |
−

∑
(1+kj )/aj

a

• differential inequalities of the multiplier m:∣∣∂k
ξm(ξ)

∣∣ ≤ Ck|ξ|
−

∑
kj/aj

a

• dyadic decomposition:

K =
∑
j∈Z

ϕ
(j)
j



Proper kernels

In the rest of this talk we want to restrict our attention to “proper” kernels,

which keep the CZ singularity at the origin and are infinitely regular at infinity,

i.e. with a Schwartz decay.

This involves modifying the previous conditions in the following way:

• differential inequalities of the kernel K :∣∣∂k
x K (x)

∣∣ ≤ Ck,N |x |
−

∑
(1+kj )/aj

a
(
1 + |x |

)−N

• differential inequalities of the multiplier m:∣∣∂k
ξm(ξ)

∣∣ ≤ Ck|ξ|
−

∑
kj/aj

a

• dyadic decomposition:

K =
∑
j∈Z

ϕ
(j)
j



Proper kernels

In the rest of this talk we want to restrict our attention to “proper” kernels,

which keep the CZ singularity at the origin and are infinitely regular at infinity,

i.e. with a Schwartz decay.

This involves modifying the previous conditions in the following way:

• differential inequalities of the kernel K :∣∣∂k
x K (x)

∣∣ ≤ Ck,N |x |
−

∑
(1+kj )/aj

a
(
1 + |x |

)−N

• differential inequalities of the multiplier m:∣∣∂k
ξm(ξ)

∣∣ ≤ Ck
(
1 + |ξ|a

)−∑
kj/aj ;

• dyadic decomposition:

K =
∑
j∈Z

ϕ
(j)
j



Proper kernels

In the rest of this talk we want to restrict our attention to “proper” kernels,

which keep the CZ singularity at the origin and are infinitely regular at infinity,

i.e. with a Schwartz decay.

This involves modifying the previous conditions in the following way:

• differential inequalities of the kernel K :∣∣∂k
x K (x)

∣∣ ≤ Ck,N |x |
−

∑
(1+kj )/aj

a
(
1 + |x |

)−N

• differential inequalities of the multiplier m:∣∣∂k
ξm(ξ)

∣∣ ≤ Ck
(
1 + |ξ|a

)−∑
kj/aj ;

• dyadic decomposition:

K = η +
∑
j≥0

ϕ
(j)
j , η ∈ S



Composition of CZ kernels with different homogeneities

Consider now two proper CZ kernels, K1,K2, adapted to dilations of type a

and b respectively. We want to understand what kind of estimates are

satisfied by the convolution K1 ∗ K2.

It is quite obvious that the convolution will be C∞ away from the origin

(pseudolocality), with Schwartz decay at infinity. A more refined question is

what differential inequalities it satisfies near the origin.

We take a model example in two variables.

On R2 we denote by z = (x , y) the space variables and ζ = (ξ, η) the

frequency variables.

a = (1, 1) (isotropic dilations), with |z|a = |x |+ |y |, Qa = 2,

b = (2, 1) (parabolic dilations), with |z|b = |x |2 + |y |, Qb = 3/2.
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The multiplier side

It suffices to consider points ζ = (ξ, η) with |ξ|, |η| > 1.

Set m1 = K̂1, m2 = K̂2, Then∣∣∂ jm1(ζ)
∣∣ . (1 + |ξ|+ |η|

)−j1−j2∣∣∂ lm2(ζ)
∣∣ . (1 + |ξ|2 + |η|

)− 1
2 l1−l2 .

We estimate the derivatives of m = K̂1 ∗ K2 = m1m2.
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Three regions

(I) For |η| < |ξ|,
∣∣∂km(ζ)

∣∣ . |ξ|−k1−k2

(II) For |η|
1
2 < |ξ| < |η|,

∣∣∂km(ζ)
∣∣ . |ξ|−k1 |η|−k2

(III) For |ξ| < |η|
1
2 ,

∣∣∂km(ζ)
∣∣ . |η|− k1

2 −k2

These inequalities are subsumed by the single formula∣∣∂km(ζ)
∣∣ . (1 + |ξ|+ |η|

1
2
)−k1

(
1 + |ξ|+ |η|

)−k2

∼=
(
1 + |ζ|

1
2
b

)−k1
(
1 + |ζ|a

)−k2 .
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Dyadic scales

The scales of the rectangles are the following:

(I) (2j , 2j ) in the isotropic region,

(II) (2j , 2k ) with j ≤ k ≤ 2j in the product region,

(III) (2j , 22j ) in the parabolic region.

The rectangles in (II) do not intersect the axes.

Those in (I) and (III) intersect one of the two axes, but do not contain the

origin.
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Dyadic decomposition of the multiplier

The multiplier m can be decomposed

m = m0 + m(I) + m(II) + m(III)

= m0 +
∑
j≥0

m(I)
j (2−jξ, 2−jη)

+
∑

j≤k≤2j

m(II)
jk (2−jξ, 2−kη)

+
∑
j≥0

m(III)
j (2−jξ, 2−2jη) ,

where all the summands are smooth functions supported in the unit ball B,

uniformly bounded in all Ck -norms and

• the terms m(I)
j ,m

(III)
j vanish at 0,

• the m(II)
jk vanish on the coordinate axes.
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The kernel in dyadic form

On the other side of the Fourier transform,

K1 ∗ K2 = η + K (I) + K (II) + K (III) ,

where η ∈ S, K (I),K (III) are proper CZ kernels, the first isotropic and the

second parabolic, while

K (II) =
∑

j≤k≤2j

2j+kϕjk (2jx , 2k y) . (1)

The ϕjk are uniformly bounded in every Schwartz norm and∫
ϕjk (x , y) dx = 0 ∀ y ,

∫
ϕjk (x , y) dy = 0 ∀ x .

As a further refinement, each ϕjk can be replaced by a dyadic sum, with

rapidly decreasing coefficients, of smooth functions with compact support

and the same cancellations.

In this way the summands in (1) can be assumed to be supported in B and

uniformly bounded in each Ck -norm.



The kernel in dyadic form

On the other side of the Fourier transform,

K1 ∗ K2 = η + K (I) + K (II) + K (III) ,

where η ∈ S, K (I),K (III) are proper CZ kernels, the first isotropic and the

second parabolic, while

K (II) =
∑

j≤k≤2j

2j+kϕjk (2jx , 2k y) . (1)

The ϕjk are uniformly bounded in every Schwartz norm and∫
ϕjk (x , y) dx = 0 ∀ y ,

∫
ϕjk (x , y) dy = 0 ∀ x .

As a further refinement, each ϕjk can be replaced by a dyadic sum, with

rapidly decreasing coefficients, of smooth functions with compact support

and the same cancellations.

In this way the summands in (1) can be assumed to be supported in B and

uniformly bounded in each Ck -norm.



Outside of CZ theory

The resulting kernel K = K (I) + K (II) + K (III) is not a CZ kernel. It satisfies the

differential inequalities∣∣∂p
x ∂

q
y K (z)

∣∣ ≤ CpqN |z|−1−p
a |z|−1−q

b

(
1 + |z|

)−N (2)

for all p, q,N, plus cancellations in each variable separately.

Condition (2) is weaker than any type of CZ condition. In fact it gives the

estimate ∣∣{z : |K (z)| > α}
∣∣ . logα

α
,

and no better in general.



New classes of kernels

We consider n different homogeneities on Rn, with homogeneous norms

|x |e1 = |x1|e(1,1) + |x2|e(1,2) + · · ·+ |xn|e(1,n)

· · · · · ·

|x |en = |x1|e(n,1) + |x2|e(n,2) + · · ·+ |xn|e(n,n) .

It will be necessary to also consider the situation where each xj is itself a

multivariate component in Rdj , in a higher dimensional space

Rd = Rd1+d2+···+dn . In this case |xj | denotes a homogeneous norm adapted to

given dilations on Rdj .



Multi-norm inequalities

We want to consider kernels K which satisfy the following inequalities:

(*)
∣∣∂k

x K (x)
∣∣ ≤ CkN |x |−1−k1

e1
|x |−1−k2

e2
· · · |x |−1−kn

en

(
1+|x |

)−N
.

It is natural to impose the following basic assumptions:

e(j, j) = 1 , e(j, k) ≤ e(j, l)e(l, k)

for all j, k , l .

Under the basic assumptions, the inequalities (*) hold, e.g., for proper CZ

kernels of type a = e1, e2, . . . , en.
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en

(
1+|x |

)−N
.

It is natural to impose the following basic assumptions:

e(j, j) = 1 , e(j, k) ≤ e(j, l)e(l, k)

for all j, k , l .

Under the basic assumptions, the inequalities (*) hold, e.g., for proper CZ

kernels of type a = e1, e2, . . . , en.



The classes P0(E)

Denote by E the matrix
(
e(j, k)

)
jk . We will always assume that the basic

assumptions are satisfied.

Definition
The class P0(E) consists of the distributions K which are smooth away from

the origin, satisfy the differential inequalities

(*)
∣∣∂k

x K (x)
∣∣ ≤ CkN |x |−1−k1

e1
|x |−1−k2

e2
· · · |x |−1−kn

en

(
1+|x |

)−N
,

for all k,N, plus appropriate cancellations in each variable xj .

Roughly speaking, the cancellations are defined inductively by stating that,

once we integrate K against a scaled bump function in a single variable xj ,

we obtain a kernel of the same kind in the remaining variables.

We will give two characterizations of the kernels in P0(E), one in terms of

their Fourier transforms, the other in terms of dyadic decompositions.
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Characterization via multipliers

In the frequency space we introduce a new family of norms:

|ξ|ê1
= |ξ1|1/e(1,1) + |ξ2|1/e(2,1) + · · ·+ |ξn|1/e(n,1)

· · · · · ·

|ξ|ên = |ξ1|1/e(1,n) + |ξ2|1/e(2,n) + · · ·+ |ξn|1/e(n,n) .

Lemma
A distribution K is in P0(E) if and only if m = K̂ is a smooth function

satisfying the inequalities∣∣∂k
ξm(ξ)

∣∣ ≤ CkN
(
1 + |ξ|ê1

)−k1 · · ·
(
1 + |ξ|ên

)−kn .



The cone Γ(E)

Denote by Γ(E) the cone in the positive orthant Rn
+ defined by the inequalities

1
e(l, k)

tl ≤ tk ≤ e(k , l)tl ∀ k , l

Let

m(ξ) =
∑

J∈Γ(E)∩Nn

mJ (2−j1ξ1, . . . , 2−jnξn) ,

where the functions mpr
J are supported in B, vanish on a neighborhood of the

coordinate hyperplanes and are uniformly bounded in every Ck -norm.

Then m satisfies the above inequalities, hence F−1m ∈ P0(E).

Up to “boundary terms”, it is also true that every m ∈ FP0(E) can be

decomposed as a dyadic sum of this kind. We will explain where the

“boundary terms” come from.
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Dominant variables

We decompose the complement of B in the ξ-space into regions,

considering, for each j , which variable is dominant in the norm |ξ|êk
.

We say that ξj is dominant in |ξ|êk
at a point ξ if

|ξj |1/e(j,k) > |ξl |1/e(l,k) ∀l 6= j

After removing a finite union of hypersurfaces, at each point there is a unique

dominant variable in each norm (regular points).

Lemma
If ξk is dominant in |ξ|êj

at a regular point ξ, with j 6= k, then ξk is also

dominant in |ξ|êk
at ξ.



Marked partitions

To each regular point ξ we can associate a marked partition, i.e., a partition

{I1, . . . , Is} of {1, 2, . . . , n}, together with a distinguished element kr ∈ Ir for

each r = 1, . . . , s.

For instance, if ξ ∈ R5 is associated to the marked partition

{1, 3̄}, {2, 4̄, 5}

this means that ξ3 is dominat in |ξ|ê1
and in |ξ|ê3

, while ξ4 is dominat in |ξ|ê2
,

|ξ|ê4
and |ξ|ê5

.

To each marked partition S = {I1, . . . , Is; k1, . . . , ks} we associate the

(possibly empty) set ES of those regular ξ such that, for all r , ξkr is dominant

in |ξ|êj
for all j ∈ Ir .

Then

m = m0 +
∑

S

mS ,

where m0 is supported on B and each mS near ES .
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Dyadic decomposition of K

Putting all together,

m(ξ) = m0(ξ) +
∑

S

∑
J∈Γ(ES )∩Ns

mS
J (2−j1 · ξI1 , . . . , 2

−js · ξIs )

where, for each S, the functions mS
J are supported in B, vanish on a

neighborhood of the subspaces {ξ : ξI1 = 0}, . . . {ξ : ξIs = 0} and are

uniformly bounded in every Ck -norm.

Undoing the Fourier transform,

K (x) = η(x) +
∑

S

∑
J∈Γ(ES )∩Ns

2Q1 j1+···+Qs jsϕS
J (2j1 · xI1 , . . . , 2

js · xIs )

where η ∈ S and, for each S, the functions ϕS
J are uniformly bounded in every

Schwartz norm and satisfy the cancellations∫
ϕS

J (xI1 , . . . , xIr , . . . , xIs ) dxIr = 0 ∀ xI1 , . . . , xIr−1 , xIr+1 , . . . , xIs
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Equivalent characterizations of P0(E)

Theorem
Let E be a matrix satisfying the basic assumptions. The following are

equivalent for K ∈ S ′(Rn):

• K ∈ P0(E),

• m = K̂ is a smooth function satisfying the inequalities∣∣∂k
ξm(ξ)

∣∣ ≤ CkN
(
1 + |ξ|ê1

)−k1 · · ·
(
1 + |ξ|ên

)−kn ,

• K (x) = η(x) +
∑

S

∑
J∈Γ(ES )∩Ns 2Q1 j1+···+Qs jsϕS

J (2j1 · xI1 , . . . , 2
js · xIs )

as above, or even with the additional condition suppϕS
J ⊂ B.
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Properties (on Rn)

• Convolution by kernels in P0(E) is bounded on Lp, 1 < p <∞.

• P0(E) is closed under convolution.

• For E, E′ both satisfying the basic assumptions, the following are
equivalent:

• P0(E) ⊂ P0(E′),
• Γ(E) ⊂ Γ(E′),
• for each j, k , e(j, k) ≤ e′(j, k).

• In particular, proper CZ kernels of type a are in P0(E) if and only if

a ∈ Γ(E).

• Given finitely many proper CZ kernels Ki of type ai , their convolution

belongs to P0(E), where

e(j, k) = max
i

ai
k

ai
j
.
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Homogeneous nilpotent groups

Let g be a homogeneous Lie algebra with (automorphic) dilations δ(t), t > 0.

Let

g = h1 ⊕ h2 ⊕ · · · ⊕ hm ,

be a decomposition into homogeneous subspaces, with the property that

[g, hj ] ⊂ hj+1 ⊕ · · · ⊕ hm for every j .

Call G the associated homogenous group, parametrized by g with the

Campbell-Hausdorff product. Denote by | | a homogeneous norm on G.



Other homogeneities

Besides the standard CZ kernels adapted to the given dilations, we consider

CZ kernels adapted to other (non-automorphic) dilation

δa(t)x =
(
δ(t1/a1 )x1, . . . , δ(t1/am )xm

)
.

It is known (R.-Stein) that such kernels give bounded operators on Lp for

1 < p <∞, but in general they form a class which is not closed under

convolution.

Theorem
Suppose that a1 ≤ a2 ≤ · · · ≤ am. Then the class of proper CZ kernels

adapted to the dilations δa is closed under convolution.



Remarks

1. Let

K = η +
∑
j∈N

ϕ
(j)
j , K ′ = η′ +

∑
j∈N

ψ
(j)
j

be the dyadic decompositions of two proper CZ kernels adapted to the

δa-dilations. Here ϕ(j)
j denotes the bump function ϕj scaled by a factor 2−j ,

i.e. supported where

|x1| < 2−j/a1 , |x2| < 2−j/a2 , . . . |xm| < 2−j/am .

The monotonicity condition on the aj guarantees that the convolution of two

terms ϕ(j)
j and ψ(j′)

j′ is scaled by a factor max{2−j , 2−j′}, like in RN .

2. For a specific homogeneous group, weaker assumptions may suffice. E.g.,

on H1 with the standard parabolic dilations and h1 = Rx , h2 = Ry , h3 = Rt ,

the condition 2/a3 ≤ 1/a1 + 1/a2 is enough.



Convolution within P0(E) - Lp-boundedness

We say that E is doubly monotonic if

e(j, k) ≤ e(j − 1, k) , e(j, k) ≤ e(j, k + 1)

for all j, k .

Theorem
Assume that E satisfies the basic assumptions and is doubly monotonic.

Then

• P0(E) is closed under convolution;

• convolution by kernels in P0(E) is bounded on Lp, 1 < p <∞.
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Convolution of dyadic terms

Double monotonicity of E guarantees that the group convolution of two dyadic

terms at scales 2−J , 2−J′ with J, J ′ ∈ Γ(E) is at scale 2−J ∨ 2−J′ .

But the major problem in the proof is that the product cancellations are not

preserved under convolution.

The hypothesis of double monotonicity gives however a form of “weak

cancellation” of the convolution of two dyadic terms, which is sufficient to

prove that the whole resulting dyadic sum converges to a kernel in P0(E).


