Fourier L_{p} summability with frequencies in nonabelian groups

Javier Parcet

LMS Midlands Regional Meeting
Interactions of Harmonic Analysis and Operator Theory

Birmingham - September 13-16, 2016

Plan

1. Main questions
2. Basic operator algebra
3. Basic geometric group theory
4. Smooth Fourier multipliers
5. Nonsmooth Fourier multipliers
6. Incidence of Kazhdan property (T)
7. Fourier L_{p} summability over $S L_{n}(\mathbb{R})$

Based on joint work with... and independent results by.
M. Casners, A. González-Pérez, M. Junge, T. Mei
M. Perrin, E. Ricard, K. Rogers, M. de la Salle

Plan

1. Main questions
2. Basic operator algebra
3. Basic geometric group theory
4. Smooth Fourier multipliers
5. Nonsmooth Fourier multipliers
6. Incidence of Kazhdan property (T)
7. Fourier L_{p} summability over $S L_{n}(\mathbb{R})$

Based on joint work with... and independent results by...
M. Caspers, A. González-Pérez, M. Junge, T. Mei M. Perrin, E. Ricard, K. Rogers, M. de la Salle

Fourier summability over \mathbb{Z}^{n}

MAIN PROBLEM. Determine those families of bounded, compactly supported symbols $m_{R}: \mathbb{Z}^{n} \rightarrow \mathbb{C}$ converging pointwise to 1 as $R \rightarrow \infty$, for which the limit below

$$
\lim _{R \rightarrow \infty}\left(\int_{\mathbb{T}^{n}}\left|f(x)-\sum_{k \in \mathbb{Z}^{n}} m_{R}(k) \widehat{f}(k) e^{2 \pi i k \cdot x}\right|^{p} d x\right)^{\frac{1}{p}}=0 \quad \text { for } \quad f \in L_{p}\left(\mathbb{T}^{n}\right)
$$

BASIC CONSTRUCTION

K. de Leeuw's
 restriction $\mathbb{R}^{n} \rightarrow \mathbb{Z}^{n}$

dilation
 invariance in \mathbb{R}

Fourier multipliers in \mathbb{R}^{n}

Fourier summability over \mathbb{Z}^{n}

MAIN PROBLEM. Determine those families of bounded, compactly supported symbols $m_{R}: \mathbb{Z}^{n} \rightarrow \mathbb{C}$ converging pointwise to 1 as $R \rightarrow \infty$, for which the limit below

$$
\lim _{R \rightarrow \infty}\left(\int_{\mathbb{T}^{n}}\left|f(x)-\sum_{k \in \mathbb{Z}^{n}} m_{R}(k) \widehat{f}(k) e^{2 \pi i k \cdot x}\right|^{p} d x\right)^{\frac{1}{p}}=0 \quad \text { for } \quad f \in L_{p}\left(\mathbb{T}^{n}\right)
$$

BASIC CONSTRUCTION

Fourier summability over \mathbb{Z}^{n}

MAIN PROBLEM. Determine those families of bounded, compactly supported symbols $m_{R}: \mathbb{Z}^{n} \rightarrow \mathbb{C}$ converging pointwise to 1 as $R \rightarrow \infty$, for which the limit below

$$
\lim _{R \rightarrow \infty}\left(\int_{\mathbb{T}^{n}}\left|f(x)-\sum_{k \in \mathbb{Z}^{n}} m_{R}(k) \widehat{f}(k) e^{2 \pi i k \cdot x}\right|^{p} d x\right)^{\frac{1}{p}}=0 \quad \text { for } \quad f \in L_{p}\left(\mathbb{T}^{n}\right)
$$

BASIC CONSTRUCTION

A. Smooth approximation

Hörmander-Mihlin $(1<p<\infty)+$ Positive type $(p=1, \infty)$.

Fourier summability over \mathbb{Z}^{n}

MAIN PROBLEM. Determine those families of bounded, compactly supported symbols $m_{R}: \mathbb{Z}^{n} \rightarrow \mathbb{C}$ converging pointwise to 1 as $R \rightarrow \infty$, for which the limit below

$$
\lim _{R \rightarrow \infty}\left(\int_{\mathbb{T}^{n}}\left|f(x)-\sum_{k \in \mathbb{Z}^{n}} m_{R}(k) \widehat{f}(k) e^{2 \pi i k \cdot x}\right|^{p} d x\right)^{\frac{1}{p}}=0 \quad \text { for } \quad f \in L_{p}\left(\mathbb{T}^{n}\right)
$$

BASIC CONSTRUCTION

\(\underset{K. de Leeuw's}{\substack{K.

restriction \mathbb{R}^{n} \rightarrow \mathbb{Z}^{n}}}+\)| dilation |
| :---: |
| invariance in \mathbb{R}^{n} |\Rightarrow| compactly suppported |
| :---: |
| Fourier multipliers in \mathbb{R}^{n} |

A. Smooth approximation

Hörmander-Mihlin $(1<p<\infty)+$ Positive type $(p=1, \infty)$.

B. Nonsmooth approximation

Directional Hilbert transforms $(1<p<\infty)+$ Ball multiplier thm $(p \neq 2)$.

Fourier summability over \mathbb{Z}^{n}

MAIN PROBLEM. Determine those families of bounded, compactly supported symbols $m_{R}: \mathbb{Z}^{n} \rightarrow \mathbb{C}$ converging pointwise to 1 as $R \rightarrow \infty$, for which the limit below

$$
\lim _{R \rightarrow \infty}\left(\int_{\mathbb{T}^{n}}\left|f(x)-\sum_{k \in \mathbb{Z}^{n}} m_{R}(k) \widehat{f}(k) e^{2 \pi i k \cdot x}\right|^{p} d x\right)^{\frac{1}{p}}=0 \quad \text { for } \quad f \in L_{p}\left(\mathbb{T}^{n}\right) .
$$

BASIC CONSTRUCTION

$\underset{\text { K. de Leeuw's }}{\text { restriction } \mathbb{R}^{n} \rightarrow \mathbb{Z}^{n}}+$| dilation |
| :---: |
| invariance in \mathbb{R}^{n} |\Rightarrow| compactly suppported |
| :---: |
| Fourier multipliers in \mathbb{R}^{n} |

A. Smooth approximation

Hörmander-Mihlin $(1<p<\infty)+$ Positive type $(p=1, \infty)$.

B. Nonsmooth approximation

Directional Hilbert transforms $(1<p<\infty)+$ Ball multiplier thm $(p \neq 2)$.

C. Bochner-Riesz phenomena

Balance between curvature of support and regularity near the boundary...

Fourier summability over \mathbb{Z}^{n}

MAIN PROBLEM. Determine those families of bounded, compactly supported symbols $m_{R}: \mathbb{Z}^{n} \rightarrow \mathbb{C}$ converging pointwise to 1 as $R \rightarrow \infty$, for which the limit below

$$
\lim _{R \rightarrow \infty}\left(\int_{\mathbb{T}^{n}}\left|f(x)-\sum_{k \in \mathbb{Z}^{n}} m_{R}(k) \widehat{f}(k) e^{2 \pi i k \cdot x}\right|^{p} d x\right)^{\frac{1}{p}}=0 \quad \text { for } \quad f \in L_{p}\left(\mathbb{T}^{n}\right) .
$$

BASIC CONSTRUCTION

$\underset{\text { K. de Leeuw's }}{\text { restriction } \mathbb{R}^{n} \rightarrow \mathbb{Z}^{n}}+$| dilation |
| :---: |
| invariance in \mathbb{R}^{n} |\Rightarrow| compactly suppported |
| :---: |
| Fourier multipliers in \mathbb{R}^{n} |

A. Smooth approximation

Hörmander-Mihlin $(1<p<\infty)+$ Positive type $(p=1, \infty)$.

B. Nonsmooth approximation

Directional Hilbert transforms $(1<p<\infty)+$ Ball multiplier thm $(p \neq 2)$.

C. Bochner-Riesz phenomena

Balance between curvature of support and regularity near the boundary...
IMP. \mathbb{Z}^{n} is an abelian group and it admits a flat isometric embedding into \mathbb{R}^{n}.

Nonabelian discrete frequencies

OBJECTIVE. Study Fourier L_{p} summability with frequencies in locally compact unimodular groups. Of course, our results highly depend on the geometry of the frequency group. We assume the group to be discrete for simplicity.
IMP REMARK. Dual to Müller-Ricci-Stein approach for nilpotent Lie groups...
Pioneered by Haagerup, Cowling, de Canniere, etc The L_{p}-theory is brand new.

Nonabelian discrete frequencies

OBJECTIVE. Study Fourier L_{p} summability with frequencies in locally compact unimodular groups. Of course, our results highly depend on the geometry of the frequency group. We assume the group to be discrete for simplicity.
IMP REMARK. Dual to Müller-Ricci-Stein approach for nilpotent Lie groups... Pioneered by Haagerup, Cowling, de Canniere, etc The L_{p}-theory is brand new.

Nonabelian discrete frequencies

OBJECTIVE. Study Fourier L_{p} summability with frequencies in locally compact unimodular groups. Of course, our results highly depend on the geometry of the frequency group. We assume the group to be discrete for simplicity.
IMP REMARK. Dual to Müller-Ricci-Stein approach for nilpotent Lie groups... Pioneered by Haagerup, Cowling, de Canniere, etc The L_{p}-theory is brand new.
What is $L_{p}(\widehat{\mathrm{G}})$?
No Pontryagin duality for G not abelian \rightsquigarrow Quantum groups (easy case).

Nonabelian discrete frequencies

OBJECTIVE. Study Fourier L_{p} summability with frequencies in locally compact unimodular groups. Of course, our results highly depend on the geometry of the frequency group. We assume the group to be discrete for simplicity.
IMP REMARK. Dual to Müller-Ricci-Stein approach for nilpotent Lie groups... Pioneered by Haagerup, Cowling, de Canniere, etc The L_{p}-theory is brand new.
What is $L_{p}(\widehat{\mathrm{G}})$?
No Pontryagin duality for G not abelian \rightsquigarrow Quantum groups (easy case).
How do we measure smoothness?
Model cases: Free group \mathbb{F}_{2} (Haagerup) + Special linear $\mathrm{SL}_{\mathrm{n}}(\mathbb{Z})$ (Kazhdan).

Nonabelian discrete frequencies

Cayley graph of the free group \mathbb{F}_{2}

Nonabelian discrete frequencies

OBJECTIVE. Study Fourier L_{p} summability with frequencies in locally compact unimodular groups. Of course, our results highly depend on the geometry of the frequency group. We assume the group to be discrete for simplicity.
IMP REMARK. Dual to Müller-Ricci-Stein approach for nilpotent Lie groups...
Pioneered by Haagerup, Cowling, de Canniere, etc The L_{p}-theory is brand new.

What is $L_{p}(\widehat{\mathrm{G})}$?

No Pontryagin duality for G not abelian \rightsquigarrow Quantum groups (easy case).
How do we measure smoothness?
Model cases: Free group \mathbb{F}_{2} (Haagerup) + Special linear $\mathrm{SL}_{\mathrm{n}}(\mathbb{Z})$ (Kazhdan).
Why nonsmooth methods (polyhedra, balls, Bochner-Riesz)?
Crucial for further geometric information in the group von Neumann algebra.

Nonabelian discrete frequencies

OBJECTIVE. Study Fourier L_{p} summability with frequencies in locally compact unimodular groups. Of course, our results highly depend on the geometry of the frequency group. We assume the group to be discrete for simplicity.
IMP REMARK. Dual to Müller-Ricci-Stein approach for nilpotent Lie groups...
Pioneered by Haagerup, Cowling, de Canniere, etc The L_{p}-theory is brand new.

What is $L_{p}(\mathrm{G})$?

No Pontryagin duality for G not abelian \rightsquigarrow Quantum groups (easy case).

How do we measure smoothness?

Model cases: Free group \mathbb{F}_{2} (Haagerup) + Special linear $\mathrm{SL}_{\mathrm{n}}(\mathbb{Z})$ (Kazhdan).
Why nonsmooth methods (polyhedra, balls, Bochner-Riesz)?
Crucial for further geometric information in the group von Neumann algebra.
KEY. How rigid (isometric) are the flat embeddings (proper cocycles) $\mathrm{G} \rightarrow \mathcal{H}$?

Nonabelian discrete frequencies

OBJECTIVE. Study Fourier L_{p} summability with frequencies in locally compact unimodular groups. Of course, our results highly depend on the geometry of the frequency group. We assume the group to be discrete for simplicity.
IMP REMARK. Dual to Müller-Ricci-Stein approach for nilpotent Lie groups...
Pioneered by Haagerup, Cowling, de Canniere, etc The L_{p}-theory is brand new.

What is $L_{p}(\mathrm{G})$?

No Pontryagin duality for G not abelian \rightsquigarrow Quantum groups (easy case).

How do we measure smoothness?

Model cases: Free group \mathbb{F}_{2} (Haagerup) + Special linear $\mathrm{SL}_{\mathrm{n}}(\mathbb{Z})$ (Kazhdan).
Why nonsmooth methods (polyhedra, balls, Bochner-Riesz)?
Crucial for further geometric information in the group von Neumann algebra.
KEY. How rigid (isometric) are the flat embeddings (proper cocycles) $\mathrm{G} \rightarrow \mathcal{H}$?
WHY SHOULD WE CARE? Our primary motivations are

$$
\begin{array}{cc}
\text { NC HA } \\
\text { Euclidean applications }
\end{array}+\begin{gathered}
\text { Operator Algebra } \\
\text { Classification of vNas }
\end{gathered}
$$

Basic operator algebra

The group von Neumann algebra

Given $f \in L_{\infty}(\mathbb{T})$, let $\Lambda_{f}(g)=f g$ so that

$$
\underset{x \in \mathbb{T}}{\operatorname{esssup}}|f(x)|=\left\|\Lambda_{f}: L_{2}(\mathbb{T}) \rightarrow L_{2}(\mathbb{T})\right\|=\left\|\Phi \circ \Lambda_{f} \circ \Phi^{-1}: \ell_{2}(\mathbb{Z}) \rightarrow \ell_{2}(\mathbb{Z})\right\|
$$

for the Fourier transform $\Phi: L_{2}(\mathbb{T}) \ni \exp _{k} \mapsto \delta_{k} \in \ell_{2}(\mathbb{Z})$. Then, the left regular representation $\lambda: \mathbb{Z} \rightarrow \mathcal{B}\left(\ell_{2}(\mathbb{Z})\right)$ defined by $\lambda(k)=\Phi \circ \Lambda_{\exp _{k}} \circ \Phi^{-1}: \delta_{j} \mapsto \delta_{j+k}$ yields the $*$-homomorphism

$$
L_{\infty}(\mathbb{T}) \ni \sum_{k} \widehat{f}(k) \exp _{k} \mapsto \sum_{k} \widehat{f}(k) \lambda(k) \in \mathcal{B}\left(\ell_{2}(\mathbb{Z})\right)
$$

The group von Neumann algebra

Given $f \in L_{\infty}(\mathbb{T})$, let $\Lambda_{f}(g)=f g$ so that

$$
\underset{x \in \mathbb{T}}{\operatorname{esssup}}|f(x)|=\left\|\Lambda_{f}: L_{2}(\mathbb{T}) \rightarrow L_{2}(\mathbb{T})\right\|=\left\|\Phi \circ \Lambda_{f} \circ \Phi^{-1}: \ell_{2}(\mathbb{Z}) \rightarrow \ell_{2}(\mathbb{Z})\right\|
$$

for the Fourier transform $\Phi: L_{2}(\mathbb{T}) \ni \exp _{k} \mapsto \delta_{k} \in \ell_{2}(\mathbb{Z})$. Then, the left regular representation $\lambda: \mathbb{Z} \rightarrow \mathcal{B}\left(\ell_{2}(\mathbb{Z})\right)$ defined by $\lambda(k)=\Phi \circ \Lambda_{\exp _{k}} \circ \Phi^{-1}: \delta_{j} \mapsto \delta_{j+k}$ yields the $*$-homomorphism

$$
L_{\infty}(\mathbb{T}) \ni \sum_{k} \widehat{f}(k) \exp _{k} \mapsto \sum_{k} \widehat{f}(k) \lambda(k) \in \mathcal{B}\left(\ell_{2}(\mathbb{Z})\right)
$$

Therefore, $L_{\infty}(\mathbb{T})$ is isomorphic to the group von Neumann algebra

$$
\mathcal{L}(\mathbb{Z})={\left.\overline{\left\{\sum_{k \in \Lambda}\right.} a_{k} \lambda(k): a_{k} \in \mathbb{C}, \Lambda \subset \mathbb{Z} \text { finite }\right\}^{w^{*}}}_{\subset \mathcal{B}\left(\ell_{2}(\mathbb{Z})\right) ~}^{\widehat{\sim}}
$$

Only $\mathcal{L}(\mathrm{G})$ survives for not abelian groups, but not $L_{\infty}(\widehat{\mathrm{G}})$ unless G is abelian!!!

The group von Neumann algebra

Given $f \in L_{\infty}(\mathbb{T})$, let $\Lambda_{f}(g)=f g$ so that

$$
\underset{x \in \mathbb{T}}{\operatorname{ess} \sup }|f(x)|=\left\|\Lambda_{f}: L_{2}(\mathbb{T}) \rightarrow L_{2}(\mathbb{T})\right\|=\left\|\Phi \circ \Lambda_{f} \circ \Phi^{-1}: \ell_{2}(\mathbb{Z}) \rightarrow \ell_{2}(\mathbb{Z})\right\|
$$

for the Fourier transform $\Phi: L_{2}(\mathbb{T}) \ni \exp _{k} \mapsto \delta_{k} \in \ell_{2}(\mathbb{Z})$. Then, the left regular representation $\lambda: \mathbb{Z} \rightarrow \mathcal{B}\left(\ell_{2}(\mathbb{Z})\right)$ defined by $\lambda(k)=\Phi \circ \Lambda_{\exp _{k}} \circ \Phi^{-1}: \delta_{j} \mapsto \delta_{j+k}$ yields the $*$-homomorphism

$$
L_{\infty}(\mathbb{T}) \ni \sum_{k} \widehat{f}(k) \exp _{k} \mapsto \sum_{k} \widehat{f}(k) \lambda(k) \in \mathcal{B}\left(\ell_{2}(\mathbb{Z})\right)
$$

Therefore, $L_{\infty}(\mathbb{T})$ is isomorphic to the group von Neumann algebra

$$
\mathcal{L}(\mathbb{Z})=\overline{\left\{\sum_{k \in \Lambda} a_{k} \lambda(k): a_{k} \in \mathbb{C}, \Lambda \subset \mathbb{Z} \text { finite }\right\}^{\mathrm{w}^{*}} \subset \mathcal{B}\left(\ell_{2}(\mathbb{Z})\right) ~}
$$

Only $\mathcal{L}(\mathrm{G})$ survives for not abelian groups, but not $L_{\infty}(\widehat{\mathrm{G}})$ unless G is abelian!!!
Given G discrete, define

- $\lambda: \mathrm{G} \rightarrow \mathcal{B}\left(\ell_{2}(\mathrm{G})\right)$ by $\lambda(g) \delta_{h}=\delta_{g h}$.

The group von Neumann algebra

Given $f \in L_{\infty}(\mathbb{T})$, let $\Lambda_{f}(g)=f g$ so that

$$
\underset{x \in \mathbb{T}}{\operatorname{ess} \sup }|f(x)|=\left\|\Lambda_{f}: L_{2}(\mathbb{T}) \rightarrow L_{2}(\mathbb{T})\right\|=\left\|\Phi \circ \Lambda_{f} \circ \Phi^{-1}: \ell_{2}(\mathbb{Z}) \rightarrow \ell_{2}(\mathbb{Z})\right\|
$$

for the Fourier transform $\Phi: L_{2}(\mathbb{T}) \ni \exp _{k} \mapsto \delta_{k} \in \ell_{2}(\mathbb{Z})$. Then, the left regular representation $\lambda: \mathbb{Z} \rightarrow \mathcal{B}\left(\ell_{2}(\mathbb{Z})\right)$ defined by $\lambda(k)=\Phi \circ \Lambda_{\exp _{k}} \circ \Phi^{-1}: \delta_{j} \mapsto \delta_{j+k}$ yields the $*$-homomorphism

$$
L_{\infty}(\mathbb{T}) \ni \sum_{k} \widehat{f}(k) \exp _{k} \mapsto \sum_{k} \widehat{f}(k) \lambda(k) \in \mathcal{B}\left(\ell_{2}(\mathbb{Z})\right)
$$

Therefore, $L_{\infty}(\mathbb{T})$ is isomorphic to the group von Neumann algebra

$$
\mathcal{L}(\mathbb{Z})=\overline{\left\{\sum_{k \in \Lambda} a_{k} \lambda(k): a_{k} \in \mathbb{C}, \Lambda \subset \mathbb{Z} \text { finite }\right\}^{w^{*}} \subset \mathcal{B}\left(\ell_{2}(\mathbb{Z})\right) ~ . ~}
$$

Only $\mathcal{L}(\mathrm{G})$ survives for not abelian groups, but not $L_{\infty}(\widehat{\mathrm{G}})$ unless G is abelian!!!
Given G discrete, define

- $\lambda: \mathrm{G} \rightarrow \mathcal{B}\left(\ell_{2}(\mathrm{G})\right)$ by $\lambda(g) \delta_{h}=\delta_{g h}$.

$\mathcal{L}(\mathrm{G})=$ Model of quantum group. Imp in NC geometry and operator algebra.

Noncommutative L_{p} norm in $\mathcal{L}(\mathrm{G})$

The natural quantum measure in $\mathcal{L}(G)$ is

$$
\tau_{\mathrm{G}}\left(\sum_{g \in \mathrm{G}} \widehat{f}(g) \lambda(g)\right)=\widehat{f}(e) \quad \text { (extends to G unimodular). }
$$

Noncommutative L_{p} norm in $\mathcal{L}(\mathrm{G})$

The natural quantum measure in $\mathcal{L}(\mathrm{G})$ is

$$
\tau_{\mathrm{G}}\left(\sum_{g \in \mathrm{G}} \widehat{f}(g) \lambda(g)\right)=\widehat{f}(e) \quad \text { (extends to G unimodular). }
$$

Given $p>0$ and $f=\sum_{g} \widehat{f}(g) \lambda(g) \in \mathcal{L}(\mathrm{G})$, we set

$$
\|f\|_{p}^{p}=\tau_{\mathrm{G}}\left[|f|^{p}\right]=\tau_{\mathrm{G}}\left[\left(f^{*} f\right)^{\frac{p}{2}}\right]
$$

by functional calculus in $\mathcal{B}\left(\ell_{2}(\mathrm{G})\right)$. It turns out that $L_{p}(\mathcal{L}(\mathrm{G}))=L_{p}(\widehat{\mathbf{G}})$ —defined as the closure of $\mathcal{L}(\mathrm{G})$ wrt the noncommutative L_{p} norm above- is isometrically isomorphic to the commutative space $L_{p}(\widehat{\mathrm{G}})$ for any abelian group G.

Noncommutative L_{p} norm in $\mathcal{L}(\mathrm{G})$

The natural quantum measure in $\mathcal{L}(G)$ is

$$
\tau_{\mathrm{G}}\left(\sum_{g \in \mathrm{G}} \widehat{f}(g) \lambda(g)\right)=\widehat{f}(e) \quad \text { (extends to G unimodular). }
$$

Given $p>0$ and $f=\sum_{g} \widehat{f}(g) \lambda(g) \in \mathcal{L}(\mathrm{G})$, we set

$$
\|f\|_{p}^{p}=\tau_{\mathrm{G}}\left[|f|^{p}\right]=\tau_{\mathrm{G}}\left[\left(f^{*} f\right)^{\frac{p}{2}}\right]
$$

by functional calculus in $\mathcal{B}\left(\ell_{2}(\mathrm{G})\right)$. It turns out that $L_{p}(\mathcal{L}(\mathrm{G}))=L_{p}(\widehat{\mathbf{G}})$ —defined as the closure of $\mathcal{L}(\mathrm{G})$ wrt the noncommutative L_{p} norm above- is isometrically isomorphic to the commutative space $L_{p}(\widehat{\mathrm{G}})$ for any abelian group G.

G abelian
χ_{g}
$L_{\infty}(\widehat{\mathrm{G}})$
Haar measure
Fourier coefficient
Plancherel theorem

G not abelian
$\lambda(g)$
$\mathcal{L}(\mathrm{G})=L_{\infty}(\widehat{\mathbf{G}})$
τ_{G}
$\widehat{f}(g)=\tau_{\mathrm{G}}\left(f \lambda(g)^{*}\right)$
$\langle f, f\rangle_{L_{2}(\mathcal{L}(\mathrm{G}))}=\sum\|\hat{f}(g)\|^{2}$

Translation invariance - Fourier multipliers

Fourier multipliers over \mathbb{Z}

$$
\underbrace{\sum_{k} \widehat{f}(k) \exp _{k}}_{f} \mapsto \underbrace{\sum_{k} m(k) \widehat{f}(k) \exp _{k}}_{T_{m} f}
$$

are characterized by $T_{m} f\left(x-x_{0}\right)=T_{m} f_{x_{0}}(x)$ for $f_{x_{0}}(x)=f\left(x-x_{0}\right)$. Consider the comultiplication map $\Delta\left(\exp _{k}\right)=\exp _{k} \otimes \exp _{k}$. It can be easily checked that the translation invariance above can be rephrased by

$$
\Delta \circ T_{m}=\left(T_{m} \otimes i d\right) \circ \Delta=\left(i d \otimes T_{m}\right) \circ \Delta .
$$

Translation invariance - Fourier multipliers

Fourier multipliers over \mathbb{Z}

$$
\underbrace{\sum_{k} \widehat{f}(k) \exp _{k}}_{f} \mapsto \underbrace{\sum_{k} m(k) \widehat{f}(k) \exp _{k}}_{T_{m} f}
$$

are characterized by $T_{m} f\left(x-x_{0}\right)=T_{m} f_{x_{0}}(x)$ for $f_{x_{0}}(x)=f\left(x-x_{0}\right)$. Consider the comultiplication map $\Delta\left(\exp _{k}\right)=\exp _{k} \otimes \exp _{k}$. It can be easily checked that the translation invariance above can be rephrased by

$$
\Delta \circ T_{m}=\left(T_{m} \otimes i d\right) \circ \Delta=\left(i d \otimes T_{m}\right) \circ \Delta .
$$

THE EXACT SAME IDENTITES CHARACTERIZE FOURIER MULTIPLIERS OVER G

$$
T_{m} f=\sum_{g \in \mathrm{G}} m(g) \widehat{f}(g) \lambda(g)=\int_{\mathrm{G}} m(g) \widehat{f}(g) \lambda(g) d \mu(g)
$$

Affine representations

We look for maps $b: \mathrm{G} \rightarrow \mathcal{H}$ such that

$$
\operatorname{dist}(g, h)=\|b(g)-b(h)\|_{\mathcal{H}} \text { defines a good pseudo-metric over G. }
$$

Affine representations

We look for maps $b: \mathrm{G} \rightarrow \mathcal{H}$ such that

$$
\operatorname{dist}(g, h)=\|b(g)-b(h)\|_{\mathcal{H}} \text { defines a good pseudo-metric over G. }
$$

Substantial information of G is encoded by its orthogonal group representations $\pi: \mathrm{G} \rightarrow \mathcal{O}(\mathcal{H})$. The map $\Pi(g) \in \operatorname{Aff}(\mathcal{H})$ given by $\Pi(g)[u]=\pi_{g}(u)+b(g)$ defines an affine representation when

$$
\Pi\left(g_{1} g_{2}\right)=\Pi\left(g_{1}\right) \circ \Pi\left(g_{2}\right) \Leftrightarrow \pi_{g_{1}}\left(b\left(g_{2}\right)\right)=b\left(g_{1} g_{2}\right)-b\left(g_{1}\right)
$$

Affine representations

We look for maps $b: \mathrm{G} \rightarrow \mathcal{H}$ such that

$$
\operatorname{dist}(g, h)=\|b(g)-b(h)\|_{\mathcal{H}} \text { defines a good pseudo-metric over } \mathrm{G} \text {. }
$$

Substantial information of G is encoded by its orthogonal group representations $\pi: \mathrm{G} \rightarrow \mathcal{O}(\mathcal{H})$. The map $\Pi(g) \in \operatorname{Aff}(\mathcal{H})$ given by $\Pi(g)[u]=\pi_{g}(u)+b(g)$ defines an affine representation when

$$
\Pi\left(g_{1} g_{2}\right)=\Pi\left(g_{1}\right) \circ \Pi\left(g_{2}\right) \Leftrightarrow \pi_{g_{1}}\left(b\left(g_{2}\right)\right)=b\left(g_{1} g_{2}\right)-b\left(g_{1}\right) .
$$

A G-cocycle is any triple (\mathcal{H}, π, b) which arises from some affine representation Π as above. Every G-cocycle gives rise naturally to the length function $\psi: \mathrm{G} \rightarrow \mathbb{R}_{+}$ defined by $\psi_{b}(g)=\langle b(g), b(g)\rangle_{\mathcal{H}}$. It satisfies $\psi_{b}(e)=0$ and $\psi_{b}(g)=\psi_{b}\left(g^{-1}\right)$ and it is a conditionally negative function

$$
\sum_{g} a_{g}=0 \Rightarrow \sum_{g, h} \overline{a_{g}} a_{h} \psi_{b}\left(g^{-1} h\right) \leq 0 .
$$

Affine representations

We look for maps $b: \mathrm{G} \rightarrow \mathcal{H}$ such that

$$
\operatorname{dist}(g, h)=\|b(g)-b(h)\|_{\mathcal{H}} \text { defines a good pseudo-metric over G. }
$$

Substantial information of G is encoded by its orthogonal group representations $\pi: \mathrm{G} \rightarrow \mathcal{O}(\mathcal{H})$. The map $\Pi(g) \in \operatorname{Aff}(\mathcal{H})$ given by $\Pi(g)[u]=\pi_{g}(u)+b(g)$ defines an affine representation when

$$
\Pi\left(g_{1} g_{2}\right)=\Pi\left(g_{1}\right) \circ \Pi\left(g_{2}\right) \Leftrightarrow \pi_{g_{1}}\left(b\left(g_{2}\right)\right)=b\left(g_{1} g_{2}\right)-b\left(g_{1}\right)
$$

A G-cocycle is any triple (\mathcal{H}, π, b) which arises from some affine representation Π as above. Every G-cocycle gives rise naturally to the length function $\psi: \mathrm{G} \rightarrow \mathbb{R}_{+}$ defined by $\psi_{b}(g)=\langle b(g), b(g)\rangle_{\mathcal{H}}$. It satisfies $\psi_{b}(e)=0$ and $\psi_{b}(g)=\psi_{b}\left(g^{-1}\right)$ and it is a conditionally negative function

$$
\sum_{g} a_{g}=0 \Rightarrow \sum_{g, h} \overline{a_{g}} a_{h} \psi_{b}\left(g^{-1} h\right) \leq 0
$$

SCHOENBERG THM. Cocycles $b \leftrightarrow$ Lengths $\psi_{b} \leftrightarrow$ Markov \star-processes $e^{-t \psi_{b}}$

Affine representations

We look for maps $b: \mathrm{G} \rightarrow \mathcal{H}$ such that

$$
\operatorname{dist}(g, h)=\|b(g)-b(h)\|_{\mathcal{H}} \text { defines a good pseudo-metric over G. }
$$

Substantial information of G is encoded by its orthogonal group representations $\pi: \mathrm{G} \rightarrow \mathcal{O}(\mathcal{H})$. The map $\Pi(g) \in \operatorname{Aff}(\mathcal{H})$ given by $\Pi(g)[u]=\pi_{g}(u)+b(g)$ defines an affine representation when

$$
\Pi\left(g_{1} g_{2}\right)=\Pi\left(g_{1}\right) \circ \Pi\left(g_{2}\right) \Leftrightarrow \pi_{g_{1}}\left(b\left(g_{2}\right)\right)=b\left(g_{1} g_{2}\right)-b\left(g_{1}\right)
$$

A G-cocycle is any triple (\mathcal{H}, π, b) which arises from some affine representation Π as above. Every G-cocycle gives rise naturally to the length function $\psi: \mathrm{G} \rightarrow \mathbb{R}_{+}$ defined by $\psi_{b}(g)=\langle b(g), b(g)\rangle_{\mathcal{H}}$. It satisfies $\psi_{b}(e)=0$ and $\psi_{b}(g)=\psi_{b}\left(g^{-1}\right)$ and it is a conditionally negative function

$$
\sum_{g} a_{g}=0 \Rightarrow \sum_{g, h} \overline{a_{g}} a_{h} \psi_{b}\left(g^{-1} h\right) \leq 0
$$

SCHOENBERG THM. Cocycles $b \leftrightarrow$ Lengths $\psi_{b} \leftrightarrow$ Markov \star-processes $e^{-t \psi_{b}}$

More flexibility $\left(\mathrm{SL}_{\mathrm{n}}(\mathbb{R})\right)$: Non-orthogonal $\pi+$ Non-Hilbert $\mathcal{H}+$ Quasi-cocycles.

Elementary group cocycles

- The group \mathbb{Z}^{n}
- Trivial cocycle
$\mathcal{H}=\mathbb{R}^{n}, \pi$ trivial and $b=i d$.
$\psi_{b}(k)=|k|^{2}$ and $e^{-t \psi_{b}}=$ heat semigroup.
Underlying cocycle in Euclidean Fourier analysis
[JMP, GAFA 2014]
- Poisson cocycle
$\mathcal{H}=L_{2}\left(\mathbb{R}^{n}, \mu\right)$ infinite-dimensional!!
$\psi_{b}(k)=|k|$ and $e^{-t \psi_{b}}=$ Poisson semigroup.
Links Euclidean Fourier analysis and NC geometry [JMP, JEMS 2016]
- Directional cocycle
$\mathcal{H}=\mathbb{R}$ one-dimesional and π trivial.
$b(k)=\langle k, x\rangle$ injective if $x_{1}, x_{2}, \ldots, x_{n}$ are \mathbb{Z}-independent.
Right endpoint BMO for directional Hilbert transforms [PR, Crelle's J 2016]

Elementary group cocycles

- The group \mathbb{Z}^{n}
- Trivial cocycle
$\mathcal{H}=\mathbb{R}^{n}, \pi$ trivial and $b=i d$.
$\psi_{b}(k)=|k|^{2}$ and $e^{-t \psi_{b}}=$ heat semigroup.
Underlying cocycle in Euclidean Fourier analysis
[JMP, GAFA 2014]
- Poisson cocycle
$\mathcal{H}=L_{2}\left(\mathbb{R}^{n}, \mu\right)$ infinite-dimensional!!
$\psi_{b}(k)=|k|$ and $e^{-t \psi_{b}}=$ Poisson semigroup.
Links Euclidean Fourier analysis and NC geometry
[JMP, JEMS 2016]
- Directional cocycle
$\mathcal{H}=\mathbb{R}$ one-dimesional and π trivial.
$b(k)=\langle k, x\rangle$ injective if $x_{1}, x_{2}, \ldots, x_{n}$ are \mathbb{Z}-independent.
Right endpoint BMO for directional Hilbert transforms [PR, Crelle's J 2016]

Elementary group cocycles

- The group \mathbb{Z}^{n}
- Trivial cocycle
$\mathcal{H}=\mathbb{R}^{n}, \pi$ trivial and $b=i d$.
$\psi_{b}(k)=|k|^{2}$ and $e^{-t \psi_{b}}=$ heat semigroup.
Underlying cocycle in Euclidean Fourier analysis
[JMP, GAFA 2014]
- Poisson cocycle
$\mathcal{H}=L_{2}\left(\mathbb{R}^{n}, \mu\right)$ infinite-dimensional!!
$\psi_{b}(k)=|k|$ and $e^{-t \psi_{b}}=$ Poisson semigroup.
Links Euclidean Fourier analysis and NC geometry
[JMP, JEMS 2016]
- Directional cocycle
$\mathcal{H}=\mathbb{R}$ one-dimesional and π trivial.
$b(k)=\langle k, x\rangle$ injective if $x_{1}, x_{2}, \ldots, x_{n}$ are \mathbb{Z}-independent.
Right endpoint BMO for directional Hilbert transforms [PR, Crelle's J 2016]

Elementary group cocycles

- The group \mathbb{Z}^{n}
- Trivial cocycle
- Poisson cocycle
- Directional cocycle
- Donut cocycle of \mathbb{R}

Pick α / β irrational and $\mathcal{H}=\mathbb{R}^{4} \simeq \mathbb{C}^{2}$
Then the map $b(\xi)=(1,1)-\left(e^{2 \pi i \alpha \xi}, e^{2 \pi i \beta \xi}\right)$ defines a geodesic flow on \mathbb{T}^{2} with dense orbit

It is an inner cocycle associated to $\pi_{\xi}(z)=\left(e^{2 \pi i \alpha \xi} z_{1}, e^{2 \pi i \beta \xi} z_{2}\right)$
New results for idempotent L_{p}-multipliers in \mathbb{R} [CPPR, Forum Math Σ 2015]

Elementary group cocycles

- The group \mathbb{Z}^{n}
- Trivial cocycle
- Poisson cocycle
- Directional cocycle
- Donut cocycle of \mathbb{R}
- Cayley cocycle of \mathbb{F}_{2}
$\mathcal{H}=\mathbb{R}\left[\mathbb{F}_{2}\right]$ with $|\mid$-Gromov inner product.
$\pi=\lambda$ and $b(w)=\delta_{w}-\delta_{e}$ yields the Cayley graph length $\psi_{b}(w)=|w|$.
Directional Hilbert transforms in the free group [MR, Preprint 2016]

Elementary group cocycles

- The group \mathbb{Z}^{n}
- Trivial cocycle
- Poisson cocycle
- Directional cocycle
- Donut cocycle of \mathbb{R}
- Cayley cocycle of \mathbb{F}_{2}
- Other proper cocycles (later)...
- Inf-dim cocycles of $\mathrm{SL}_{2}(\mathbb{R})$
- Non-orthogonal ones of $\mathrm{SL}_{3}(\mathbb{R})$

Noncommutative Riesz transforms

- A bit of history
- Dimension-free estimates

$$
\|f\|_{p} \sim_{c(p)}\left\|\left(\sum_{j=1}^{n}\left|R_{j} f\right|^{2}\right)^{\frac{1}{2}}\right\|_{p}
$$

Gundy/Varopoulos [CR Paris '79] + Stein [Bull AMS '83]
Duoandikoetxea/Rubio de Francia [CR Paris '85] + Pisier [LNM '88]
o P.A. Meyer's semigroup approach
where Γ is the so-called Carré du Champ of $S_{t}=\exp (-t A)$ $\Gamma\left(f_{1}, f_{2}\right)=\frac{1}{2}\left(\overline{A\left(f_{1}\right)} f_{2}+\overline{f_{1}} A\left(f_{2}\right)-A\left(\overline{f_{1}} f_{2}\right)\right)=$ gradient form . Meyer [LNM '84] + Bakri [LNM '87] Lust-Piquard [JFA '98, CMP '99, Adv Math '04].

- Riesz-Poisson fails Meyer's conjecture in \mathbb{R}^{n} for $p<2$!!

Noncommutative phenomena for non-diffusion (commutative) semigroups.

Noncommutative Riesz transforms

- A bit of history
- Dimension-free estimates

$$
\|f\|_{p} \sim_{c(p)}\left\|\left(\sum_{j=1}^{n}\left|R_{j} f\right|^{2}\right)^{\frac{1}{2}}\right\|_{p}
$$

Gundy/Varopoulos [CR Paris '79] + Stein [Bull AMS '83]
Duoandikoetxea/Rubio de Francia [CR Paris '85] + Pisier [LNM '88]

- P.A. Meyer's semigroup approach

$$
\|f\|_{p} \sim_{c(p)}\left\|\Gamma\left(A^{-\frac{1}{2}} f, A^{-\frac{1}{2}} f\right)^{\frac{1}{2}}\right\|_{p}
$$

where Γ is the so-called Carré du Champ of $S_{t}=\exp (-t A)$

$$
\Gamma\left(f_{1}, f_{2}\right)=\frac{1}{2}\left(\overline{A\left(f_{1}\right)} f_{2}+\overline{f_{1}} A\left(f_{2}\right)-A\left(\overline{f_{1}} f_{2}\right)\right)=\text { gradient form. }
$$

Meyer [LNM '84] + Bakri [LNM '87]
Lust-Piquard [JFA '98, CMP '99, Adv Math '04].

- Riesz-Poisson fails Meyer's conjecture in \mathbb{R}^{n} for $p<2$!!

Noncommutative phenomena for non-diffusion (commutative) semigroups.

Noncommutative Riesz transforms

- A bit of history
- Dimension-free estimates

$$
\|f\|_{p} \sim_{c(p)}\left\|\left(\sum_{j=1}^{n}\left|R_{j} f\right|^{2}\right)^{\frac{1}{2}}\right\|_{p}
$$

Gundy/Varopoulos [CR Paris '79] + Stein [Bull AMS '83]
Duoandikoetxea/Rubio de Francia [CR Paris '85] + Pisier [LNM '88]

- P.A. Meyer's semigroup approach

$$
\|f\|_{p} \sim_{c(p)}\left\|\Gamma\left(A^{-\frac{1}{2}} f, A^{-\frac{1}{2}} f\right)^{\frac{1}{2}}\right\|_{p}
$$

where Γ is the so-called Carré du Champ of $S_{t}=\exp (-t A)$

$$
\Gamma\left(f_{1}, f_{2}\right)=\frac{1}{2}\left(\overline{A\left(f_{1}\right)} f_{2}+\overline{f_{1}} A\left(f_{2}\right)-A\left(\overline{f_{1}} f_{2}\right)\right)=\text { gradient form. }
$$

Meyer [LNM '84] + Bakri [LNM '87]
Lust-Piquard [JFA '98, CMP '99, Adv Math '04].

- Riesz-Poisson fails Meyer's conjecture in \mathbb{R}^{n} for $p<2$!!

Noncommutative phenomena for non-diffusion (commutative) semigroups.

Noncommutative Riesz transforms

- A bit of history

- Dimension-free estimates
- If ψ c.n. length over G discrete $\rightsquigarrow\left(\mathcal{H}_{\psi}, \pi_{\psi}, b_{\psi}\right)$

$$
R_{\psi, u}: \sum_{g} \widehat{f}(g) \lambda(g) \mapsto 2 \pi i \sum_{g} \frac{\left\langle b_{\psi}(g), u\right\rangle_{\mathcal{H}_{\psi}}}{\sqrt{\psi(g)}} \widehat{f}(g) \lambda(g),
$$ for any $u \in \mathcal{H}_{\psi}$. Note $\sqrt{\psi(g)}=\left\|b_{\psi}(g)\right\|_{\mathcal{H}_{\psi}} \rightsquigarrow$ Standard symbol.

- Shoenberg thm: $A_{\psi}(\lambda(g))=\psi(g) \lambda(g)$ generates a Markov process.
- Diff form: with $\partial_{\psi, u}(\lambda(g))=2 \pi i\left\langle b_{\psi}(g), u\right\rangle_{\mathcal{H}_{\psi}} \lambda(g)$

Noncommutative Riesz transforms

- A bit of history

- Dimension-free estimates
- If ψ c.n. length over G discrete $\rightsquigarrow\left(\mathcal{H}_{\psi}, \pi_{\psi}, b_{\psi}\right)$

$$
R_{\psi, u}: \sum_{g} \widehat{f}(g) \lambda(g) \mapsto 2 \pi i \sum_{g} \frac{\left\langle b_{\psi}(g), u\right\rangle_{\mathcal{H}_{\psi}}}{\sqrt{\psi(g)}} \widehat{f}(g) \lambda(g),
$$

for any $u \in \mathcal{H}_{\psi}$. Note $\sqrt{\psi(g)}=\left\|b_{\psi}(g)\right\|_{\mathcal{H}_{\psi}} \rightsquigarrow$ Standard symbol.

- Shoenberg thm: $A_{\psi}(\lambda(g))=\psi(g) \lambda(g)$ generates a Markov process.
- Diff form:

Noncommutative Riesz transforms

- A bit of history

- Dimension-free estimates
- If ψ c.n. length over G discrete $\rightsquigarrow\left(\mathcal{H}_{\psi}, \pi_{\psi}, b_{\psi}\right)$

$$
R_{\psi, u}: \sum_{g} \widehat{f}(g) \lambda(g) \mapsto 2 \pi i \sum_{g} \frac{\left\langle b_{\psi}(g), u\right\rangle_{\mathcal{H}_{\psi}}}{\sqrt{\psi(g)}} \widehat{f}(g) \lambda(g),
$$

for any $u \in \mathcal{H}_{\psi}$. Note $\sqrt{\psi(g)}=\left\|b_{\psi}(g)\right\|_{\mathcal{H}_{\psi}} \rightsquigarrow$ Standard symbol.

- Shoenberg thm: $A_{\psi}(\lambda(g))=\psi(g) \lambda(g)$ generates a Markov process.
- Diff form: $R_{\psi, u}=\partial_{\psi, u} A_{\psi}^{-\frac{1}{2}}$ with $\partial_{\psi, u}(\lambda(g))=2 \pi i\left\langle b_{\psi}(g), u\right\rangle_{\mathcal{H}_{\psi}} \lambda(g)$.

Noncommutative Riesz transforms

- A bit of history

- Dimension-free estimates
- Noncommutative Riesz transforms

$$
R_{\psi, u}=\partial_{\psi, u} A_{\psi}^{-\frac{1}{2}}: \lambda(g) \mapsto 2 \pi i \frac{\left\langle b_{\psi}(g), u\right\rangle_{\mathcal{H}_{\psi}}}{\sqrt{\psi(g)}} \lambda(g) .
$$

- $L_{p}^{\circ}(\widehat{\mathrm{G}})=\left\{f \in L_{p}(\widehat{\mathrm{G}}) \mid \widehat{f}(g)=0\right.$ when $\left.b_{\psi}(g)=0\right\}$ and $R_{\psi, j}$ (ONB).

Theorem A

[Junge-Mei-Parcet, JEMS '16]

If $f \in L_{p}^{\circ}(\widehat{\mathbf{G}})$ and ψ c.n. length on G :

The \widetilde{b}_{j} 's are twisted forms of the b_{j} 's, which coincide for trivial action π_{2}
Remarks. The same result holds for unimodular groups.
Thm A implies classical result in \mathbb{R}^{n} via the trivial cocycle.
Imp. What matters is $\mathcal{H}_{\psi} \rtimes_{\pi_{\psi}} \mathrm{G}$ might not be abelian (nc ha)

Noncommutative Riesz transforms

- A bit of history

- Dimension-free estimates
- Noncommutative Riesz transforms

$$
\begin{gathered}
R_{\psi, u}=\partial_{\psi, u} A_{\psi}^{-\frac{1}{2}}: \lambda(g) \mapsto 2 \pi i \frac{\left\langle b_{\psi}(g), u\right\rangle_{\mathcal{H}_{\psi}}}{\sqrt{\psi(g)}} \lambda(g) \\
L_{p}^{\circ}(\widehat{\mathbf{G}})=\left\{f \in L_{p}(\widehat{\mathbf{G}}) \mid \widehat{f}(g)=0 \text { when } b_{\psi}(g)=0\right\} \text { and } R_{\psi, j} \text { (ONB). }
\end{gathered}
$$

Theorem A

[Junge-Mei-Parcet, JEMS '16

The \widetilde{b}_{j} 's are twisted forms of the b_{j} 's, which coincide for trivial action π_{ψ}
Remarks. The same resuit holds for unimodular groups.
Thm A implies classical result in \mathbb{R}^{n} via the trivial cocycle.
Imp. What matters is $\mathcal{H}_{\psi} \rtimes_{\pi_{\psi}} G$ might not be abelian (nc ha)

Noncommutative Riesz transforms

- A bit of history

- Dimension-free estimates
- Noncommutative Riesz transforms

$$
\begin{gathered}
R_{\psi, u}=\partial_{\psi, u} A_{\psi}^{-\frac{1}{2}}: \lambda(g) \mapsto 2 \pi i \frac{\left\langle b_{\psi}(g), u\right\rangle_{\mathcal{H}_{\psi}}}{\sqrt{\psi(g)}} \lambda(g) \\
L_{p}^{\circ}(\widehat{\mathbf{G}})=\left\{f \in L_{p}(\widehat{\mathbf{G}}) \mid \widehat{f}(g)=0 \text { when } b_{\psi}(g)=0\right\} \text { and } R_{\psi, j}(\mathrm{ONB}) .
\end{gathered}
$$

Theorem A

[Junge-Mei-Parcet, JEMS '16]

If $f \in L_{p}^{\circ}(\widehat{\mathbf{G}})$ and ψ c.n. length on G :

$$
\|f\|_{p} \sim_{c(p)}\left\{\begin{array}{l}
\inf _{R_{\psi, j} f=a_{j}+b_{j}}\left\|\left(\sum_{j \geq 1} a_{j}^{*} a_{j}\right)^{\frac{1}{2}}\right\|_{p}+\left\|\left(\sum_{j \geq 1} \widetilde{b}_{j} \widetilde{b}_{j}^{*}\right)^{\frac{1}{2}}\right\|_{p} \quad p \leq 2 \\
\max \left\{\left\|\left(\sum_{j \geq 1}\left|R_{\psi, j} f\right|^{2}\right)^{\frac{1}{2}}\right\|_{p},\left\|\left(\sum_{j \geq 1}\left|R_{\psi, j} f^{*}\right|^{2}\right)^{\frac{1}{2}}\right\|_{p}\right\} p \geq 2
\end{array}\right.
$$

The \widetilde{b}_{j} 's are twisted forms of the b_{j} 's, which coincide for trivial action π_{ψ}.
Remarks. The same result holds for unimodular groups.

$$
\begin{aligned}
& \text { Thm A implies classical result in } \mathbb{R}^{n} \text { via the trivial cocycle. } \\
& \text { Imp. What matters is } \mathcal{H}_{\psi} \rtimes_{\pi_{\psi}} \mathrm{G} \text { might not be abelian (nc ha). }
\end{aligned}
$$

Noncommutative Riesz transforms

- A bit of history

- Dimension-free estimates
- Noncommutative Riesz transforms

$$
\begin{gathered}
R_{\psi, u}=\partial_{\psi, u} A_{\psi}^{-\frac{1}{2}}: \lambda(g) \mapsto 2 \pi i \frac{\left\langle b_{\psi}(g), u\right\rangle_{\mathcal{H}_{\psi}}}{\sqrt{\psi(g)}} \lambda(g) \\
L_{p}^{\circ}(\widehat{\mathbf{G}})=\left\{f \in L_{p}(\widehat{\mathbf{G}}) \mid \widehat{f}(g)=0 \text { when } b_{\psi}(g)=0\right\} \text { and } R_{\psi, j} \text { (ONB). }
\end{gathered}
$$

Theorem A
 [Junge-Mei-Parcet, JEMS '16]

If $f \in L_{p}^{\circ}(\widehat{\mathbf{G}})$ and ψ c.n. length on G :

$$
\|f\|_{p} \sim_{c(p)}\left\{\begin{array}{l}
\inf _{R_{\psi, j} f=a_{j}+b_{j}}\left\|\left(\sum_{j \geq 1} a_{j}^{*} a_{j}\right)^{\frac{1}{2}}\right\|_{p}+\left\|\left(\sum_{j \geq 1} \widetilde{b}_{j} \widetilde{b}_{j}^{*}\right)^{\frac{1}{2}}\right\|_{p} \quad p \leq 2 \\
\max \left\{\left\|\left(\sum_{j \geq 1}\left|R_{\psi, j} f\right|^{2}\right)^{\frac{1}{2}}\right\|_{p},\left\|\left(\sum_{j \geq 1}\left|R_{\psi, j} f^{*}\right|^{2}\right)^{\frac{1}{2}}\right\|_{p}\right\} p \geq 2
\end{array}\right.
$$

The \widetilde{b}_{j} 's are twisted forms of the b_{j} 's, which coincide for trivial action π_{ψ}.
Remarks. The same result holds for unimodular groups.
Thm A implies classical result in \mathbb{R}^{n} via the trivial cocycle. Imp. What matters is $\mathcal{H}_{\psi} \rtimes_{\pi_{\psi}}$ G might not be abelian (nc ha).

Noncommutative Riesz transforms

- A bit of history
- Dimension-free estimates
- Proof $=$ Pisier + Khintchine
- Pisier's identity

$$
\begin{gathered}
\sqrt{\frac{2}{\pi}} \delta(-\Delta)^{-\frac{1}{2}} f=\left(i d_{L_{\infty}\left(\mathbb{R}^{n}\right)} \otimes Q\right)\left(\text { p.v. } \frac{1}{\pi} \int_{\mathbb{R}} \beta_{t} f \frac{d t}{t}\right) \\
\delta \varphi(x, y)=\langle\nabla \varphi(x), y\rangle, Q=\text { Gaussian proj and } \beta_{t} f(x, y)=f(x+t y)
\end{gathered}
$$

- Intertwining identity in $\mathcal{H}_{\psi} \rtimes_{\pi_{\psi}} G(n \leq \infty)$
- A crossed product extension of the NC Khintchine inequality.
- $A_{\psi}=\delta_{\psi,}^{*} \delta_{\psi}$ (Sauvageot thm) is the analogue of $-\Delta=\nabla^{*} \circ \nabla$.

Noncommutative Riesz transforms

- A bit of history
- Dimension-free estimates
- Proof $=$ Pisier + Khintchine
- Pisier's identity

$$
\begin{gathered}
\sqrt{\frac{2}{\pi}} \delta(-\Delta)^{-\frac{1}{2}} f=\left(i d_{L_{\infty}\left(\mathbb{R}^{n}\right)} \otimes Q\right)\left(\text { p.v. } \frac{1}{\pi} \int_{\mathbb{R}} \beta_{t} f \frac{d t}{t}\right) \\
\delta \varphi(x, y)=\langle\nabla \varphi(x), y\rangle, Q=\text { Gaussian proj and } \beta_{t} f(x, y)=f(x+t y)
\end{gathered}
$$

- Intertwining identity in $\mathcal{H}_{\psi} \rtimes_{\pi_{\psi}} \mathrm{G}(n \leq \infty)$

$$
\begin{gathered}
\left(\delta(-\Delta)^{-\frac{1}{2}} \rtimes i d_{\mathrm{G}}\right) \circ \sigma=i\left(i d_{\left(\mathbb{R}^{n}, \gamma\right)} \rtimes \sigma\right) \circ \delta_{\psi} A_{\psi}^{-\frac{1}{2}}, \\
\delta_{\psi}(\lambda(g))=B\left(b_{\psi}(g)\right) \rtimes \lambda(g)=\frac{1}{2 \pi i} \sum_{j=1}^{n} y_{j} \rtimes \partial_{\psi, j}(\lambda(g)), \\
\sigma: \lambda(g) \in \mathcal{L}(\mathrm{G}) \mapsto \exp \left(2 \pi i\left\langle b_{\psi}(g), \cdot\right\rangle\right) \rtimes \lambda(g) \in L_{\infty}\left(\mathbb{R}_{\mathrm{bohr}}^{n}, \mu\right) \rtimes \mathrm{G} .
\end{gathered}
$$

- A crossed product extension of the NC Khintchine inequality.
- $A_{\psi}=\delta_{\psi}^{*} \delta_{\psi}$ (Sauvageot thm) is the analogue of $-\Delta=\nabla^{*} \circ \nabla$.

Noncommutative Riesz transforms

- A bit of history
- Dimension-free estimates
- Proof $=$ Pisier + Khintchine
- Pisier's identity

$$
\begin{gathered}
\sqrt{\frac{2}{\pi}} \delta(-\Delta)^{-\frac{1}{2}} f=\left(i d_{L_{\infty}\left(\mathbb{R}^{n}\right)} \otimes Q\right)\left(\text { p.v. } \frac{1}{\pi} \int_{\mathbb{R}} \beta_{t} f \frac{d t}{t}\right) \\
\delta \varphi(x, y)=\langle\nabla \varphi(x), y\rangle, Q=\text { Gaussian proj and } \beta_{t} f(x, y)=f(x+t y)
\end{gathered}
$$

- Intertwining identity in $\mathcal{H}_{\psi} \rtimes_{\pi_{\psi}} \mathrm{G}(n \leq \infty)$

$$
\begin{gathered}
\left(\delta(-\Delta)^{-\frac{1}{2}} \rtimes i d_{\mathrm{G}}\right) \circ \sigma=i\left(i d_{\left(\mathbb{R}^{n}, \gamma\right)} \rtimes \sigma\right) \circ \delta_{\psi} A_{\psi}^{-\frac{1}{2}}, \\
\delta_{\psi}(\lambda(g))=B\left(b_{\psi}(g)\right) \rtimes \lambda(g)=\frac{1}{2 \pi i} \sum_{j=1}^{n} y_{j} \rtimes \partial_{\psi, j}(\lambda(g)), \\
\sigma: \lambda(g) \in \mathcal{L}(\mathrm{G}) \mapsto \exp \left(2 \pi i\left\langle b_{\psi}(g), \cdot\right\rangle\right) \rtimes \lambda(g) \in L_{\infty}\left(\mathbb{R}_{\mathrm{bohr}}^{n}, \mu\right) \rtimes \mathrm{G} .
\end{gathered}
$$

- A crossed product extension of the NC Khintchine inequality.
- $A_{\psi}=\delta_{\psi}^{*} \delta_{\psi}$ (Sauvageot thm) is the analogue of $-\Delta=\nabla^{*} \circ \nabla$.

Noncommutative Riesz transforms

- A bit of history
- Dimension-free estimates
- Proof $=$ Pisier + Khintchine
- Pisier's identity

$$
\begin{gathered}
\sqrt{\frac{2}{\pi}} \delta(-\Delta)^{-\frac{1}{2}} f=\left(i d_{L_{\infty}\left(\mathbb{R}^{n}\right)} \otimes Q\right)\left(\text { p.v. } \frac{1}{\pi} \int_{\mathbb{R}} \beta_{t} f \frac{d t}{t}\right) \\
\delta \varphi(x, y)=\langle\nabla \varphi(x), y\rangle, Q=\text { Gaussian proj and } \beta_{t} f(x, y)=f(x+t y)
\end{gathered}
$$

- Intertwining identity in $\mathcal{H}_{\psi} \rtimes_{\pi_{\psi}} \mathrm{G}(n \leq \infty)$

$$
\begin{gathered}
\left(\delta(-\Delta)^{-\frac{1}{2}} \rtimes i d_{\mathrm{G}}\right) \circ \sigma=i\left(i d_{\left(\mathbb{R}^{n}, \gamma\right)} \rtimes \sigma\right) \circ \delta_{\psi} A_{\psi}^{-\frac{1}{2}}, \\
\delta_{\psi}(\lambda(g))=B\left(b_{\psi}(g)\right) \rtimes \lambda(g)=\frac{1}{2 \pi i} \sum_{j=1}^{n} y_{j} \rtimes \partial_{\psi, j}(\lambda(g)), \\
\sigma: \lambda(g) \in \mathcal{L}(\mathrm{G}) \mapsto \exp \left(2 \pi i\left\langle b_{\psi}(g), \cdot\right\rangle\right) \rtimes \lambda(g) \in L_{\infty}\left(\mathbb{R}_{\mathrm{bohr}}^{n}, \mu\right) \rtimes \mathrm{G} .
\end{gathered}
$$

- A crossed product extension of the NC Khintchine inequality.
- $A_{\psi}=\delta_{\psi}^{*} \delta_{\psi}$ (Sauvageot thm) is the analogue of $-\Delta=\nabla^{*} \circ \nabla$.

Noncommutative Riesz transforms

- A bit of history
- Dimension-free estimates
- Proof $=$ Pisier + Khintchine
- New Riesz transforms, even commutative...
- The Riesz-Poisson transform

Integrability restriction
 [Fefferman, Acta Math '70]

Given $A=(-\Delta)^{\frac{1}{2}}$ and $f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$, we have

$$
\Gamma_{A}(f, f)=\int_{\mathbb{R}_{+}} P_{s}\left|\nabla P_{s} f\right|^{2} d s \notin L_{p}\left(\mathbb{R}^{n}\right) \quad \text { for } \quad p \leq \frac{2 n}{n+1}
$$

where $\nabla g(x, s)=\left(\partial_{x} g, \partial_{s} g\right)$ includes both spatial and time derivatives.

$$
\text { Meyer's approach fails for } p<2 \text { and } n \text { large } \rightsquigarrow \text { What is the right form? }
$$

By a variation of the Poisson cocycle.
Theorem A solves it for any fractional laplacian in \mathbb{R}^{n}
Dim-free estimates for Riesz potencials \rightsquigarrow Noncommutative approach.
It will be useful below for smooth Fourier multipliers in group algebras.

Noncommutative Riesz transforms

- A bit of history
- Dimension-free estimates
- Proof $=$ Pisier + Khintchine
- New Riesz transforms, even commutative...
- The Riesz-Poisson transform

Integrability restriction
 [Fefferman, Acta Math '70]

Given $A=(-\Delta)^{\frac{1}{2}}$ and $f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$, we have

$$
\Gamma_{A}(f, f)=\int_{\mathbb{R}_{+}} P_{s}\left|\nabla P_{s} f\right|^{2} d s \notin L_{p}\left(\mathbb{R}^{n}\right) \quad \text { for } \quad p \leq \frac{2 n}{n+1}
$$

where $\nabla g(x, s)=\left(\partial_{x} g, \partial_{s} g\right)$ includes both spatial and time derivatives.
Meyer's approach fails for $p<2$ and n large \rightsquigarrow What is the right form?
By a variation of the Poisson cocycle
Theorem A solves it for any fractional laplacian in \mathbb{R}^{n}
Dim-free estimates for Riesz potencials \rightsquigarrow Noncommutative approach.
It will be useful below for smooth Fourier multipliers in group algebras.

Noncommutative Riesz transforms

- A bit of history
- Dimension-free estimates
- Proof $=$ Pisier + Khintchine
- New Riesz transforms, even commutative...
- The Riesz-Poisson transform

Integrability restriction
 [Fefferman, Acta Math '70]

Given $A=(-\Delta)^{\frac{1}{2}}$ and $f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$, we have

$$
\Gamma_{A}(f, f)=\int_{\mathbb{R}_{+}} P_{s}\left|\nabla P_{s} f\right|^{2} d s \notin L_{p}\left(\mathbb{R}^{n}\right) \quad \text { for } \quad p \leq \frac{2 n}{n+1}
$$

where $\nabla g(x, s)=\left(\partial_{x} g, \partial_{s} g\right)$ includes both spatial and time derivatives.
Meyer's approach fails for $p<2$ and n large \rightsquigarrow What is the right form?
By a variation of the Poisson cocycle...
Theorem A solves it for any fractional laplacian in $\mathbb{R}^{n} \ldots$
Dim-free estimates for Riesz potencials \rightsquigarrow Noncommutative approach.
It will be useful below for smooth Fourier multipliers in group algebras.

Noncommutative Riesz transforms

- A bit of history
- Dimension-free estimates
- Proof $=$ Pisier + Khintchine
- New Riesz transforms, even commutative...
- The Riesz-Poisson transform

Integrability restriction
 [Fefferman, Acta Math '70]

Given $A=(-\Delta)^{\frac{1}{2}}$ and $f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$, we have

$$
\Gamma_{A}(f, f)=\int_{\mathbb{R}_{+}} P_{s}\left|\nabla P_{s} f\right|^{2} d s \notin L_{p}\left(\mathbb{R}^{n}\right) \quad \text { for } \quad p \leq \frac{2 n}{n+1}
$$

where $\nabla g(x, s)=\left(\partial_{x} g, \partial_{s} g\right)$ includes both spatial and time derivatives.
Meyer's approach fails for $p<2$ and n large \rightsquigarrow What is the right form?
By a variation of the Poisson cocycle...
Theorem A solves it for any fractional laplacian in $\mathbb{R}^{n} \ldots$
Dim-free estimates for Riesz potencials \rightsquigarrow Noncommutative approach.
It will be useful below for smooth Fourier multipliers in group algebras.

Noncommutative Riesz transforms

- A bit of history
- Dimension-free estimates
- Proof $=$ Pisier + Khintchine
- New Riesz transforms, even commutative...
- The Riesz-Poisson transform
- Discrete laplacians in LCA groups

Let Γ_{0} be an LCA group and $\Gamma=\Gamma_{0} \times \Gamma_{0} \times \cdots \times \Gamma_{0}$. Let $\delta \in \Gamma_{0}$ be torsion free. Introduce $\partial_{j} f(\gamma)=f(\gamma)-f\left(\gamma_{1}, \ldots, \delta \gamma_{j}, \ldots, \gamma_{n}\right)$ and corresponding discrete laplacian $\mathcal{L}=\sum_{j} \partial_{j}^{*} \partial_{j}$ and Riesz transforms $R_{\delta, j}=\partial_{j} \mathcal{L}^{-\frac{1}{2}}$.

Discrete laplacians [Lust-Piquard, Adv Math '04]

> $1<p<2$: Other dim-free estimates + Counterexample for this form
> Thm A more flexible: It admits torsion and many other new laplacians.

Noncommutative Riesz transforms

- A bit of history
- Dimension-free estimates
- Proof $=$ Pisier + Khintchine
- New Riesz transforms, even commutative...
- The Riesz-Poisson transform
- Discrete laplacians in LCA groups

Let Γ_{0} be an LCA group and $\Gamma=\Gamma_{0} \times \Gamma_{0} \times \cdots \times \Gamma_{0}$. Let $\delta \in \Gamma_{0}$ be torsion free. Introduce $\partial_{j} f(\gamma)=f(\gamma)-f\left(\gamma_{1}, \ldots, \delta \gamma_{j}, \ldots, \gamma_{n}\right)$ and corresponding discrete laplacian $\mathcal{L}=\sum_{j} \partial_{j}^{*} \partial_{j}$ and Riesz transforms $R_{\delta, j}=\partial_{j} \mathcal{L}^{-\frac{1}{2}}$.

Discrete laplacians
 [Lust-Piquard, Adv Math '04]

If $p \geq 2$

$$
\|f\|_{L_{p}(\Gamma)} \sim_{c(p)}\left\|\left(\sum_{j=1}^{n}\left|R_{\delta, j} f\right|^{2}+\left|R_{\delta, j}^{*} f\right|^{2}\right)^{\frac{1}{2}}\right\|_{L_{p}(\Gamma)} .
$$

$1<p<2$: Other dim-free estimates + Counterexample for this form.
Thm A more flexible: It admits torsion and many other new laplacians.

Noncommutative Riesz transforms

- A bit of history
- Dimension-free estimates
- Proof $=$ Pisier + Khintchine
- New Riesz transforms, even commutative...
- The Riesz-Poisson transform
- Discrete laplacians in LCA groups

Let Γ_{0} be an LCA group and $\Gamma=\Gamma_{0} \times \Gamma_{0} \times \cdots \times \Gamma_{0}$. Let $\delta \in \Gamma_{0}$ be torsion free. Introduce $\partial_{j} f(\gamma)=f(\gamma)-f\left(\gamma_{1}, \ldots, \delta \gamma_{j}, \ldots, \gamma_{n}\right)$ and corresponding discrete laplacian $\mathcal{L}=\sum_{j} \partial_{j}^{*} \partial_{j}$ and Riesz transforms $R_{\delta, j}=\partial_{j} \mathcal{L}^{-\frac{1}{2}}$.

Discrete laplacians
 [Lust-Piquard, Adv Math '04]

If $p \geq 2$

$$
\|f\|_{L_{p}(\Gamma)} \sim_{c(p)}\left\|\left(\sum_{j=1}^{n}\left|R_{\delta, j} f\right|^{2}+\left|R_{\delta, j}^{*} f\right|^{2}\right)^{\frac{1}{2}}\right\|_{L_{p}(\Gamma)} .
$$

$1<p<2$: Other dim-free estimates + Counterexample for this form.
Thm A more flexible: It admits torsion and many other new laplacians.

Noncommutative Riesz transforms

- A bit of history
- Dimension-free estimates
- Proof $=$ Pisier + Khintchine
- New Riesz transforms, even commutative...
- The Riesz-Poisson transform
- Discrete laplacians in LCA groups
- Word length laplacians over \mathbb{Z}_{n} and \mathbb{F}_{n}

$$
\begin{aligned}
& \left\|\sum_{j \in \mathbb{Z}_{n}} \widehat{f}(j) \chi_{j}\right\|_{L_{p}\left(\widehat{\mathbb{Z}}_{n}\right)} \sim_{c(p)}\left\|\left(\sum_{k \in \mathbb{Z}_{n}}\left|\sum_{j \in \Lambda_{k}} \frac{\widehat{f}(j)}{\sqrt{j \wedge(n-j)}} \chi_{j}\right|^{2}\right)^{\frac{1}{2}}\right\|_{L_{p}\left(\widehat{\mathbb{Z}}_{n}\right)} \\
& \text { with } \Lambda_{k}=\left\{j \in \mathbb{Z}_{2 m}: j-k \equiv s(2 m) \text { with } 0 \leq s \leq m-1\right\} \text { when } n=2 m . \\
& \|f\|_{L_{p}\left(\widehat{\mathbf{F}}_{n}\right)} \sim_{c(p)}\left\|\left(\sum_{h \neq e}\left|\sum_{g \geq h} \frac{\widehat{f}(g)}{\sqrt{|g|}} \lambda(g)\right|^{2}+\left|\sum_{g \geq h} \frac{\overline{\hat{f}\left(g^{-1}\right)}}{\sqrt{|g|}} \lambda(g)\right|^{2}\right)^{\frac{1}{2}}\right\|_{L_{p}\left(\widehat{\mathbf{F}}_{n}\right)} .
\end{aligned}
$$

Smooth Fourier multipliers over G

- A Hörmander-Mihlin theorem

If $\|m\|_{M_{p}\left(\mathbb{R}^{n}\right)}=\left\|T_{m}\right\|_{p \rightarrow p}$ for $\widehat{T_{m} f}(\xi)=m(\xi) \widehat{f}(\xi) \ldots$

Classical HM theorem

[Dokl Akad '56 + Acta Math '60]
Let $1<p<\infty$:
i) $\left[\right.$ Mihlin, 1956] If $m \in \mathcal{C}^{\left[\frac{n}{2}\right]+1}\left(\mathbb{R}^{n} \backslash\{0\}\right)$

$$
\|m\|_{M_{p}\left(\mathbb{R}^{n}\right)} \leq c_{n} \sup _{\xi \neq 0} \sup _{|\beta| \leq\left[\frac{n}{2}\right]+1}|\xi|^{|\beta|}\left|\partial_{\xi}^{\beta} m(\xi)\right| .
$$

ii) [Hörmander, 1960] If $m \in \mathcal{C}^{\left[\frac{n}{2}\right]+1}\left(\mathbb{R}^{n} \backslash\{0\}\right)$

$$
\|m\|_{M_{p}\left(\mathbb{R}^{n}\right)} \leq c_{n} \sup _{\substack{R>0 \\|\beta| \leq\left[\frac{n}{2}+1\right]}}\left(\frac{1}{R^{n-2|\beta|}} \int_{R<|\xi|<2 R}\left|\partial_{\xi}^{\beta} m(\xi)\right|^{2} d \xi\right)^{\frac{1}{2}}
$$

iii) [Sobolev space formulation] If φ is a cutoff in $1<|\xi|<2$

$$
\left.\|m\|_{\mathrm{M}_{p}\left(\mathbb{R}^{n}\right)} \leq c_{n} \sup _{j \in \mathbb{Z}} \|\left(1+| |^{2}\right)^{\frac{n}{4}+\varepsilon}\left(\widehat{\varphi \mathrm{m}^{j}} \cdot\right)\right) \|_{L_{2}\left(\mathbb{R}^{n}\right)}
$$

Smooth Fourier multipliers over G

- A Hörmander-Mihlin theorem

Set as usual $\widehat{\mathrm{D}_{\alpha} f}(\xi)=|\xi|^{\alpha} \widehat{f}(\xi)$ and $\psi_{\varepsilon}(\xi)=\mathrm{k}_{n}(\varepsilon)|\xi|^{2 \varepsilon}$.
GOAL $=$ Sufficient smoothness for the ψ-lifting \widetilde{m} in $m=\widetilde{m} \circ b_{\psi}$.
Theorem B [Junge-Mei-Parcet, GAFA '14 + JEMS '16]

Let G be a discrete group and let $\%: \mathrm{C} \rightarrow \mathbb{D}$ be a e.n. Iength giving rise to a n-dimensional cocycle $\left(\mathcal{H}_{\psi}, \pi_{\psi}, b_{\psi}\right)$. Given $1<p<\infty$, a Littlewood-Paley decomposition $\left(\varphi_{j}\right)_{j \in \mathbb{Z}}$ in \mathbb{R}^{n} and $\varepsilon>0$, the following inequality holds

Smaller than classical term!!!
Also $L_{\infty} \rightarrow \mathrm{BMO}$ estimates under slighty stronget $\mathrm{min}_{\text {-regularity assumptions. }}$
Approach 1. NCCZ + Cocycle BMO Mihlin type result + NC Littlewood-Paley
Approach 2. Quantum Probability methods. Optimal Sobolev L_{p}-formulation $\mathrm{H}-\mathrm{M}(\varepsilon)$ multipliers are L-P averages of $\psi_{\varepsilon}-$ Riesz transforms!

Smooth Fourier multipliers over G

- A Hörmander-Mihlin theorem

Set as usual $\widehat{\mathrm{D}_{\alpha} f}(\xi)=|\xi|^{\alpha} \widehat{f}(\xi)$ and $\psi_{\varepsilon}(\xi)=\mathrm{k}_{n}(\varepsilon)|\xi|^{2 \varepsilon}$.
GOAL $=$ Sufficient smoothness for the ψ-lifting \widetilde{m} in $m=\widetilde{m} \circ b_{\psi} \ldots$
Theorem B [Junge-Mei-Parcet, GAFA '14 + JEMS '16]

Let G be a discrete group and let $\psi: \mathrm{G} \rightarrow \mathbb{R}_{+}$be a c.n. length giving rise to a n-dimensional cocycle $\left(\mathcal{H}_{\psi}, \pi_{\psi}, b_{\psi}\right)$. Given $1<p<\infty$, a Littlewood-Paley decomposition $\left(\varphi_{j}\right)_{j \in \mathbb{Z}}$ in \mathbb{R}^{n} and $\varepsilon>0$, the following inequality holds

Smaller than classical term!!!
Also $L_{\infty} \rightarrow \mathrm{BMO}$ estimates under slightly stronger \widetilde{m}-regularity assumptions.
Approach 1. NCCZ + Cocycle BMO Mihlin type result + NC Littlewood-Paley
Approach 2. Quantum Probability methods.
Optimal Sobolev L_{p}-formulation
$\mathrm{H}-\mathrm{M}(\varepsilon)$ multipliers are L-P averages of ψ_{ε}-Riesz transforms!

Smooth Fourier multipliers over G

- A Hörmander-Mihlin theorem

Set as usual $\widehat{\mathrm{D}_{\alpha} f}(\xi)=|\xi|^{\alpha} \widehat{f}(\xi)$ and $\psi_{\varepsilon}(\xi)=\mathrm{k}_{n}(\varepsilon)|\xi|^{2 \varepsilon}$.
GOAL $=$ Sufficient smoothness for the ψ-lifting \widetilde{m} in $m=\widetilde{m} \circ b_{\psi} \ldots$

Theorem B

[Junge-Mei-Parcet, GAFA '14 + JEMS '16]
Let G be a discrete group and let $\psi: \mathrm{G} \rightarrow \mathbb{R}_{+}$be a c.n. length giving rise to a n-dimensional cocycle $\left(\mathcal{H}_{\psi}, \pi_{\psi}, b_{\psi}\right)$. Given $1<p<\infty$, a Littlewood-Paley decomposition $\left(\varphi_{j}\right)_{j \in \mathbb{Z}}$ in \mathbb{R}^{n} and $\varepsilon>0$, the following inequality holds

$$
\|m\|_{M_{p}(\widehat{\mathbf{G}})} \lesssim_{c(p, n)}|m(e)|+\inf _{m=\tilde{m} \circ b_{\psi}}\{\underbrace{\sup _{j \in \mathbb{Z}}\left\|\mathrm{D}_{\frac{n}{2}+\varepsilon}\left(\sqrt{\psi_{\varepsilon}} \varphi_{j} \widetilde{m}\right)\right\|_{L_{2}\left(\mathbb{R}^{n}\right)}}_{\text {Smaller than classical term!!! }}\}
$$

Also $L_{\infty} \rightarrow$ BMO estimates under slightly stronger \widetilde{m}-regularity assumptions.
Approach 1. NCCZ + Cocycle BMO Mihlin type result + NC Littlewood-Paley
Approach 2. Quantum Probability methods. Optimal Sobolev L_{p}-formulation. H-M (ε) multipliers are L-P averages of ψ_{ε}-Riesz transforms!

Smooth Fourier multipliers over G

- A Hörmander-Mihlin theorem

Set as usual $\widehat{\mathrm{D}_{\alpha} f}(\xi)=|\xi|^{\alpha} \widehat{f}(\xi)$ and $\psi_{\varepsilon}(\xi)=\mathrm{k}_{n}(\varepsilon)|\xi|^{2 \varepsilon}$.
GOAL $=$ Sufficient smoothness for the ψ-lifting \widetilde{m} in $m=\widetilde{m} \circ b_{\psi} \ldots$

Theorem B

[Junge-Mei-Parcet, GAFA '14 + JEMS '16]
Let G be a discrete group and let $\psi: \mathrm{G} \rightarrow \mathbb{R}_{+}$be a c.n. length giving rise to a n-dimensional cocycle $\left(\mathcal{H}_{\psi}, \pi_{\psi}, b_{\psi}\right)$. Given $1<p<\infty$, a Littlewood-Paley decomposition $\left(\varphi_{j}\right)_{j \in \mathbb{Z}}$ in \mathbb{R}^{n} and $\varepsilon>0$, the following inequality holds

$$
\|m\|_{M_{p}(\widehat{\mathbf{G}})} \lesssim_{c(p, n)}|m(e)|+\inf _{m=\tilde{m} \circ b_{\psi}}\{\underbrace{\sup _{j \in \mathbb{Z}}\left\|\mathrm{D}_{\frac{n}{2}+\varepsilon}\left(\sqrt{\psi_{\varepsilon}} \varphi_{j} \widetilde{m}\right)\right\|_{L_{2}\left(\mathbb{R}^{n}\right)}}_{\text {Smaller than classical term!!! }}\}
$$

Also $L_{\infty} \rightarrow \mathrm{BMO}$ estimates under slightly stronger \widetilde{m}-regularity assumptions.
Approach 1. NCCZ + Cocycle BMO.
Mihlin type result + NC Littlewood-Paley.
Approach 2. Quantum Probability methods. Optimal Sobolev L_{p}-formulation. $\mathrm{H}-\mathrm{M}(\varepsilon)$ multipliers are L-P averages of $\psi_{\varepsilon}-$ Riesz transforms!

Smooth Fourier multipliers over G

- A Hörmander-Mihlin theorem

Set as usual $\widehat{\mathrm{D}_{\alpha} f}(\xi)=|\xi|^{\alpha} \widehat{f}(\xi)$ and $\psi_{\varepsilon}(\xi)=\mathrm{k}_{n}(\varepsilon)|\xi|^{2 \varepsilon}$.
GOAL $=$ Sufficient smoothness for the ψ-lifting \widetilde{m} in $m=\widetilde{m} \circ b_{\psi} \ldots$

Theorem B

[Junge-Mei-Parcet, GAFA '14 + JEMS '16]
Let G be a discrete group and let $\psi: \mathrm{G} \rightarrow \mathbb{R}_{+}$be a c.n. length giving rise to a n-dimensional cocycle $\left(\mathcal{H}_{\psi}, \pi_{\psi}, b_{\psi}\right)$. Given $1<p<\infty$, a Littlewood-Paley decomposition $\left(\varphi_{j}\right)_{j \in \mathbb{Z}}$ in \mathbb{R}^{n} and $\varepsilon>0$, the following inequality holds

$$
\|m\|_{M_{p}(\widehat{\mathbf{G}})} \lesssim_{c(p, n)}|m(e)|+\inf _{m=\tilde{m} \circ b_{\psi}}\{\underbrace{\sup _{j \in \mathbb{Z}}\left\|D_{\frac{n}{2}+\varepsilon}\left(\sqrt{\psi_{\varepsilon}} \varphi_{j} \widetilde{m}\right)\right\|_{L_{2}\left(\mathbb{R}^{n}\right)}}_{\text {Smaller than classical term!!! }}\}
$$

Also $L_{\infty} \rightarrow$ BMO estimates under slightly stronger \tilde{m}-regularity assumptions.
Approach 1. NCCZ + Cocycle BMO.
Mihlin type result + NC Littlewood-Paley.
Approach 2. Quantum Probability methods.
Optimal Sobolev L_{p}-formulation.
$\mathrm{H}-\mathrm{M}(\varepsilon)$ multipliers are L-P averages of ψ_{ε}-Riesz transforms!

Smooth Fourier multipliers over G

- A Hörmander-Mihlin theorem

- A magic formula for H-M multipliers

Let $m: \mathbb{R}^{n} \rightarrow \mathbb{C}$ satisfy

$$
\|m\|_{\mathrm{W}_{\frac{n}{2}+\varepsilon}^{2}\left(\psi_{\varepsilon}\right)}=\left\|\mathrm{D}_{\frac{n}{2}+\varepsilon}\left(\sqrt{\psi_{\varepsilon}} m\right)\right\|_{L_{2}\left(\mathbb{R}^{n}\right)}<\infty .
$$

Then, there exists $h \in \mathcal{H}_{\varepsilon}=L_{2}\left(\mathbb{R}^{n}, \mu_{\varepsilon}\right)$ such that
with $\|m\|_{W_{n+\varepsilon}^{2}\left(\psi_{\varepsilon}\right)}=\|h\|_{\mathcal{H}_{\varepsilon}}$. We find one-to-one correspondences Riesz transforms \longleftrightarrow Elements in W_{n}^{2} L-P averages of $\hat{H}_{\text {e }}$ Riesz \longleftrightarrow Hörmander-Mihiin multipliers.

Smooth Fourier multipliers over G

- A Hörmander-Mihlin theorem

- A magic formula for H-M multipliers

Let $m: \mathbb{R}^{n} \rightarrow \mathbb{C}$ satisfy

$$
\|m\|_{\mathrm{W}_{\frac{n}{2}+\varepsilon}^{2}\left(\psi_{\varepsilon}\right)}=\left\|\mathrm{D}_{\frac{n}{2}+\varepsilon}\left(\sqrt{\psi_{\varepsilon}} m\right)\right\|_{L_{2}\left(\mathbb{R}^{n}\right)}<\infty
$$

Then, there exists $h \in \mathcal{H}_{\varepsilon}=L_{2}\left(\mathbb{R}^{n}, \mu_{\varepsilon}\right)$ such that

$$
m(\xi)=\left\langle h, \frac{b_{\varepsilon}(\xi)}{\left\|b_{\varepsilon}(\xi)\right\|_{\mathcal{H}_{\psi}}}\right\rangle_{\mu_{\varepsilon}}=\text { Symbol of } R_{\psi_{\varepsilon}, h}
$$

with $\|m\|_{\mathrm{W}_{\frac{n}{2}+\varepsilon}^{2}\left(\psi_{\varepsilon}\right)}=\|h\|_{\mathcal{H}_{\varepsilon}}$. We find one-to-one correspondences

$$
\psi_{\varepsilon} \text {-Riesz transforms } \longleftrightarrow \text { Elements in } \mathrm{W}_{\frac{n}{2}}^{2}+\varepsilon\left(\psi_{\varepsilon}\right)
$$

L-P averages of ψ_{ε}-Riesz \longleftrightarrow Hörmander-Mihlin multipliers.

Smooth Fourier multipliers over G

- A Hörmander-Mihlin theorem
- A magic formula for H-M multipliers
- Dimension free constants via holomorphic calculus

Corollary B1

With the same assumptions
dimension-free, for any radial Cowling/McIntosh partition of unity $\left(\varphi_{s}\right)_{s>0}$.

Smooth Fourier multipliers over G

- A Hörmander-Mihlin theorem
- A magic formula for H-M multipliers
- Dimension free constants via holomorphic calculus
- Limiting Besov $B_{\frac{n}{2}, 2}^{2}$ conditions with a logarithmic weight

We had $\psi_{\varepsilon}(\xi)=\mathrm{k}_{n}(\varepsilon)|\xi|^{2 \varepsilon}=\int_{\mathbb{R}^{n}}(1-\cos (2 \pi\langle\xi, x\rangle)) \frac{d x}{|x|^{n+2 \varepsilon}}$.
If we pick $\psi_{\mu}(\xi)=\int_{\mathbb{R}^{n}}(1-\cos (2 \pi\langle\xi, x\rangle))\left(\chi_{|x| \leq 1}+\frac{\chi_{|x|>1}}{1+\log ^{2}|x|}\right) \frac{d x}{|x|^{n}} \ldots$

Corollary B2

Letting w $\mathrm{w}_{k}=\delta_{k} \leq 0+k^{2} \delta_{k>0}$

This is in the line of previous work by Carbery, Seeger, Baernstein/Sawyer

Smooth Fourier multipliers over G

- A Hörmander-Mihlin theorem
- A magic formula for H-M multipliers
- Dimension free constants via holomorphic calculus
- Limiting Besov $B_{\frac{n}{2}, 2}^{2}$ conditions with a logarithmic weight

We had $\psi_{\varepsilon}(\xi)=\mathrm{k}_{n}(\varepsilon)|\xi|^{2 \varepsilon}=\int_{\mathbb{R}^{n}}(1-\cos (2 \pi\langle\xi, x\rangle)) \frac{d x}{|x|^{n+2 \varepsilon}}$.
If we pick $\psi_{\mu}(\xi)=\int_{\mathbb{R}^{n}}(1-\cos (2 \pi\langle\xi, x\rangle))\left(\chi_{|x| \leq 1}+\frac{\chi_{|x|>1}}{1+\log ^{2}|x|}\right) \frac{d x}{|x|^{n}} \ldots$

Corollary B2

Letting $\mathrm{w}_{k}=\delta_{k \leq 0}+k^{2} \delta_{k>0}$

$$
\|m\|_{M_{p}(\widehat{\mathbf{G}})} \lesssim_{c(p, n)}|m(e)|+\sup _{j \in \mathbb{Z}}\left(\sum_{k \in \mathbb{Z}} 2^{n k} \mathrm{w}_{k}\left\|\widehat{\varphi}_{k} *\left(\sqrt{\psi_{\mu}} \varphi_{j} \widetilde{m}\right)\right\|_{2}^{2}\right)^{\frac{1}{2}}
$$

This is in the line of previous work by Carbery, Seeger, Baernstein/Sawyer...

Maximal estimates and Sobolev dimension

$$
\begin{aligned}
& \text { If } \delta(\lambda(g))=\lambda(g) \otimes \lambda(g) \text { and } \sigma(\lambda(g))=\lambda\left(g^{-1}\right) \\
& \qquad T_{m} f=\lambda(m) \star f=(\tau \otimes \mathrm{Id})(\delta \lambda(m)(\sigma f \otimes \mathbf{1}))
\end{aligned}
$$

Theorem C

[González-Pérez-Junge-Parcet, Ann Sci ENS '16]
Let G be discrete, $\psi: G \rightarrow \mathbb{R}_{+}$an arbitrary c.n. length and $\eta(z)=z e^{-z}$. Given $m: \mathrm{G} \rightarrow \mathbb{C}$ constant where $\psi=0$, assume $\lambda(m \eta(t \psi))=\Sigma_{t} M_{t}$ with M_{t} positive and consider the convolution map $\mathcal{R} f=\left(M_{t}^{2} \star f\right)_{t>0}$. If $p>2$ we find

> Remarks. Tradition in classical HA [Bennet, Anal \& PDE '14]. By duality, a similar statement also holds for $1<p<2$. Noncommutative square and maximal L_{p}-norms together (Pisier).

Main application.

Radial multipliers $=$ Spectral multipliers.
Smoothness (Σ_{t}) wrt Sobolev Dimension $\left(M_{t}\right) \rightsquigarrow$ Inf-dim cocycles admissible!!

Maximal estimates and Sobolev dimension

$$
\begin{aligned}
& \text { If } \delta(\lambda(g))=\lambda(g) \otimes \lambda(g) \text { and } \sigma(\lambda(g))=\lambda\left(g^{-1}\right) \\
& \qquad T_{m} f=\lambda(m) \star f=(\tau \otimes \mathrm{Id})(\delta \lambda(m)(\sigma f \otimes \mathbf{1}))
\end{aligned}
$$

Theorem C

[González-Pérez-Junge-Parcet, Ann Sci ENS '16]
Let G be discrete, $\psi: \mathrm{G} \rightarrow \mathbb{R}_{+}$an arbitrary c.n. length and $\eta(z)=z e^{-z}$. Given $m: \mathrm{G} \rightarrow \mathbb{C}$ constant where $\psi=0$, assume $\lambda(m \eta(t \psi))=\Sigma_{t} M_{t}$ with M_{t} positive and consider the convolution map $\mathcal{R} f=\left(M_{t}^{2} \star f\right)_{t>0}$. If $p>2$ we find

$$
\begin{aligned}
\left\|T_{m}: L_{p}(\widehat{\mathbf{G}}) \rightarrow L_{p}(\widehat{\mathbf{G}})\right\| & \lesssim\left(\sup _{t>0}\left\|\Sigma_{t}\right\|_{2}\right)\left\|\mathcal{R}: L_{\left(\frac{p}{2}\right)^{\prime}} \rightarrow L_{\left(\frac{p}{2}\right)^{\prime}}\left(L_{\infty}\right)\right\| \\
& =\left(\sup _{t>0}\left\|\Sigma_{t}\right\|_{2}\right)\left(\sup _{\|f\|_{\left(\frac{p}{2}\right)^{\prime}} \leq 1}\left\|\sup _{t>0} M_{t}^{2} \star f\right\|_{\left(\frac{p}{2}\right)^{\prime}}\right) .
\end{aligned}
$$

Remarks. Tradition in classical HA [Bennet, Anal \& PDE '14] By duality, a similar statement also holds for $1<p<2$ Noncommutative square and maximal L_{p}-norms together (Pisier)
Main application.
Radial multipliers $=$ Spectral multipliers.
Smoothness $\left(\Sigma_{t}\right)$ wrt Sobolev Dimension $\left(M_{t}\right) \rightsquigarrow$ Inf-dim cocycles admissible!!

Maximal estimates and Sobolev dimension

$$
\begin{aligned}
& \text { If } \delta(\lambda(g))=\lambda(g) \otimes \lambda(g) \text { and } \sigma(\lambda(g))=\lambda\left(g^{-1}\right) \\
& \qquad T_{m} f=\lambda(m) \star f=(\tau \otimes \mathrm{Id})(\delta \lambda(m)(\sigma f \otimes \mathbf{1}))
\end{aligned}
$$

Theorem C

[González-Pérez-Junge-Parcet, Ann Sci ENS '16]
Let G be discrete, $\psi: \mathrm{G} \rightarrow \mathbb{R}_{+}$an arbitrary c.n. length and $\eta(z)=z e^{-z}$. Given $m: \mathrm{G} \rightarrow \mathbb{C}$ constant where $\psi=0$, assume $\lambda(m \eta(t \psi))=\Sigma_{t} M_{t}$ with M_{t} positive and consider the convolution map $\mathcal{R} f=\left(M_{t}^{2} \star f\right)_{t>0}$. If $p>2$ we find

$$
\begin{aligned}
\left\|T_{m}: L_{p}(\widehat{\mathbf{G}}) \rightarrow L_{p}(\widehat{\mathbf{G}})\right\| & \lesssim\left(\sup _{t>0}\left\|\Sigma_{t}\right\|_{2}\right)\left\|\mathcal{R}: L_{\left(\frac{p}{2}\right)^{\prime}} \rightarrow L_{\left(\frac{p}{2}\right)^{\prime}}\left(L_{\infty}\right)\right\| \\
& =\left(\sup _{t>0}\left\|\Sigma_{t}\right\|_{2}\right)\left(\sup _{\|f\|_{\left(\frac{p}{2}\right)^{\prime}} \leq 1}\left\|\sup _{t>0} M_{t}^{2} \star f\right\|_{\left(\frac{p}{2}\right)^{\prime}}\right) .
\end{aligned}
$$

Remarks. Tradition in classical HA [Bennet, Anal \& PDE '14].
By duality, a similar statement also holds for $1<p<2$. Noncommutative square and maximal L_{p}-norms together (Pisier).
Main application.
Radial multipliers $=$ Spectral multipliers
Smoothness $\left(\Sigma_{t}\right)$ wrt Sobolev Dimension (Λ_{t}) Inf-dim cocycles admissible!!

Maximal estimates and Sobolev dimension

$$
\begin{aligned}
& \text { If } \delta(\lambda(g))=\lambda(g) \otimes \lambda(g) \text { and } \sigma(\lambda(g))=\lambda\left(g^{-1}\right) \\
& \qquad T_{m} f=\lambda(m) \star f=(\tau \otimes \operatorname{Id})(\delta \lambda(m)(\sigma f \otimes \mathbf{1}))
\end{aligned}
$$

Theorem C

[González-Pérez-Junge-Parcet, Ann Sci ENS '16]
Let G be discrete, $\psi: \mathrm{G} \rightarrow \mathbb{R}_{+}$an arbitrary c.n. length and $\eta(z)=z e^{-z}$. Given $m: \mathrm{G} \rightarrow \mathbb{C}$ constant where $\psi=0$, assume $\lambda(m \eta(t \psi))=\Sigma_{t} M_{t}$ with M_{t} positive and consider the convolution map $\mathcal{R} f=\left(M_{t}^{2} \star f\right)_{t>0}$. If $p>2$ we find

$$
\begin{aligned}
\left\|T_{m}: L_{p}(\widehat{\mathbf{G}}) \rightarrow L_{p}(\widehat{\mathbf{G}})\right\| & \lesssim\left(\sup _{t>0}\left\|\Sigma_{t}\right\|_{2}\right)\left\|\mathcal{R}: L_{\left(\frac{p}{2}\right)^{\prime}} \rightarrow L_{\left(\frac{p}{2}\right)^{\prime}}\left(L_{\infty}\right)\right\| \\
& =\left(\sup _{t>0}\left\|\Sigma_{t}\right\|_{2}\right)\left(\sup _{\|f\|_{\left(\frac{p}{2}\right)^{\prime}} \leq 1}\left\|\sup _{t>0} M_{t}^{2} \star f\right\|_{\left(\frac{p}{2}\right)^{\prime}}\right) .
\end{aligned}
$$

Remarks. Tradition in classical HA [Bennet, Anal \& PDE '14]. By duality, a similar statement also holds for $1<p<2$. Noncommutative square and maximal L_{p}-norms together (Pisier).
Main application.
Radial multipliers $=$ Spectral multipliers.
Smoothness $\left(\Sigma_{t}\right)$ wrt Sobolev Dimension $\left(M_{t}\right) \rightsquigarrow$ Inf-dim cocycles admissible!!

Directional Hilbert transforms

Given a c.n. length $\psi: \mathrm{G} \rightarrow \mathbb{R}_{+}$with cocycle $\left(\mathcal{H}_{\psi}, \pi_{\psi}, b_{\psi}\right)$, let

$$
H_{\psi, u}: \sum_{g} \widehat{f}(g) \lambda(g) \mapsto 2 \pi i \sum_{g} \operatorname{sgn}\left\langle b_{\psi}(g), u\right\rangle_{\mathcal{H}_{\psi}} \widehat{f}(g) \lambda(g)
$$

Hyperplane singularity of the symbol (nonsmooth) + Fubini does not work...

Directional Hilbert transforms

Given a c.n. length $\psi: \mathrm{G} \rightarrow \mathbb{R}_{+}$with cocycle $\left(\mathcal{H}_{\psi}, \pi_{\psi}, b_{\psi}\right)$, let

$$
H_{\psi, u}: \sum_{g} \widehat{f}(g) \lambda(g) \mapsto 2 \pi i \sum_{g} \operatorname{sgn}\left\langle b_{\psi}(g), u\right\rangle_{\mathcal{H}_{\psi}} \widehat{f}(g) \lambda(g)
$$

Hyperplane singularity of the symbol (nonsmooth) + Fubini does not work...

- Twisted Hilbert transforms

Let $\Gamma=\mathcal{H}_{\psi} \rtimes_{\pi} \mathrm{G}$ and $\Gamma_{\text {disc }}=\mathcal{H}_{\psi, \text { disc }} \rtimes_{\pi} \mathrm{G}$

$$
\sigma: \mathcal{L}(\mathrm{G}) \ni \lambda(g) \mapsto \exp \left(2 \pi i\left\langle b_{\psi}(g), \cdot\right\rangle\right) \rtimes \lambda(g) \in \mathcal{L}\left(\Gamma_{\text {disc }}\right)
$$

$$
H_{u} \rtimes_{\pi} i d_{\mathrm{G}} \quad L_{p}\left(\widehat{\Gamma}_{\mathrm{disc}}\right) \text {-bounded } \quad \Rightarrow \quad H_{\psi, u} \quad L_{p}(\widehat{\mathbf{G}}) \text {-bounded }
$$

Theorem D

If $1<p \neq 2<\infty$ and $\operatorname{dim} \mathcal{H}_{\psi}<\infty$, tfae:
i) The man $H_{*} \rtimes_{-}$i.d. is bounded on
ii) The map $H_{u} \rtimes_{\pi} i d_{\mathrm{G}}$ is bounded on
iii) The π-orbit of $u \mathcal{O}_{\pi}$ (

We also find $L_{1} \rightarrow L_{1, \infty}$ and $L_{\infty} \rightarrow \mathrm{BMO}$ type estimates for finite orbits.
Riesz transforms always bded \| Easy NC de Leeuw thm | Are $H_{\psi, u}$ bded?

Directional Hilbert transforms

Given a c.n. length $\psi: \mathrm{G} \rightarrow \mathbb{R}_{+}$with cocycle $\left(\mathcal{H}_{\psi}, \pi_{\psi}, b_{\psi}\right)$, let

$$
H_{\psi, u}: \sum_{g} \widehat{f}(g) \lambda(g) \mapsto 2 \pi i \sum_{g} \operatorname{sgn}\left\langle b_{\psi}(g), u\right\rangle_{\mathcal{H}_{\psi}} \widehat{f}(g) \lambda(g)
$$

Hyperplane singularity of the symbol (nonsmooth) + Fubini does not work...

- Twisted Hilbert transforms

Let $\Gamma=\mathcal{H}_{\psi} \rtimes_{\pi} \mathrm{G}$ and $\Gamma_{\text {disc }}=\mathcal{H}_{\psi, \text { disc }} \rtimes_{\pi} \mathrm{G}$

$$
\sigma: \mathcal{L}(\mathrm{G}) \ni \lambda(g) \mapsto \exp \left(2 \pi i\left\langle b_{\psi}(g), \cdot\right\rangle\right) \rtimes \lambda(g) \in \mathcal{L}\left(\Gamma_{\mathrm{disc}}\right)
$$

$$
H_{u} \rtimes_{\pi} i d_{\mathrm{G}} \quad L_{p}\left(\widehat{\boldsymbol{\Gamma}}_{\mathrm{disc}}\right) \text {-bounded } \quad \Rightarrow \quad H_{\psi, u} \quad L_{p}(\widehat{\mathbf{G}}) \text {-bounded }
$$

Theorem D
[Parcet-Rogers, Crelle's J '16]
If $1<p \neq 2<\infty$ and $\operatorname{dim} \mathcal{H}_{\psi}<\infty$, tfae:
i) The $\operatorname{map} H_{u} \rtimes_{\pi} i d_{\mathrm{G}}$ is bounded on $L_{p}(\widehat{\Gamma})$,
ii) The map $H_{u} \rtimes_{\pi} i d_{\mathrm{G}}$ is bounded on $L_{p}\left(\widehat{\boldsymbol{\Gamma}}_{\mathrm{disc}}\right)$,
iii) The π-orbit of $u \mathcal{O}_{\pi}(u)=\left\{\pi_{g}(u) \mid g \in \mathrm{G}\right\}$ is finite.

We also find $L_{1} \rightarrow L_{1, \infty}$ and $L_{\infty} \rightarrow$ BMO type estimates for finite orbits.

$$
\text { Riesz transforms always bded } \| \text { Easy NC de Leeuw thm \| Are } H_{\psi, u} \text { bded? }
$$

Directional Hilbert transforms

Given a c.n. length $\psi: \mathrm{G} \rightarrow \mathbb{R}_{+}$with cocycle $\left(\mathcal{H}_{\psi}, \pi_{\psi}, b_{\psi}\right)$, let

$$
H_{\psi, u}: \sum_{g} \widehat{f}(g) \lambda(g) \mapsto 2 \pi i \sum_{g} \operatorname{sgn}\left\langle b_{\psi}(g), u\right\rangle_{\mathcal{H}_{\psi}} \widehat{f}(g) \lambda(g)
$$

Hyperplane singularity of the symbol (nonsmooth) + Fubini does not work...

- Twisted Hilbert transforms

Let $\Gamma=\mathcal{H}_{\psi} \rtimes_{\pi} \mathrm{G}$ and $\Gamma_{\text {disc }}=\mathcal{H}_{\psi, \text { disc }} \rtimes_{\pi} \mathrm{G}$

$$
\sigma: \mathcal{L}(\mathrm{G}) \ni \lambda(g) \mapsto \exp \left(2 \pi i\left\langle b_{\psi}(g), \cdot\right\rangle\right) \rtimes \lambda(g) \in \mathcal{L}\left(\Gamma_{\mathrm{disc}}\right)
$$

$$
H_{u} \rtimes_{\pi} i d_{\mathrm{G}} \quad L_{p}\left(\widehat{\boldsymbol{\Gamma}}_{\mathrm{disc}}\right) \text {-bounded } \quad \Rightarrow \quad H_{\psi, u} \quad L_{p}(\widehat{\mathbf{G}}) \text {-bounded }
$$

Theorem D
[Parcet-Rogers, Crelle's J '16]
If $1<p \neq 2<\infty$ and $\operatorname{dim} \mathcal{H}_{\psi}<\infty$, tfae:
i) The $\operatorname{map} H_{u} \rtimes_{\pi} i d_{\mathrm{G}}$ is bounded on $L_{p}(\widehat{\Gamma})$,
ii) The map $H_{u} \rtimes_{\pi} i d_{\mathrm{G}}$ is bounded on $L_{p}\left(\widehat{\Gamma}_{\mathrm{disc}}\right)$,
iii) The π-orbit of $u \mathcal{O}_{\pi}(u)=\left\{\pi_{g}(u) \mid g \in \mathrm{G}\right\}$ is finite.

We also find $L_{1} \rightarrow L_{1, \infty}$ and $L_{\infty} \rightarrow$ BMO type estimates for finite orbits.
Riesz transforms always bded \| Easy NC de Leeuw thm | Are $H_{\psi, u}$ bded?

Directional Hilbert transforms

Given a c.n. length $\psi: \mathrm{G} \rightarrow \mathbb{R}_{+}$with cocycle $\left(\mathcal{H}_{\psi}, \pi_{\psi}, b_{\psi}\right)$, let

$$
H_{\psi, u}: \sum_{g} \widehat{f}(g) \lambda(g) \mapsto 2 \pi i \sum_{g} \operatorname{sgn}\left\langle b_{\psi}(g), u\right\rangle_{\mathcal{H}_{\psi}} \widehat{f}(g) \lambda(g)
$$

Hyperplane singularity of the symbol (nonsmooth) + Fubini does not work...

- Twisted Hilbert transforms
- Sketch of the proof ii) \Rightarrow iii) $\left(\mathcal{H}_{\psi}=\mathbb{R}^{n}, \mathcal{O}_{\pi}(u)\right.$ inf $)$

$$
\begin{gathered}
H_{u} \rtimes_{\pi} i d_{\mathrm{G}}: L_{p}\left(\widehat{\boldsymbol{\Gamma}}_{\mathrm{disc}}\right) \rightarrow L_{p}\left(\widehat{\boldsymbol{\Gamma}}_{\mathrm{disc}}\right) \\
\pi_{g} H_{u} \pi_{g}^{-1}=H_{\pi_{g}(u)}+\text { NC Littlewood-Paley }
\end{gathered}
$$

Directional Hilbert transforms

Given a c.n. length $\psi: \mathrm{G} \rightarrow \mathbb{R}_{+}$with cocycle $\left(\mathcal{H}_{\psi}, \pi_{\psi}, b_{\psi}\right)$, let

$$
H_{\psi, u}: \sum_{g} \widehat{f}(g) \lambda(g) \mapsto 2 \pi i \sum_{g} \operatorname{sgn}\left\langle b_{\psi}(g), u\right\rangle_{\mathcal{H}_{\psi}} \widehat{f}(g) \lambda(g)
$$

Hyperplane singularity of the symbol (nonsmooth) + Fubini does not work...

- Twisted Hilbert transforms
- Sketch of the proof ii) \Rightarrow iii) $\left(\mathcal{H}_{\psi}=\mathbb{R}^{n}, \mathcal{O}_{\pi}(u)\right.$ inf $)$

$$
\begin{gathered}
H_{u} \rtimes_{\pi} i d_{\mathrm{G}}: L_{p}\left(\widehat{\boldsymbol{\Gamma}}_{\mathrm{disc}}\right) \rightarrow L_{p}\left(\widehat{\boldsymbol{\Gamma}}_{\text {disc }}\right) \\
\pi_{g} H_{u} \pi_{g}^{-1}=H_{\pi_{g}(u)}+\text { NC Littlewood-Paley } \\
\Downarrow \\
\left\|\left[\sum_{j=1}^{\infty}\left|H_{\pi_{g_{j}}(u)}\left(f_{g_{j}}\right)\right|^{2}\right]^{\frac{1}{2}}\right\|_{L_{p}\left(\mathbb{R}_{\text {bohr }}^{n}\right)} \lesssim\left\|\left[\sum_{j=1}^{\infty}\left|f_{g_{j}}\right|^{2}\right]^{\frac{1}{2}}\right\|_{L_{p}\left(\mathbb{R}_{\text {bohr }}^{n}\right)}+\text { Row term }
\end{gathered}
$$

NC de Leeuw's decompactification + Ergodic theory + Suitable choice of f_{g} 's

Meyer's inequality

Directional Hilbert transforms

Given a c.n. length $\psi: \mathrm{G} \rightarrow \mathbb{R}_{+}$with cocycle $\left(\mathcal{H}_{\psi}, \pi_{\psi}, b_{\psi}\right)$, let

$$
H_{\psi, u}: \sum_{g} \widehat{f}(g) \lambda(g) \mapsto 2 \pi i \sum_{g} \operatorname{sgn}\left\langle b_{\psi}(g), u\right\rangle_{\mathcal{H}_{\psi}} \widehat{f}(g) \lambda(g)
$$

Hyperplane singularity of the symbol (nonsmooth) + Fubini does not work...

- Twisted Hilbert transforms
- Sketch of the proof ii) \Rightarrow iii) $\left(\mathcal{H}_{\psi}=\mathbb{R}^{n}, \mathcal{O}_{\pi}(u)\right.$ inf $)$

$$
\begin{gathered}
H_{u} \rtimes_{\pi} i d_{\mathrm{G}}: L_{p}\left(\widehat{\boldsymbol{\Gamma}}_{\mathrm{disc}}\right) \rightarrow L_{p}\left(\widehat{\boldsymbol{\Gamma}}_{\mathrm{disc}}\right) \\
\pi_{g} H_{u} \pi_{g}^{-1}=H_{\pi_{g}(u)}+\text { NC Littlewood-Paley } \\
\Downarrow \\
\left\|\left[\sum_{j=1}^{\infty}\left|H_{\pi_{g_{j}}(u)}\left(f_{g_{j}}\right)\right|^{2}\right]^{\frac{1}{2}}\right\|_{L_{p}\left(\mathbb{R}_{\mathrm{bohr}}^{n}\right)} \lesssim\left\|\left[\sum_{j=1}^{\infty}\left|f_{g_{j}}\right|^{2}\right]^{\frac{1}{2}}\right\|_{L_{p}\left(\mathbb{R}_{\text {bohr }}^{n}\right)}+\text { Row term } \\
\text { NC de Leeuw's decompactification }+\underset{\text { Ergodic theory }+ \text { Suitable choice of } f_{g} \text { 's }}{ } \\
\Downarrow \\
\underbrace{\left\|\left[\sum_{j=1}^{\infty}\left|H_{\pi_{g_{j}}(u)}\left(f_{g_{j}}\right)\right|^{2}\right]^{\frac{1}{2}}\right\|_{L_{p}\left(\mathbb{R}^{n}\right)} \lesssim\left\|\left[\sum_{j=1}^{\infty}\left|f_{g_{j}}\right|^{2}\right]^{\frac{1}{2}}\right\|_{L_{p}\left(\mathbb{R}^{n}\right)}}_{\text {Meyer's inequality }} \text { for } f_{g_{j}}=\chi_{A_{j}} \text { s.t... }
\end{gathered}
$$

Directional Hilbert transforms

Given a c.n. length $\psi: \mathrm{G} \rightarrow \mathbb{R}_{+}$with cocycle $\left(\mathcal{H}_{\psi}, \pi_{\psi}, b_{\psi}\right)$, let

$$
H_{\psi, u}: \sum_{g} \widehat{f}(g) \lambda(g) \mapsto 2 \pi i \sum_{g} \operatorname{sgn}\left\langle b_{\psi}(g), u\right\rangle_{\mathcal{H}_{\psi}} \widehat{f}(g) \lambda(g)
$$

Hyperplane singularity of the symbol (nonsmooth) + Fubini does not work...

- Twisted Hilbert transforms
- Sketch of the proof ii) \Rightarrow iii)

The A_{j} 's admit a HD form of Fefferman's construction in his proof of the ball multiplier theorem

Crucial (GCTh) The orbit $\mathcal{O}_{\pi}(u)$ is either finite or admits Kakeya shadows

Directional Hilbert transforms

Given a c.n. length $\psi: \mathrm{G} \rightarrow \mathbb{R}_{+}$with cocycle $\left(\mathcal{H}_{\psi}, \pi_{\psi}, b_{\psi}\right)$, let

$$
H_{\psi, u}: \sum_{g} \widehat{f}(g) \lambda(g) \mapsto 2 \pi i \sum_{g} \operatorname{sgn}\left\langle b_{\psi}(g), u\right\rangle_{\mathcal{H}_{\psi}} \widehat{f}(g) \lambda(g)
$$

Hyperplane singularity of the symbol (nonsmooth) + Fubini does not work...

- Twisted Hilbert transforms
- Sketch of the proof ii) \Rightarrow iii)

The A_{j} 's admit a HD form of Fefferman's construction in his proof of the ball multiplier theorem

Crucial (GGTh)

The orbit $\mathcal{O}_{\pi}(u)$ is either finite or admits Kakeya shadows

Directional Hilbert transforms

Given a c.n. length $\psi: \mathrm{G} \rightarrow \mathbb{R}_{+}$with cocycle $\left(\mathcal{H}_{\psi}, \pi_{\psi}, b_{\psi}\right)$, let

$$
H_{\psi, u}: \sum_{g} \widehat{f}(g) \lambda(g) \mapsto 2 \pi i \sum_{g} \operatorname{sgn}\left\langle b_{\psi}(g), u\right\rangle_{\mathcal{H}_{\psi}} \widehat{f}(g) \lambda(g)
$$

Hyperplane singularity of the symbol (nonsmooth) + Fubini does not work...

- Twisted Hilbert transforms
- Sketch of the proof ii) \Rightarrow ii)
- Lacunary subsets of discrete groups Given $\Lambda \subset \mathrm{G}$, set $\mathcal{O}_{\pi}(\Lambda, u)=\left\{\pi_{g}(u): g \in \Lambda\right\}$ and

$$
L_{\Lambda, p}\left(\widehat{\boldsymbol{\Gamma}}_{\mathrm{disc}}\right)=\left\{f=\sum_{g \in \Lambda} f_{g} \rtimes \lambda(g) \in L_{p}\left(\widehat{\boldsymbol{\Gamma}}_{\mathrm{disc}}\right)\right\} .
$$

Corollary [Parcet-Rogers, AJM '15 + Crelle '16]
$\Omega \subset \mathbb{S}^{n-1}$ HD-lacunar $\Rightarrow M_{\Omega}$ is $L_{q}\left(\mathbb{R}^{n}\right)$-bded for $1<q<\infty$.
$\mathcal{O}_{\pi}(\Lambda, u)$ HD-lacunar $\Rightarrow H_{u} \rtimes_{\gamma} i d_{\mathrm{G}}$ is bounded on $L_{p, \Lambda}\left(\widehat{\Gamma}_{\text {disc }}\right)$
Indeed, given $p>1$ there exist $q>1$ and $\delta>0$ s.t.

Directional Hilbert transforms

Given a c.n. length $\psi: \mathrm{G} \rightarrow \mathbb{R}_{+}$with cocycle $\left(\mathcal{H}_{\psi}, \pi_{\psi}, b_{\psi}\right)$, let

$$
H_{\psi, u}: \sum_{g} \widehat{f}(g) \lambda(g) \mapsto 2 \pi i \sum_{g} \operatorname{sgn}\left\langle b_{\psi}(g), u\right\rangle_{\mathcal{H}_{\psi}} \widehat{f}(g) \lambda(g)
$$

Hyperplane singularity of the symbol (nonsmooth) + Fubini does not work...

- Twisted Hilbert transforms
- Sketch of the proof ii) \Rightarrow ii)
- Lacunary subsets of discrete groups

Given $\Lambda \subset \mathrm{G}$, set $\mathcal{O}_{\pi}(\Lambda, u)=\left\{\pi_{g}(u): g \in \Lambda\right\}$ and

$$
L_{\Lambda, p}\left(\widehat{\boldsymbol{\Gamma}}_{\mathrm{disc}}\right)=\left\{f=\sum_{g \in \Lambda} f_{g} \rtimes \lambda(g) \in L_{p}\left(\widehat{\boldsymbol{\Gamma}}_{\mathrm{disc}}\right)\right\}
$$

Corollary

[Parcet-Rogers, AJM '15 + Crelle '16]
$\Omega \subset \mathbb{S}^{n-1}$ HD-lacunar $\Rightarrow M_{\Omega}$ is $L_{q}\left(\mathbb{R}^{n}\right)$-bded for $1<q<\infty$.
$\mathcal{O}_{\pi}(\Lambda, u)$ HD-lacunar $\Rightarrow H_{u} \rtimes_{\gamma} i d_{\mathrm{G}}$ is bounded on $L_{p, \Lambda}\left(\widehat{\boldsymbol{\Gamma}}_{\mathrm{disc}}\right)$.
Indeed, given $p>1$ there exist $q>1$ and $\delta>0$ s.t.

Directional Hilbert transforms

Given a c.n. length $\psi: \mathrm{G} \rightarrow \mathbb{R}_{+}$with cocycle $\left(\mathcal{H}_{\psi}, \pi_{\psi}, b_{\psi}\right)$, let

$$
H_{\psi, u}: \sum_{g} \widehat{f}(g) \lambda(g) \mapsto 2 \pi i \sum_{g} \operatorname{sgn}\left\langle b_{\psi}(g), u\right\rangle_{\mathcal{H}_{\psi}} \widehat{f}(g) \lambda(g)
$$

Hyperplane singularity of the symbol (nonsmooth) + Fubini does not work...

- Twisted Hilbert transforms
- Sketch of the proof ii) \Rightarrow ii)
- Lacunary subsets of discrete groups

Given $\Lambda \subset \mathrm{G}$, set $\mathcal{O}_{\pi}(\Lambda, u)=\left\{\pi_{g}(u): g \in \Lambda\right\}$ and

$$
L_{\Lambda, p}\left(\widehat{\boldsymbol{\Gamma}}_{\mathrm{disc}}\right)=\left\{f=\sum_{g \in \Lambda} f_{g} \rtimes \lambda(g) \in L_{p}\left(\widehat{\boldsymbol{\Gamma}}_{\mathrm{disc}}\right)\right\} .
$$

Corollary

[Parcet-Rogers, AJM '15 + Crelle '16]

$$
\begin{aligned}
& \Omega \subset \mathbb{S}^{n-1} \text { HD-lacunar } \Rightarrow M_{\Omega} \text { is } L_{q}\left(\mathbb{R}^{n}\right) \text {-bded for } 1<q<\infty \\
& \mathcal{O}_{\pi}(\Lambda, u) \text { HD-lacunar } \Rightarrow H_{u} \rtimes_{\gamma} i d_{\mathrm{G}} \text { is bounded on } L_{p, \Lambda}\left(\widehat{\boldsymbol{\Gamma}}_{\mathrm{disc}}\right)
\end{aligned}
$$

Indeed, given $p>1$ there exist $q>1$ and $\delta>0$ s.t.

$$
\left\|\left(\sum_{\omega \in \Omega}\left|H_{\omega} f_{\omega}\right|^{2}\right)^{\frac{1}{2}}\right\|_{p} \lesssim\left\|M_{\Omega}\right\|_{q \delta \rightarrow q \delta}^{\frac{\delta}{2}}\left\|\left(\sum_{\omega \in \Omega}\left|f_{\omega}\right|^{2}\right)^{\frac{1}{2}}\right\|_{p}
$$

Directional Hilbert transforms

Given a c.n. length $\psi: \mathrm{G} \rightarrow \mathbb{R}_{+}$with cocycle $\left(\mathcal{H}_{\psi}, \pi_{\psi}, b_{\psi}\right)$, let

$$
H_{\psi, u}: \sum_{g} \widehat{f}(g) \lambda(g) \mapsto 2 \pi i \sum_{g} \operatorname{sgn}\left\langle b_{\psi}(g), u\right\rangle_{\mathcal{H}_{\psi}} \widehat{f}(g) \lambda(g)
$$

Hyperplane singularity of the symbol (nonsmooth) + Fubini does not work...

- Twisted Hilbert transforms
- Sketch of the proof ii) \Rightarrow ii)
- Lacunary subsets of discrete groups
- Directional Hilbert transforms over G

Periodic multipliers [Jodeit, Studia Math '70]
$\mathrm{G}=\mathbb{R}$ and $\psi=1 \mathrm{D}$ donut cocycle $\Rightarrow H_{\psi, u} L_{p}$-bded for all u.
Chaotic idempotents [Caspers-Parcet-Perrin-Ricard, Forum Math Σ '15] $\mathrm{G}=\mathbb{R}$ and $\psi=2 \mathrm{D}$ donut cocycle $\Rightarrow H_{\psi, u} L_{p}$-unbded for most u.

Directional Hilbert transforms

Given a c.n. length $\psi: \mathrm{G} \rightarrow \mathbb{R}_{+}$with cocycle $\left(\mathcal{H}_{\psi}, \pi_{\psi}, b_{\psi}\right)$, let

$$
H_{\psi, u}: \sum_{g} \widehat{f}(g) \lambda(g) \mapsto 2 \pi i \sum_{g} \operatorname{sgn}\left\langle b_{\psi}(g), u\right\rangle_{\mathcal{H}_{\psi}} \widehat{f}(g) \lambda(g)
$$

Hyperplane singularity of the symbol (nonsmooth) + Fubini does not work...

- Twisted Hilbert transforms
- Sketch of the proof ii) \Rightarrow ii)
- Lacunary subsets of discrete groups
- Directional Hilbert transforms over G

Periodic multipliers

$\mathrm{G}=\mathbb{R}$ and $\psi=1 \mathrm{D}$ donut cocycle $\Rightarrow H_{\psi, u} L_{p}$-bded for all u.
Chaotic idempotents [Caspers-Parcet-Perrin-Ricard, Forum Math Σ '15]
$\mathrm{G}=\mathbb{R}$ and $\psi=2 \mathrm{D}$ donut cocycle $\Rightarrow H_{\psi, u} L_{p}$-unbded for most u.

Directional Hilbert transforms

Trick: $\mathbb{Z}_{p q} \simeq \mathbb{Z}_{p} \times \mathbb{Z}_{q}+$ Ball multiplier thm

Directional Hilbert transforms

Given a c.n. length $\psi: \mathrm{G} \rightarrow \mathbb{R}_{+}$with cocycle $\left(\mathcal{H}_{\psi}, \pi_{\psi}, b_{\psi}\right)$, let

$$
H_{\psi, u}: \sum_{g} \widehat{f}(g) \lambda(g) \mapsto 2 \pi i \sum_{g} \operatorname{sgn}\left\langle b_{\psi}(g), u\right\rangle_{\mathcal{H}_{\psi}} \widehat{f}(g) \lambda(g)
$$

Hyperplane singularity of the symbol (nonsmooth) + Fubini does not work...

- Twisted Hilbert transforms
- Sketch of the proof ii) \Rightarrow iii)
- Lacunary subsets of discrete groups
- Directional Hilbert transforms over G

Periodic multipliers

[Jodeit, Studia Math '70]
$\mathrm{G}=\mathbb{R}$ and $\psi=1 \mathrm{D}$ donut cocycle $\Rightarrow H_{\psi, u} L_{p}$-bded for all u.

Chaotic idempotents [Caspers-Parcet-Perrin-Ricard, Forum Math Σ '15]

$\mathrm{G}=\mathbb{R}$ and $\psi=2 \mathrm{D}$ donut cocycle $\Rightarrow H_{\psi, u} L_{p}$-unbded for most u.
Imp. $H_{u} \rtimes_{\pi} i d_{\mathrm{G}}=H_{\phi, u}$ for certain (simple) cocycle (\mathcal{K}, ρ, d) on $\Gamma_{\text {disc }}$.
Geometric characterization of L_{p}-bdness of $H_{\psi, u}$ in terms of $\mathcal{O}_{\pi}(u)$?

Directional Hilbert transforms

Given a c.n. length $\psi: \mathrm{G} \rightarrow \mathbb{R}_{+}$with cocycle $\left(\mathcal{H}_{\psi}, \pi_{\psi}, b_{\psi}\right)$, let

$$
H_{\psi, u}: \sum_{g} \widehat{f}(g) \lambda(g) \mapsto 2 \pi i \sum_{g} \operatorname{sgn}\left\langle b_{\psi}(g), u\right\rangle_{\mathcal{H}_{\psi}} \widehat{f}(g) \lambda(g)
$$

Hyperplane singularity of the symbol (nonsmooth) + Fubini does not work...

- Twisted Hilbert transforms
- Sketch of the proof ii) \Rightarrow iii)
- Lacunary subsets of discrete groups
- Directional Hilbert transforms over \mathbb{F}_{n}

Let $\psi=| |$ in \mathbb{F}_{n}.

Directional Hilbert transforms

Given a c.n. length $\psi: \mathrm{G} \rightarrow \mathbb{R}_{+}$with cocycle $\left(\mathcal{H}_{\psi}, \pi_{\psi}, b_{\psi}\right)$, let

$$
H_{\psi, u}: \sum_{g} \widehat{f}(g) \lambda(g) \mapsto 2 \pi i \sum_{g} \operatorname{sgn}\left\langle b_{\psi}(g), u\right\rangle_{\mathcal{H}_{\psi}} \widehat{f}(g) \lambda(g)
$$

Hyperplane singularity of the symbol (nonsmooth) + Fubini does not work...

- Twisted Hilbert transforms
- Sketch of the proof ii) \Rightarrow iii)
- Lacunary subsets of discrete groups
- Directional Hilbert transforms over \mathbb{F}_{n}

$$
\text { Let } \psi=\| \text { in } \mathbb{F}_{n}
$$

$$
\text { ONB in } \mathcal{H}_{\psi}=\mathbb{R}\left[\mathbb{F}_{n}\right] / \mathbb{R} \delta_{e} \rightsquigarrow\left\{u_{w}=\delta_{w}-\delta_{w^{-}}: w \neq e\right\} .
$$

Theorem E

Directional Hilbert transforms

Given a c.n. length $\psi: \mathrm{G} \rightarrow \mathbb{R}_{+}$with cocycle $\left(\mathcal{H}_{\psi}, \pi_{\psi}, b_{\psi}\right)$, let

$$
H_{\psi, u}: \sum_{g} \widehat{f}(g) \lambda(g) \mapsto 2 \pi i \sum_{g} \operatorname{sgn}\left\langle b_{\psi}(g), u\right\rangle_{\mathcal{H}_{\psi}} \widehat{f}(g) \lambda(g)
$$

Hyperplane singularity of the symbol (nonsmooth) + Fubini does not work...

- Twisted Hilbert transforms
- Sketch of the proof ii) \Rightarrow ii)
- Lacunary subsets of discrete groups
- Directional Hilbert transforms over \mathbb{F}_{n}

$$
\text { Let } \psi=\| \text { in } \mathbb{F}_{n} \text {. }
$$

$$
\text { ONB in } \mathcal{H}_{\psi}=\mathbb{R}\left[\mathbb{F}_{n}\right] / \mathbb{R} \delta_{e} \rightsquigarrow\left\{u_{w}=\delta_{w}-\delta_{w^{-}}: w \neq e\right\} .
$$

$\left\langle b_{\psi}(z), u_{w}\right\rangle_{\mathcal{H}_{\psi}}=\delta_{z \geq w} \Rightarrow H_{\psi, u_{w}}=$ projection onto words starting by $w \ldots$

Directional Hilbert transforms

Given a c.n. length $\psi: \mathrm{G} \rightarrow \mathbb{R}_{+}$with cocycle $\left(\mathcal{H}_{\psi}, \pi_{\psi}, b_{\psi}\right)$, let

$$
H_{\psi, u}: \sum_{g} \widehat{f}(g) \lambda(g) \mapsto 2 \pi i \sum_{g} \operatorname{sgn}\left\langle b_{\psi}(g), u\right\rangle_{\mathcal{H}_{\psi}} \widehat{f}(g) \lambda(g)
$$

Hyperplane singularity of the symbol (nonsmooth) + Fubini does not work...

- Twisted Hilbert transforms
- Sketch of the proof ii) \Rightarrow ii)
- Lacunary subsets of discrete groups
- Directional Hilbert transforms over \mathbb{F}_{n}

Let $\psi=\|$ in \mathbb{F}_{n}.
ONB in $\mathcal{H}_{\psi}=\mathbb{R}\left[\mathbb{F}_{n}\right] / \mathbb{R} \delta_{e} \rightsquigarrow\left\{u_{w}=\delta_{w}-\delta_{w^{-}}: w \neq e\right\}$.
$\left\langle b_{\psi}(z), u_{w}\right\rangle_{\mathcal{H}_{\psi}}=\delta_{z \geq w} \Rightarrow H_{\psi, u_{w}}=$ projection onto words starting by $w \ldots$

Theorem E

[Mei-Ricard, Preprint '16]

$$
\begin{aligned}
& H_{\psi, u_{w}} \text { are } L_{p} \text {-bounded for } 1<p<\infty \text {. Moreover, if } \mathbb{F}_{n}=\left\langle g_{j}\right\rangle \\
& \sup _{n \geq 1 \varepsilon_{ \pm j}= \pm 1} \sup _{j=1}\left\|\sum_{j=1}^{n} \varepsilon_{j} H_{\psi, u_{g_{j}}}+\varepsilon_{-j} H_{\psi, u_{g-j}}: L_{p}\left(\widehat{\mathbf{F}}_{n}\right) \rightarrow L_{p}\left(\widehat{\mathbf{F}}_{n}\right)\right\|_{\mathrm{cb}}<\infty
\end{aligned}
$$

Open problem for quite some time \mid Also implications in quantum probability

Ball multipliers - Results and questions

Given $R>0$, consider the ball truncations over \mathbb{F}_{n}

$$
\mathcal{S}_{R}: \sum_{w \in \mathbb{F}_{n}} \widehat{f}(w) \lambda(w) \mapsto \sum_{|w| \leq R} \widehat{f}(w) \lambda(w)
$$

Ball multipliers - Results and questions

Given $R>0$, consider the ball truncations over \mathbb{F}_{n}

$$
\mathcal{S}_{R}: \sum_{w \in \mathbb{F}_{n}} \widehat{f}(w) \lambda(w) \mapsto \sum_{|w| \leq R} \widehat{f}(w) \lambda(w)
$$

A partial result for balls in $\mathbb{F}_{n} \quad$ [Bożejko-Fendler, Banach Center Pubs '06]

$$
\left|\frac{1}{p}-\frac{1}{2}\right|>\frac{1}{6} \Rightarrow \sup _{R>0}\left\|\mathcal{S}_{R}: L_{p}\left(\widehat{\mathbf{F}}_{n}\right) \rightarrow L_{p}\left(\widehat{\mathbf{F}}_{n}\right)\right\|=\infty
$$

Sketch of proof. The radial subalgebra \mathcal{R}_{n} of $\mathcal{L}\left(\mathbb{F}_{n}\right)$ is abelian. Their result already holds in \mathcal{R}_{n}. The argument emulates the one which proves that the ball multiplier is not L_{p}-bded in \mathbb{R}^{n} when $|1 / p-1 / 2|>1 / 2 n$ - see e.g. [Fefferman, Acta Math '70].

Ball multipliers - Results and questions

Given $R>0$, consider the ball truncations over \mathbb{F}_{n}

$$
\mathcal{S}_{R}: \sum_{w \in \mathbb{F}_{n}} \widehat{f}(w) \lambda(w) \mapsto \sum_{|w| \leq R} \widehat{f}(w) \lambda(w)
$$

A partial result for balls in $\mathbb{F}_{n} \quad$ [Bożejko-Fendler, Banach Center Pubs '06]

$$
\left|\frac{1}{p}-\frac{1}{2}\right|>\frac{1}{6} \Rightarrow \sup _{R>0}\left\|\mathcal{S}_{R}: L_{p}\left(\widehat{\mathbf{F}}_{n}\right) \rightarrow L_{p}\left(\widehat{\mathbf{F}}_{n}\right)\right\|=\infty
$$

Sketch of proof. The radial subalgebra \mathcal{R}_{n} of $\mathcal{L}\left(\mathbb{F}_{n}\right)$ is abelian. Their result already holds in \mathcal{R}_{n}. The argument emulates the one which proves that the ball multiplier is not L_{p}-bded in \mathbb{R}^{n} when $|1 / p-1 / 2|>1 / 2 n$ - see e.g. [Fefferman, Acta Math '70].

Open problem. Prove that $\sup _{R>0}\left\|\mathcal{S}_{R}: L_{p}\left(\widehat{\mathbf{F}}_{n}\right) \rightarrow L_{p}\left(\widehat{\mathbf{F}}_{n}\right)\right\|=\infty$ for all $p \neq 2$.
Noncommutative analog of Fefferman's ball multiplier theorem [Ann Math '71] in \mathbb{F}_{n}.

Ball multipliers - Results and questions

Given $R>0$, consider the ball truncations over \mathbb{F}_{n}

$$
\mathcal{S}_{R}: \sum_{w \in \mathbb{F}_{n}} \widehat{f}(w) \lambda(w) \mapsto \sum_{|w| \leq R} \widehat{f}(w) \lambda(w) .
$$

A partial result for balls in $\mathbb{F}_{n} \quad$ [Bożejko-Fendler, Banach Center Pubs '06]

$$
\left|\frac{1}{p}-\frac{1}{2}\right|>\frac{1}{6} \Rightarrow \sup _{R>0}\left\|\mathcal{S}_{R}: L_{p}\left(\widehat{\mathbf{F}}_{n}\right) \rightarrow L_{p}\left(\widehat{\mathbf{F}}_{n}\right)\right\|=\infty .
$$

Sketch of proof. The radial subalgebra \mathcal{R}_{n} of $\mathcal{L}\left(\mathbb{F}_{n}\right)$ is abelian. Their result already holds in \mathcal{R}_{n}. The argument emulates the one which proves that the ball multiplier is not L_{p}-bded in \mathbb{R}^{n} when $|1 / p-1 / 2|>1 / 2 n$ - see e.g. [Fefferman, Acta Math '70].

Open problem. Prove that $\sup _{R>0}\left\|\mathcal{S}_{R}: L_{p}\left(\widehat{\mathbf{F}}_{n}\right) \rightarrow L_{p}\left(\widehat{\mathbf{F}}_{n}\right)\right\|=\infty$ for all $p \neq 2$.
Noncommutative analog of Fefferman's ball multiplier theorem [Ann Math '71] in \mathbb{F}_{n}. Other pairs (G, ψ) do not witness curvature... The length $\psi\left(k_{1}, k_{2}\right)=\left|k_{1}\right|+\left|k_{2}\right|$ on \mathbb{Z}^{2} admits L_{p}-summability along dilations of the ψ-balls in its infinite-dimensional cocycle since they become squares with the trivial cocycle $\mathbb{Z}^{2} \rightarrow \mathbb{R}^{2}$. An even more challenging problem is to characterize the pairs (G, ψ) witnessing curvature.

Haagerup property

Definition

A locally compact group G has the Haagerup property when it admits a proper cocycle. In other words, when $b_{\psi}^{-1}(\mathrm{~K})$ is compact in G for any compact K in \mathcal{H}_{ψ}.

G discrete group. No compact set in \mathcal{H}_{ψ} admits infinitely many points from $b_{\psi}(\mathrm{G})$.

Haagerup property

Definition

A locally compact group G has the Haagerup property when it admits a proper cocycle. In other words, when $b_{\psi}^{-1}(\mathrm{~K})$ is compact in G for any compact K in \mathcal{H}_{ψ}.

G discrete group. No compact set in \mathcal{H}_{ψ} admits infinitely many points from $b_{\psi}(\mathrm{G})$.

- Finite-dimensional cocycles
- Smooth th well-understood
- Nonsmooth th still wide open...
- Bieberbach thm implies the following limitation

G admits a finite-dimensional proper injective cocycle \Downarrow
G is virtualy abelian!

Haagerup property

Definition

A locally compact group G has the Haagerup property when it admits a proper cocycle. In other words, when $b_{\psi}^{-1}(\mathrm{~K})$ is compact in G for any compact K in \mathcal{H}_{ψ}.

G discrete group. No bounded set in \mathcal{H}_{ψ} admits infinitely many points from $b_{\psi}(\mathrm{G})$.

- Finite-dimensional cocycles
- Smooth th well-understood
- Nonsmooth th still wide open...
- Bieberbach thm implies the following limitation

G admits a finite-dimensional proper injective cocycle

$$
\stackrel{\Downarrow}{\mathrm{G}} \text { is virtualy abelian! }
$$

- Infinite-dimensional cocycles
- Open: Smooth (radial) multipliers
- Open: Directional Hilbert transforms and balls.
- Much richer (Riesz transforms)... Interesting cases $-\mathbb{F}_{n}$ and $\mathrm{SL}_{2}(\mathbb{R})$.

Kazhdan property (T)

Definition

A locally compact group G has Kazhdan property (T) when all of its cocycles are inner. In other words, cocycles of the form $g \mapsto \pi_{g}(u)-u \Leftrightarrow b_{\psi}(\mathrm{G})$ bounded in \mathcal{H}_{ψ}. Kazhdan property (T) - Strong negation of Haagerup property for noncompact G.

Kazhdan property (T)

Definition

A locally compact group G has Kazhdan property (T) when all of its cocycles are inner. In other words, cocycles of the form $g \mapsto \pi_{g}(u)-u \Leftrightarrow b_{\psi}(\mathrm{G})$ bounded in \mathcal{H}_{ψ}.

Kazhdan property (T) - Strong negation of Haagerup property for noncompact G.

- A clear geometric obstruction

In particular, no L_{p}-summability results are possible from inner cocycles.

Kazhdan property (T)

Definition

A locally compact group G has Kazhdan property (T) when all of its cocycles are inner. In other words, cocycles of the form $g \mapsto \pi_{g}(u)-u \Leftrightarrow b_{\psi}(\mathrm{G})$ bounded in \mathcal{H}_{ψ}.

Kazhdan property (T) - Strong negation of Haagerup property for noncompact G.

- A clear geometric obstruction

In particular, no L_{p}-summability results are possible from inner cocycles.

- Important class of groups in HA + OA

Noncompact semisimple Lie groups with high \mathbb{R}-rank (≥ 2) and sublattices

This lead us to "nonorthogonal proper cocycles" of $\mathrm{SL}_{\mathrm{n}}(\mathbb{R})$ and other groups...

Fourier L_{p} summability over $\mathrm{SL}_{n}(\mathbb{R})$

Connes' rigidity conjecture

A group G is called ICC when $\left|\left\{g^{-1} h g: g \in \mathrm{G}\right\}\right|=\infty$ for all $h \neq e$.

Connes' rigidity conjecture - 1982

$\mathrm{G}_{1}, \mathrm{G}_{2}$ ICC with Kazhdan property (T) : Does $\mathcal{L}\left(\mathrm{G}_{1}\right) \simeq \mathcal{L}\left(\mathrm{G}_{2}\right)$ imply $\mathrm{G}_{1} \simeq \mathrm{G}_{2}$?

Connes' rigidity conjecture

A group G is called ICC when $\left|\left\{g^{-1} h g: g \in \mathrm{G}\right\}\right|=\infty$ for all $h \neq e$.

Connes' rigidity conjecture - 1982

$\mathrm{G}_{1}, \mathrm{G}_{2}$ ICC with Kazhdan property $(\mathrm{T}):$ Does $\mathcal{L}\left(\mathrm{G}_{1}\right) \simeq \mathcal{L}\left(\mathrm{G}_{2}\right)$ imply $\mathrm{G}_{1} \simeq \mathrm{G}_{2}$?
$\operatorname{PSL}_{n}(\mathbb{Z})$ is the quotient of $S L_{n}(\mathbb{Z})$ by its center (trivial for n odd and ± 1 for n even).

Connes' $\mathrm{PSL}_{n}(\mathbb{Z})$ conjecture - 1982

The family of group vN algebras $\left\{\mathcal{L}\left(\mathrm{PSL}_{\mathrm{n}}(\mathbb{Z})\right): n \geq 3\right\}$ are pairwise nonisomorphic
If $A_{n}=\mathrm{SL}_{\mathrm{n}}(\mathbb{Z})$ and $B_{n}=\mathbb{Z}^{n} \rtimes \mathrm{SL}_{\mathrm{n}}(\mathbb{Z})$, we have $A_{n} \subset B_{n} \subset A_{n+1} \ldots$
It is also an open problem to decide whether $\mathcal{L}\left(B_{n}\right) \simeq \mathcal{L}\left(B_{m}\right)$ implies $n=m$.

Connes' rigidity conjecture

A group G is called ICC when $\left|\left\{g^{-1} h g: g \in \mathrm{G}\right\}\right|=\infty$ for all $h \neq e$.

Connes' rigidity conjecture - 1982

$\mathrm{G}_{1}, \mathrm{G}_{2}$ ICC with Kazhdan property $(\mathrm{T}):$ Does $\mathcal{L}\left(\mathrm{G}_{1}\right) \simeq \mathcal{L}\left(\mathrm{G}_{2}\right)$ imply $\mathrm{G}_{1} \simeq \mathrm{G}_{2}$?
$\operatorname{PSL}_{n}(\mathbb{Z})$ is the quotient of $S L_{n}(\mathbb{Z})$ by its center (trivial for n odd and ± 1 for n even).

Connes' $\mathrm{PSL}_{n}(\mathbb{Z})$ conjecture - 1982

The family of group vN algebras $\left\{\mathcal{L}\left(\mathrm{PSL}_{\mathrm{n}}(\mathbb{Z})\right): n \geq 3\right\}$ are pairwise nonisomorphic
If $A_{n}=\mathrm{SL}_{\mathrm{n}}(\mathbb{Z})$ and $B_{n}=\mathbb{Z}^{n} \rtimes \mathrm{SL}_{\mathrm{n}}(\mathbb{Z})$, we have $A_{n} \subset B_{n} \subset A_{n+1} \ldots$
It is also an open problem to decide whether $\mathcal{L}\left(B_{n}\right) \simeq \mathcal{L}\left(B_{m}\right)$ implies $n=m$.

G noncompact connected semisimple Lie group...
Λ lattice in $\mathrm{G} \rightsquigarrow$ Is \mathbb{R}-rank (G) an invariant of $\mathcal{L}(\Lambda)$?

CBAP - A tool for classification

Definition

An operator space $=$ quantum Banach $s p \mathrm{X}$ is said to have the CBAP when there exists a net of finite-rank linear maps $\varphi_{\alpha}: \mathrm{X} \rightarrow \mathrm{X}$ satisfying the properties below:
i) $\lim _{\alpha}\left\|\varphi_{\alpha}(x)-x\right\|_{\mathrm{X}}=0$,
ii) $\sup _{\alpha}\left\|\varphi_{\alpha}: \mathrm{X} \rightarrow \mathrm{X}\right\|_{\mathrm{cb}}<\infty$.

CBAP $=$ Completely bounded approximation property Other important approximation properties from Grothendieck, Haagerup...

CBAP - A tool for classification

Definition

An operator space $=$ quantum Banach sp X is said to have the CBAP when there exists a net of finite-rank linear maps $\varphi_{\alpha}: \mathrm{X} \rightarrow \mathrm{X}$ satisfying the properties below:
i) $\lim _{\alpha}\left\|\varphi_{\alpha}(x)-x\right\|_{\mathrm{X}}=0$,
ii) $\sup _{\alpha}\left\|\varphi_{\alpha}: X \rightarrow X\right\|_{\mathrm{cb}}<\infty$.

CBAP $=$ Completely bounded approximation property
Other important approximation properties from Grothendieck, Haagerup...

CBAP for discrete groups $=$ Fourier L_{p}-summability

Given a discrete group G and $p<\infty$, it turns out that $\mathrm{X}=\mathrm{C}_{\lambda}^{*}(\mathrm{G})$ or $\mathrm{X}=L_{p}(\widehat{\mathbf{G}})$ have the CBAP when there exists a sequence $m_{j}: \mathrm{G} \rightarrow \mathbb{C}$ of compactly supported functions which converge pointwise to 1 such that

$$
\sup _{j \geq 1}\left\|\sum_{g} \widehat{f}(g) \lambda(g) \mapsto \sum_{g} m_{j}(g) \widehat{f}(g) \lambda(g)\right\|_{\mathrm{cb}(\mathrm{X}, \mathrm{X})}<\infty
$$

CBAP - A tool for classification

Definition

An operator space $=$ quantum Banach sp X is said to have the CBAP when there exists a net of finite-rank linear maps $\varphi_{\alpha}: \mathrm{X} \rightarrow \mathrm{X}$ satisfying the properties below:
i) $\lim _{\alpha}\left\|\varphi_{\alpha}(x)-x\right\|_{\mathrm{X}}=0$,
ii) $\sup \left\|\varphi_{\alpha}: X \rightarrow X\right\|_{\text {cb }}<\infty$.

CBAP = Completely bounded approximation property
Other important approximation properties from Grothendieck, Haagerup...

CBAP for discrete groups $=$ Fourier L_{p}-summability

Given a discrete group G and $p<\infty$, it turns out that $\mathrm{X}=\mathrm{C}_{\lambda}^{*}(\mathrm{G})$ or $\mathrm{X}=L_{p}(\widehat{\mathbf{G}})$ have the CBAP when there exists a sequence $m_{j}: \mathrm{G} \rightarrow \mathbb{C}$ of compactly supported functions which converge pointwise to 1 such that

$$
\sup _{j \geq 1}\left\|\sum_{g} \widehat{f}(g) \lambda(g) \mapsto \sum_{g} m_{j}(g) \widehat{f}(g) \lambda(g)\right\|_{\mathrm{cb}(\mathrm{X}, \mathrm{X})}<\infty
$$

An invariant of $\mathcal{L}(\mathrm{G})$...

$$
\mathcal{L}\left(\mathrm{G}_{1}\right) \simeq \mathcal{L}\left(\mathrm{G}_{2}\right) \Rightarrow\left[L_{p}\left(\widehat{\mathrm{G}}_{1}\right) \in \mathrm{CBAP} \Leftrightarrow L_{p}\left(\widehat{\mathrm{G}}_{2}\right) \in \text { CBAP for all } p>2\right]
$$

Group algebras without the CBAP

A key negative result

 [Haagerup, Unpublished (so far) '88]The group

$$
\mathrm{G}=\mathbb{R}^{2} \rtimes \mathrm{SL}_{2}(\mathbb{R}) \text { is not weakly amenable. }
$$

In other words, $\mathrm{C}_{\lambda}^{*}(\mathrm{G})$ does not have the CBAP. This immediately implies the same result for $\mathbb{K}^{n} \rtimes \operatorname{SL}_{n}(\mathbb{K})$ with $\mathbb{K}=\mathbb{R}$ or \mathbb{Z} and $n \geq 2$. Also for $S L_{n}(\mathbb{K})$ with $\mathbb{K}=\mathbb{R}$ or \mathbb{Z} and $n \geq 3$. More generally, the same holds for all connected simple Lie groups with \mathbb{R}-rank ≥ 2 and all of their lattices.

Group algebras without the CBAP

A key negative result

 [Haagerup, Unpublished (so far) '88]The group

$$
\mathrm{G}=\mathbb{R}^{2} \rtimes \mathrm{SL} \mathrm{~L}_{2}(\mathbb{R}) \text { is not weakly amenable. }
$$

In other words, $\mathrm{C}_{\lambda}^{*}(\mathrm{G})$ does not have the CBAP. This immediately implies the same result for $\mathbb{K}^{n} \rtimes \operatorname{SL}_{n}(\mathbb{K})$ with $\mathbb{K}=\mathbb{R}$ or \mathbb{Z} and $n \geq 2$. Also for $S L_{n}(\mathbb{K})$ with $\mathbb{K}=\mathbb{R}$ or \mathbb{Z} and $n \geq 3$. More generally, the same holds for all connected simple Lie groups with \mathbb{R}-rank ≥ 2 and all of their lattices.

In this final form, the statement was proved by Dorofaeff [Math Ann '96]

Group algebras without the CBAP

A key negative result

 [Haagerup, Unpublished (so far) '88]The group

$$
\mathrm{G}=\mathbb{R}^{2} \rtimes \mathrm{SL}_{2}(\mathbb{R}) \text { is not weakly amenable. }
$$

In other words, $\mathrm{C}_{\lambda}^{*}(\mathrm{G})$ does not have the CBAP. This immediately implies the same result for $\mathbb{K}^{n} \rtimes \operatorname{SL}_{n}(\mathbb{K})$ with $\mathbb{K}=\mathbb{R}$ or \mathbb{Z} and $n \geq 2$. Also for $S L_{n}(\mathbb{K})$ with $\mathbb{K}=\mathbb{R}$ or \mathbb{Z} and $n \geq 3$. More generally, the same holds for all connected simple Lie groups with \mathbb{R}-rank ≥ 2 and all of their lattices.

In this final form, the statement was proved by Dorofaeff [Math Ann '96]

Real algebraic Lie groups [Cowling-Dorofaeff-Seeger-Wright, Duke Math J '05]

The group

$$
\mathrm{G}=\mathbb{H}_{n} \rtimes \mathrm{SL}_{2}(\mathbb{R}) \text { is not weakly amenable }
$$

where \mathbb{H}_{n} is the $(2 n+1)$-dimensional Heisenberg group, the $\mathrm{SL}_{2}(\mathbb{R})$-action fixes the center and acts on $\mathbb{R}^{2 n}$ by the only $2 n$-dimensional irreducible representation. This leads to a characterization of weak amenability for all real algebraic Lie groups.

Group algebras without the CBAP

A key negative result

 [Haagerup, Unpublished (so far) '88]The group

$$
\mathrm{G}=\mathbb{R}^{2} \rtimes \mathrm{SL}_{2}(\mathbb{R}) \text { is not weakly amenable. }
$$

In other words, $\mathrm{C}_{\lambda}^{*}(\mathrm{G})$ does not have the CBAP. This immediately implies the same result for $\mathbb{K}^{n} \rtimes \operatorname{SL}_{n}(\mathbb{K})$ with $\mathbb{K}=\mathbb{R}$ or \mathbb{Z} and $n \geq 2$. Also for $S L_{n}(\mathbb{K})$ with $\mathbb{K}=\mathbb{R}$ or \mathbb{Z} and $n \geq 3$. More generally, the same holds for all connected simple Lie groups with \mathbb{R}-rank ≥ 2 and all of their lattices.

In this final form, the statement was proved by Dorofaeff [Math Ann '96]

Real algebraic Lie groups [Cowling-Dorofaeff-Seeger-Wright, Duke Math J '05]
The group

$$
\mathrm{G}=\mathbb{H}_{n} \rtimes \mathrm{SL}_{2}(\mathbb{R}) \text { is not weakly amenable }
$$

where \mathbb{H}_{n} is the $(2 n+1)$-dimensional Heisenberg group, the $\mathrm{SL}_{2}(\mathbb{R})$-action fixes the center and acts on $\mathbb{R}^{2 n}$ by the only $2 n$-dimensional irreducible representation. This leads to a characterization of weak amenability for all real algebraic Lie groups.

All these group algebras fail CBAP \rightsquigarrow More subtle properties to distinguish...

The Lafforgue - de la Salle theorem

Theorem F
 [Lafforgue - de la Salle, Duke Math J '11]

The groups $\mathrm{G}_{n}=\mathrm{SL}_{n+1}(\mathbb{Z})$ with $n \geq 2$ satisfy

$$
\left|\frac{1}{2}-\frac{1}{p}\right|>\frac{1}{2\left(\left\lfloor\frac{n}{2}\right\rfloor+1\right)} \quad \Rightarrow \quad L_{p}\left(\widehat{\mathbf{G}}_{n}\right) \text { fails the CBAP. }
$$

Moreover, the same result holds for all lattices in $\mathrm{SL}_{n+1}(\mathbb{R})$ and all lattices in every connected simple Lie group of \mathbb{R}-rank ≥ 9. Also nonarchimidean local fields like \mathbb{Q}_{q}.

The Lafforgue - de la Salle theorem

Theorem F [Lafforgue - de la Salle, Duke Math J '11]

The groups $\mathrm{G}_{n}=\mathrm{SL}_{n+1}(\mathbb{Z})$ with $n \geq 2$ satisfy

$$
\left|\frac{1}{2}-\frac{1}{p}\right|>\frac{1}{2\left(\left\lfloor\frac{n}{2}\right\rfloor+1\right)} \quad \Rightarrow \quad L_{p}\left(\widehat{\mathbf{G}}_{n}\right) \text { fails the CBAP. }
$$

Moreover, the same result holds for all lattices in $\mathrm{SL}_{n+1}(\mathbb{R})$ and all lattices in every connected simple Lie group of \mathbb{R}-rank ≥ 9. Also nonarchimidean local fields like \mathbb{Q}_{q}.

In this final form, the statement above incorporates a refinement by T . de Laat and M. de la Salle [Crelle's J '15]. Together with [Haagerup - de Laat, Duke Math J '13] this implies that all connected simple Lie groups with finite center do not even have Grothendieck's AP.

The Lafforgue - de la Salle theorem

Theorem F [Lafforgue - de la Salle, Duke Math J '11]

The groups $\mathrm{G}_{n}=\mathrm{SL}_{n+1}(\mathbb{Z})$ with $n \geq 2$ satisfy

$$
\left|\frac{1}{2}-\frac{1}{p}\right|>\frac{1}{2\left(\left\lfloor\frac{n}{2}\right\rfloor+1\right)} \Rightarrow L_{p}\left(\widehat{\mathbf{G}}_{n}\right) \text { fails the CBAP. }
$$

Moreover, the same result holds for all lattices in $S L_{n+1}(\mathbb{R})$ and all lattices in every connected simple Lie group of \mathbb{R}-rank ≥ 9. Also nonarchimidean local fields like \mathbb{Q}_{q}.

In this final form, the statement above incorporates a refinement by T. de Laat and M. de la Salle [Crelle's J '15]. Together with [Haagerup - de Laat, Duke Math J '13] this implies that all connected simple Lie groups with finite center do not even have Grothendieck's AP.

Sketch of the proof

- Fourier L_{p}-summability \Rightarrow Schur L_{p}-summability

The Lafforgue - de la Salle theorem

Theorem F [Lafforgue - de la Salle, Duke Math J '11]

The groups $\mathrm{G}_{n}=\mathrm{SL}_{n+1}(\mathbb{Z})$ with $n \geq 2$ satisfy

$$
\left|\frac{1}{2}-\frac{1}{p}\right|>\frac{1}{2\left(\left\lfloor\frac{n}{2}\right\rfloor+1\right)} \quad \Rightarrow \quad L_{p}\left(\widehat{\mathbf{G}}_{n}\right) \text { fails the CBAP. }
$$

Moreover, the same result holds for all lattices in $\mathrm{SL}_{n+1}(\mathbb{R})$ and all lattices in every connected simple Lie group of \mathbb{R}-rank ≥ 9. Also nonarchimidean local fields like \mathbb{Q}_{q}.

In this final form, the statement above incorporates a refinement by T. de Laat and M. de la Salle [Crelle's J '15]. Together with [Haagerup - de Laat, Duke Math J '13] this implies that all connected simple Lie groups with finite center do not even have Grothendieck's AP.

Sketch of the proof

- Fourier L_{p}-summability \Rightarrow Schur L_{p}-summability
- Lifting to $\mathrm{SL}_{n+1}(\mathbb{R})$ (easy for Schur) \rightsquigarrow KAK decomposition

The Lafforgue - de la Salle theorem

Theorem F [Lafforgue - de la Salle, Duke Math J '11]

The groups $\mathrm{G}_{n}=\mathrm{SL}_{n+1}(\mathbb{Z})$ with $n \geq 2$ satisfy

$$
\left|\frac{1}{2}-\frac{1}{p}\right|>\frac{1}{2\left(\left\lfloor\frac{n}{2}\right\rfloor+1\right)} \quad \Rightarrow \quad L_{p}\left(\widehat{\mathbf{G}}_{n}\right) \text { fails the CBAP. }
$$

Moreover, the same result holds for all lattices in $\mathrm{SL}_{n+1}(\mathbb{R})$ and all lattices in every connected simple Lie group of \mathbb{R}-rank ≥ 9. Also nonarchimidean local fields like \mathbb{Q}_{q}.

In this final form, the statement above incorporates a refinement by T. de Laat and M. de la Salle [Crelle's J '15]. Together with [Haagerup - de Laat, Duke Math J '13] this implies that all connected simple Lie groups with finite center do not even have Grothendieck's AP.

Sketch of the proof

- Fourier L_{p}-summability \Rightarrow Schur L_{p}-summability
- Lifting to $\mathrm{SL}_{n+1}(\mathbb{R})$ (easy for Schur) \rightsquigarrow KAK decomposition
- K-biinvariant Schur p-multipliers with large support admit variations <1.

The Lafforgue - de la Salle theorem

Theorem F [Lafforgue - de la Salle, Duke Math J '11]

The groups $\mathrm{G}_{n}=\mathrm{SL}_{n+1}(\mathbb{Z})$ with $n \geq 2$ satisfy

$$
\left|\frac{1}{2}-\frac{1}{p}\right|>\frac{1}{2\left(\left\lfloor\frac{n}{2}\right\rfloor+1\right)} \Rightarrow L_{p}\left(\widehat{\mathbf{G}}_{n}\right) \text { fails the CBAP. }
$$

Moreover, the same result holds for all lattices in $S L_{n+1}(\mathbb{R})$ and all lattices in every connected simple Lie group of \mathbb{R}-rank ≥ 9. Also nonarchimidean local fields like \mathbb{Q}_{q}.

In this final form, the statement above incorporates a refinement by T. de Laat and M. de la Salle [Crelle's J '15]. Together with [Haagerup - de Laat, Duke Math J '13] this implies that all connected simple Lie groups with finite center do not even have Grothendieck's AP.

Sketch of the proof

- Fourier L_{p}-summability \Rightarrow Schur L_{p}-summability
- Lifting to $\mathrm{SL}_{n+1}(\mathbb{R})$ (easy for Schur) \rightsquigarrow KAK decomposition
- K-biinvariant Schur p-multipliers with large support admit variations <1.
- Main ingredient: Gelfand pairs and HA on the n-sphere.

Fourier L_{p} multipliers over $\mathrm{SL}_{n}(\mathbb{R})$?

Challenge. Positive results for L_{p} multipliers over $\operatorname{SL}_{n}(\mathbb{R})$ and $\mathrm{SL}_{n}(\mathbb{Z})$! Same goal over high rank semisimple Lie groups and lattices!

Fourier L_{p} multipliers over $S L_{n}(\mathbb{R})$?

Challenge. Positive results for L_{p} multipliers over $\mathrm{SL}_{n}(\mathbb{R})$ and $\mathrm{SL}_{\mathrm{n}}(\mathbb{Z})$! Same goal over high rank semisimple Lie groups and lattices!

I conjecture the following result holds...

The groups $\mathrm{G}_{n}=\mathrm{SL}_{n+1}(\mathbb{R})$ with $n \geq 1$ satisfy

$$
\underset{\text { Fourier summability }}{L_{p}\left(\widehat{\mathbf{G}}_{n}\right) \text { admits }} \Leftrightarrow\left|\frac{1}{2}-\frac{1}{p}\right| \leq \frac{1}{2 n} \Leftrightarrow \frac{2 n}{n+1} \leq p \leq \frac{2 n}{n-1} \text {. }
$$

Same result for G_{n} noncompact semisimple Lie group with $\mathbb{R}-\operatorname{rank}(\mathrm{G})=n$?

Fourier L_{p} multipliers over $\mathrm{SL}_{n}(\mathbb{R})$?

Challenge. Positive results for L_{p} multipliers over $\mathrm{SL}_{n}(\mathbb{R})$ and $\mathrm{SL}_{\mathrm{n}}(\mathbb{Z})$! Same goal over high rank semisimple Lie groups and lattices!

I conjecture the following result holds...

The groups $\mathrm{G}_{n}=\operatorname{SL}_{n+1}(\mathbb{R})$ with $n \geq 1$ satisfy

$$
\begin{gathered}
L_{p}\left(\widehat{\mathbf{G}}_{n}\right) \text { admits } \\
\text { Fourier summability }
\end{gathered} \Leftrightarrow\left|\frac{1}{2}-\frac{1}{p}\right| \leq \frac{1}{2 n} \Leftrightarrow \frac{2 n}{n+1} \leq p \leq \frac{2 n}{n-1} .
$$

Same result for G_{n} noncompact semisimple Lie group with $\mathbb{R}-\operatorname{rank}(\mathrm{G})=n$?

Parallel results for lattices in G_{n} would yield...

- A complete solution of Connes' $P_{S} L_{n}(\mathbb{Z})$ conjecture.
- \mathbb{R}-rank (G) is an invariant of $\mathcal{L}(\Lambda)$ for all lattices $\Lambda \subset G$.

OBSTRUCTION. NC de Leeuw restriction $\mathrm{G} \rightarrow \Lambda$ fails \rightsquigarrow ad hoc argument...

Noncommutative de Leeuw restriction

Restriction theorem

If m is continuous and T_{m} is $L_{p}\left(\mathbb{R}^{n}\right)$-bounded

$$
T_{m_{\mid}}: \int_{\mathrm{H}} \widehat{f}(h) \chi_{h} d \mu(h) \mapsto \int_{\mathrm{H}} m(h) \widehat{f}(h) \chi_{h} d \mu(h)
$$

extends to a $L_{p}(\widehat{\mathrm{H}})$-bounded Fourier multiplier for any subgroup $\mathrm{H} \subset \mathbb{R}^{n}$.

Noncommutative de Leeuw restriction

Restriction theorem

If m is continuous and T_{m} is $L_{p}\left(\mathbb{R}^{n}\right)$-bounded

$$
T_{m_{\left.\right|_{\mathrm{H}}}}: \int_{\mathrm{H}} \widehat{f}(h) \chi_{h} d \mu(h) \mapsto \int_{\mathrm{H}} m(h) \widehat{f}(h) \chi_{h} d \mu(h)
$$

extends to a $L_{p}(\widehat{\mathrm{H}})$-bounded Fourier multiplier for any subgroup $\mathrm{H} \subset \mathbb{R}^{n}$.

Theorem G

[Caspers-Parcet-Perrin-Ricard, Forum Math Σ '15]
If $m: \mathrm{G} \rightarrow \mathbb{C}$ is continuous and $\mathrm{H} \subset \mathrm{G}$

$$
\left\|T_{m_{\mid \mathrm{H}}}: L_{p}(\widehat{\mathrm{H}}) \rightarrow L_{p}(\widehat{\mathrm{H}})\right\| \leq\left\|T_{m}: L_{p}(\widehat{\mathrm{G}}) \rightarrow L_{p}(\widehat{\mathrm{G}})\right\|
$$

provided $\mathrm{H} \in \operatorname{ADS}$ (ok for H discrete), $\Delta_{\mathrm{G}_{\mathrm{H}}}=1$ (standard) and $\mathrm{G} \in[\mathrm{SAIN}]_{\mathrm{H}}$.
If $\mathrm{H} \subset \mathrm{G}$, we say that $\mathrm{G} \in[\mathrm{SAIN}]_{\mathrm{H}}$ (small almost-invariant neighborhoods) when for every $\mathrm{F} \subset \mathrm{H}$ finite, there is a basis $\left(V_{j}\right)_{j \geq 1}$ of symmetric neighborhoods of 1 with

$$
\lim _{j \rightarrow \infty} \frac{\mu\left(\left(h^{-1} V_{j} h\right) \Delta V_{j}\right)}{\mu\left(V_{j}\right)}=0 \quad \text { for all } \quad h \in \mathrm{~F} .
$$

Noncommutative de Leeuw restriction

Restriction theorem
If m is continuous and T_{m} is $L_{p}\left(\mathbb{R}^{n}\right)$-bounded

$$
T_{m_{\left.\right|_{\mathrm{H}}}}: \int_{\mathrm{H}} \widehat{f}(h) \chi_{h} d \mu(h) \mapsto \int_{\mathrm{H}} m(h) \widehat{f}(h) \chi_{h} d \mu(h)
$$

extends to a $L_{p}(\widehat{\mathrm{H}})$-bounded Fourier multiplier for any subgroup $\mathrm{H} \subset \mathbb{R}^{n}$.

Theorem G

If $m: \mathrm{G} \rightarrow \mathbb{C}$ is continuous and $\mathrm{H} \subset \mathrm{G}$

$$
\left\|T_{m_{l_{\mathrm{H}}}}: L_{p}(\widehat{\mathrm{H}}) \rightarrow L_{p}(\widehat{\mathrm{H}})\right\| \leq\left\|T_{m}: L_{p}(\widehat{\mathrm{G}}) \rightarrow L_{p}(\widehat{\mathrm{G}})\right\|
$$

provided $\mathrm{H} \in \operatorname{ADS}$ (ok for H discrete), $\Delta_{\mathrm{G}}^{\left.\right|_{\mathrm{H}}}{ }=1$ (standard) and $\mathrm{G} \in[\mathrm{SAIN}]_{\mathrm{H}}$.
If $\mathrm{H} \subset \mathrm{G}$, we say that $\mathrm{G} \in[\mathrm{SAIN}]_{\mathrm{H}}$ (small almost-invariant neighborhoods) when for every $\mathrm{F} \subset \mathrm{H}$ finite, there is a basis $\left(V_{j}\right)_{j \geq 1}$ of symmetric neighborhoods of 1 with

$$
\lim _{j \rightarrow \infty} \frac{\mu\left(\left(h^{-1} V_{j} h\right) \Delta V_{j}\right)}{\mu\left(V_{j}\right)}=0 \quad \text { for all } \quad h \in \mathrm{~F}
$$

Limitations of NC restriction

[González-Pérez - de la Salle, Preprint '16]
The SAIN condition is essentially optimal in Theorem G. It fails for $\operatorname{SL}_{n}(\mathbb{Z}) \subset \operatorname{SL}_{n}(\mathbb{R})$.

A rough geometric intuition in $S L_{n}(\mathbb{R})$

Accordingly, our first goal is to understand Fourier L_{p} multipliers over $\mathrm{SL}_{\mathrm{n}}(\mathbb{R}) \ldots$

A rough geometric intuition in $S L_{n}(\mathbb{R})$

Accordingly, our first goal is to understand Fourier L_{p} multipliers over $\mathrm{SL}_{\mathrm{n}}(\mathbb{R}) \ldots$

A naive idea for $S L_{n}(\mathbb{R})$

$$
\begin{gathered}
b(g)=g \cdot u-u \quad \text { with } \quad u=(1,1,1) \\
\mathrm{SL}_{n}(\mathbb{R}) \ni g \mapsto b(g) \rtimes g \in \Gamma_{n} \subset \mathbb{R}^{n} \rtimes \mathrm{SL}_{n}(\mathbb{R}) \\
\mathrm{SL}_{n}(\mathbb{R})=\mathrm{KAK} \quad \text { with } \quad \mathrm{K}=\mathrm{SO}_{n}(\mathbb{R}), \mathrm{A}=\operatorname{Diag}\left(\mathrm{SL}_{n}(\mathbb{R})\right)
\end{gathered}
$$

A rough geometric intuition in $S L_{n}(\mathbb{R})$

Accordingly, our first goal is to understand Fourier L_{p} multipliers over $\mathrm{SL}_{n}(\mathbb{R}) \ldots$
A naive idea for $S L_{n}(\mathbb{R})$

$$
\begin{gathered}
b(g)=g \cdot u-u \quad \text { with } \quad u=(1,1,1) \\
\mathrm{SL}_{n}(\mathbb{R}) \ni g \mapsto b(g) \rtimes g \in \Gamma_{n} \subset \mathbb{R}^{n} \rtimes \mathrm{SL}_{n}(\mathbb{R}) \\
\mathrm{SL}_{n}(\mathbb{R})=\mathrm{KAK} \quad \text { with } \quad \mathrm{K}=\mathrm{SO}_{n}(\mathbb{R}), \mathrm{A}=\operatorname{Diag}^{\left(\mathrm{SL}_{n}(\mathbb{R})\right)}
\end{gathered}
$$

Very far from rigorous but hopefully illustrating -Recall the behavior of $H_{u} \rtimes i d_{\mathrm{G}}$ -

Local Hörmander-Mihlin symbols in $\mathrm{SL}_{n}(\mathbb{R})$

Natural nonisometric "proper cocycles"

$$
\gamma_{u}: \mathrm{SL}_{\mathrm{n}}(\mathbb{R}) \ni g \mapsto g u-u \in \mathbb{R}^{n}
$$

Local Hörmander-Mihlin symbols in $\mathrm{SL}_{n}(\mathbb{R})$

Natural nonisometric "proper cocycles"

$$
\gamma_{u}: \mathrm{SL}_{\mathrm{n}}(\mathbb{R}) \ni g \mapsto g u-u \in \mathbb{R}^{n}
$$

We can make them injective by taking

$$
\beta=\bigoplus_{j=1}^{n} \gamma_{e_{j}}: \mathrm{SL}_{n}(\mathbb{R}) \ni g \mapsto g-e \in \mathrm{HS}_{n \times n} \simeq \mathbb{R}^{n^{2}}
$$

Local Hörmander-Mihlin symbols in $\mathrm{SL}_{n}(\mathbb{R})$

Natural nonisometric "proper cocycles"

$$
\gamma_{u}: \mathrm{SL}_{\mathrm{n}}(\mathbb{R}) \ni g \mapsto g u-u \in \mathbb{R}^{n}
$$

We can make them injective by taking

$$
\beta=\bigoplus_{j=1}^{n} \gamma_{e_{j}}: \mathrm{SL}_{\mathrm{n}}(\mathbb{R}) \ni g \mapsto g-e \in \mathrm{HS}_{n \times n} \simeq \mathbb{R}^{n^{2}}
$$

If $m: \operatorname{SL}_{n}(\mathbb{R}) \rightarrow \mathbb{C}$, the β-lifted symbol $\widetilde{m}: \mathbb{R}^{n^{2}} \rightarrow \mathbb{C}$ from $m=\widetilde{m} \circ \beta$ always exists.

Local Hörmander-Mihlin symbols in $\mathrm{SL}_{n}(\mathbb{R})$

Natural nonisometric "proper cocycles"

$$
\gamma_{u}: \mathrm{SL}_{n}(\mathbb{R}) \ni g \mapsto g u-u \in \mathbb{R}^{n}
$$

We can make them injective by taking

$$
\beta=\bigoplus_{j=1}^{n} \gamma_{e_{j}}: \mathrm{SL}_{\mathrm{n}}(\mathbb{R}) \ni g \mapsto g-e \in \mathrm{HS}_{n \times n} \simeq \mathbb{R}^{n^{2}}
$$

If $m: \operatorname{SL}_{n}(\mathbb{R}) \rightarrow \mathbb{C}$, the β-lifted symbol $\widetilde{m}: \mathbb{R}^{n^{2}} \rightarrow \mathbb{C}$ from $m=\widetilde{m} \circ \beta$ always exists.

Theorem H

 [Parcet-Ricard, Work in progress]Given $n \geq 2$, there exists

$$
\Omega_{n}=\text { neighborhood of the identity in } \mathrm{SL}_{n}(\mathbb{R})
$$

such that $T_{m}: L_{p}\left(\widehat{\mathbf{S L}_{\mathbf{n}}(\mathbb{R})}\right) \rightarrow L_{p}\left(\overline{\mathbf{S L}_{\mathbf{n}}(\mathbb{R})}\right)$ for all $1<p<\infty$ and all Ω_{n}-supported SO_{n}-biinvariant symbols $m: \mathrm{SL}_{\mathrm{n}}(\mathbb{R}) \rightarrow \mathbb{C}$ satisfying the β-lifted Hörmander-Mihlin smoothness condition below

$$
\left|\partial_{\xi}^{\alpha} \widetilde{m}(\xi)\right| \leq c_{n}|\xi|^{-|\alpha|} \quad \text { for all }|\alpha| \leq n^{2}+2
$$

Local Hörmander-Mihlin symbols in $\mathrm{SL}_{n}(\mathbb{R})$

Theorem H
 [Parcet-Ricard, Work in progress]

Given $n \geq 2$, there exists

$$
\Omega_{n}=\text { neighborhood of the identity in } \mathrm{SL}_{n}(\mathbb{R})
$$

such that $\left.T_{m}: L_{p}\left(\widehat{\mathbf{S L}_{\mathbf{n}}(\mathbb{R}}\right)\right) \rightarrow L_{p}\left(\widehat{\mathbf{S} \mathbf{L}_{\mathbf{n}}(\mathbb{R})}\right)$ for all $1<p<\infty$ and all Ω_{n}-supported SO_{n}-biinvariant symbols $m: \mathrm{SL}_{\mathrm{n}}(\mathbb{R}) \rightarrow \mathbb{C}$ satisfying the β-lifted Hörmander-Mihlin smoothness condition below

$$
\left|\partial_{\xi}^{\alpha} \widetilde{m}(\xi)\right| \leq c_{n}|\xi|^{-|\alpha|} \quad \text { for all }|\alpha| \leq n^{2}+2
$$

Local Hörmander-Mihlin symbols in $\mathrm{SL}_{n}(\mathbb{R})$

Theorem H [Parcet-Ricard, Work in progress]

Given $n \geq 2$, there exists

$$
\Omega_{n}=\text { neighborhood of the identity in } \mathrm{SL}_{n}(\mathbb{R})
$$

such that $\left.T_{m}: L_{p}\left(\widehat{\mathbf{S L}_{\mathbf{n}}(\mathbb{R}}\right)\right) \rightarrow L_{p}\left(\widehat{\mathbf{S} \mathbf{L}_{\mathbf{n}}(\mathbb{R})}\right)$ for all $1<p<\infty$ and all Ω_{n}-supported SO_{n}-biinvariant symbols $m: \mathrm{SL}_{\mathrm{n}}(\mathbb{R}) \rightarrow \mathbb{C}$ satisfying the β-lifted Hörmander-Mihlin smoothness condition below

$$
\left|\partial_{\xi}^{\alpha} \widetilde{m}(\xi)\right| \leq c_{n}|\xi|^{-|\alpha|} \quad \text { for all }|\alpha| \leq n^{2}+2
$$

Not polished, work in progress...

- Other noninjective cocycles $\left(\gamma_{u}\right)+\mathrm{SO}_{\mathrm{n}}$-biinvariance removable.
- $L_{\infty} \rightarrow \mathrm{BMO}+$ Sobolev conditions + Optimal HM regularity $\operatorname{dim} / 2+\varepsilon$.
- Other semisimple Lie groups + Locality removable for \mathbb{R}-rank $=1\left(\mathrm{SL}_{2}\right)$.

Local Hörmander-Mihlin symbols in $\mathrm{SL}_{n}(\mathbb{R})$

Theorem H [Parcet-Ricard, Work in progress]

Given $n \geq 2$, there exists

$$
\Omega_{n}=\text { neighborhood of the identity in } \mathrm{SL}_{n}(\mathbb{R})
$$

such that $\left.\left.T_{m}: L_{p}\left(\widehat{\mathbf{S L}_{\mathbf{n}}(\mathbb{R}}\right)\right) \rightarrow L_{p}\left(\widehat{\mathbf{S L}_{\mathbf{n}}(\mathbb{R}}\right)\right)$ for all $1<p<\infty$ and all Ω_{n}-supported SO_{n}-biinvariant symbols $m: \mathrm{SL}_{\mathrm{n}}(\mathbb{R}) \rightarrow \mathbb{C}$ satisfying the β-lifted Hörmander-Mihlin smoothness condition below

$$
\left|\partial_{\xi}^{\alpha} \widetilde{m}(\xi)\right| \leq c_{n}|\xi|^{-|\alpha|} \quad \text { for all }|\alpha| \leq n^{2}+2
$$

Not polished, work in progress...

- Other noninjective cocycles $\left(\gamma_{u}\right)+\mathrm{SO}_{\mathrm{n}}$-biinvariance removable.
- $L_{\infty} \rightarrow \mathrm{BMO}+$ Sobolev conditions + Optimal HM regularity $\operatorname{dim} / 2+\varepsilon$.
- Other semisimple Lie groups + Locality removable for \mathbb{R}-rank $=1\left(\mathrm{SL}_{2}\right)$.

After Theorem H, also work in progress...

- Dilations of $\mathrm{SL}_{\mathrm{n}}(\mathbb{R})$-multipliers.
- Fourier L_{4}-summability over $\mathrm{SL}_{3}(\mathbb{R})$.
- A metric-smoothness condition for nonlocal multipliers.

Local Hörmander-Mihlin symbols in $\mathrm{SL}_{n}(\mathbb{R})$

Theorem H

[Parcet-Ricard, Work in progress]
Given $n \geq 2$, there exists

$$
\Omega_{n}=\text { neighborhood of the identity in } \operatorname{SL}_{n}(\mathbb{R})
$$

such that $T_{m}: L_{p}(\widehat{\mathbf{S L}(\mathbb{R})}) \rightarrow L_{p}\left(\widehat{\mathbf{S L}_{\mathbf{n}}(\mathbb{R})}\right)$ for all $1<p<\infty$ and all Ω_{n}-supported SO_{n}-biinvariant symbols $m: \mathrm{SL}_{\mathrm{n}}(\mathbb{R}) \rightarrow \mathbb{C}$ satisfying the β-lifted Hörmander-Mihlin smoothness condition below

$$
\left|\partial_{\xi}^{\alpha} \widetilde{m}(\xi)\right| \leq c_{n}|\xi|^{-|\alpha|} \quad \text { for all }|\alpha| \leq n^{2}+2 .
$$

Not polished, work in progress...

- Other noninjective cocycles $\left(\gamma_{u}\right)+\mathrm{SO}_{n}$-biinvariance removable.
- $L_{\infty} \rightarrow \mathrm{BMO}+$ Sobolev conditions + Optimal HM regularity $\operatorname{dim} / 2+\varepsilon$.
- Other semisimple Lie groups + Locality removable for \mathbb{R}-rank $=1\left(\mathrm{SL}_{2}\right)$.

After Theorem H, also work in progress...

- Dilations of $\mathrm{SL}_{n}(\mathbb{R})$-multipliers.
- Fourier L_{4}-summability over $\mathrm{SL}_{3}(\mathbb{R})$.
- A metric-smoothness condition for nonlocal multipliers.

Only qualitative results known so far - Positive definite functions $+\mathcal{C}^{\infty}$-bumps.

Local HM over $\mathrm{SL}_{n}(\mathbb{R})$ - Sketch of the proof

- Local δ-amenability

Let G be a locally compact unimodular group, with Haar measure μ. Let $\Omega \subset \mathrm{G}$ be a relatively compact neighborhood of the identity and $\delta \geq 0$.

Local HM over $S L_{n}(\mathbb{R})$ - Sketch of the proof

- Local δ-amenability

Let G be a locally compact unimodular group, with Haar measure μ.
Let $\Omega \subset \mathrm{G}$ be a relatively compact neighborhood of the identity and $\delta \geq 0$.

Definition

We say that G is (Ω, δ)-amenable when there exists $\left(\varphi_{\alpha}\right)_{\alpha} \subset \mathcal{C}_{c}(\mathrm{G})_{+}$s.t.
i) $\int_{\mathrm{G}}\left|\varphi_{\alpha}\right|^{2} d \mu=1$ for all α.
ii) $\lim _{\alpha}\left|\int_{\mathrm{G}}\right| \varphi_{\alpha}(g h)-\left.\varphi_{\alpha}(h)\right|^{2} d \mu(h) \mid \leq \delta^{2}$ for all $g \in \Omega$.

Local HM over $S L_{n}(\mathbb{R})$ - Sketch of the proof

- Local δ-amenability

Let G be a locally compact unimodular group, with Haar measure μ.
Let $\Omega \subset \mathrm{G}$ be a relatively compact neighborhood of the identity and $\delta \geq 0$.

Definition

We say that G is (Ω, δ)-amenable when there exists $\left(\varphi_{\alpha}\right)_{\alpha} \subset \mathcal{C}_{c}(\mathrm{G})_{+}$s.t.
i) $\int_{\mathrm{G}}\left|\varphi_{\alpha}\right|^{2} d \mu=1$ for all α.
ii) $\lim _{\alpha}\left|\int_{\mathrm{G}}\right| \varphi_{\alpha}(g h)-\left.\varphi_{\alpha}(h)\right|^{2} d \mu(h) \mid \leq \delta^{2}$ for all $g \in \Omega$.

G amenable when $(\Omega, \delta)=(\mathrm{G}, 0)$ - Pick φ_{α} an L_{2}-normalized FøIner seq

Local HM over $S L_{n}(\mathbb{R})$ - Sketch of the proof

- Local δ-amenability

Let G be a locally compact unimodular group, with Haar measure μ.
Let $\Omega \subset \mathrm{G}$ be a relatively compact neighborhood of the identity and $\delta \geq 0$.

Definition

We say that G is (Ω, δ)-amenable when there exists $\left(\varphi_{\alpha}\right)_{\alpha} \subset \mathcal{C}_{c}(\mathrm{G})_{+}$s.t.
i) $\int_{\mathrm{G}}\left|\varphi_{\alpha}\right|^{2} d \mu=1$ for all α.
ii) $\lim _{\alpha}\left|\int_{\mathrm{G}}\right| \varphi_{\alpha}(g h)-\left.\varphi_{\alpha}(h)\right|^{2} d \mu(h) \mid \leq \delta^{2}$ for all $g \in \Omega$.

G amenable when $(\Omega, \delta)=(\mathrm{G}, 0)$ - Pick φ_{α} an L_{2}-normalized FøIner seq

- (Ω, δ)-amenability relevant for $\delta<1$.
- Subexponential growth \Rightarrow Amenability.
- If G admits exponential growth, we find
(Ω, δ)-amenability fails for Ω large and $\delta<1$.
- In particular, it turns out that (Ω, δ)-amenability is a local notion.

Local HM over $S L_{n}(\mathbb{R})$ - Sketch of the proof

- Local δ-amenability

Let G be a locally compact unimodular group, with Haar measure μ.
Let $\Omega \subset \mathrm{G}$ be a relatively compact neighborhood of the identity and $\delta \geq 0$.

Definition

We say that G is (Ω, δ)-amenable when there exists $\left(\varphi_{\alpha}\right)_{\alpha} \subset \mathcal{C}_{c}(\mathrm{G})_{+}$s.t.
i) $\int_{\mathrm{G}}\left|\varphi_{\alpha}\right|^{2} d \mu=1$ for all α.
ii) $\lim _{\alpha}\left|\int_{\mathrm{G}}\right| \varphi_{\alpha}(g h)-\left.\varphi_{\alpha}(h)\right|^{2} d \mu(h) \mid \leq \delta^{2}$ for all $g \in \Omega$.

G amenable when $(\Omega, \delta)=(\mathrm{G}, 0)$ - Pick φ_{α} an L_{2}-normalized FøIner seq

- (Ω, δ)-amenability relevant for $\delta<1$.
- Subexponential growth \Rightarrow Amenability.
- If G admits exponential growth, we find
(Ω, δ)-amenability fails for Ω large and $\delta<1$.
- In particular, it turns out that (Ω, δ)-amenability is a local notion.

STEP 1. It is easy to check that $\operatorname{SL}_{n}(\mathbb{R})$ is $\left(\Omega_{n}, 1 / 2\right)$-amenable for some Ω_{n}.

Local HM over $S_{n}(\mathbb{R})$ - Sketch of the proof

- Local δ-amenability
- Matrix amplification

Define

$$
\Phi_{\alpha}=\int_{\mathrm{G}} \varphi_{\alpha}(g) e_{g g} d \mu(g) \in \mathcal{B}\left(L_{2}(\mathrm{G})\right)
$$

Given $1 \leq p \leq \infty$, set $j_{p \alpha}: f \mapsto \Phi_{\alpha}^{\frac{2}{p}} j(f)$ with

$$
\begin{gathered}
j: \mathcal{M} \rtimes \mathrm{G} \rightarrow \mathcal{M} \bar{\otimes} \mathcal{B}\left(L_{2}(\mathrm{G})\right), \\
j\left(\int_{\mathrm{G}} f_{g} \rtimes \lambda(g) d \mu(g)\right)=\left(\gamma_{g^{-1}}\left(f_{g h-1}\right)\right)_{\mathrm{G} \times \mathrm{G}}
\end{gathered}
$$

Local HM over $S L_{n}(\mathbb{R})$ - Sketch of the proof

- Local δ-amenability

- Matrix amplification

Define

$$
\Phi_{\alpha}=\int_{\mathrm{G}} \varphi_{\alpha}(g) e_{g g} d \mu(g) \in \mathcal{B}\left(L_{2}(\mathrm{G})\right)
$$

Given $1 \leq p \leq \infty$, set $j_{p \alpha}: f \mapsto \Phi_{\alpha}^{\frac{2}{p}} j(f)$ with

$$
\begin{gathered}
j: \mathcal{M} \rtimes \mathrm{G} \rightarrow \mathcal{M} \bar{\otimes} \mathcal{B}\left(L_{2}(\mathrm{G})\right), \\
j\left(\int_{\mathrm{G}} f_{g} \rtimes \lambda(g) d \mu(g)\right)=\left(\gamma_{g^{-1}}\left(f_{g h^{-1}}\right)\right)_{\mathrm{G} \times \mathrm{G}}
\end{gathered}
$$

STEP 2. The following properties hold for $p \geq 2$:
i) $\left\|j_{p \alpha}: L_{p}\left(\mathcal{M} \rtimes_{\gamma} \mathrm{G}\right) \rightarrow L_{p}\left(\mathcal{M} \bar{\otimes} \mathcal{B}\left(L_{2}(\mathrm{G})\right)\right)\right\|_{\mathrm{cb}} \leq 1$.
ii) If in addition G is (Ω, δ)-amenable, we also find that

$$
\|f\|_{p} \leq_{\mathrm{cb}} \frac{1}{1-\delta} \lim _{\alpha}\left\|j_{p \alpha}(f)\right\|_{p} \quad \text { whenever } \quad f_{g}=0 \text { for all } g \notin \Omega
$$

Local HM over $\mathrm{SL}_{n}(\mathbb{R})$ - Sketch of the proof

- Local δ-amenability

- Matrix amplification

Define

$$
\Phi_{\alpha}=\int_{\mathrm{G}} \varphi_{\alpha}(g) e_{g g} d \mu(g) \in \mathcal{B}\left(L_{2}(\mathrm{G})\right)
$$

Given $1 \leq p \leq \infty$, set $j_{p \alpha}: f \mapsto \Phi_{\alpha}^{\frac{2}{p}} j(f)$ with

$$
\begin{gathered}
j: \mathcal{M} \rtimes \mathrm{G} \rightarrow \mathcal{M} \bar{\otimes} \mathcal{B}\left(L_{2}(\mathrm{G})\right), \\
j\left(\int_{\mathrm{G}} f_{g} \rtimes \lambda(g) d \mu(g)\right)=\left(\gamma_{g^{-1}}\left(f_{g h^{-1}}\right)\right)_{\mathrm{G} \times \mathrm{G}}
\end{gathered}
$$

STEP 2. The following properties hold for $p \geq 2$:
i) $\left\|j_{p \alpha}: L_{p}\left(\mathcal{M} \rtimes_{\gamma} \mathrm{G}\right) \rightarrow L_{p}\left(\mathcal{M} \bar{\otimes} \mathcal{B}\left(L_{2}(\mathrm{G})\right)\right)\right\|_{\mathrm{cb}} \leq 1$.
ii) If in addition G is (Ω, δ)-amenable, we also find that

$$
\|f\|_{p} \leq_{\mathrm{cb}} \frac{1}{1-\delta} \lim _{\alpha}\left\|j_{p \alpha}(f)\right\|_{p} \quad \text { whenever } \quad f_{g}=0 \text { for all } g \notin \Omega .
$$

Basic idea. $\quad \operatorname{SL}_{n}(\mathbb{R}) \rightarrow L_{\infty}\left(\mathbb{R}^{n^{2}}\right) \rtimes \operatorname{SL}_{n}(\mathbb{R}) \rightarrow L_{\infty}\left(\mathbb{R}^{n^{2}}\right) \bar{\otimes} \mathcal{B}\left(L_{2}\left(\operatorname{SL}_{n}(\mathbb{R})\right)\right)$.

Local HM over $\mathrm{SL}_{n}(\mathbb{R})$ - Sketch of the proof

- Local δ-amenability
- Matrix amplification
- An operator to bound

If $\sigma: \mathcal{L}\left(\mathrm{SL}_{n}(\mathbb{R})\right) \rightarrow L_{\infty}\left(\mathbb{R}_{\text {bohr }}^{n^{2}}\right) \rtimes \mathrm{SL}_{\mathrm{n}}(\mathbb{R})$ is the β-embedding

$$
\left\|T_{m} f\right\|_{p}=\left\|\sigma T_{m} f\right\|_{p}=\left\|\left(T_{\widetilde{m}} \rtimes i d\right) \sigma f\right\|_{p} \leq_{\mathrm{cb}} \frac{1}{1-\delta} \lim _{\alpha}\left\|j_{p \alpha}\left(\left(T_{\widetilde{m}} \rtimes i d\right) \sigma f\right)\right\|_{p}
$$

Local HM over $\mathrm{SL}_{n}(\mathbb{R})$ - Sketch of the proof

- Local δ-amenability
- Matrix amplification
- An operator to bound

If $\sigma: \mathcal{L}\left(\mathrm{SL}_{n}(\mathbb{R})\right) \rightarrow L_{\infty}\left(\mathbb{R}_{\text {bohr }}^{n^{2}}\right) \rtimes \mathrm{SL}_{\mathrm{n}}(\mathbb{R})$ is the β-embedding
$\left\|T_{m} f\right\|_{p}=\left\|\sigma T_{m} f\right\|_{p}=\left\|\left(T_{\widetilde{m}} \rtimes i d\right) \sigma f\right\|_{p} \leq_{\mathrm{cb}} \frac{1}{1-\delta} \lim _{\alpha}\left\|j_{p \alpha}\left(\left(T_{\widetilde{m}} \rtimes i d\right) \sigma f\right)\right\|_{p}$.
Moreover, in the algebra $\mathcal{R}_{\text {bohr }}=L_{\infty}\left(\mathbb{R}_{\text {bohr }}^{n^{2}}\right) \bar{\otimes} \mathcal{B}\left(L_{2}\left(\mathrm{SL}_{n}(\mathbb{R})\right)\right)$ we have
$j_{p \alpha}\left(\left(T_{\widetilde{m}} \rtimes i d\right) \sigma f\right)=\underbrace{\left(g^{-1} T_{\widetilde{m}} g\right)}_{\Lambda} \bullet\left(\varphi_{\alpha}(g)^{\frac{2}{p}} g^{-1} \cdot\left(\sigma(f)_{g h^{-1}}\right)\right)=\Lambda \bullet j_{p \alpha} \sigma f$.

Local HM over $\mathrm{SL}_{n}(\mathbb{R})$ - Sketch of the proof

- Local δ-amenability
- Matrix amplification
- An operator to bound

If $\sigma: \mathcal{L}\left(\operatorname{SL}_{n}(\mathbb{R})\right) \rightarrow L_{\infty}\left(\mathbb{R}_{\text {bohr }}^{n^{2}}\right) \rtimes \mathrm{SL}_{n}(\mathbb{R})$ is the β-embedding
$\left\|T_{m} f\right\|_{p}=\left\|\sigma T_{m} f\right\|_{p}=\left\|\left(T_{\widetilde{m}} \rtimes i d\right) \sigma f\right\|_{p} \leq_{\mathrm{cb}} \frac{1}{1-\delta} \lim _{\alpha}\left\|j_{p \alpha}\left(\left(T_{\widetilde{m}} \rtimes i d\right) \sigma f\right)\right\|_{p}$.
Moreover, in the algebra $\mathcal{R}_{\text {bohr }}=L_{\infty}\left(\mathbb{R}_{\text {bohr }}^{n^{2}}\right) \bar{\otimes} \mathcal{B}\left(L_{2}\left(\mathrm{SL}_{\mathrm{n}}(\mathbb{R})\right)\right)$ we have
$j_{p \alpha}\left(\left(T_{\widetilde{m}} \rtimes i d\right) \sigma f\right)=\underbrace{\left(g^{-1} T_{\widetilde{m}} g\right)}_{\Lambda} \bullet\left(\varphi_{\alpha}(g)^{\frac{2}{p}} g^{-1} \cdot\left(\sigma(f)_{g h-1}\right)\right)=\Lambda \bullet j_{p \alpha} \sigma f$.
The L_{2}-bdness of Λ is trivial. The goal is to prove $\Lambda: \mathcal{R}_{\text {bohr }} \rightarrow \operatorname{BMO}\left(\mathcal{R}_{\text {bohr }}\right)$.
Using de Leeuw decompactification: $\mathcal{R}_{\text {bohr }} \rightsquigarrow \mathcal{R}=L_{\infty}\left(\mathbb{R}^{n^{2}}\right) \bar{\otimes} \mathcal{B}\left(L_{2}\left(\operatorname{SL}_{\mathrm{n}}(\mathbb{R})\right)\right)$.
$\mathrm{BMO}(\mathcal{R})=\mathrm{BMO}_{r}(\mathcal{R}) \cap \mathrm{BMO}_{c}(\mathcal{R}) \Rightarrow \mathrm{AIM}=\Lambda: \mathcal{R} \rightarrow \mathrm{BMO}_{\dagger}(\mathcal{R})$ for $\dagger=r, c$.

Local HM over $S L_{n}(\mathbb{R})$ - Sketch of the proof

- Local δ-amenability
- Matrix amplification
- An operator to bound

If $\sigma: \mathcal{L}\left(\mathrm{SL}_{\mathrm{n}}(\mathbb{R})\right) \rightarrow L_{\infty}\left(\mathbb{R}_{\text {bohr }}^{n^{2}}\right) \rtimes \mathrm{SL}_{\mathrm{n}}(\mathbb{R})$ is the β-embedding
$\left\|T_{m} f\right\|_{p}=\left\|\sigma T_{m} f\right\|_{p}=\left\|\left(T_{\widetilde{m}} \rtimes i d\right) \sigma f\right\|_{p} \leq_{\mathrm{cb}} \frac{1}{1-\delta} \lim _{\alpha}\left\|j_{p \alpha}\left(\left(T_{\widetilde{m}} \rtimes i d\right) \sigma f\right)\right\|_{p}$.
Moreover, in the algebra $\mathcal{R}_{\text {bohr }}=L_{\infty}\left(\mathbb{R}_{\text {bohr }}^{n^{2}}\right) \bar{\otimes} \mathcal{B}\left(L_{2}\left(\mathrm{SL}_{n}(\mathbb{R})\right)\right)$ we have

$$
j_{p \alpha}\left(\left(T_{\widetilde{m}} \rtimes i d\right) \sigma f\right)=\underbrace{\left(g^{-1} T_{\widetilde{m}} g\right)}_{\Lambda} \bullet\left(\varphi_{\alpha}(g)^{\frac{2}{p}} g^{-1} \cdot\left(\sigma(f)_{g h-1}\right)\right)=\Lambda \bullet j_{p \alpha} \sigma f .
$$

The L_{2}-bdness of Λ is trivial. The goal is to prove $\Lambda: \mathcal{R}_{\text {bohr }} \rightarrow \operatorname{BMO}\left(\mathcal{R}_{\text {bohr }}\right)$.
Using de Leeuw decompactification: $\mathcal{R}_{\text {bohr }} \rightsquigarrow \mathcal{R}=L_{\infty}\left(\mathbb{R}^{n^{2}}\right) \bar{\otimes} \mathcal{B}\left(L_{2}\left(\operatorname{SL}_{\mathrm{n}}(\mathbb{R})\right)\right)$.
$\mathrm{BMO}(\mathcal{R})=\mathrm{BMO}_{r}(\mathcal{R}) \cap \mathrm{BMO}_{c}(\mathcal{R}) \Rightarrow \mathrm{AIM}=\Lambda: \mathcal{R} \rightarrow \mathrm{BMO}_{\dagger}(\mathcal{R})$ for $\dagger=r, c$.
STEP 3. Our strong HM smoothness condition implies $\Lambda: \mathcal{R} \rightarrow \mathrm{BMO}_{c}(\mathcal{R})$.
This follows adapting techniques in [JMP, GAFA '14] for nonequivariant actions.

Local HM over $S L_{n}(\mathbb{R})$ - Sketch of the proof

- Local δ-amenability
- Matrix amplification
- An operator to bound
- The box diagonalization

Note that $g^{-1} T_{\widetilde{m}} g=T_{\widetilde{m}_{g}}$ with $\widetilde{m}_{g}(\xi)=\widetilde{m}(g \xi)$.

Local HM over $S L_{n}(\mathbb{R})$ - Sketch of the proof

- Local δ-amenability
- Matrix amplification
- An operator to bound
- The box diagonalization

Note that $g^{-1} T_{\widetilde{m}} g=T_{\widetilde{m}_{g}}$ with $\widetilde{m}_{g}(\xi)=\widetilde{m}(g \xi)$.
Adapting [JMP, GAFA '14] once more, we see that

$$
\Lambda: \mathcal{R} \rightarrow \mathrm{BMO}_{r}(\mathcal{R}) \Leftrightarrow \inf _{\tilde{m}(g \xi)=\left\langle A_{\xi}, B_{g}\right\rangle_{\mathcal{K}}}^{\substack{\mathcal{K} \text { Hilbert }}}\left(\sup _{\xi \in \mathbb{R}^{n^{2}}}\left\|A_{\xi}\right\| \mathcal{K} \sup _{g \in \mathrm{SL}_{\mathrm{n}}(\mathbb{R})}\left\|B_{g}\right\|_{\mathcal{K}}\right)<\infty .
$$

Equivalent to $(\widetilde{m}(g \xi))_{g \xi}$ being a Schur multiplier $\mathcal{B}\left(L_{2}\left(\mathbb{R}^{n^{2}}\right)\right) \rightarrow \mathcal{B}\left(L_{2}\left(\mathrm{SL}_{n}(\mathbb{R})\right)\right)$.

Local HM over $S L_{n}(\mathbb{R})$ - Sketch of the proof

- Local δ-amenability
- Matrix amplification
- An operator to bound
- The box diagonalization

Note that $g^{-1} T_{\widetilde{m}} g=T_{\widetilde{m}_{g}}$ with $\widetilde{m}_{g}(\xi)=\widetilde{m}(g \xi)$.
Adapting [JMP, GAFA '14] once more, we see that

$$
\Lambda: \mathcal{R} \rightarrow \mathrm{BMO}_{r}(\mathcal{R}) \Leftrightarrow \underset{\substack{\tilde{m}(g \xi)=\left\langle A_{\xi}, B_{g}\right\rangle_{\mathcal{K}} \\ \mathcal{K} \text { Hilbert }}}{ }\left(\sup _{\xi \in \mathbb{R}^{n^{2}}}\left\|A_{\xi}\right\|_{\mathcal{K}} \sup _{g \in \operatorname{SL}_{\mathrm{n}}(\mathbb{R})}\left\|B_{g}\right\|_{\mathcal{K}}\right)<\infty
$$

Equivalent to $(\widetilde{m}(g \xi))_{g \xi}$ being a Schur multiplier $\mathcal{B}\left(L_{2}\left(\mathbb{R}^{n^{2}}\right)\right) \rightarrow \mathcal{B}\left(L_{2}\left(\mathrm{SL}_{n}(\mathbb{R})\right)\right)$.

$$
\text { STEP 4. If } \operatorname{supp} m \subset \Omega_{n} \text { it suffices to factorize } \widetilde{m}(g \xi) \text { for }(g, \xi) \in \Omega_{n} \times \mathbb{R}^{n^{2}} \text {. }
$$

Local HM over $S L_{n}(\mathbb{R})$ - Sketch of the proof

- Local δ-amenability
- Matrix amplification
- An operator to bound
- The box diagonalization

Note that $g^{-1} T_{\widetilde{m}} g=T_{\widetilde{m}_{g}}$ with $\widetilde{m}_{g}(\xi)=\widetilde{m}(g \xi)$.
Adapting [JMP, GAFA '14] once more, we see that

$$
\Lambda: \mathcal{R} \rightarrow \mathrm{BMO}_{r}(\mathcal{R}) \Leftrightarrow \inf _{\tilde{m}(g \xi)=\left\langle A_{\xi}, B_{g}\right\rangle_{\mathcal{K}}}^{\mathcal{K} \text { Hilbert }}\left(\sup _{\xi \in \mathbb{R}^{n^{2}}}\left\|A_{\xi}\right\|_{\mathcal{K}} \sup _{g \in \operatorname{SL}_{\mathrm{n}}(\mathbb{R})}\left\|B_{g}\right\|_{\mathcal{K}}\right)<\infty .
$$

Equivalent to $(\widetilde{m}(g \xi))_{g \xi}$ being a Schur multiplier $\mathcal{B}\left(L_{2}\left(\mathbb{R}^{n^{2}}\right)\right) \rightarrow \mathcal{B}\left(L_{2}\left(\mathrm{SL}_{n}(\mathbb{R})\right)\right)$.
STEP 4. If supp $m \subset \Omega_{n}$ it suffices to factorize $\widetilde{m}(g \xi)$ for $(g, \xi) \in \Omega_{n} \times \mathbb{R}^{n^{2}}$.

- Λ acts on the matrix $A_{m} f=j_{p \alpha} \sigma T_{m} f$ as a Schur multiplier.
- $\operatorname{supp} m \subset \Omega_{n} \Rightarrow j_{p \alpha} \sigma T_{m} f$ is a strip-diagonal matrix $g^{-1} h \in \Omega_{n}$.
- A box diagonalization exploiting the geometry of $S L_{n}(\mathbb{R})$ is possible.
- $\widetilde{m} \mapsto \widetilde{m}_{g}$ preserves HM constants \Rightarrow Select the central box $(g, h) \in \Omega_{n}^{2}$.

Local HM over $S L_{n}(\mathbb{R})$ - Sketch of the proof

- Local δ-amenability
- Matrix amplification
- An operator to bound
- The box diagonalization
- Riesz transform LP averaging

According to [JMP, JEMS '16] we know that

$$
\widetilde{m}=\sum_{j} \phi_{j} R_{j \varepsilon} \quad \text { with } \phi_{j} \text { LP decomposition. }
$$

Local HM over $S L_{n}(\mathbb{R})$ - Sketch of the proof

- Local δ-amenability
- Matrix amplification
- An operator to bound
- The box diagonalization
- Riesz transform LP averaging

According to [JMP, JEMS '16] we know that

$$
\widetilde{m}=\sum_{j} \phi_{j} R_{j \varepsilon} \quad \text { with } \phi_{j} \text { LP decomposition. }
$$

Reduction $=$ Riesz transform factorization + Twisted matrix LP theorem.

Local HM over $\mathrm{SL}_{n}(\mathbb{R})$ - Sketch of the proof

- Local δ-amenability
- Matrix amplification
- An operator to bound
- The box diagonalization
- Riesz transform LP averaging

According to [JMP, JEMS '16] we know that

$$
\widetilde{m}=\sum_{j} \phi_{j} R_{j \varepsilon} \quad \text { with } \phi_{j} \text { LP decomposition. }
$$

Reduction $=$ Riesz transform factorization + Twisted matrix LP theorem.
STEP 4. The Schur factorization property holds for all Riesz transform $R_{j \varepsilon}$.

Local HM over $\mathrm{SL}_{n}(\mathbb{R})$ - Sketch of the proof

- Local δ-amenability
- Matrix amplification
- An operator to bound
- The box diagonalization
- Riesz transform LP averaging

According to [JMP, JEMS '16] we know that

$$
\widetilde{m}=\sum_{j} \phi_{j} R_{j \varepsilon} \quad \text { with } \phi_{j} \text { LP decomposition. }
$$

Reduction $=$ Riesz transform factorization + Twisted matrix LP theorem.
STEP 4. The Schur factorization property holds for all Riesz transform $R_{j \varepsilon}$.

$$
\left(\frac{\left\langle g \xi, u_{j}\right\rangle_{\varepsilon}}{|g \xi|^{\varepsilon}}\right)_{g, \xi}=\left(\left|g \frac{\xi}{|\xi|}\right|^{-\varepsilon}\right)_{g, \xi} \bullet\left(\left\langle\frac{\xi}{|\xi|^{\varepsilon}}, g^{*} u_{j}\right\rangle_{\varepsilon}\right)_{g, \xi}
$$

Local HM over $\mathrm{SL}_{n}(\mathbb{R})$ - Sketch of the proof

- Local δ-amenability
- Matrix amplification
- An operator to bound
- The box diagonalization
- Riesz transform LP averaging

According to [JMP, JEMS '16] we know that

$$
\widetilde{m}=\sum_{j} \phi_{j} R_{j \varepsilon} \quad \text { with } \phi_{j} \text { LP decomposition. }
$$

Reduction $=$ Riesz transform factorization + Twisted matrix LP theorem.
STEP 4. The Schur factorization property holds for all Riesz transform $R_{j \varepsilon}$.

$$
\left(\frac{\left\langle g \xi, u_{j}\right\rangle_{\varepsilon}}{|g \xi|^{\varepsilon}}\right)_{g, \xi}=\left(\left|g \frac{\xi}{|\xi|}\right|^{-\varepsilon}\right)_{g, \xi} \bullet\left(\left\langle\frac{\xi}{|\xi|^{\varepsilon}}, g^{*} u_{j}\right\rangle_{\varepsilon}\right)_{g, \xi}
$$

Since $g=k^{\prime} \sigma k \in K \Sigma K=\Omega_{n}$, we find for $\xi \in \mathbb{S}^{n^{2}-1}$ that $|g \xi|=|\sigma k \xi|$ and

$$
\left\|\left(|\sigma k \xi|^{-\varepsilon}\right)_{\sigma k, \xi}\right\|_{\text {schur }}=\sup _{\sigma \in \Sigma}\left\|\left(|\sigma k \xi|^{-\varepsilon}\right)_{k, \xi}\right\|_{\text {schur }} \sim\left\|\left(|k \xi|^{-\varepsilon}\right)_{k, \xi}\right\|_{\text {schur }}
$$

Local HM over $\mathrm{SL}_{n}(\mathbb{R})$ - Sketch of the proof

- Local δ-amenability
- Matrix amplification
- An operator to bound
- The box diagonalization
- Riesz transform LP averaging
- Matrix form of Littlewood-Paley

Similar ideas than for the Riesz transform...

Local HM over $\mathrm{SL}_{n}(\mathbb{R})$ - Sketch of the proof

- Local δ-amenability
- Matrix amplification
- An operator to bound
- The box diagonalization
- Riesz transform LP averaging
- Matrix form of Littlewood-Paley

Similar ideas than for the Riesz transform...

Thank you!

