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M. Perrin, E. Ricard, K. Rogers, M. de la Salle



Main questions



Fourier summability over Zn

MAIN PROBLEM. Determine those families of bounded, compactly supported
symbols mR : Zn → C converging pointwise to 1 as R→∞, for which the limit
below

lim
R→∞

(∫
Tn

∣∣∣f(x)−
∑
k∈Zn

mR(k)f̂(k)e2πik·x
∣∣∣pdx) 1

p
= 0 for f ∈ Lp(Tn).

BASIC CONSTRUCTION

K. de Leeuw’s
restriction Rn → Zn +

dilation
invariance in Rn ⇒

compactly suppported
Fourier multipliers in Rn

A. Smooth approximation

Hörmander-Mihlin (1 < p <∞) + Positive type (p = 1,∞).

B. Nonsmooth approximation

Directional Hilbert transforms (1 < p <∞) + Ball multiplier thm (p 6= 2).

C. Bochner-Riesz phenomena

Balance between curvature of support and regularity near the boundary...

IMP. Zn is an abelian group and it admits a flat isometric embedding into Rn.
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Nonabelian discrete frequencies

OBJECTIVE. Study Fourier Lp summability with frequencies in locally compact
unimodular groups. Of course, our results highly depend on the geometry of the
frequency group. We assume the group to be discrete for simplicity.

IMP REMARK. Dual to Müller-Ricci-Stein approach for nilpotent Lie groups...
Pioneered by Haagerup, Cowling, de Canniere, etc The Lp-theory is brand new.

What is Lp(Ĝ)?

No Pontryagin duality for G not abelian  Quantum groups (easy case).

How do we measure smoothness?

Model cases: Free group F2 (Haagerup) + Special linear SLn(Z) (Kazhdan).

Why nonsmooth methods (polyhedra, balls, Bochner-Riesz)?

Crucial for further geometric information in the group von Neumann algebra.

KEY. How rigid (isometric) are the flat embeddings (proper cocycles) G→ H?

WHY SHOULD WE CARE? Our primary motivations are

NC HA
Euclidean applications

+
Operator Algebra

Classification of vNas
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Basic operator algebra



The group von Neumann algebra

Given f ∈ L∞(T), let Λf (g) = fg so that

ess sup
x∈T

|f(x)| =
∥∥Λf : L2(T)→ L2(T)

∥∥ =
∥∥Φ ◦ Λf ◦ Φ−1 : `2(Z)→ `2(Z)

∥∥
for the Fourier transform Φ : L2(T) 3 expk 7→ δk ∈ `2(Z). Then, the left regular
representation λ : Z→ B(`2(Z)) defined by λ(k) = Φ ◦ Λexpk ◦ Φ−1 : δj 7→ δj+k
yields the ∗-homomorphism

L∞(T) 3
∑

k
f̂(k) expk 7→

∑
k
f̂(k)λ(k) ∈ B(`2(Z)).

Therefore, L∞(T) is isomorphic to the group von Neumann algebra

L(Z) =
{∑
k∈Λ

akλ(k) : ak ∈ C, Λ ⊂ Z finite
}w∗

⊂ B(`2(Z)).

Only L(G) survives for not abelian groups, but not L∞(Ĝ) unless G is abelian!!!

Given G discrete, define

• λ : G→ B(`2(G)) by λ(g)δh = δgh.

• L(G) =
{∑
g∈Λ

agλ(g) : ag ∈ C, Λ ⊂ G finite
}w∗

⊂ B(`2(G)).

L(G) = Model of quantum group. Imp in NC geometry and operator algebra.
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Noncommutative Lp norm in L(G)

The natural quantum measure in L(G) is

τG
(∑
g∈G

f̂(g)λ(g)
)

= f̂(e) (extends to G unimodular).

Given p > 0 and f =
∑

g
f̂(g)λ(g) ∈ L(G), we set

‖f‖pp = τG
[
|f |p

]
= τG

[
(f∗f)

p
2
]

by functional calculus in B(`2(G)). It turns out that Lp(L(G)) =Lp(Ĝ) —defined

as the closure of L(G) wrt the noncommutative Lp norm above— is isometrically

isomorphic to the commutative space Lp(Ĝ) for any abelian group G.

G abelian G not abelian

χg λ(g)

L∞(Ĝ) L(G) = L∞(Ĝ)

Haar measure τG

Fourier coefficient f̂(g) = τG(fλ(g)∗)

Plancherel theorem 〈f, f〉L2(L(G)) =
∑
|f̂(g)|2
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as the closure of L(G) wrt the noncommutative Lp norm above— is isometrically

isomorphic to the commutative space Lp(Ĝ) for any abelian group G.

G abelian G not abelian

χg λ(g)
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Translation invariance – Fourier multipliers

Fourier multipliers over Z∑
k
f̂(k) expk︸ ︷︷ ︸
f

7→
∑

k
m(k)f̂(k) expk︸ ︷︷ ︸

Tmf

are characterized by Tmf(x− x0) = Tmfx0(x) for fx0(x) = f(x− x0). Consider
the comultiplication map ∆(expk) = expk ⊗ expk. It can be easily checked that
the translation invariance above can be rephrased by

∆ ◦ Tm = (Tm ⊗ id) ◦∆ = (id⊗ Tm) ◦∆.

THE EXACT SAME IDENTITES
CHARACTERIZE FOURIER MULTIPLIERS OVER G

Tmf =
∑
g∈G

m(g)f̂(g)λ(g) =

∫
G

m(g)f̂(g)λ(g) dµ(g)
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Basic geometric group theory



Affine representations

We look for maps b : G→ H such that

dist(g, h) =
∥∥b(g)− b(h)

∥∥
H defines a good pseudo-metric over G.

Substantial information of G is encoded by its orthogonal group representations
π : G→ O(H). The map Π(g) ∈ Aff(H) given by Π(g)[u] = πg(u) + b(g) defines
an affine representation when
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defined by ψb(g) = 〈b(g), b(g)〉H. It satisfies ψb(e) = 0 and ψb(g) = ψb(g
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SCHOENBERG THM. Cocycles b ↔ Lengths ψb ↔ Markov ?-processes e−tψb

More flexibility (SLn(R)): Non-orthogonal π + Non-Hilbert H + Quasi-cocycles.
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Elementary group cocycles

The group Zn

Trivial cocycle
H = Rn, π trivial and b = id.
ψb(k) = |k|2 and e−tψb = heat semigroup.
Underlying cocycle in Euclidean Fourier analysis [JMP, GAFA 2014]

Poisson cocycle
H = L2(Rn, µ) infinite-dimensional!!
ψb(k) = |k| and e−tψb = Poisson semigroup.
Links Euclidean Fourier analysis and NC geometry [JMP, JEMS 2016]

Directional cocycle
H = R one-dimesional and π trivial.
b(k) = 〈k, x〉 injective if x1, x2, . . . , xn are Z-independent.
Right endpoint BMO for directional Hilbert transforms [PR, Crelle’s J 2016]
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Elementary group cocycles

The group Zn

Trivial cocycle
Poisson cocycle
Directional cocycle

Donut cocycle of R

Pick α/β irrational and H = R4 ' C2

Then the map b(ξ) = (1, 1)− (e2πiαξ, e2πiβξ)

defines a geodesic flow on T2 with dense orbit

It is an inner cocycle associated to πξ(z) = (e2πiαξz1, e
2πiβξz2)

New results for idempotent Lp-multipliers in R [CPPR, Forum Math Σ 2015]
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Elementary group cocycles

The group Zn

Trivial cocycle
Poisson cocycle
Directional cocycle

Donut cocycle of R

Cayley cocycle of F2

H = R[F2] with | |-Gromov inner product.
π = λ and b(w) = δw − δe yields the Cayley graph length ψb(w) = |w| .
Directional Hilbert transforms in the free group [MR, Preprint 2016]
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Elementary group cocycles

The group Zn

Trivial cocycle
Poisson cocycle
Directional cocycle

Donut cocycle of R

Cayley cocycle of F2

Other proper cocycles (later)...

Inf-dim cocycles of SL2(R)
Non-orthogonal ones of SL3(R)
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Smooth Fourier multipliers



Noncommutative Riesz transforms

A bit of history

Dimension-free estimates

‖f‖p ∼c(p)
∥∥∥( n∑

j=1

|Rjf |2
) 1

2
∥∥∥
p
.

Gundy/Varopoulos [CR Paris ’79] + Stein [Bull AMS ’83]
Duoandikoetxea/Rubio de Francia [CR Paris ’85] + Pisier [LNM ’88]

P.A. Meyer’s semigroup approach

‖f‖p ∼c(p)
∥∥∥Γ
(
A−

1
2 f,A−

1
2 f
) 1

2

∥∥∥
p
,

where Γ is the so-called Carré du Champ of St = exp(−tA)

Γ(f1, f2) =
1

2

(
A(f1)f2 + f1A(f2)−A(f1f2)

)
= gradient form.

Meyer [LNM ’84] + Bakri [LNM ’87]
Lust-Piquard [JFA ’98, CMP ’99, Adv Math ’04].

Riesz-Poisson fails Meyer’s conjecture in Rn for p < 2!!
Noncommutative phenomena for non-diffusion (commutative) semigroups.
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Noncommutative Riesz transforms

A bit of history

Dimension-free estimates

If ψ c.n. length over G discrete  (Hψ, πψ, bψ)

Rψ,u :
∑

g
f̂(g)λ(g) 7→ 2πi

∑
g

〈bψ(g), u〉Hψ√
ψ(g)

f̂(g)λ(g),

for any u ∈ Hψ. Note
√
ψ(g) = ‖bψ(g)‖Hψ  Standard symbol.

Shoenberg thm: Aψ(λ(g)) = ψ(g)λ(g) generates a Markov process.

Diff form: Rψ,u = ∂ψ,uA
− 1

2
ψ with ∂ψ,u(λ(g)) = 2πi〈bψ(g), u〉Hψλ(g).
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Noncommutative Riesz transforms

A bit of history

Dimension-free estimates

Noncommutative Riesz transforms

Rψ,u = ∂ψ,uA
− 1

2
ψ : λ(g) 7→ 2πi

〈bψ(g), u〉Hψ√
ψ(g)

λ(g).

L◦p(Ĝ) =
{
f ∈ Lp(Ĝ)

∣∣ f̂(g) = 0 when bψ(g) = 0
}

and Rψ,j (ONB).

Theorem A [Junge-Mei-Parcet, JEMS ’16]

If f ∈ L◦p(Ĝ) and ψ c.n. length on G:

‖f‖p ∼c(p)


inf

Rψ,jf=aj+bj

∥∥∥(∑
j≥1

a∗jaj
) 1

2
∥∥∥
p

+
∥∥∥(∑

j≥1

b̃j b̃
∗
j

) 1
2
∥∥∥
p

p ≤ 2,

max
{∥∥∥(∑

j≥1

|Rψ,jf |2
) 1

2
∥∥∥
p
,
∥∥∥(∑

j≥1

|Rψ,jf∗|2
) 1

2
∥∥∥
p

}
p ≥ 2.

The b̃j ’s are twisted forms of the bj ’s, which coincide for trivial action πψ.

Remarks. The same result holds for unimodular groups.
Thm A implies classical result in Rn via the trivial cocycle.
Imp. What matters is Hψ oπψ G might not be abelian (nc ha).
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∣∣ f̂(g) = 0 when bψ(g) = 0
}

and Rψ,j (ONB).

Theorem A [Junge-Mei-Parcet, JEMS ’16]
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If f ∈ L◦p(Ĝ) and ψ c.n. length on G:

‖f‖p ∼c(p)


inf

Rψ,jf=aj+bj

∥∥∥(∑
j≥1

a∗jaj
) 1

2
∥∥∥
p

+
∥∥∥(∑

j≥1

b̃j b̃
∗
j

) 1
2
∥∥∥
p

p ≤ 2,

max
{∥∥∥(∑

j≥1

|Rψ,jf |2
) 1

2
∥∥∥
p
,
∥∥∥(∑

j≥1

|Rψ,jf∗|2
) 1

2
∥∥∥
p

}
p ≥ 2.

The b̃j ’s are twisted forms of the bj ’s, which coincide for trivial action πψ.

Remarks. The same result holds for unimodular groups.
Thm A implies classical result in Rn via the trivial cocycle.
Imp. What matters is Hψ oπψ G might not be abelian (nc ha).

Javier Parcet (ICMAT) Fourier Lp summability LMS Midlands Meeting 2016



Noncommutative Riesz transforms

A bit of history

Dimension-free estimates

Proof = Pisier + Khintchine

Pisier’s identity√
2

π
δ(−∆)−

1
2 f = (idL∞(Rn) ⊗Q)

(
p.v.

1

π

∫
R
βtf

dt

t

)
δϕ(x, y) = 〈∇ϕ(x), y〉, Q= Gaussian proj and βtf(x, y) = f(x+ ty).

Intertwining identity in Hψ oπψ G (n ≤ ∞)(
δ(−∆)−

1
2 o idG

)
◦ σ = i

(
id(Rn,γ) o σ

)
◦ δψA

− 1
2

ψ ,

δψ(λ(g)) = B(bψ(g)) o λ(g) =
1

2πi

n∑
j=1

yj o ∂ψ,j(λ(g)),

σ : λ(g) ∈ L(G) 7→ exp
(
2πi〈bψ(g), ·〉

)
o λ(g) ∈ L∞(Rnbohr, µ) o G.

A crossed product extension of the NC Khintchine inequality.

Aψ = δ∗ψδψ (Sauvageot thm) is the analogue of −∆ = ∇∗ ◦ ∇.
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δϕ(x, y) = 〈∇ϕ(x), y〉, Q= Gaussian proj and βtf(x, y) = f(x+ ty).

Intertwining identity in Hψ oπψ G (n ≤ ∞)(
δ(−∆)−

1
2 o idG

)
◦ σ = i

(
id(Rn,γ) o σ

)
◦ δψA

− 1
2

ψ ,

δψ(λ(g)) = B(bψ(g)) o λ(g) =
1

2πi

n∑
j=1

yj o ∂ψ,j(λ(g)),

σ : λ(g) ∈ L(G) 7→ exp
(
2πi〈bψ(g), ·〉

)
o λ(g) ∈ L∞(Rnbohr, µ) o G.

A crossed product extension of the NC Khintchine inequality.

Aψ = δ∗ψδψ (Sauvageot thm) is the analogue of −∆ = ∇∗ ◦ ∇.
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Noncommutative Riesz transforms

A bit of history

Dimension-free estimates

Proof = Pisier + Khintchine

New Riesz transforms, even commutative...

The Riesz-Poisson transform

Integrability restriction [Fefferman, Acta Math ’70]

Given A = (−∆)
1
2 and f ∈ S(Rn), we have

ΓA(f, f) =

∫
R+

Ps|∇Psf |2 ds /∈ Lp(Rn) for p ≤ 2n

n+ 1
,

where ∇g(x, s) = (∂xg, ∂sg) includes both spatial and time derivatives.

Meyer’s approach fails for p < 2 and n large  What is the right form?

By a variation of the Poisson cocycle...
Theorem A solves it for any fractional laplacian in Rn...
Dim-free estimates for Riesz potencials  Noncommutative approach.

It will be useful below for smooth Fourier multipliers in group algebras.
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Noncommutative Riesz transforms

A bit of history

Dimension-free estimates

Proof = Pisier + Khintchine

New Riesz transforms, even commutative...

The Riesz-Poisson transform

Discrete laplacians in LCA groups

Let Γ0 be an LCA group and Γ = Γ0×Γ0×· · ·×Γ0. Let δ ∈ Γ0 be torsion

free. Introduce ∂jf(γ) = f(γ)− f(γ1, . . . , δγj , . . . , γn) and corresponding

discrete laplacian L =
∑

j
∂∗j ∂j and Riesz transforms Rδ,j = ∂jL−

1
2 .

Discrete laplacians [Lust-Piquard, Adv Math ’04]

If p ≥ 2

‖f‖Lp(Γ) ∼c(p)
∥∥∥( n∑

j=1

|Rδ,jf |2 + |R∗δ,jf |2
) 1

2
∥∥∥
Lp(Γ)

.

1 < p < 2: Other dim-free estimates + Counterexample for this form.

Thm A more flexible: It admits torsion and many other new laplacians.
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Noncommutative Riesz transforms

A bit of history

Dimension-free estimates

Proof = Pisier + Khintchine

New Riesz transforms, even commutative...

The Riesz-Poisson transform

Discrete laplacians in LCA groups

Word length laplacians over Zn and Fn∥∥∥ ∑
j∈Zn

f̂(j)χj

∥∥∥
Lp(Ẑn)

∼c(p)
∥∥∥( ∑

k∈Zn

∣∣∣ ∑
j∈Λk

f̂(j)√
j ∧ (n− j)

χj

∣∣∣2) 1
2
∥∥∥
Lp(Ẑn)

with Λk =
{
j ∈ Z2m : j − k ≡ s (2m) with 0 ≤ s ≤ m− 1

}
when n = 2m.

‖f‖Lp(F̂n) ∼c(p)
∥∥∥(∑

h 6=e

∣∣∣∑
g≥h

f̂(g)√
|g|
λ(g)

∣∣∣2 +
∣∣∣∑
g≥h

f̂(g−1)√
|g|

λ(g)
∣∣∣2) 1

2
∥∥∥
Lp(F̂n)

.
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Smooth Fourier multipliers over G

A Hörmander-Mihlin theorem

If ‖m‖Mp(Rn) = ‖Tm‖p→p for T̂mf(ξ) = m(ξ)f̂(ξ)...

Classical HM theorem [Dokl Akad ’56 + Acta Math ’60]

Let 1 < p <∞:

i) [Mihlin, 1956] If m ∈ C[n
2

]+1(Rn \ {0})

‖m‖Mp(Rn) ≤ cn sup
ξ 6=0

sup
|β|≤[n

2
]+1

|ξ||β|
∣∣∂βξm(ξ)

∣∣.
ii) [Hörmander, 1960] If m ∈ C[n

2
]+1(Rn \ {0})

‖m‖Mp(Rn) ≤ cn sup
R>0

|β|≤[n
2

+1]

( 1

Rn−2|β|

∫
R<|ξ|<2R

∣∣∂βξm(ξ)
∣∣2dξ) 1

2
.

iii) [Sobolev space formulation] If ϕ is a cutoff in 1 < |ξ| < 2

‖m‖Mp(Rn) ≤ cn sup
j∈Z

∥∥∥(1 + | |2
)n

4
+ε( ̂ϕm(2j ·)

)∥∥∥
L2(Rn)

.
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Smooth Fourier multipliers over G

A Hörmander-Mihlin theorem

Set as usual D̂αf(ξ) = |ξ|αf̂(ξ) and ψε(ξ) = kn(ε)|ξ|2ε.

GOAL = Sufficient smoothness for the ψ-lifting m̃ in m = m̃ ◦ bψ...

Theorem B [Junge-Mei-Parcet, GAFA ’14 + JEMS ’16]

Let G be a discrete group and let ψ : G→ R+ be a c.n. length giving rise to
a n-dimensional cocycle (Hψ, πψ, bψ). Given 1 < p <∞, a Littlewood-Paley
decomposition (ϕj)j∈Z in Rn and ε > 0, the following inequality holds

‖m‖Mp(Ĝ) .c(p,n) |m(e)|+ inf
m=m̃◦bψ

{
sup
j∈Z

∥∥∥Dn
2

+ε

(√
ψε ϕj m̃

)∥∥∥
L2(Rn)︸ ︷︷ ︸

Smaller than classical term!!!

}
.

Also L∞→BMO estimates under slightly stronger m̃-regularity assumptions.

Approach 1. NCCZ + Cocycle BMO.
Mihlin type result + NC Littlewood-Paley.

Approach 2. Quantum Probability methods.
Optimal Sobolev Lp-formulation.
H-M(ε) multipliers are L-P averages of ψε-Riesz transforms!
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A Hörmander-Mihlin theorem

Set as usual D̂αf(ξ) = |ξ|αf̂(ξ) and ψε(ξ) = kn(ε)|ξ|2ε.

GOAL = Sufficient smoothness for the ψ-lifting m̃ in m = m̃ ◦ bψ...

Theorem B [Junge-Mei-Parcet, GAFA ’14 + JEMS ’16]

Let G be a discrete group and let ψ : G→ R+ be a c.n. length giving rise to
a n-dimensional cocycle (Hψ, πψ, bψ). Given 1 < p <∞, a Littlewood-Paley
decomposition (ϕj)j∈Z in Rn and ε > 0, the following inequality holds
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Smooth Fourier multipliers over G

A Hörmander-Mihlin theorem

A magic formula for H-M multipliers

Let m : Rn → C satisfy

‖m‖W2
n
2

+ε
(ψε) =

∥∥∥Dn
2

+ε

(√
ψεm

)∥∥∥
L2(Rn)

<∞.

Then, there exists h ∈ Hε = L2(Rn, µε) such that

m(ξ) =
〈
h,

bε(ξ)

‖bε(ξ)‖Hψ

〉
µε

= Symbol of Rψε,h

with ‖m‖W2
n
2

+ε
(ψε) = ‖h‖Hε . We find one-to-one correspondences

ψε-Riesz transforms ←→ Elements in W2
n
2

+ε(ψε),

L-P averages of ψε-Riesz ←→ Hörmander-Mihlin multipliers.
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Smooth Fourier multipliers over G

A Hörmander-Mihlin theorem

A magic formula for H-M multipliers

Dimension free constants via holomorphic calculus

Corollary B1

With the same assumptions

‖m‖Mp(Ĝ) .c(p) |m(e)|+ inf
m=m̃◦bψ

{
ess sup
s>0

∥∥∥D dimHψ
2

+ε

(√
ψε ϕs m̃

)∥∥∥
2

}
dimension-free, for any radial Cowling/McIntosh partition of unity (ϕs)s>0.
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Smooth Fourier multipliers over G

A Hörmander-Mihlin theorem

A magic formula for H-M multipliers

Dimension free constants via holomorphic calculus

Limiting Besov B2
n
2
,2 conditions with a logarithmic weight

We had ψε(ξ) = kn(ε)|ξ|2ε =

∫
Rn

(
1− cos(2π〈ξ, x〉)

) dx

|x|n+2ε
.

If we pick ψµ(ξ) =

∫
Rn

(
1− cos(2π〈ξ, x〉)

)(
χ|x|≤1 +

χ|x|>1

1 + log2 |x|

) dx

|x|n ...

Corollary B2

Letting wk = δk≤0 + k2δk>0

‖m‖Mp(Ĝ) .c(p,n) |m(e)|+ sup
j∈Z

(∑
k∈Z

2nkwk
∥∥ϕ̂k ∗ (

√
ψµϕjm̃)

∥∥2

2

) 1
2
.

This is in the line of previous work by Carbery, Seeger, Baernstein/Sawyer...
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Maximal estimates and Sobolev dimension

If δ(λ(g)) = λ(g)⊗ λ(g) and σ(λ(g)) = λ(g−1)

Tmf = λ(m) ? f = (τ ⊗ Id)
(
δλ(m)(σf ⊗ 1)

)
.

Theorem C [González-Pérez-Junge-Parcet, Ann Sci ENS ’16]

Let G be discrete, ψ : G→ R+ an arbitrary c.n. length and η(z) = ze−z. Given
m : G→ C constant where ψ = 0, assume λ(mη(tψ)) = ΣtMt with Mt positive
and consider the convolution map Rf = (M2

t ? f)t>0. If p > 2 we find∥∥Tm : Lp(Ĝ)→ Lp(Ĝ)
∥∥ .

(
sup
t>0
‖Σt‖2

)∥∥∥R : L( p
2

)′ → L( p
2

)′(L∞)
∥∥∥

=
(

sup
t>0
‖Σt‖2

)(
sup

‖f‖
(
p
2
)′≤1

∥∥ sup
t>0

M2
t ? f

∥∥
( p
2

)′

)
.

Remarks. Tradition in classical HA [Bennet, Anal & PDE ’14].
By duality, a similar statement also holds for 1 < p < 2.
Noncommutative square and maximal Lp-norms together (Pisier).

Main application.
Radial multipliers = Spectral multipliers.
Smoothness (Σt) wrt Sobolev Dimension (Mt)  Inf-dim cocycles admissible!!
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∥∥∥
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Nonsmooth Fourier multipliers



Directional Hilbert transforms

Given a c.n. length ψ : G→ R+ with cocycle (Hψ, πψ, bψ), let

Hψ,u :
∑

g
f̂(g)λ(g) 7→ 2πi

∑
g

sgn
〈
bψ(g), u

〉
Hψ

f̂(g)λ(g).

Hyperplane singularity of the symbol (nonsmooth) + Fubini does not work...

Twisted Hilbert transforms

Let Γ = Hψ oπ G and Γdisc = Hψ,disc oπ G

σ : L(G) 3 λ(g) 7→ exp
(
2πi〈bψ(g), ·〉

)
o λ(g) ∈ L(Γdisc).

Hu oπ idG Lp(Γ̂disc)-bounded ⇒ Hψ,u Lp(Ĝ)-bounded

Theorem D [Parcet-Rogers, Crelle’s J ’16]

If 1 < p 6= 2 <∞ and dimHψ <∞, tfae:

i) The map Hu oπ idG is bounded on Lp(Γ̂),

ii) The map Hu oπ idG is bounded on Lp(Γ̂disc),

iii) The π-orbit of u Oπ(u) =
{
πg(u) | g ∈ G

}
is finite.

We also find L1 → L1,∞ and L∞ → BMO type estimates for finite orbits.

Riesz transforms always bded
 Easy NC de Leeuw thm

 Are Hψ,u bded?
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Directional Hilbert transforms

Given a c.n. length ψ : G→ R+ with cocycle (Hψ, πψ, bψ), let

Hψ,u :
∑

g
f̂(g)λ(g) 7→ 2πi

∑
g

sgn
〈
bψ(g), u

〉
Hψ

f̂(g)λ(g).

Hyperplane singularity of the symbol (nonsmooth) + Fubini does not work...

Twisted Hilbert transforms

Sketch of the proof ii) ⇒ iii) (Hψ = Rn, Oπ(u) inf)

Hu oπ idG : Lp(Γ̂disc)→ Lp(Γ̂disc)

πgHuπ
−1
g = Hπg(u) + NC Littlewood-Paley

⇓∥∥∥[ ∞∑
j=1

|Hπgj (u)(fgj )|
2
] 1

2
∥∥∥
Lp(Rn

bohr
)
.
∥∥∥[ ∞∑

j=1

|fgj |
2
] 1

2
∥∥∥
Lp(Rn

bohr
)

+ Row term

NC de Leeuw’s decompactification + Ergodic theory + Suitable choice of fg ’s

⇓∥∥∥[ ∞∑
j=1

|Hπgj (u)(fgj )|
2
] 1

2
∥∥∥
Lp(Rn)

.
∥∥∥[ ∞∑

j=1

|fgj |
2
] 1

2
∥∥∥
Lp(Rn)︸ ︷︷ ︸

Meyer’s inequality

for fgj = χAj s.t...
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Directional Hilbert transforms

Given a c.n. length ψ : G→ R+ with cocycle (Hψ, πψ, bψ), let
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∑
g

sgn
〈
bψ(g), u

〉
Hψ

f̂(g)λ(g).

Hyperplane singularity of the symbol (nonsmooth) + Fubini does not work...

Twisted Hilbert transforms

Sketch of the proof ii) ⇒ iii)

The Aj ’s admit a HD form of Fefferman’s
construction in his proof of the ball multiplier theorem

Crucial (GGTh)
The orbit Oπ(u) is either finite or admits Kakeya shadows
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Hyperplane singularity of the symbol (nonsmooth) + Fubini does not work...

Twisted Hilbert transforms

Sketch of the proof ii) ⇒ iii)

Lacunary subsets of discrete groups

Given Λ ⊂ G, set Oπ(Λ, u) =
{
πg(u) : g ∈ Λ

}
and

LΛ,p(Γ̂disc) =
{
f =

∑
g∈Λ

fg o λ(g) ∈ Lp(Γ̂disc)
}
.

Corollary [Parcet-Rogers, AJM ’15 + Crelle ’16]

Ω ⊂ Sn−1 HD-lacunar ⇒ MΩ is Lq(Rn)-bded for 1 < q <∞.

Oπ(Λ, u) HD-lacunar ⇒ Hu oγ idG is bounded on Lp,Λ(Γ̂disc).

Indeed, given p > 1 there exist q > 1 and δ > 0 s.t.∥∥∥(∑
ω∈Ω

|Hωfω|2
) 1

2
∥∥∥
p
. ‖MΩ‖

δ
2
qδ→qδ

∥∥∥(∑
ω∈Ω

|fω|2
) 1

2
∥∥∥
p
.
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Directional Hilbert transforms

Given a c.n. length ψ : G→ R+ with cocycle (Hψ, πψ, bψ), let
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f̂(g)λ(g).

Hyperplane singularity of the symbol (nonsmooth) + Fubini does not work...

Twisted Hilbert transforms

Sketch of the proof ii) ⇒ iii)

Lacunary subsets of discrete groups

Directional Hilbert transforms over G

Periodic multipliers [Jodeit, Studia Math ’70]

G = R and ψ = 1D donut cocycle ⇒ Hψ,u Lp-bded for all u.

Chaotic idempotents [Caspers-Parcet-Perrin-Ricard, Forum Math Σ ’15]

G = R and ψ = 2D donut cocycle ⇒ Hψ,u Lp-unbded for most u.
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Directional Hilbert transforms

Ω

slope(γ)/∈Q

γ

6

-

Trick: Zpq ' Zp × Zq + Ball multiplier thm
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Lacunary subsets of discrete groups

Directional Hilbert transforms over G

Periodic multipliers [Jodeit, Studia Math ’70]

G = R and ψ = 1D donut cocycle ⇒ Hψ,u Lp-bded for all u.

Chaotic idempotents [Caspers-Parcet-Perrin-Ricard, Forum Math Σ ’15]

G = R and ψ = 2D donut cocycle ⇒ Hψ,u Lp-unbded for most u.

Imp. Hu oπ idG = Hφ,u for certain (simple) cocycle (K, ρ, d) on Γdisc.

Geometric characterization of Lp-bdness of Hψ,u in terms of Oπ(u)?
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Lacunary subsets of discrete groups

Directional Hilbert transforms over Fn
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Ball multipliers – Results and questions

Given R > 0, consider the ball truncations over Fn

SR :
∑
w∈Fn

f̂(w)λ(w) 7→
∑
|w|≤R

f̂(w)λ(w).

A partial result for balls in Fn [Bożejko-Fendler, Banach Center Pubs ’06]∣∣∣1
p
− 1

2

∣∣∣ > 1

6
⇒ sup

R>0

∥∥∥SR : Lp(F̂n)→ Lp(F̂n)
∥∥∥ =∞.

Sketch of proof. The radial subalgebra Rn of L(Fn) is abelian. Their result already
holds in Rn. The argument emulates the one which proves that the ball multiplier is
not Lp-bded in Rn when |1/p− 1/2| > 1/2n – see e.g. [Fefferman, Acta Math ’70].

Open problem. Prove that sup
R>0

∥∥∥SR : Lp(F̂n)→ Lp(F̂n)
∥∥∥ =∞ for all p 6= 2.

Noncommutative analog of Fefferman’s ball multiplier theorem [Ann Math ’71] in Fn.

Other pairs (G, ψ) do not witness curvature... The length ψ(k1, k2) = |k1|+ |k2|
on Z2 admits Lp-summability along dilations of the ψ-balls in its infinite-dimensional
cocycle since they become squares with the trivial cocycle Z2 → R2. An even more
challenging problem is to characterize the pairs (G, ψ) witnessing curvature.
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Incidence of Kazhdan property (T)



Haagerup property

Definition

A locally compact group G has the Haagerup property when it admits a proper
cocycle. In other words, when b−1

ψ (K) is compact in G for any compact K in Hψ.

G discrete group. No compact set in Hψ admits infinitely many points from bψ(G).

Finite-dimensional cocycles

Smooth th well-understood
Nonsmooth th still wide open...
Bieberbach thm implies the following limitation

G admits a finite-dimensional proper injective cocycle

⇓
G is virtualy abelian!

Infinite-dimensional cocycles

Open: Smooth (radial) multipliers
Open: Directional Hilbert transforms and balls.
Much richer (Riesz transforms)... Interesting cases – Fn and SL2(R).
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Kazhdan property (T)

Definition

A locally compact group G has Kazhdan property (T) when all of its cocycles are
inner. In other words, cocycles of the form g 7→ πg(u)− u⇔ bψ(G) bounded in Hψ.

Kazhdan property (T) – Strong negation of Haagerup property for noncompact G.

A clear geometric obstruction

In particular, no Lp-summability results are possible from inner cocycles.

Important class of groups in HA + OA

Noncompact semisimple Lie groups
with high R-rank (≥ 2) and sublattices

This lead us to “nonorthogonal proper cocycles” of SLn(R) and other groups...
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Fourier Lp summability over SLn(R)



Connes’ rigidity conjecture

A group G is called ICC when
∣∣{g−1hg : g ∈ G

}∣∣ =∞ for all h 6= e.

Connes’ rigidity conjecture – 1982

G1, G2 ICC with Kazhdan property (T): Does L(G1) ' L(G2) imply G1 ' G2?

PSLn(Z) is the quotient of SLn(Z) by its center (trivial for n odd and ±1 for n even).

Connes’ PSLn(Z) conjecture – 1982

The family of group vN algebras {L(PSLn(Z)) : n ≥ 3} are pairwise nonisomorphic

If An = SLn(Z) and Bn = Zn o SLn(Z), we have An ⊂ Bn ⊂ An+1 . . .
It is also an open problem to decide whether L(Bn) ' L(Bm) implies n = m.

G noncompact connected semisimple Lie group...

Λ lattice in G  Is R-rank (G) an invariant of L(Λ)?
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CBAP – A tool for classification

Definition

An operator space = quantum Banach sp X is said to have the CBAP when there
exists a net of finite-rank linear maps ϕα : X→ X satisfying the properties below:

i) lim
α

∥∥ϕα(x)− x
∥∥

X
= 0,

ii) sup
α

∥∥ϕα : X→ X
∥∥

cb
<∞.

CBAP = Completely bounded approximation property
Other important approximation properties from Grothendieck, Haagerup...

CBAP for discrete groups = Fourier Lp-summability

Given a discrete group G and p <∞, it turns out that X = C∗λ(G) or X = Lp(Ĝ)
have the CBAP when there exists a sequence mj : G→ C of compactly supported
functions which converge pointwise to 1 such that

sup
j≥1

∥∥∥∑
g
f̂(g)λ(g) 7→

∑
g
mj(g)f̂(g)λ(g)

∥∥∥
cb(X,X)

<∞.

An invariant of L(G)...

L(G1) ' L(G2)⇒
[
Lp(Ĝ1) ∈ CBAP⇔ Lp(Ĝ2) ∈ CBAP for all p > 2

]
.
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Group algebras without the CBAP

A key negative result [Haagerup, Unpublished (so far) ’88]

The group
G = R2 o SL2(R) is not weakly amenable.

In other words, C∗λ(G) does not have the CBAP. This immediately implies the same
result for Kn o SLn(K) with K = R or Z and n ≥ 2. Also for SLn(K) with K = R
or Z and n ≥ 3. More generally, the same holds for all connected simple Lie groups
with R-rank ≥ 2 and all of their lattices.

In this final form, the statement was proved by Dorofaeff [Math Ann ’96]

Real algebraic Lie groups [Cowling-Dorofaeff-Seeger-Wright, Duke Math J ’05]

The group
G = Hn o SL2(R) is not weakly amenable

where Hn is the (2n+ 1)-dimensional Heisenberg group, the SL2(R)-action fixes the
center and acts on R2n by the only 2n-dimensional irreducible representation. This
leads to a characterization of weak amenability for all real algebraic Lie groups.

All these group algebras fail CBAP  More subtle properties to distinguish...
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The Lafforgue – de la Salle theorem

Theorem F [Lafforgue - de la Salle, Duke Math J ’11]

The groups Gn = SLn+1(Z) with n ≥ 2 satisfy∣∣∣1
2
− 1

p

∣∣∣ > 1

2(bn
2
c+ 1)

⇒ Lp(Ĝn) fails the CBAP.

Moreover, the same result holds for all lattices in SLn+1(R) and all lattices in every
connected simple Lie group of R-rank ≥ 9. Also nonarchimidean local fields like Qq.

In this final form, the statement above incorporates a refinement by T. de Laat and
M. de la Salle [Crelle’s J ’15]. Together with [Haagerup - de Laat, Duke Math J ’13]
this implies that all connected simple Lie groups with finite center do not even have
Grothendieck’s AP.

Sketch of the proof

Fourier Lp-summability ⇒ Schur Lp-summability
Lifting to SLn+1(R) (easy for Schur)  KAK decomposition
K-biinvariant Schur p-multipliers with large support admit variations < 1.
Main ingredient: Gelfand pairs and HA on the n-sphere.
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Fourier Lp multipliers over SLn(R)?

Challenge. Positive results for Lp multipliers over SLn(R) and SLn(Z)!
Same goal over high rank semisimple Lie groups and lattices!

I conjecture the following result holds...

The groups Gn = SLn+1(R) with n ≥ 1 satisfy

Lp(Ĝn) admits
Fourier summability

⇔
∣∣∣1
2
− 1

p

∣∣∣ ≤ 1

2n
⇔ 2n

n+ 1
≤ p ≤ 2n

n− 1
.

Same result for Gn noncompact semisimple Lie group with R-rank(G) = n?

Parallel results for lattices in Gn would yield...

A complete solution of Connes’ PSLn(Z) conjecture.
R-rank(G) is an invariant of L(Λ) for all lattices Λ ⊂ G.

OBSTRUCTION. NC de Leeuw restriction G→ Λ fails  ad hoc argument...
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Noncommutative de Leeuw restriction

Restriction theorem [de Leeuw, Ann Math ’65]

If m is continuous and Tm is Lp(Rn)-bounded

Tm|H :

∫
H

f̂(h)χh dµ(h) 7→
∫

H

m(h)f̂(h)χh dµ(h)

extends to a Lp(Ĥ)-bounded Fourier multiplier for any subgroup H ⊂ Rn.

Theorem G [Caspers-Parcet-Perrin-Ricard, Forum Math Σ ’15]

If m : G→ C is continuous and H ⊂ G∥∥Tm|H : Lp(Ĥ)→ Lp(Ĥ)
∥∥ ≤ ∥∥Tm : Lp(Ĝ)→ Lp(Ĝ)

∥∥
provided H ∈ ADS (ok for H discrete), ∆G|H = 1 (standard) and G ∈ [SAIN]H.

If H ⊂ G, we say that G ∈ [SAIN]H (small almost-invariant neighborhoods) when for
every F ⊂ H finite, there is a basis (Vj)j≥1 of symmetric neighborhoods of 1 with

lim
j→∞

µ
(
(h−1Vjh)4Vj

)
µ(Vj)

= 0 for all h ∈ F.

Limitations of NC restriction [González-Pérez - de la Salle, Preprint ’16]

The SAIN condition is essentially optimal in Theorem G. It fails for SLn(Z) ⊂ SLn(R).
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∥∥ ≤ ∥∥Tm : Lp(Ĝ)→ Lp(Ĝ)
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A rough geometric intuition in SLn(R)

Accordingly, our first goal is to understand Fourier Lp multipliers over SLn(R)...

A naive idea for SLn(R)

b(g) = g · u− u with u = (1, 1, 1)

SLn(R) 3 g 7→ b(g) o g ∈ Γn ⊂ Rn o SLn(R)

SLn(R) = KAK with K = SOn(R), A = Diag(SLn(R))

A−→ K−→

original
multiplier

large ⊥ gradient
vs small curvature

Bochner-Riesz
conditions

Very far from rigorous but hopefully illustrating
—Recall the behavior of Hu o idG—

Javier Parcet (ICMAT) Fourier Lp summability LMS Midlands Meeting 2016



A rough geometric intuition in SLn(R)

Accordingly, our first goal is to understand Fourier Lp multipliers over SLn(R)...

A naive idea for SLn(R)

b(g) = g · u− u with u = (1, 1, 1)

SLn(R) 3 g 7→ b(g) o g ∈ Γn ⊂ Rn o SLn(R)

SLn(R) = KAK with K = SOn(R), A = Diag(SLn(R))

A−→ K−→

original
multiplier

large ⊥ gradient
vs small curvature

Bochner-Riesz
conditions

Very far from rigorous but hopefully illustrating
—Recall the behavior of Hu o idG—

Javier Parcet (ICMAT) Fourier Lp summability LMS Midlands Meeting 2016



A rough geometric intuition in SLn(R)

Accordingly, our first goal is to understand Fourier Lp multipliers over SLn(R)...

A naive idea for SLn(R)

b(g) = g · u− u with u = (1, 1, 1)

SLn(R) 3 g 7→ b(g) o g ∈ Γn ⊂ Rn o SLn(R)

SLn(R) = KAK with K = SOn(R), A = Diag(SLn(R))

A−→ K−→

original
multiplier

large ⊥ gradient
vs small curvature

Bochner-Riesz
conditions

Very far from rigorous but hopefully illustrating
—Recall the behavior of Hu o idG—

Javier Parcet (ICMAT) Fourier Lp summability LMS Midlands Meeting 2016



Local Hörmander-Mihlin symbols in SLn(R)

Natural nonisometric “proper cocycles”

γu : SLn(R) 3 g 7→ gu− u ∈ Rn.

We can make them injective by taking

β =

n⊕
j=1

γej : SLn(R) 3 g 7→ g − e ∈ HSn×n ' Rn
2

.

If m : SLn(R)→ C, the β-lifted symbol m̃ : Rn
2

→ C from m = m̃ ◦β always exists.

Theorem H [Parcet-Ricard, Work in progress]

Given n ≥ 2, there exists

Ωn = neighborhood of the identity in SLn(R)

such that Tm:Lp( ̂SLn(R))→ Lp( ̂SLn(R)) for all 1< p <∞ and all Ωn-supported
SOn-biinvariant symbols m : SLn(R)→ C satisfying the β-lifted Hörmander-Mihlin
smoothness condition below∣∣∂αξ m̃(ξ)

∣∣ ≤ cn|ξ|−|α| for all |α| ≤ n2 + 2.
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Local Hörmander-Mihlin symbols in SLn(R)

Theorem H [Parcet-Ricard, Work in progress]

Given n ≥ 2, there exists

Ωn = neighborhood of the identity in SLn(R)

such that Tm:Lp( ̂SLn(R))→ Lp( ̂SLn(R)) for all 1< p <∞ and all Ωn-supported
SOn-biinvariant symbols m : SLn(R)→ C satisfying the β-lifted Hörmander-Mihlin
smoothness condition below∣∣∂αξ m̃(ξ)

∣∣ ≤ cn|ξ|−|α| for all |α| ≤ n2 + 2.

Not polished, work in progress...

Other noninjective cocycles (γu) + SOn-biinvariance removable.
L∞ → BMO + Sobolev conditions + Optimal HM regularity dim/2 + ε.
Other semisimple Lie groups + Locality removable for R-rank = 1 (SL2).

After Theorem H, also work in progress...

Dilations of SLn(R)-multipliers.
Fourier L4-summability over SL3(R).
A metric-smoothness condition for nonlocal multipliers.

Only qualitative results known so far — Positive definite functions + C∞-bumps.
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smoothness condition below∣∣∂αξ m̃(ξ)

∣∣ ≤ cn|ξ|−|α| for all |α| ≤ n2 + 2.

Not polished, work in progress...

Other noninjective cocycles (γu) + SOn-biinvariance removable.
L∞ → BMO + Sobolev conditions + Optimal HM regularity dim/2 + ε.
Other semisimple Lie groups + Locality removable for R-rank = 1 (SL2).

After Theorem H, also work in progress...

Dilations of SLn(R)-multipliers.
Fourier L4-summability over SL3(R).
A metric-smoothness condition for nonlocal multipliers.

Only qualitative results known so far — Positive definite functions + C∞-bumps.

Javier Parcet (ICMAT) Fourier Lp summability LMS Midlands Meeting 2016
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Local HM over SLn(R) – Sketch of the proof

Local δ-amenability

Let G be a locally compact unimodular group, with Haar measure µ.
Let Ω ⊂ G be a relatively compact neighborhood of the identity and δ ≥ 0.

Definition

We say that G is (Ω, δ)-amenable when there exists (ϕα)α⊂Cc(G)+ s.t.

i)

∫
G

|ϕα|2dµ = 1 for all α.

ii) lim
α

∣∣∣ ∫
G

∣∣ϕα(gh)− ϕα(h)
∣∣2dµ(h)

∣∣∣ ≤ δ2 for all g ∈ Ω.

G amenable when (Ω, δ) = (G, 0) — Pick ϕα an L2-normalized Følner seq

(Ω, δ)-amenability relevant for δ < 1.

Subexponential growth ⇒ Amenability.

If G admits exponential growth, we find

(Ω, δ)-amenability fails for Ω large and δ < 1.

In particular, it turns out that (Ω, δ)-amenability is a local notion.

STEP 1. It is easy to check that SLn(R) is (Ωn, 1/2)-amenable for some Ωn.
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|ϕα|2dµ = 1 for all α.

ii) lim
α

∣∣∣ ∫
G

∣∣ϕα(gh)− ϕα(h)
∣∣2dµ(h)

∣∣∣ ≤ δ2 for all g ∈ Ω.

G amenable when (Ω, δ) = (G, 0) — Pick ϕα an L2-normalized Følner seq

(Ω, δ)-amenability relevant for δ < 1.

Subexponential growth ⇒ Amenability.

If G admits exponential growth, we find

(Ω, δ)-amenability fails for Ω large and δ < 1.

In particular, it turns out that (Ω, δ)-amenability is a local notion.

STEP 1. It is easy to check that SLn(R) is (Ωn, 1/2)-amenable for some Ωn.
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Local HM over SLn(R) – Sketch of the proof

Local δ-amenability

Matrix amplification

Define

Φα =

∫
G

ϕα(g)egg dµ(g) ∈ B(L2(G)).

Given 1 ≤ p ≤ ∞, set jpα : f 7→ Φ
2
p
α j(f) with

j :Mo G→M⊗̄B(L2(G)),

j
(∫

G

fg o λ(g) dµ(g)
)

=
(
γg−1(fgh−1)

)
G×G

.

STEP 2. The following properties hold for p ≥ 2:

i)
∥∥jpα : Lp(Moγ G)→ Lp(M⊗̄B(L2(G)))

∥∥
cb
≤ 1.

ii) If in addition G is (Ω, δ)-amenable, we also find that

‖f‖p ≤cb
1

1− δ lim
α
‖jpα(f)‖p whenever fg = 0 for all g /∈ Ω.

Basic idea. SLn(R) → L∞(Rn
2

) o SLn(R) → L∞(Rn
2

)⊗̄B(L2(SLn(R))).
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Local HM over SLn(R) – Sketch of the proof

Local δ-amenability

Matrix amplification

An operator to bound

If σ : L(SLn(R))→ L∞(Rn
2

bohr) o SLn(R) is the β-embedding

‖Tmf‖p = ‖σTmf‖p = ‖(Tm̃ o id)σf‖p ≤cb
1

1− δ lim
α

∥∥jpα((Tm̃ o id)σf
)∥∥
p
.

Moreover, in the algebra Rbohr = L∞(Rn
2

bohr)⊗̄B(L2(SLn(R))) we have

jpα
(
(Tm̃ o id)σf

)
=
(
g−1Tm̃ g

)
︸ ︷︷ ︸

Λ

•
(
ϕα(g)

2
p g−1 · (σ(f)gh−1)

)
= Λ • jpασf.

The L2-bdness of Λ is trivial. The goal is to prove Λ : Rbohr → BMO(Rbohr).

Using de Leeuw decompactification: Rbohr  R = L∞(Rn
2

)⊗̄B(L2(SLn(R))).

BMO(R) = BMOr(R)∩BMOc(R)⇒ AIM = Λ : R → BMO†(R) for † = r, c.

STEP 3. Our strong HM smoothness condition implies Λ : R→ BMOc(R).

This follows adapting techniques in [JMP, GAFA ’14] for nonequivariant actions.
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Local HM over SLn(R) – Sketch of the proof

Local δ-amenability

Matrix amplification

An operator to bound

The box diagonalization

Note that g−1Tm̃ g = Tm̃g with m̃g(ξ) = m̃(gξ).

Adapting [JMP, GAFA ’14] once more, we see that

Λ : R→ BMOr(R)⇔ inf
m̃(gξ)=〈Aξ,Bg〉K
K Hilbert

(
sup
ξ∈Rn2

‖Aξ‖K sup
g∈SLn(R)

‖Bg‖K
)
<∞.

Equivalent to (m̃(gξ))gξ being a Schur multiplier B(L2(Rn
2

))→B(L2(SLn(R))).

STEP 4. If suppm ⊂ Ωn it suffices to factorize m̃(gξ) for (g, ξ) ∈ Ωn × Rn
2

.

Λ acts on the matrix Amf = jpασTmf as a Schur multiplier.
suppm ⊂ Ωn ⇒ jpασTmf is a strip-diagonal matrix g−1h ∈ Ωn.
A box diagonalization exploiting the geometry of SLn(R) is possible.
m̃ 7→ m̃g preserves HM constants ⇒ Select the central box (g, h) ∈ Ω2

n.
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Local HM over SLn(R) – Sketch of the proof

Local δ-amenability

Matrix amplification

An operator to bound

The box diagonalization

Riesz transform LP averaging

According to [JMP, JEMS ’16] we know that

m̃ =
∑

j
φjRjε with φj LP decomposition.

Reduction = Riesz transform factorization + Twisted matrix LP theorem.

STEP 4. The Schur factorization property holds for all Riesz transform Rjε.(
〈gξ, uj〉ε
|gξ|ε

)
g,ξ

=

( ∣∣∣g ξ|ξ| ∣∣∣−ε
)
g,ξ

•
(〈 ξ

|ξ|ε , g
∗uj
〉
ε

)
g,ξ

Since g = k′σk ∈ KΣK = Ωn, we find for ξ ∈ Sn
2−1 that |gξ| = |σkξ| and∥∥∥( ∣∣σkξ∣∣−ε)

σk,ξ

∥∥∥
schur

= sup
σ∈Σ

∥∥∥( ∣∣σkξ∣∣−ε)
k,ξ

∥∥∥
schur

∼
∥∥∥( ∣∣kξ∣∣−ε)

k,ξ

∥∥∥
schur
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Local HM over SLn(R) – Sketch of the proof

Local δ-amenability

Matrix amplification

An operator to bound

The box diagonalization

Riesz transform LP averaging

Matrix form of Littlewood-Paley

Similar ideas than for the Riesz transform...

Thank you!
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