Second order parabolic equations with

complex coefficients

Kaj Nystrom

Department of Mathematics, Uppsala University

Kaj Nystrém, Department of Mathematics, Uppsala University Parabolic equations with complex coefficients



Second order parabolic operators

Hu = (0t + L)u := 0u — divy A(X, 1)Vxu =0 (0.1)

in RTT2 = {(X, t) = (X0, X1, .., Xn, 1) € R™T xR : x9 > 0}.

() k¢ <Re AX,1E-E=Re () Ajj(X, &),
ij=0

(i) A, )¢ - ¢| < ClglIc]- (0.2)

Regularity/structural assumptions on A. )

Kaj Nystrém, Department of Mathematics, Uppsala University Parabolic equations with complex coefficients



OANVAEWIGA)

Dirichlet problem with data f € L2(R"*!,C):

Hu = 0inR7"
lim u(xg,-,:) = f(-,-),
Xp—0
sup |[u(xo, -, )2 + [[[xoVull] < oo.

Xo>0

Neumann problem with data g € L>(R"*1, C):

Hu = 0inRT™2
lim aVAU(XO,’,') — g(-,-))

X0—>0

N.(Vu) e L3R
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& = D!PHD}*(=|r|'2isign(r)|7|'/?),
fllsrnsr oy = I Vxfll2 + [1H:D} of]l2
~  [IDFll2 = [|1€7)IiFll2

~ /1612 + itfll2 = ||v/3r — divy Vif|2.

Regularity problem with data f € H(R"t!, C):
Hu = 0inRT"
lim u(xo,-, ) f(-,-),

Xo—0
N.(Vu) € LAR™), N,(H;D} ,u) L2(R™).

m
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Elliptic problems: some recent results

@ Alfonseca M. A., Auscher P,, Axelsson A., Hofmann S., Kim
S. Analyticity of layer potentials and L? solvability of
boundary value problems for divergence form elliptic
equations with complex L> coefficients, Adv. Math., 226
(2011), 4533-4606.

© Auscher P, Axelsson A., Hofmann S. Functional calculus
of Dirac operators and complex perturbations of Neumann
and Dirichlet problems. J. Funct. Anal. 255 (2008), no. 2,
374-448.

© Auscher P, Axelsson A. Weighted maximal regularity
estimates and solvability of non-smooth elliptic systems |,
Invent. Math. 184 (2011), no. 1, 47-115.

© Hofmann, S., Kenig, C.E., Mayboroda S., and Pipher, J.

Square function/non-tangential maximal function estimates

and the Dirichlet problem for non-symmetric elliptic

operators, J. Amer. Math. Soc. 28 (2015), 483-529.
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Elliptic problems: the Kato square root estimate

@ Auscher, P, Hofmann, S., Lacey, M., Mclntosh, A., and
Tchamitchian, P. The solution of the Kato square root
problem for second order elliptic operators on R”, Ann. of
Math. (2) 156, 2 (2002), 633-654.

VL f_a/ (I4+22L))~ 3A3L:Hf@
axd\
Lf, g < a2</ NI+ 222)7 1z, f? )
WL fg)le < A !( 1" Ly fl

X(/ |)\2 (l—l—)\z ) |2dxd/\>
0 Rn
< c||V«fll2l|9l|2-
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Parabolic problems: recent results

@ Square functions estimates and the Kato problem for
second order parabolic operators, Advances in
Mathematics 293 (2016), 1-36, submitted Jun 2015.

© (with Castro, A. and Sande, O.) Boundedness of single
layer potentials associated to divergence form parabolic
equations with complex coefficients, to appear in Calculus
of Variations and Partial Differential Equations, submitted
in Oct 2015.

© L2 Solvability of boundary value problems for divergence
form parabolic equations with complex coefficients,
submitted in Dec 2015.

© (with P. Auscher and M. Egert) Boundary value problems

for parabolic systems via a first order approach, submitted
in Jul 2016.
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Outline of lectures

Hu = (0t + L)u := 0w —divy A(X, 1)Vxu=0

in RT2 = {(X,t) = (X0, X1, .., Xn, 1) € R™T xR : x9 > 0}.

@ Part | - parabolic problems: ideas and concepts.

@ Part Il - the second order approach to BVPs for parabolic
equations with complex coefficients.

© Part Il - the first order approach to BVPs for parabolic
equations with complex coefficients.
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Notation and conventions

(X, 1) = (X0, X, 1) = (X0, X1, .-, Xny 1) =2 (N, X9, .o, Xny B) = (A, X, B). J

Vx = Vax = (0x,Vx) = (0, V),
diVX = diV)HX = ((9/\,diVX) = (8A,div”).

7‘[” =0+ £|| =0t — diVH(A””(X, t)VH'). J

I )

leen()\ x,t) eR™2and r>0: A=A\ :=(A—r,A+7r),
) —

H* = -0 + L7, ’Hﬁ -0+ L

Q( :( r) CR" = I(t) = (t—r?, t+ r?),
= Ar(x, 1) = ()xl,(t).

Parabolic cubes: A ¢ R™1 A x A ¢ R™2, J
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Part | - parabolic problems: ideas and concepts

Hu = (0t + L)u := 0w —divy A(X, 1)Vxu=0

in RT2 = {(X,t) = (X0, X1, .., Xn, 1) € R™T xR : x9 > 0}.

@ Reinforced weak solutions to Hu = 0.

@ Discovering hidden coercivity in .

© Existence of reinforced weak solutions.

© Sectoriality and maximal accretivity of 7.

@ An associated first order system 9, F + PMF = 0.
© Bisectoriality of PM.

@ The core: square function/quadratic estimates.

O Differences t-independent/-dependent coefficients.
©Q Real coefficients: parabolic measure w(X, t, -).
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Weak solutions

uis a weak solution on R7*! x R if u € L2 (R; Wg2(R7T)) and
for all ¢ € CF(RT),

/// (AVAxU -V x¢ — U O¢) dxdAdt = 0. (1.1)
R Ri+1

(1.1) implies d;u € L2 _(R; W 12 RTT). J

loc loc
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Weak solutions

uis a weak solution on R7*! x R if u € L2 (R; Wg2(R7T)) and
for all ¢ € CF(RT),

/// (AVAxU -V x¢ — U O¢) dxdAdt = 0. (1.1)
R Ri+1

(1.1) implies d;u € L2 _(R; W 12 RTT). J

loc loc

A problem: if we somehow want to control
IV axtllz + [|HD pull2

we notice a lack of coercivity in the form in (1.1).
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Function spaces

H/2(R) is the homogeneous Sobolev space of order 1/2: it is

the completion of C;°(R) for the semi-norm ||D1/2 I|2-

E is the energy space: it is the closure of C3°(R2) w.r.t.

1/2

1/2
. 2
IVlle = (IVauxvlZaggmiey + 1HD} 212z ) < oo.

Modulo constants, E is a Hilbert space.

Hiathj the closure of functions v € S(R™) with Fourier
support away from the origin for the norm || F=1((|£| + iT)$V)] 2.
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Reinforced weak solutions

u is a reinforced weak solution on R x R if
: L 1,2
U € Ejoe = H1/2(R; LE)C(RIH)) N LIZOC(R; Wi (Ri—H))

loc

and if for all ¢ € C§°(R2),

/ // AV xU-Vsd + H:D;"?u - D}?¢) dxdtd = 0.
0 Rn+

If ue H'/2(R) and ¢ € C°(R) then

/HtD:/Zu-D:/qudt:—/u-@,gi)dt.
R R

A reinforced weak solution is a weak solution in the usual sense
on RT x R.
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Discovering hidden coercivity

Consider the modified sesquilinear form

as(u,v) = //RMAVA,XU-VA,XU+5Ht)vd)\dxdt
+

+ // H:D2u- D2(1 + 5Hy)v d)dxat,
R

where § > 0 is a (real) degree of freedom.

If we fix 6 > 0 small enough, then

Re as(u, u) > (r — C3)||Vaxull3 + 8]|H:D} 2 ul3

where &, C are the ellipticity constants for A.
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The energy space - traces

E/C continuously embeds into C([0, cc); H. 1/4 a,)- Any

fe H;t/f A, has an extension v € E such that v| rep = .

Proof: |||7[V/4V[5=x, I3 + [|1€]"/2V|x=x, |15 equals
2Re/:o((yT|1/2v V) + (|€[V,0\V)) dA
0
< /OOO(H!TWZVM +[I[€IVII3 + 2[[0xV]3) dA
Conversely, given f € C3°(R"*"), we can define

v\, X, t) = F1 (e MEFHE R (x p),

Then V]l S 1l /e

Or—Ax
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Energy solutions - Dirichlet problem

An energy solution to (0.1) with Dirichlet boundary data
Ulxo =f¢€ H;t/fAX is a reinforced weak sol u € E such that

/// AVt - Vv + HiD}2u- D}/2v) daxat = 0,
Rt

V v € Ey = the subspace of E with zero boundary trace.
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Energy solutions - Dirichlet problem

An energy solution to (0.1) with Dirichlet boundary data
Ulx—o=f€ ch)t/ij is a reinforced weak sol u € E such that

/// AVt - Vv + HiD}2u- D}/2v) daxat = 0,
RT*

V v € Eg = the subspace of E with zero boundary trace.

Existence. Take an extension w € E of the data f and apply the
Lax-Milgram lemma to a5 on E, to obtain some u € Eq such that

as(u,v) = —as(w,v) (v eEp).

Uniqueness. U a solution: then as(u+w — U,u+w —0) =0
and hence ||u + w — U|g = 0 by coercivity.
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Energy solutions - Neumann problem

Oyu(A, x, 1) :=1[1,0,...,0] - (AV xU)(X, X, 1).

An energy solution to (0.1) with Neumann boundary data

A Ulrmo = f € Hgtl/gx is a reinforced weak sol u € E,

/// AV xu- Vv + HiD;2u - D{/2v) dxdxat = —(f, v|s-o)
R

¥v € E (-,) denotes the pairing of A, /X with A/}, .

Solving the Neumann problem: find u € E

as(u,v) = —(f,(1 + 6H;)v|r=0) (v €E).

Lax-Milgram applied to a; on E yields a unique such wv.
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Maximal accretivity and sectoriality

V = H'2(R; [3(R")) N L3(R; W 2(R")).

Consider Hj| := 0r — divy Ay (x, t)Vx : V — V* defined via

(Hyu, v) ::// (A||VXU-VXV+ HtD;/zu-D;/2v> dxct,
Rn+1

u,v e V. D(HH) = {U eV: HHU S L2(Rn+1)}.

Kaj Nystrém, Department of Mathematics, Uppsala University Parabolic equations with complex coefficients



Maximal accretivity and sectoriality

V = H'2(R; [3(R")) N L3(R; W 2(R")).

Consider Hj| := 0r — divy Ay (x, t)Vx : V — V* defined via
(Hyu, v) == // (A”VXU- ViV + HiD}2u- D}/2v> dxat,
Rn+1

u,v e V. D(HH) = {U eV: HHU S Lz(Rn+1)}.

If & € C with Re # > 0, then
0 + HH : D(HH) — LZ(Rn+1,(C)

is bijective and the resolvent satisfies the estimate

|fll2-

1
16+ Hy)™ sz_R 9\
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Maximal accretivity and sectoriality

HH is maximal accretive with domain
D(HH) ={ueV: H||u € LQ(R”“,(C)} in LZ(R”+1,C).
HH is sectorial.

H, has a bounded H*° calculus and there is a square root |/H|,
abstractly defined by functional calculus.

The inequality

o _ dxdtd )\
I1\/H 115 < C/O //Rn+1 IA(I+ X2H)) T H) f? SO

does hold for all f € C3°(R™1, C).

Note: no assumptions on Ay = Ay (x, t) besides measurability
and uniform ellipticity have been imposed.
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An associated first order system

0= 0 — Axu = D}*HD}u—divy Vxu—drdhu. |

Given a reinforced weak solution u to the heat equation:

Au(\ x, t) F,
Diu(x, x,t) == | Vxu(A X, t) | = | F|.
HtD:/zu(A, X, t)] {FJ
Then
O\FL = —divxF + D/?F,
OxF VxFl1,
O Fo H:D}/*F, .

LZ — LZ(RH—H ; (Cn+2).
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An associated first order system

0 divy —D}/?
O\F + PF = 0 where P := —Vx 0 0
~HD* 0 0
The operator P is independent of A, defined as an unbounded
operator in 1.2 with maximal domain. The adjoint of P is

0 divx HD’?
PP=|-Vx, 0 0
-D}* 0 0

@ The operator P contains fractional (non-local) time
derivatives!

© P is not self-adjoint: P # P* |
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An associated first order system

Given a reinforced weak solution uto Hu = 0:

Oy U(N, X, 1)
DAU(Av X, t) = VXU(A’ X, t)

H:D}2u(A, x, t)

Then,
|Dauf? ~ |Vaxul + |H:D} 2 ul?.
We split the coefficient matrix A as

ALL()\axa t) ALI(/\axat):| .
A x b)) Ay xgt)

The pointwise transformation
ATl ~AT1A, }
ALATL Ay —ALATA,

is a self-inverse bijective transformation of the set of bounded
matrices which are strictly accretive.

A\ x,t) = [

A»—>/2\::[
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An associated first order system

/ZA\iL %\J_H 0
M:= 1AL Ay 0
0 0 1

Hioc is the subspace of L2 (R,;L?) defined by the compatibility
conditions
curly Fy =0, VyxFs = H:D}/*F.
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An associated first order system

%iL %\J_H 0
M:= 1AL Ay 0
0 0 1

Hioc is the subspace of L2 (R,;L?) defined by the compatibility
conditions

curly Fy =0, VyxFs = H:D}/*F.

Approach: find reinforced weak solutions u with
Dau € L2 (R, ; L2(R™; C™2)) by solving

loc

O\F + PMF =0 (1.2)

in the weak sense in the space Hqc-
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Bisectoriality

The differential equation (1.2) is autonomous and can be
solved via semigroup techniques, provided the semigroup is
well-defined. This requires that PM has a bounded
holomorphic functional calculus.

T in a Hilbert space is bisectorial of angle w € (0,7/2) if it is
closed and its spectrum is contained in the closure of

So={zeC:|argz|<wor|argz — 7| < w}

and if for each p € (w,7/2)the map z+ z(z — T) ' is
uniformly bounded on C \ S,..

Kaj Nystrém, Department of Mathematics, Uppsala University Parabolic equations with complex coefficients



Bisectoriality of PM

The operator PM is bisectorial on 1.2 with R(PM) = R(P).

Proof: Consider for § € R,

. [-sH O 0
Us = 0 1+46H 0
Vi+d2| g 0 6-H

Write PM = (PUs)(U; ' M).

Claim: PUs is self-adjoint and U; ' M is accretive for § > 0 small
enough.
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Bisectoriality of PM

V1 + §2PU;s equals

0 divi(1 + 6Hy) —6D;’% + H,D;}’?
—Vx(1 = 6Hy) 0 0
—H,D}* - 5D}"? 0 0
Us 'M equals

(1+ 5Ht)%‘J_J_ (1+ 5Ht)%\LH 0
0 0 0 + H;

Lower block: accretive for all § > 0 as Re(H:g, g) = 0.

A

Upper block: accretive if § is small enough as A accretive.

R(PM) = R((PUs)(U; ' M)) = R(PUs) = R(P).
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The core: square function/quadratic estimates

N[ _ dxdtd/\ .
(/)/0 //}Rn+1 NI+ N2~ 2 ~IDAE (FeEy),

(ii)/ IAPM(1 +X2PMPM)~ h||§@~\|h||§ (h € R(P)).
0
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The core: square function/quadratic estimates

N[ _ dxdtd/\ .
(/)/0 //ﬂW NI+ N2~ 2 ~IDAE (FeEy),

(ii)/ IAPM(1 +X2PMPM)~ h||§@~\|h||§ (h € R(P)).
0

(/) is a special case of (ii): take

1 0 0 0 f
M:=10 Ay 0|,h=| —Vyf | =P|0O]|.
0 0 1 —HD,/?f 0

The Kato square root estimate: the case A|*IH = Ay does not
follow from abstract functional analysis as H| not self-adjoint.
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Differences t-independent/-dependent coefficients

@ Poincare inequalities: local (involving V xu, d:u) - non-local
(involving V xu, D¢u, H:Df u).

@ Carleson measure estimate: sufficient to control

(14 X2%) " divy Ay [2X dxdtd A,

Carleson measures involving PM (MP).
© Off-diagonal estimates: strong/classical form (for
A+ N2H,)~ " div) with constant e=¢ (@ (EF)/A) -

weaker/novel formulation (for (1 +iAPM)~" on cylinders
additionally stretched in time).

© Tb theorem: test functions closer to the elliptic construction
- a construction which handles HtD; 2
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Part Il - the second order approach to BVPs for parabolic
equations with complex coefficients J
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(A, t)-independent coefficients

Hu = (0t + L)u := 0w —divy A(X, 1)Vxu=0

in RTT2 = {(X, t) = (X0, X1, .., Xn, 1) € R™T xR : x9 > 0}.

(X, 1) = (X0, X, 1) = (X0, X1y .-, Xny 1) =2 (AN, X9, .o, Xny B) = (A, X, B). J

A\ x, t) = A(x). ]

Ex = 1+ XH)) Y, & o= (1 XA J

= (/// |2dxdtd>\)1/2' I
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Square function estimates

The estimate

MM Il + [IAESHG Il < D2, 2.1)

hold whenever f € H(R™',C) = E;.

(2.1) gives the Kato estimate for t-independent coefficients. )

Let A > 0 be given. LetU, := A\, div|. Then

I(A)
/ / ’U)\A”Mdedtd)\ < C|A’ for all A c R,
0 A

A
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Off-diagonal estimates for resolvents

Let X\ > 0 be given. Let
O = {Ex. AV|Ex}, O = {A&xdiv), A2V Exdiv}.
Let E and F be two closed sets in Rt |
d=inf{|[(x -y, t—39)||: (x,t) € E, (y,s) € F}.
Then

() // [©xf(x, t)[? dxat < ce=® (H(EF/Y) // [f(x, 1)|? dxalt,
F E

(i) [ 16x0x. O et < oo~ @HEAN [[ jx, ) diat,

F E

iff,fe L2 andsuppf C E, suppf C E.
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Reduction to the Carleson measure estimate

)\EAHHf = )\gA/H”(/ — P)\)f—l- )\5>\H||P)\f.
Using the identity
)\5)\7‘[” =\ (I — SA),

IIAEH) (1= PNl < I (1= P[] < cf[DF|2.
Furthermore,
AEXH | PAf = AEXOPAT 4 AEXL) PAT.
We note that

IAEXOPAT(|] < cl|[AaPAIl] - < [[[AMDPA)(Dp1 )|
< clDpiafllz < cl D}/l
Term remaining:
HIAEXL PAII] = [[IUAA V) PATll], U := AEx div
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Reduction to the Carleson measure estimate

Let Py = P? and introduce
R = UnAy Py = WAy Py
Then
UnA ||V PAf = UNA| PaV | f = RAPAY | f + (UAA) ) PAY .
Rr1=0and
IRAPAV | fl2 < Cl|]AV | PAV | fll2 + [[N20;PAV f| |2,
uniformly in A. Using this
I[RAPAV ]| < ||V |2
Remaining estimate:

@A) PAY | < ]IV ]2
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Test functions for local Th-theorem

Lemma

Let w be a unit vector in C" and let0 < ¢ < 1 be a degree of
freedom. Given a parabolic cube A c R™, with center
(XA, tA), we let

faw = (1+ (el(8))2H)) " (xa(®a - W))

where &5 = x — xa and where xa = xa(X, t) is a smooth cut
off for A. Then

() [ Vi = xa(®a - WP dict < clel(A)2IA,

(II) //Rn+1 |V||(f£7W = XA(CDA ° W))|2 dxat < C|A|
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The local Tb-theorem

Lemma

Then there exists e € (0,1), depending only on n, k, C, and a
finite set W of unit vectors in C", whose cardinality depends on

€ and n, such that

(i // IDfg ,|? dxdt < cq|A,
Rn+1 ’

(i) [ 0t 0l? + 14050 ?) eict < calAl/HAY
1 &) » dxdtd )\
(III) ’A|/0 /A ‘Z/{)\A””’ \

1 1A Ao o dxdtd)
<Csng/W/o //A\(M,\AM)S,\ v||fA,W|T

Here S is a dyadic averaging operator induced by A.
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Applications to BVPs: ingredients

To develop a parabolic version of [AAAHK] you need a number
of ingredients:

@ Existence theory for resolvents £, := (I + X2H)~".

@ Estimates for resolvents: L2-boundedness, off-diagonal
estimates,...

© De Giorgi—Moser-Nash estimates.

© Estimates for single layer potentials: kernel estimates,
uniform (in \) L2-estimates, off-diagonal estimates,...

© Square function estimates (for composed operators).
@ Invertibility by analytic perturbation theory.

© Real symmetric coefficients: a reverse Holder inequality for
the parabolic Poisson kernel associated to .
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De Giorgi—Moser-Nash estimates

Let A x A CR™2 r=I(AxA), Hu=0in2(A x A). Then

suplu < cfff jul
AXA 2(AxA)

(X, 1) — u(X, B < c("(X_)i’t_ ””)%%WM ul,

and
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Layer potentials

Ki(X, Y) kernel of e~ t~,

r()‘ax7t707yas) = r(X7 ta Y,S)
- KI—S(Xa Y) - Kf—S()\7X7O-7 y)

M(x,t,y,8) = T(\x,10,y,s),
M, s, x, t) r(0,y,s,\ x,1),

Associated single layer potentials:

SHf(x // A(x, t,y,s)f(y,s)dyds,
RN+

= // MW, s, x, t)f(y,s) dyds.
Rn+1

Double layer potentials: DI f(x, t), DI f(x, t).

S f(x, 1)
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Bounded, invertible and good layer potentials

@ The core estimates.
©@ Estimates of non-tangential maxs and Sobolev norms.
Example: ||NE(VxSTH)ll2 + |INE(VxSTE )2 < TIIf] 2.
© Existence of boundary operators.
Example: (£3/+ k™), (£31+ K™), DST|5—0, exist.
© Estimates for boundary operators.
Example: [|(£3/+ K¥)f|lo ~ [|fllz = [[(£3] + K¥)f]la.
@ Invertibility of boundary operators.
Example: (£3/+ k%), (314 K™), are invertible on
LZ(RnH , (C).

‘H, H* have bounded, invertible and good layer potentials with
constant " > 1.
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Theorem

Assume that Hg, Hg, H1, H] are as above and satisfy De
Giorgi-Moser-Nash estimates. Assume that

Ho, Hy, have bounded, invertible and good layer
potentials for some constant I'y.

Then there exists a constant g, depending at most on n, \, the
De Giorgi-Moser-Nash constants and 'y, such that if

AT — A°|os < o,

then there exists a constant Iy, depending at most on n, A\, the
De Giorgi-Moser-Nash constants and 'y, such that

H1, H3, have bounded, invertible and good layer
potentials with constant I .
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Corollary

Assume that Ho, Hg, H1, H] are as above and satisfy De
Giorgi-Moser-Nash estimates. Assume that

(D2), (N2) and (R2) are uniquely solvable, for Ho, H;
by way of layer potentials and for a constant T'.

Then there exists a constant £y, depending at most on n, \, the
De Giorgi-Moser-Nash constants and Iy, such that if

IAT — A%]os < €0,

then then there exists a constant Ty, depending at most on n, A,
the De Giorgi-Moser-Nash constants and 'y, such that

(D2), (N2) and (R2) are uniquely solvable, for H1, 1],
by way of layer potentials and with constant 4.
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Solvability for (D2), (N2) and (R2)

We establish the solvability for (D2), (N2) and (R2), by way of
layer potentials, when the coefficient matrix is either

(f)  asmall complex perturbation of a constant
(complex) matrix, or,
(i) areal and symmetric matrix, or,
(fii) ~ asmall complex perturbation of a real and
symmetric matrix.

In cases (i) — (iii) the De Giorgi-Moser-Nash estimates hold. |
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Good layer potentials: the core estimates

dxatd )\ /2
Hets = (Ll EERE) M= e
+

The core estimates,
(1) sup||OrSTH|2 + sup ||ONSTE fll2 < T|f]|2,
A£0 A#£0

(i) [[INRSTH]x + [[[ A5 ST F

[|l= < Tl[f]2,

whenever f € L2(R™1, C) and where S}f and S}t f.

Technical challenge: prove that the core estimates are stable
under small complex perturbations of the coefficient matrix. J
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Invertibility by analytic perturbation theory

Lemma

Assume that Hg, Hg, H1, H] are as above and satisfy De
Giorgi-Moser-Nash estimates. Assume that

Ho, Hy, have bounded, invertible and good layer
potentials for some constant I'y.

If
|AT — A%|o < €0, then

ICHe — K7 ||om2 + [|KH0 — K71 ||oo2
H "
V185 [h=0 — V1S3 [r=0ll2—2

H M
[1H:D} /585 [x=0 — HtDf o83 x=0ll2s2 < ceo.

Cep,
Ceo,
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Real coefficients: parabolic measure

Given f € C(R™1) 0 L=(RM+1),

u(X,t) = // f(y,s)dw(X,t,y,s),
RN+
gives the solution to the continuous Dirichlet problem

Hu=0inRT2,
u € C([0, o) x R™M1),
u(0, x, 1) = f(x,t) on R™1,

{w(X,t,-): (X,t) € ]RTFQ} is a family of regular Borel measures
on R™1: the #{-caloric, or H-parabolic measure.
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Parabolic measure is a doubling measure

Given (x,t) e R™ ' and r > 0,

Af(x, t) := (4r, x, t + 16r2).

Theorem

Assume that A is real and satisfies (0.2). If (x, ) € R™,
0<ry<oo, A:=Ay(x0, ), then

w(AF, (X0, 1), 28) < cw(Af, (X0, 1), A)

whenever A C 4A.

The theorem holds more generally in Lip(1,1/2) domains and in
parabolic NTA-domains.
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A reverse Holder inequality for the Poisson kernel

Theorem

H = 0; — divx(A(x)V x). Suppose in addition that A is real and
symmetric. Then there exists ¢ > 1, depending only on n and
, C, such that

// KA (y, ) 2 dyds < ||,
A

where A C R™ is a parabolic cube and k*2(y, s) is the to H
associated Poisson kernel at Ap := (I(A), Xa, ta).

This, and other Rellich type estimates, use, in a crucial way,
symmetry of A and that A is independent of (), t).
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A local Tb-theorem for square functions

Assume 3 system {ba} of functions,
// Iba(x, 1) dxat < c|A,
RN+
(D)
(il / / 03ba(x, )2 ZUIA _ g,
0 A A

iy ¢ '|A] < Re // ba(x, t) dxdt.
A

Then there exists a constant ¢ such that

dxdtd)\ e
kur—(/// 63F(x, )2 ) < o|lflle.

whenever f € L2(R"1,C).
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Applying the local Tb-theorem for square functions

Orf(x,t) := // >\8§FA(X, t,y,s)f(y,s)dyds.
RN+
~A*
bA(ya S) = ’A“AK—A (.ya S).

(ii) Oxba(x. 1) = // ABTA(x. 1.y, S)ba(y, ) dyds
RA+1

N // 98T 5(x, 1.y, )K" (y. 5) dyds
A
= NA|(FF(\, X, t, —I(A), xa, ta))-

(iii)/ baly, s)dyds = |Al5"5(A) > ¢ 1A
RN+
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Part Il - the first order approach to BVPs for parabolic
equations with complex coefficients J
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The associated first order system

A\ x, t) = A(x, ).

)

Given a reinforced weak solution u to Hu = 0:

Oy u(X, X, 1)
Dau(\, x, t) == Vxu(A, x, t)
H:D} 2 u(\, x, )

[0 divy —-D/? 0 dive HD;’?
P: _VX 0 0 5 P*: —VX 0 0 R
-HD/? 0 0 D/ 0 o0

_%\u /ZA\J_H 0
M= AL Ay 0
0 0 1
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Correspondence to the first order system

If u is a reinforced weak solution, F := Dyu € H,oc, then

// F-@Agbd/\dxdt:// MF . Pgdadxat  (3.1)
Ri+2 Ri+2

for all p € C3° (RT3, C"+2). Conversely, if F € Hio. Satisfies
(3.1) for all ¢, then there exists a reinforced weak solution u,
unique up to a constant, such that F = Dyu.

Conclusion: we can construct all reinforced weak solutions u
with Dau € L2 (R, ; L2(R"*1; C"+2)) by solving

loc

OF + PMF =0 (3.2)

in the weak sense in the space Hqc.
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Quadratic estimates

PM is a bisectorial operator on L2(R"*'; C"+2) with angle
w = w(n, r, C) and R(PM) = R(P).

By bisectoriality there is a topological splitting

L*(R™1; C"2) = R(P) @ N(PM).

Theorem

The following estimate holds for all h € R(PM)

/ IAPM(1 +X2 PMPM)~ h||§9~||hy|§ (3.3)
0

Holds with PM, R(PM), replaced by MP, R(MP) = MR(P). |
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A key observation: hidden coercivity and Sneiberg

There exists &y > 0 such that if p, g with |}) — 1| < 0o and

+ =31 < b0, X € R, then the resolvent (1+i\PM)~" is bounded

on LP(R; L9(R"; C"+2)) with uniform bounds with respect to .
The same result holds with MP, P*M or MP* in place of PM.

Proof: For 1 < p, g < oo, we define
Hpq(R™) = LP(R; W' I(R™) N HY/2P(R; LI(R"))

equipped with

[l = [l + 1¥xul + 1082l | g en

LP(R)

We let H; , denote the space dual to Hp q.
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A key observation: hidden coercivity and Sneiberg

A = 1. Given g € L2(R"';C™?2), 3 unique g € L?(R"1; C"+2),
9=[(A9). g ]
(1+iPM)~'f = g is equivalent to a system for g,

(91 + La)gu = fu — Auyfy — idivi(Ayfy) + D} h,
g)—iVxgL = fj,
9 — iHD}?g, =1,

where

La:=[1 idivx] A [ L Al +H) + first order terms.

)

Ot + L, admits hidden coercivity, invertible Hy > — H*,’z,,
bounded Hp g — H;;,7q,: we can apply Sneiberg’s lemma.
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Off-diagonal type estimates for resolvents

Ck(Q x J) := (2K1Q x NKF1U)\ (2FQ x N*Y)

Proposition

There exists ey > 0 and Ny > 1 such that if\% — 3| < eo, then
one can find e = €(n, q,e0) > 0 with the following property:

given N > Ny, there exists C = C(e, Ny, q) < oo such that

]§[ (1 +IAPM)~" b9 dyds < CN~ ]§[ \h|9 dyds
Qx4il Cr(Qx41)

whenever Q = B(x,r) CR", I = (t—r?,t+r?), \~r,j €N,
k € N* and provided h € (L2 n L9)(R™"; C"2) has support in
C(Q x 41).

Analogous estimates with PM replaced by MP, P*M or MP*. |
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Proof of the off-diagonal type estimates (g = 2)

We set J = 4// and
Cl:= (2k1Q\ 2kQ) x Nk, C2 .= 2kKQ x (NK+1U\ NkY).
We write h = hy + hy with h; supported in C,.

’
1 +iIAPM)~"hy|?d dsg// 1 +iAPM)~"hy|?dyds.
L jsinpmn i ayas < oo | (i)t Py

Using spatial off-diagonal estimates we obtain for any m € N,

—km
]5[ (1 +iNPM)~" hy[2 dydls < / / \hy 2 dyds
QxJd |Q| n

_ 2—kme+12knﬂ ‘h|2 dde
Ck(QxJ)
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Proof of the off-diagonal type estimates (g = 2)

Smooth cut-off function n € C3°(N¥~1J), equal to 1 on Nk—2y
and satisfies (N<(J))[|0¢m]|o0 < 1. With p > 2

]§[ (1 +iAPM) " hy[2 dyds
QxJ
is bounded by

’10‘][ |(1 +iANPM) ' hy|? dyds
J JRN

< <][ ( (1 +i)\PM)1h2|2dy> ds)
J RN

1 N O
\QV( )2/p / Rn\n(1+/)\PM) ho|“dy ds .
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Proof of the off-diagonal type estimates (g = 2)

As n(t)ha(x, t) = 0, we can re-express 7(1 +iA\PM)~"h, using a
commutator

n(1 +iIAPM)~ T hy = [n, (1 +iAPM) ] hy
= (1 +iINPM) ™[, INPM](1 +iAPM) " hy
= (1 +iIAPM)~iX[n, PIM(1 +ixPM)~ " hs,

where

0 0 —[n D;’?
[n, P] = 0 0 0
~[n, HD}’®] 0 0

17, D21l 2wy 1oy + 1 HeDY 21 2y 1oy S (NFE())~(=07P),

It follows that [n, P] : L2(L?) — LP(L?) with norm as above.
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Proof of the off-diagonal type estimates (g = 2)

1 _ L, \P2 2/p
|Qle(Jy2/p / an“ +IAPM)""hp[~dy | ds

p/2
S |Q|g(1 Jy2/p (/R </Rn liX[n, PIM(1 +ixPM)~" hy|? dy> ds)

A2 1 o
~|QIUJY2IP T (NKe(J))@—2/p) /R [, IM(1 +IAPM) ™ he | dydis

A2 )

<

~ |Q\€(J)2(Nk)2—2/p/R/Rn|h2\ dyds

S INKY 28 8() h|? dyds

~ (NKYT=2/p 1(J) Ck(oxJ)H y
2kn

S TR, h|? dyds.
~ (Nk)1_2/p]§[ck(QXJ)\ < dy

2/p
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Proof of the off-diagonal type estimates (g = 2)

We have proved that

]5[ |(1 +iAPM)~" h|2 dyds < 2~kmnk+12kn ]§[ |h|? dyds
QxJ Ck(QxJ)

2kn 5
4+ —— h|© dyds.
(Nk)1_2/p]§€;k(ow)‘ dy

First we pick 0 < & < 9 and then pwith e < § — 1 < <. For N
large enough 247 < N—2ke(Nk)1=2/P and given any such choice
of N, there is a choice of m large verifying

2—kme+1 2kn S N_2k€.
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Proof of the quadratic estimate

Suffices to prove

g dX

/ IAMP(1 +X2MPMP)~ " h| < |1hli3 (hel?) (3.4)
0

and the analogous estimate with MP replaced by M*P*.

We set Ry = (1 +iAMP)~" for A € R. Then

1
2

As Q) vanishes on N(MP) = N(P): it is enough to prove (3.4)
for h € R(MP). ©, := Q\M. Suffices to prove

Q= 5:(Ra— R = AMP(1 +X2MPMP)~

/0|reAPv|erA<quu2 (veD(P).  (35)
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Reduction to a Carleson measure estimate

@)\PV :@)\(1 —P)\)PV + (@)\ = ")/)\S)\)P)\PV
= ’)’)\S)\(P)\ — S)\)PV + 7Sy Pv.
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Reduction to a Carleson measure estimate

@)\PV :@)\(1 —P)\)PV + (@)\ = ")/)\S)\)P)\PV
= ’)’)\S)\(P)\ — S)\)PV + 7Sy Pv.

d)\
5 S PV,

/0 lex(1 —PyPvz L

> * ax
/ u(eA—wsA)ﬂPvH%7 S N R

+/ A2 D2 Py Pv||2 .
0

ai o0 d)\
32 /0 1Py~ S)Pv3 2

AN

/o [7aSA(Px — Sy)Pv|
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Reduction to a Carleson measure estimate

o0 ai
/0 rmSAPvH%—s\mu%quHS (v D(P)),

2 2dthd>\
[alle := sup — ’ (X 1)
AcD |A\

Test functions for local Tb-theorem: one can construct test
functions which can handle the non-local terms appearing in P.
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Consequences of the quadratic estimate

For any bounded holomorphic function b : S, — C the

functional calculus operator b(PM) on R(P) is bounded by
I6(PM)l[gmy—reey S 10llL=(s,.)-

If bis unambiguously defined at the origin, then b(PM) extends
to L2(R™1; C"*2) by b(0) on N(PM).

H=(PM) := x*(PM)R(P) yields the generalized Hardy space
decomposition,

R(P) = H(PM) @ H(PM).
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Solving the first order system

Generalized Cauchy extension in the upper half-space: for
heR(P)and XA > 0, (Cj h)(),-) := e PMy+(PM)h.

Proposition

F := C4 h of h € R(P). Then d\F + PMF = 0 in the strong

sense F € C([0,); R(P)) N C>((0, c0); D(PM)), and
2\ 5
sup | Falz ~ [ (PM)hi|z ~ sup ][ |Fll2 dp,
A>0 A>0 J A\
lim F = x*(PM)h,  lim Fy =0,
— 00

d)\
/0 DONFI 5 ~ I (PMAIR.

O\F + PMF = 0 also in the weak sense (3.1).
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Solving the first order system

Theorem

Let F € L2 (R.;R(P)) be a solution of (1.2) in the weak sense

such that
2)

sup £ [IFull3 du < . (3.6)
A>0J A

Then F has an L2 limit h € H(PM) at A\ = 0 and F is given by
the Cauchy extension of h.

2\
Sup // (IVxtl® + [H:D; 2 uP?) dxdtdy:
A>0 JA Rn+1

2 2 2 1/2 2
~ 17113 ~ 118satlr=0l3 + | Vxulr=oll3 + 1H:D;*ulr=oll3.
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Kato square root estimate for t-dependent coefficients

V.= H'2(R; L3(R")) N L3(R; W'3(R")).

The operator H;| = 0 — divx Ay|(x, t)Vx arises from an
accretive form, it is maximal-accretive in L2(R"") and

1/2
I/H) ullz ~ [Vxulle + 1D} Pulla - (ue V).

Proof.

M =
0 O

1.0 0
0 Ay 0.
1

PM and [PM] = sgn(PM)PM share the same domain.
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Proof of the Kato estimate

[|PMh||2 ~ [[[PM]h]|2. )

But [PM)] is the square root of (PM)? and

81 — diVX A”HVX 0 0
(PM)? = 0 ~Vydivy Ay —HD} divi Ay
0 VxD;/? O

Let h = [f,0,0]".

IV xfllo + || He D2 fl|o ~||PMh] 2
~|I[PM]Alz ~ [|(3; — divk Ay Vx) 2 1]l2.
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Controlling the non-tangential maximal function

For (x, t) € R™' we define the non-tangential maximal function

N 1/2
N,F(x,t) = sup <]§§[ \F(u, Y, s)zdudyds> :
Ax Qx|

A>0
A = (Co), C1A), Q = B(x, o)) and | = (t — c3)2, t + c3)?).
Theorem

Leth e R(PM) and let F = (C+h)()\ )= —AP’V’ T(PM)h.
Then

INLFll2 ~ || Al|2,
and
im ]§§[ F(i,y, ) — h(x, t)/2dudyds = 0
AxQxI

A—0

for almost every (x,t) € R™1.
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Proof of the non-tangential maximal function estimate

@ New reverse Holder estimates for reinforced weak
solutions:

1/2
<]%/\ Q /|VA’XU|2 + ’H’D:/2U|2dﬂdyds>
XWX

<Y 2'"]%[ Vx| + |HeD}2ul + | D}2ul dudyds.
m>0 8Ax8Qx4m|

@ Quadratic estimates.
© Off-diagonal estimates.
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Applications to BVPs

For —1 < s <0 we let
IN(F)||2
[Flles == .
(5 merFig %)

(if s =0),
1/2
(otherwise),

and define the solution classes

Es = {F € L (RT3, C""2); || Fle, < o0}

Given s € [—1, 0], the regularity of the data, we consider BVPs
E:Hu=0Dweé&s, uro="1¢ Hgt/_zx/z
(N Hu =0, Dau € &, dy,ulrmo = F € Hy 25 .

Parabolic equations with complex coefficients
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Well-posedness results: A-independent coefficients

R

@ (R and (N)} are compatibly well-posed when
—1 < s <0 and A(x,t) has block structure.

Q (R)X and (N)} are compatibly well-posed when
—1 <s<0andA(x,t) = A with A constant.

Q (R)X and (N)} are compatibly well-posed when
—1 <s<0andA(x,t) = A(x) is hermitian.

Q Results for (R) and (N)% when A(x, t) has a triangular
structure.

In 3: by Rellich type estimates

IhIP < /0 ||DJ/“F9\§dA=—(m,he)—/o (Vu,[A, H:D}*]Vu)dx.
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Further results and open areas for generalization

Further results:

@ Layer potentials.
©@ Well-posedness results for equations with A\-dependent
coefficients.

© All our results apply to parabolic systems without any
changes but in the accretivity condition.

Areas for further explorations:

@ Degenerate parabolic equations and systems.

© Boundary value problems with other spaces of data.
© Higher order equations and systems.

© Time/space fractional equations.
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