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I. Introduction: Global Hausdorff-Young (H-Y) for Rd

f̂ (ξ) :=

∫

R

d

f (x)e−2πiξ·x dx

Interpolation between

‖f̂ ‖∞ ≤ ‖f ‖1, and ‖f̂ ‖2 = ‖f ‖2 (Plancherel),

leads to
‖f̂ ‖p′ ≤ C‖f ‖p , 1 ≤ p ≤ 2, (1)

if 1/p′ + 1/p = 1, with C ≤ 1.

Denote by Hp(R
d ) the best constant C in (1).
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‖f̂ ‖p′ ≤ C‖f ‖p , 1 ≤ p ≤ 2, (1)

if 1/p′ + 1/p = 1, with C ≤ 1.

Denote by Hp(R
d ) the best constant C in (1).

Babenko ’61 (for p′ even integer), Beckner ’75 for general p :

The best constant is given by (with Gaussians minimizing)

Hp(R
d ) = Bd

p , with Bp := (p1/p/(p′
1/p′

)1/2.
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Global H-Y on more general l.c. groups

Let G be a loc. compact, unimodular group of type I, with unitary dual Ĝ ,
endowed with the usual Mackey Borel structure.

Abstract Plancherel formula for G

There exists a unique Plancherel measure µ on Ĝ so that

∫

G

|ϕ(g)|2 dg =

∫

Ĝ

tr (ϕ̂(π)∗ϕ̂(π)) dµ(π), (2)

with

ϕ̂(π) = π(ϕ) :=

∫

G

ϕ(g)π(g) dg , ϕ ∈ L1(G ) ∩ L2(G ).

Again, interpolation with the trivial estimate

sup
π∈Ĝ

‖f̂ (π)‖ ≤ ‖f ‖L1(G), f ∈ L1(G ),

leads to
Detlef Müller Hausdorff-Young 3 / 23



Kunze/Stein ’60, Lipsman ’74: H-Y for G

‖f̂ ‖Lp′ ≤ C‖f ‖p , 1 ≤ p ≤ 2, f ∈ L1(G ) ∩ Lp(G ), (3)

with C ≤ 1,

where

‖f̂ ‖Lp′ = ‖f̂ ‖
Lp

′ (Ĝ ) :=
(

∫

Ĝ

‖f̂ (π)‖p′
Sp′

dµ(π)
)1/p′

;

‖T‖Sq :=
(

tr (T ∗T )q/2
)1/q

the Schatten-q-norm of T .

We denote by Hp(G ) ≤ 1 the optimal constant C in (3).
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Global H-Y on more general l.c. groups

Clearly Hp(G ) = 1, if G is compact (choose f ≡ 1).

For connected, non-compact groups, one expects that Hp(G ) < 1, if
1 < p < 2.

Several authors have indeed proved results in this direction, for
various classes of non-compact groups, in particular for connected
nilpotent, resp. solvable, Lie groups, including:
– Eymard/Terp for the ax + b-group
– Russo, Innoue; Russo/Klein;
– Baklouti/Samoui/Ludwig;
– Führ
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Local Hausdorff-Young

Assume G is a Lie group, and the support of f ∈ L1(G ) ∩ L2(G ) “shrinks”
towards the identity element e ∈ G . Then, in the limit, it appears plausible
that the best H-Y-constant tends towards the one for the underlying Lie
algebra g of G , i.e., Bdim g

p = BdimG
p .

More precisely, if U ⊂ G is an open neighborhood of e, let

Hp(U) := sup
supp f⊂U,‖f ‖p=1

‖f̂ ‖Lp′ ,

H loc
p (G ) := inf

U
Hp(U).

– Clearly, Hp(G ) ≥ H loc
p (G ).

QUESTION:

If G is Lie group of dimension d , is

H loc
p (G ) = H loc

p (g) = Bd
p ? (4)
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Andersson ’93, Sjölin ’95, Kamaly ’96

Yes, if G = T
d .

– Further motivation for this question: Articles by Garcia-Cuerva,
Marco, and Parcet,’2003/04 on H-Y -estimates for vector valued (more
precisely: operator space valued) functions on non-commutative groups.
– An important step in their work consisted in proving the following:

On local H-Y for central functions on compact Lie groups:

Let G be a compact, semi-simple Lie group, and define the local
H-Y-constant constant H loc

p,central(G ) in the same way as before, only

restricted to central functions f . Then H loc
p,central(G ) > 0.

Theorem 1

If G is a compact Lie group, then

H loc
p,central(G ) = BdimG

p .
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II. Global H-Y on nilpotent Lie groups/ the Heisenberg

group

Baklouti, Ludwig, Smaoui ’2003

Let G be a connected, simply-connected nilpotent Lie group, and let m be
the dimension of the generic codjoint orbits in g

∗. Then, for 1 ≤ p ≤ 2,

Hp(G ) ≤ B
dimG−m

2
p . (5)

The Heisenberg group Hn = Rn ×Rn ×R, with product

(u, v , t) · (u′, v ′, t ′) := (u + u′, v + v ′, t + t ′ +
1

2
(uv ′ − u′v)).

Here, m = 2n, d = 2n + 1, so (5) yields

Hp(Hn) ≤ Bd−n
p = Bn+1

p .
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Heisenberg group

Klein/Russo ’78

If p′ is an even integer, then Hp(Hn) = Bd
p .

Remark. We have an extension of this result (for even integer p′) to
classes of solvable Lie groups, including all exponential solvable Lie groups.

CONJECTURE: Hp(Hn) = Bd
p = B2n+1

p for every p ∈ [1, 2].
The results above on the Heisenberg group can easily be reduced by means
of a partial Fourier transform in the center to corresponding results on the
Weyl transform ρ : For f on Rn ×Rn = R2n, say a Schwartz function, let

ρ(f ) :=

∫∫

f (u, v)e2πi(uD+vX ) dudv

on L2(Rn, dx), where uD :=
n
∑

j=1

ujDj and vX :=
n
∑

j=1

vjXj ,
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Weyl transform

with

Djϕ(x) :=
1

2πi

∂

∂xj
f (x), Xjϕ(x) := xjϕ(x).

Explicitly, ρ(f ) is the integral operator

ρ(f )ϕ(x) =

∫

Kf (x , y)ϕ(y) dy ,

with integral kernel

Kf (x , y) :=

∫

f (y − x , v)eπiv(x+y) dv .

f on R
2n is polyradial, if

f (u, v) = f0(|z1|, · · · , |zj |),

where we have put zj := uj + ivj ∈ C.
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Weyl transform

Theorem 2

If f ∈ C∞
0 (R2n) is polyradial, then

‖ρ(f )‖Sp′ ≤ B2n
p ‖f e π

2
|·|2‖Lp(R2n), 1 ≤ p ≤ 2. (6)

– So, as supp f → {0}, the right-hand side tends to B2n
p ‖f ‖p , and we get

an analogue to the local result for central functions on compact Lie groups
in Theorem 1.
– Regretfully, the result cannot be scaled – one would indeed expect to get
the analogue of (15) without the weight e

π
2
|·|2, and even for non-polyradial

functions. This would also imply the conjecture above about Hp(Hn).
Remark: Theorem 1 and 2 can be seen as particular instances of a more
general setting, namely that of Gelfand pairs (G ,K ).
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III. Lower bounds to local and global H-Y-constants

Alternative approach to Lp
′

(Ĝ ) : Let G be any unimodular loc. compact
group. Following Segal ’50, Kunze ’58, let M be the von Neumann
algebra M = Cv2(G ) of L2-bounded left convolution operators on G .
Define a “generalised trace” τ on its positive part M+ by

τ(Lf ∗∗f ) := ‖f ‖22 = f ∗ ∗ f (e) (7)

(where Lh denotes the convolution operator φ 7→ h ∗ φ) and put

‖f̂ ‖q := (τ((Lf ∗∗f )
q/2))1/q .

According to Klein/Russo, if G is separable and of type I, this norm
agrees with the previous q-norm, i.e.,

‖f̂ ‖q =
(

∫

Ĝ

‖f̂ (π)‖qSq dµ(π)
)1/q

= ‖f̂ ‖
Lq(Ĝ) (8)

Detlef Müller Hausdorff-Young 12 / 23



Alternative approach to Lp
′

(Ĝ )

Note: If h is a positive definite function on G , then

h(e) = ‖h‖∞ = ‖Lh‖1→∞,

and in conclusion
‖f̂ ‖qq = ‖(Lf ∗∗f )q/2‖1→∞. (9)

Theorem 3

Let G be a unimodular Lie group, with Lie algebra g, which we regard as a
commutative group under addition. Then

H loc
p (G ) ≥ Hp(g) = BdimG

p .
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Sketch of Proof

Given any open neighborhood U of e in G , we need to prove that

Hp(g) ≤ Hp(U). (10)

By (9), we have

‖f̂ ‖p′p′ = sup
‖g‖1,‖h‖1≤1

〈(Lf ∗∗f )p
′/2g , h〉. (11)

Scaling: Let Ω ⊆ g be an open neighbourhood of the origin such that
Ω = −Ω and exp |Ω : Ω → exp(Ω) is a diffeomorphism. For all
f ∈ C0(g), 1 ≤ p ≤ ∞, λ > 0, define f λ,p : G → C by

f λ,p(x) =

{

λ−n/pf (λ−1 exp |−1
Ω (x)) if x ∈ exp(Ω),

0 otherwise.
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Sketch of Proof

One easily shows:

‖f λ,p‖Lp(G) ≤ C‖f ‖Lp(g)
lim
λ→0

‖f λ,p‖Lp(G) = ‖f ‖Lp(g)

Also, using Baker-Campbell-Hausdorff,

exp(X1) · · · exp(Xk) = exp(X1 + · · · + Xk + B(X1, . . . ,Xk)),

where
λ−1B(λX1, . . . , λXk) → 0 as λ → 0,

one finds that for f1, . . . , fk , g ∈ C0(g)

lim
λ→0

〈f λ,11 ∗ · · · ∗ f λ,1k , gλ,∞〉L2(G) = 〈f1 ∗ · · · ∗ fk , g〉L2(g). (12)
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Sketch of Proof

Also (f λ,1)∗ = (f ∗)λ,1, and thus an earlier estimate implies

‖L(f λ,1)∗∗f λ,1‖L2(G)→L2(G) ≤ ‖(f λ,1)∗ ∗ f λ,1‖L1(G) ≤ C 2‖f ‖2L1(g).

Hence the positive operators L(f λ,1)∗∗f λ,1 are bounded on L2(G ) uniformly
in λ. Therefore, for all Φ ∈ C ([0,∞)), the operator Φ(L(f λ,1)∗∗f λ,1) is

bounded and depends only on Φ|K , where K = [0,C 2‖f ‖2
L1(g)]. Let

F :=
{

Φ ∈ C (K ) : ∀g , h ∈ C0(g) :

lim
λ→0

〈Φ(L(f λ,1)∗∗f λ,1)gλ,2, hλ,2〉L2(G) = 〈Φ(Lf ∗∗f )g , h〉L2(g)
}

. (13)

F is a linear subspace of C (K ), closed under conjugation. Moreover, F
contains all polynomials:
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Sketch of Proof

Indeed,if Φ(u) = uN , then by (12), as λ → 0,

〈Φ(L(f λ,1)∗∗f λ,1)gλ,2, hλ,2〉L2(G) = 〈((f ∗)λ,1 ∗ f λ,1)(∗N) ∗ gλ,1, hλ,∞〉
−→ 〈(f ∗ ∗ f )(∗N) ∗ g , h〉 = 〈〈Φ(Lf ∗∗f )g , h〉L2(g).

– Finally, one easily sees that F is closed in C (K ). Thus, by
Stone-Weierstraß,

F = C (K ).

– Choosing Φ(u) := up
′/2 in F , by (13) we obtain:
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Sketch of Proof

For all ∀f , g , h ∈ C0(G ),

λ−d(p′−1)〈(L(f λ,∞)∗∗f λ,∞)p
′/2gλ,1, hλ,1〉L2(G) → 〈(Lf ∗∗f )p

′/2g , h〉L2(g) (14)

as λ → 0.
– Assuming that λ is so small that f λ,∞, gλ,1, hλ,1 are supported in U, and
recalling (11), i.e.,

sup
‖g‖1,‖h‖1≤1

〈(Lf ∗∗f )p
′/2g , h〉 = ‖f̂ ‖p′p′ ,

we see that the left-hand side of (14) is bounded by

λ−d(p′−1)
(

Hp(U)‖f λ,∞‖p
)p′‖gλ,1‖1‖hλ,1‖1

= Hp(U)p
′‖f λ,p‖p′p ‖gλ,1‖1‖hλ,1‖1.

Since limλ→0 ‖ϕλ,p‖Lp(G) = ‖ϕ‖Lp(g), in the limit as λ → 0, we find that

〈(Lf ∗∗f )p
′/2g , h〉L2(g) ≤ Hp(U)p

′‖f ‖p′p ‖g‖1‖h‖1.
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Sketch of Proof

Hence
‖f̂ ‖Lp′ (g) ≤ Hp(U)‖f ‖Lp(g).

This implies Hp(g) ≤ Hp(U), and since U was arbitrary, we arrive at the
desired estimate

Hp(g) ≤ H loc
p (G ).

Thanks

for your attention!
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Proof of Theorem 2

Theorem 2

If f ∈ C∞
0 (R2n) is polyradial, then

‖ρ(f )‖Sp′ ≤ B2n
p ‖f e π

2
|·|2‖Lp(R2n), 1 ≤ p ≤ 2. (15)

Proof. Key identity relating Laguerre polynomials to Bessel functions:

Lαk (x) =
exx−α/2

k!

∫ ∞

0
tk+α/2Jα(2

√
xt)e−t dt, x > 0. (16)

– In order to avoid technicalities, let us assume n = 1.
– If f (z) = f0(|z |) is a radial L1-function on R

2, one may represent the
operator ρ(f ) with respect to the orthonormal basis of Hermite functions
hk , k ∈ N, of L2(R) as an infinite diagonal matrix, with diagonal elements

f̃ (k) := 〈ρ(f )hk , hk〉 =
∫

R2

f (z)e−(π/2)|z |2L0k(π|z |2) dz , k ∈ N. (17)
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Proof of Theorem 2

In particular,
‖ρ(f )‖Sq = ‖f̃ ‖ℓq .

Recall also that the Euclidean Fourier transform of any radial L1- function
g(z) = g0(|z |) on R

2 can written in polar coordinates as

ĝ(ζ) = 2π

∫ ∞

0
g0(r)J0(2π|ζ|r)r dr . (18)

Put F (z) = e(π/2)|z |
2
f (z). Since also F̂ is radial, we may write

F̂ (ζ) = F̂0(|ζ|). Combining (16) – (18), we obtain

f̃ (k) =

∫ ∞

0
F̂0

(
√

t/π
) tk

k!
e−t dt. (19)
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Proof of Theorem 2

For suitable functions ϕ on the positive real line, let us write

ϕ̆(k) :=

∫ ∞

0
ϕ(t)

tk

k!
e−t dt, k ∈ N.

We claim that
‖ϕ̆‖ℓq ≤ ‖ϕ‖Lq (R+,dt), 1 ≤ q ≤ ∞. (20)

Indeed, this estimate is trivial for q = ∞, since the tk

k!e
−t dt are probability

measures, and for p = 1 we may estimate

∞
∑

k=0

|ϕ̆(k)| ≤
∫ ∞

0
|ϕ(t)|

∞
∑

k=0

tk

k!
e−t dt = ‖ϕ‖1.

Thus, (20) follows by the complex interpolation theorem of Riesz and
Thorin.
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Proof of Theorem 2

From (20) and (19) we get

‖f̃ ‖ℓq ≤
(

∫ ∞

0
|F̂0

(
√

t/π
)

|q dt
)1/q

= ‖F̂‖Lq(R2),

and thus by the sharp Hausdorff-Young inequality on R
2 we obtain

‖ρ(f )‖Sq = ‖f̃ ‖ℓq ≤ B2
p‖F‖p ,

hence (15).

Thanks

for your attention!
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