On sharp Constants in LOCAL AND GLOBAL HaUsDORFF-YOUNG inequalities

Detlef Müller
University of Kiel
Mathematisches Seminar

Work in progress with M. Cowling, A. Martini, and J. Parcet

September 13, 2016

I. Introduction: Global Hausdorff-Young (H-Y) for \mathbb{R}^{d}

$$
\hat{f}(\xi):=\int_{\mathbb{R}^{d}} f(x) e^{-2 \pi i \xi \cdot x} d x
$$

Interpolation between

$$
\|\hat{f}\|_{\infty} \leq\|f\|_{1}, \quad \text { and } \quad\|\hat{f}\|_{2}=\|f\|_{2} \quad \text { (Plancherel) }
$$

leads to

$$
\begin{equation*}
\|\hat{f}\|_{p^{\prime}} \leq C\|f\|_{p}, \quad 1 \leq p \leq 2 \tag{1}
\end{equation*}
$$

if $1 / p^{\prime}+1 / p=1$, with $C \leq 1$.
Denote by $H_{p}\left(\mathbb{R}^{d}\right)$ the best constant C in (1).

I. Introduction: Global Hausdorff-Young (H-Y) for \mathbb{R}^{d}

$$
\hat{f}(\xi):=\int_{\mathbb{R}^{d}} f(x) e^{-2 \pi i \xi \cdot x} d x
$$

Interpolation between

$$
\left.\|\hat{f}\|_{\infty} \leq\|f\|_{1}, \quad \text { and } \quad\|\hat{f}\|_{2}=\|f\|_{2} \quad \text { (Plancherel }\right)
$$

leads to

$$
\begin{equation*}
\|\hat{f}\|_{p^{\prime}} \leq C\|f\|_{p}, \quad 1 \leq p \leq 2 \tag{1}
\end{equation*}
$$

if $1 / p^{\prime}+1 / p=1$, with $C \leq 1$.
Denote by $H_{p}\left(\mathbb{R}^{d}\right)$ the best constant C in (1).
Babenko '61 (for p^{\prime} even integer), Beckner '75 for general p :
The best constant is given by (with Gaussians minimizing)

$$
H_{p}\left(\mathbb{R}^{d}\right)=B_{p}^{d}, \quad \text { with } \quad B_{p}:=\left(p^{1 / p} /\left(p^{1 / p^{\prime}}\right)^{1 / 2}\right.
$$

Global H-Y on more general l.c. groups

Let G be a loc. compact, unimodular group of type I, with unitary dual \hat{G}, endowed with the usual Mackey Borel structure.

Abstract Plancherel formula for G

There exists a unique Plancherel measure μ on \hat{G} so that

$$
\begin{equation*}
\int_{G}|\varphi(g)|^{2} d g=\int_{\hat{G}} \operatorname{tr}\left(\hat{\varphi}(\pi)^{*} \hat{\varphi}(\pi)\right) d \mu(\pi) \tag{2}
\end{equation*}
$$

with

$$
\hat{\varphi}(\pi)=\pi(\varphi):=\int_{G} \varphi(g) \pi(g) d g, \quad \varphi \in L^{1}(G) \cap L^{2}(G)
$$

Again, interpolation with the trivial estimate

$$
\sup _{\pi \in \hat{G}}\|\hat{f}(\pi)\| \leq\|f\|_{L^{1}(G)}, \quad f \in L^{1}(G)
$$

leads to

Kunze/Stein '60, Lipsman '74: H-Y for G

$$
\begin{equation*}
\|\hat{f}\|_{L^{\prime}} \leq C\|f\|_{p}, \quad 1 \leq p \leq 2, f \in L^{1}(G) \cap L^{p}(G), \tag{3}
\end{equation*}
$$

with $C \leq 1$,
where

$$
\begin{aligned}
\|\hat{f}\|_{L^{p^{\prime}}} & =\|\hat{f}\|_{L^{p^{\prime}}(\hat{G})}:=\left(\int_{\hat{G}}\|\hat{f}(\pi)\|_{\mathcal{S}^{p^{\prime}}}^{p^{\prime}} d \mu(\pi)\right)^{1 / p^{\prime}} ; \\
\|T\|_{\mathcal{S}^{q}} & :=\left(\operatorname{tr}\left(T^{*} T\right)^{q / 2}\right)^{1 / q} \text { the Schatten-q-norm of } T .
\end{aligned}
$$

We denote by $H_{p}(G) \leq 1$ the optimal constant C in (3).

Global H-Y on more general l.c. groups

- Clearly $H_{p}(G)=1$, if G is compact (choose $f \equiv 1$).
- For connected, non-compact groups, one expects that $H_{p}(G)<1$, if $1<p<2$.
- Several authors have indeed proved results in this direction, for various classes of non-compact groups, in particular for connected nilpotent, resp. solvable, Lie groups, including:
- Eymard/Terp for the $a x+b$-group
- Russo, Innoue; Russo/Klein;
- Baklouti/Samoui/Ludwig;
- Führ

Local Hausdorff-Young

Assume G is a Lie group, and the support of $f \in L^{1}(G) \cap L^{2}(G)$ "shrinks" towards the identity element $e \in G$. Then, in the limit, it appears plausible that the best $\mathrm{H}-\mathrm{Y}$-constant tends towards the one for the underlying Lie algebra \mathfrak{g} of G, i.e., $B_{p}^{\operatorname{dim} \mathfrak{g}}=B_{p}^{\operatorname{dim} G}$.
More precisely, if $U \subset G$ is an open neighborhood of e, let

$$
\begin{aligned}
H_{p}(U) & :=\sup _{\operatorname{supp} f \subset U,\|f\|_{p}=1}\|\hat{f}\|_{L^{\prime}}, \\
H_{p}^{\text {loc }}(G) & :=\inf _{U} H_{p}(U) .
\end{aligned}
$$

- Clearly, $H_{p}(G) \geq H_{p}^{\text {loc }}(G)$.

QUESTION:

If G is Lie group of dimension d, is

$$
\begin{equation*}
H_{p}^{\mathrm{loc}}(G)=H_{p}^{\mathrm{loc}}(\mathfrak{g})=B_{p}^{d} ? \tag{4}
\end{equation*}
$$

Andersson '93, Sjölin '95, Kamaly '96

Yes, if $G=\mathbb{T}^{d}$.

- Further motivation for this question: Articles by Garcia-Cuerva, Marco, and Parcet,'2003/04 on H-Y -estimates for vector valued (more precisely: operator space valued) functions on non-commutative groups. - An important step in their work consisted in proving the following:

On local $\mathrm{H}-\mathrm{Y}$ for central functions on compact Lie groups:

Let G be a compact, semi-simple Lie group, and define the local $\mathrm{H}-\mathrm{Y}$-constant constant $H_{p, \text { central }}^{\text {loc }}(G)$ in the same way as before, only restricted to central functions f. Then $H_{p, \text { central }}^{\text {loc }}(G)>0$.

Theorem 1

If G is a compact Lie group, then

$$
H_{p, \text { central }}^{\text {loc }}(G)=B_{p}^{\operatorname{dim} G}
$$

II. Global H-Y on nilpotent Lie groups/ the Heisenberg

Baklouti, Ludwig, Smaoui '2003

Let G be a connected, simply-connected nilpotent Lie group, and let m be the dimension of the generic codjoint orbits in \mathfrak{g}^{*}. Then, for $1 \leq p \leq 2$,

$$
\begin{equation*}
H_{p}(G) \leq B_{p}^{\operatorname{dim} G-\frac{m}{2}} \tag{5}
\end{equation*}
$$

The Heisenberg group $\mathbb{H}_{n}=\mathbb{R}^{n} \times \mathbb{R}^{n} \times \mathbb{R}$, with product

$$
(u, v, t) \cdot\left(u^{\prime}, v^{\prime}, t^{\prime}\right):=\left(u+u^{\prime}, v+v^{\prime}, t+t^{\prime}+\frac{1}{2}\left(u v^{\prime}-u^{\prime} v\right)\right) .
$$

Here, $m=2 n, d=2 n+1$, so (5) yields

$$
H_{p}\left(\mathbb{H}_{n}\right) \leq B_{p}^{d-n}=B_{p}^{n+1}
$$

Heisenberg group

Klein/Russo '78

If p^{\prime} is an even integer, then $H_{p}\left(\mathbb{H}_{n}\right)=B_{p}^{d}$.
Remark. We have an extension of this result (for even integer p^{\prime}) to classes of solvable Lie groups, including all exponential solvable Lie groups.

CONJECTURE: $H_{p}\left(\mathbb{H}_{n}\right)=B_{p}^{d}=B_{p}^{2 n+1}$ for every $p \in[1,2]$.
The results above on the Heisenberg group can easily be reduced by means of a partial Fourier transform in the center to corresponding results on the Weyl transform ρ : For f on $\mathbb{R}^{n} \times \mathbb{R}^{n}=\mathbb{R}^{2 n}$, say a Schwartz function, let

$$
\rho(f):=\iint f(u, v) e^{2 \pi i(u D+v X)} d u d v
$$

on $L^{2}\left(\mathbb{R}^{n}, d x\right)$, where $u D:=\sum_{j=1}^{n} u_{j} D_{j}$ and $v X:=\sum_{j=1}^{n} v_{j} X_{j}$,

Weyl transform

with

$$
D_{j} \varphi(x):=\frac{1}{2 \pi i} \frac{\partial}{\partial x_{j}} f(x), \quad x_{j} \varphi(x):=x_{j} \varphi(x)
$$

Explicitly, $\rho(f)$ is the integral operator

$$
\rho(f) \varphi(x)=\int K_{f}(x, y) \varphi(y) d y
$$

with integral kernel

$$
K_{f}(x, y):=\int f(y-x, v) e^{\pi i v(x+y)} d v
$$

f on $\mathbb{R}^{2 n}$ is polyradial, if

$$
f(u, v)=f_{0}\left(\left|z_{1}\right|, \cdots,\left|z_{j}\right|\right)
$$

where we have put $z_{j}:=u_{j}+i v_{j} \in \mathbb{C}$.

Weyl transform

Theorem 2
If $f \in C_{0}^{\infty}\left(\mathbb{R}^{2 n}\right)$ is polyradial, then

$$
\begin{equation*}
\|\rho(f)\|_{\mathcal{S}^{p^{\prime}}} \leq B_{p}^{2 n}\left\|f e^{\frac{\pi}{2}|\cdot|^{2}}\right\|_{L^{p}\left(\mathbb{R}^{2 n}\right)}, \quad 1 \leq p \leq 2 \tag{6}
\end{equation*}
$$

- So, as supp $f \rightarrow\{0\}$, the right-hand side tends to $B_{p}^{2 n}\|f\|_{p}$, and we get an analogue to the local result for central functions on compact Lie groups in Theorem 1.
- Regretfully, the result cannot be scaled - one would indeed expect to get the analogue of (15) without the weight $e^{\left.\frac{\pi}{2} \cdot\right|^{2}}$, and even for non-polyradial functions. This would also imply the conjecture above about $H_{p}\left(\mathbb{H}_{n}\right)$. Remark: Theorem 1 and 2 can be seen as particular instances of a more general setting, namely that of Gelfand pairs (G, K).

III. Lower bounds to local and global H-Y-constants

Alternative approach to $L^{p^{\prime}}(\hat{G})$: Let G be any unimodular loc. compact group. Following Segal '50, Kunze '58, let \mathcal{M} be the von Neumann algebra $\mathcal{M}=\mathrm{Cv}^{2}(G)$ of L^{2}-bounded left convolution operators on G. Define a "generalised trace" τ on its positive part \mathcal{M}_{+}by

$$
\begin{equation*}
\tau\left(L_{f^{*} * f}\right):=\|f\|_{2}^{2}=f^{*} * f(e) \tag{7}
\end{equation*}
$$

(where L_{h} denotes the convolution operator $\phi \mapsto h * \phi$) and put

$$
\|\hat{f}\|_{q}:=\left(\tau\left(\left(L_{f^{*} * f}\right)^{q / 2}\right)\right)^{1 / q} .
$$

According to Klein/Russo, if G is separable and of type I, this norm agrees with the previous q-norm, i.e.,

$$
\begin{equation*}
\|\hat{f}\|_{q}=\left(\int_{\hat{G}}\|\hat{f}(\pi)\|_{\mathcal{S}^{q}}^{q} d \mu(\pi)\right)^{1 / q}=\|\hat{f}\|_{L^{q}(\hat{G})} \tag{8}
\end{equation*}
$$

Alternative approach to $L^{p^{\prime}}(\hat{G})$

Note: If h is a positive definite function on G, then

$$
h(e)=\|h\|_{\infty}=\left\|L_{h}\right\|_{1 \rightarrow \infty}
$$

and in conclusion

$$
\begin{equation*}
\|\hat{f}\|_{q}^{q}=\left\|\left(L_{f^{*} * f}\right)^{q / 2}\right\|_{1 \rightarrow \infty} \tag{9}
\end{equation*}
$$

Theorem 3

Let G be a unimodular Lie group, with Lie algebra \mathfrak{g}, which we regard as a commutative group under addition. Then

$$
H_{p}^{\mathrm{loc}}(G) \geq H_{p}(\mathfrak{g})=B_{p}^{\operatorname{dim} G}
$$

Sketch of Proof

Given any open neighborhood U of e in G, we need to prove that

$$
\begin{equation*}
H_{p}(\mathfrak{g}) \leq H_{p}(U) \tag{10}
\end{equation*}
$$

By (9), we have

$$
\begin{equation*}
\|\hat{f}\|_{p^{\prime}}^{p^{\prime}}=\sup _{\|g\|_{1},\|h\|_{1} \leq 1}\left\langle\left(L_{f^{*} * f}\right)^{p^{\prime} / 2} g, h\right\rangle . \tag{11}
\end{equation*}
$$

Scaling: Let $\Omega \subseteq \mathfrak{g}$ be an open neighbourhood of the origin such that $\Omega=-\Omega$ and $\left.\exp \right|_{\Omega}: \Omega \rightarrow \exp (\Omega)$ is a diffeomorphism. For all $f \in C_{0}(\mathfrak{g}), 1 \leq p \leq \infty, \lambda>0$, define $f^{\lambda, p}: G \rightarrow \mathbb{C}$ by

$$
f^{\lambda, p}(x)= \begin{cases}\lambda^{-n / p} f\left(\left.\lambda^{-1} \exp \right|_{\Omega} ^{-1}(x)\right) & \text { if } x \in \exp (\Omega) \\ 0 & \text { otherwise }\end{cases}
$$

Sketch of Proof

One easily shows:

$$
\begin{aligned}
\left\|f^{\lambda, p}\right\|_{L^{p}(G)} & \leq C\|f\|_{L^{p}(\mathfrak{g})} \\
\lim _{\lambda \rightarrow 0}\left\|f^{\lambda, p}\right\|_{L^{p}(G)} & =\|f\|_{L^{p}(\mathfrak{g})}
\end{aligned}
$$

Also, using Baker-Campbell-Hausdorff,

$$
\exp \left(X_{1}\right) \cdots \exp \left(X_{k}\right)=\exp \left(X_{1}+\cdots+X_{k}+B\left(X_{1}, \ldots, X_{k}\right)\right)
$$

where

$$
\lambda^{-1} B\left(\lambda X_{1}, \ldots, \lambda X_{k}\right) \rightarrow 0 \quad \text { as } \lambda \rightarrow 0
$$

one finds that for $f_{1}, \ldots, f_{k}, g \in C_{0}(\mathfrak{g})$

$$
\begin{equation*}
\lim _{\lambda \rightarrow 0}\left\langle f_{1}^{\lambda, 1} * \cdots * f_{k}^{\lambda, 1}, g^{\lambda, \infty}\right\rangle_{L^{2}(G)}=\left\langle f_{1} * \cdots * f_{k}, g\right\rangle_{L^{2}(\mathfrak{g})} . \tag{12}
\end{equation*}
$$

Sketch of Proof

Also $\left(f^{\lambda, 1}\right)^{*}=\left(f^{*}\right)^{\lambda, 1}$, and thus an earlier estimate implies

$$
\left\|L_{\left(f^{\lambda, 1}\right)^{*} * f^{\lambda, 1}}\right\|_{L^{2}(G) \rightarrow L^{2}(G)} \leq\left\|\left(f^{\lambda, 1}\right)^{*} * f^{\lambda, 1}\right\|_{L^{1}(G)} \leq C^{2}\|f\|_{L^{1}(\mathfrak{g})}^{2}
$$

Hence the positive operators $L_{\left(f^{\lambda, 1}\right)^{*} * f \lambda, 1}$ are bounded on $L^{2}(G)$ uniformly in λ. Therefore, for all $\Phi \in C([0, \infty))$, the operator $\Phi\left(L_{\left(f^{\lambda, 1}\right)^{*} * f \lambda, 1}\right)$ is bounded and depends only on $\left.\Phi\right|_{K}$, where $K=\left[0, C^{2}\|f\|_{L^{1}(\mathfrak{g})}^{2}\right]$. Let

$$
\begin{align*}
& \mathcal{F}:=\left\{\Phi \in C(K): \forall g, h \in C_{0}(\mathfrak{g}):\right. \\
& \left.\lim _{\lambda \rightarrow 0}\left\langle\Phi\left(L_{\left(f^{\lambda, 1}\right)^{*} * f \lambda, 1}\right) g^{\lambda, 2}, h^{\lambda, 2}\right\rangle_{L^{2}(G)}=\left\langle\Phi\left(L_{f^{*} * f}\right) g, h\right\rangle_{L^{2}(\mathfrak{g})}\right\} . \tag{13}
\end{align*}
$$

F is a linear subspace of $C(K)$, closed under conjugation. Moreover, \mathcal{F} contains all polynomials:

Sketch of Proof

Indeed, if $\Phi(u)=u^{N}$, then by (12), as $\lambda \rightarrow 0$,

$$
\begin{aligned}
& \left\langle\Phi\left(L_{\left.\left(f^{\lambda, 1}\right)^{*} * f^{\lambda, 1}\right)} g^{\lambda, 2}, h^{\lambda, 2}\right\rangle_{L^{2}(G)}=\left\langle\left(\left(f^{*}\right)^{\lambda, 1} * f^{\lambda, 1}\right)^{(* N)} * g^{\lambda, 1}, h^{\lambda, \infty}\right\rangle\right. \\
& \longrightarrow\left\langle\left(f^{*} * f\right)^{(* N)} * g, h\right\rangle=\left\langle\left\langle\Phi\left(L_{f^{*} * f}\right) g, h\right\rangle_{L^{2}(\mathfrak{g})} .\right.
\end{aligned}
$$

- Finally, one easily sees that \mathcal{F} is closed in $C(K)$. Thus, by Stone-Weierstraß,

$$
\mathcal{F}=C(K)
$$

- Choosing $\Phi(u):=u^{p^{\prime} / 2}$ in \mathcal{F}, by (13) we obtain:

Sketch of Proof

For all $\forall f, g, h \in C_{0}(G)$,

$$
\begin{equation*}
\lambda^{-d\left(p^{\prime}-1\right)}\left\langle\left(L_{(f \lambda, \infty) * * f \lambda, \infty}\right)^{p^{\prime} / 2} g^{\lambda, 1}, h^{\lambda, 1}\right\rangle_{L^{2}(G)} \rightarrow\left\langle\left(L_{f * * f}\right)^{p^{\prime} / 2} g, h\right\rangle_{L^{2}(\mathfrak{g})} \tag{14}
\end{equation*}
$$

as $\lambda \rightarrow 0$.

- Assuming that λ is so small that $f^{\lambda, \infty}, g^{\lambda, 1}, h^{\lambda, 1}$ are supported in U, and recalling (11), i.e.,

$$
\sup _{\|g\|_{1},\|h\|_{1} \leq 1}\left\langle\left(L_{f^{*} * f}\right)^{p^{\prime} / 2} g, h\right\rangle=\|\hat{f}\|_{p^{\prime}}^{p^{\prime}}
$$

we see that the left-hand side of (14) is bounded by

$$
\begin{gathered}
\lambda^{-d\left(p^{\prime}-1\right)}\left(H_{p}(U)\left\|f^{\lambda, \infty}\right\|_{p}\right)^{p^{\prime}}\left\|g^{\lambda, 1}\right\|_{1}\left\|h^{\lambda, 1}\right\|_{1} \\
=H_{p}(U)^{p^{\prime}}\left\|f^{\lambda, p}\right\|_{p}^{p^{\prime}}\left\|g^{\lambda, 1}\right\|_{1}\left\|h^{\lambda, 1}\right\|_{1} .
\end{gathered}
$$

Since $\lim _{\lambda \rightarrow 0}\left\|\varphi^{\lambda, p}\right\|_{L^{p}(G)}=\|\varphi\|_{L^{p}(\mathfrak{g})}$, in the limit as $\lambda \rightarrow 0$, we find that

$$
\left\langle\left(L_{f^{*} * f}\right)^{p^{\prime} / 2} g, h\right\rangle_{L^{2}(\mathfrak{g})} \leq H_{p}(U)^{p^{\prime}}\|f\|_{p}^{p^{\prime}}\|g\|_{1}\|h\|_{1} .
$$

Sketch of Proof

Hence

$$
\|\hat{f}\|_{L^{p^{\prime}}(\mathfrak{g})} \leq H_{p}(U)\|f\|_{L^{p}(\mathfrak{g})}
$$

This implies $H_{p}(\mathfrak{g}) \leq H_{p}(U)$, and since U was arbitrary, we arrive at the desired estimate

$$
H_{p}(\mathfrak{g}) \leq H_{p}^{\mathrm{loc}}(G)
$$

Thanks

for your attention!

Proof of Theorem 2

Theorem 2

If $f \in C_{0}^{\infty}\left(\mathbb{R}^{2 n}\right)$ is polyradial, then

$$
\begin{equation*}
\|\rho(f)\|_{\mathcal{S}^{p^{\prime}}} \leq B_{p}^{2 n}\left\|f e^{\frac{\pi}{2} \cdot| |^{2}}\right\|_{L^{p}\left(\mathbb{R}^{2 n}\right)}, \quad 1 \leq p \leq 2 \tag{15}
\end{equation*}
$$

Proof. Key identity relating Laguerre polynomials to Bessel functions:

$$
\begin{equation*}
L_{k}^{\alpha}(x)=\frac{e^{x} x^{-\alpha / 2}}{k!} \int_{0}^{\infty} t^{k+\alpha / 2} J_{\alpha}(2 \sqrt{x t}) e^{-t} d t, \quad x>0 \tag{16}
\end{equation*}
$$

- In order to avoid technicalities, let us assume $n=1$.
- If $f(z)=f_{0}(|z|)$ is a radial L^{1}-function on \mathbb{R}^{2}, one may represent the operator $\rho(f)$ with respect to the orthonormal basis of Hermite functions $h_{k}, k \in \mathbb{N}$, of $L^{2}(\mathbb{R})$ as an infinite diagonal matrix, with diagonal elements

$$
\begin{equation*}
\tilde{f}(k):=\left\langle\rho(f) h_{k}, h_{k}\right\rangle=\int_{\mathbb{R}^{2}} f(z) e^{-(\pi / 2)|z|^{2}} L_{k}^{0}\left(\pi|z|^{2}\right) d z, \quad k \in \mathbb{N} . \tag{17}
\end{equation*}
$$

Proof of Theorem 2

In particular,

$$
\|\rho(f)\|_{\mathcal{S}^{q}}=\|\tilde{f}\|_{\ell q} .
$$

Recall also that the Euclidean Fourier transform of any radial L^{1} - function $g(z)=g_{0}(|z|)$ on \mathbb{R}^{2} can written in polar coordinates as

$$
\begin{equation*}
\hat{g}(\zeta)=2 \pi \int_{0}^{\infty} g_{0}(r) J_{0}(2 \pi|\zeta| r) r d r \tag{18}
\end{equation*}
$$

Put $F(z)=e^{(\pi / 2)|z|^{2}} f(z)$. Since also \hat{F} is radial, we may write $\hat{F}(\zeta)=\hat{F}_{0}(|\zeta|)$. Combining (16) - (18), we obtain

$$
\begin{equation*}
\tilde{f}(k)=\int_{0}^{\infty} \hat{F}_{0}(\sqrt{t / \pi}) \frac{t^{k}}{k!} e^{-t} d t \tag{19}
\end{equation*}
$$

Proof of Theorem 2

For suitable functions φ on the positive real line, let us write

$$
\breve{\varphi}(k):=\int_{0}^{\infty} \varphi(t) \frac{t^{k}}{k!} e^{-t} d t, \quad k \in \mathbb{N} .
$$

We claim that

$$
\begin{equation*}
\|\breve{\varphi}\|_{\ell^{q}} \leq\|\varphi\|_{L^{q}\left(\mathbb{R}^{+}, d t\right)}, \quad 1 \leq q \leq \infty . \tag{20}
\end{equation*}
$$

Indeed, this estimate is trivial for $q=\infty$, since the $\frac{t^{k}}{k!} e^{-t} d t$ are probability measures, and for $p=1$ we may estimate

$$
\sum_{k=0}^{\infty}|\breve{\varphi}(k)| \leq \int_{0}^{\infty}|\varphi(t)| \sum_{k=0}^{\infty} \frac{t^{k}}{k!} e^{-t} d t=\|\varphi\|_{1}
$$

Thus, (20) follows by the complex interpolation theorem of Riesz and Thorin.

Proof of Theorem 2

From (20) and (19) we get

$$
\|\tilde{F}\|_{\ell a} \leq\left(\int_{0}^{\infty}\left|\hat{F}_{0}(\sqrt{t / \pi})\right|^{q} d t\right)^{1 / q}=\|\hat{F}\|_{L^{q}\left(\mathbb{R}^{2}\right)}
$$

and thus by the sharp Hausdorff-Young inequality on \mathbb{R}^{2} we obtain

$$
\|\rho(f)\|_{\mathcal{S}^{a}}=\|\tilde{f}\|_{\ell^{a}} \leq B_{p}^{2}\|F\|_{p}
$$

hence (15).

Thanks

for your attention!

