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. Introduction: Global Hausdorff-Young (H-Y) for R¢

F(&) = f(x)e™2mex dx
R4
Interpolation between
IFlloo < IIfll, and [|Fll2=||f]l2 (Plancherel),

leads to A

1l < Clifllp, 1<p<2, (1)
if 1/p' +1/p =1, with C < 1.
Denote by H,(IR9) the best constant C in (1).
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. Introduction: Global Hausdorff-Young (H-Y) for R¢

P& = [ Fx)e > e dx
R4
Interpolation between

IFlloe < Ifll, and ||[F]l2=|f]l2 (Plancherel),

leads to A
[l < Clifllp, 1<p<2, (1)

if1/p+1/p=1, with C <1.
Denote by H,(IR9) the best constant C in (1).

The best constant is given by (with Gaussians minimizing)

Hp(RY) = B,‘,’, with B, = (pl/p/(pll/p’)1/2‘




B
Global H-Y on more general |.c. groups

Let G be a loc. compact, unimodular group of type I, with unitary dual G,
endowed with the usual Mackey Borel structure.

There exists a unique Plancherel measure p on G so that

[ eteP dg = [ e (6(m)"e()) (), @
G G

with
B(r) = n(p) = /G ole)r(e)de. @< LX(G)NI3(G).

Again, interpolation with the trivial estimate

sup [[F(7)| < [Ifllirge), € LY(G),
TeG

leads to



IFll < Clifll,,  1<p<2, felYG)NLP(G), (3)

with C <1,

where
2 ~ ~ / 1/p
Pl = Wl = ([ IF@IG, dum)
1
|T|sa := (tr(T*T)q/z) /4 the Schatten-g-norm of T.

We denote by H,(G) < 1 the optimal constant C in (3).



o Clearly Hy(G) =1, if G is compact (choose f = 1).

o For connected, non-compact groups, one expects that H,(G) < 1, if
l<p<?

o Several authors have indeed proved results in this direction, for
various classes of non-compact groups, in particular for connected
nilpotent, resp. solvable, Lie groups, including:

— Eymard/Terp for the ax + b-group
— Russo, Innoue; Russo/Klein;

— Baklouti/Samoui/Ludwig;

— Fiihr
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Local Hausdorff-Young

Assume G is a Lie group, and the support of f € L1(G) N L?(G) “shrinks”
towards the identity element e € G. Then, in the limit, it appears plausible
that the best H-Y-constant tends towards the one for the underlying Lie
algebra g of G, i.e., BY™% = BJim&.

More precisely, if U C G is an open neighborhood of e, let

Hp(U) = sup 1710
supp fCU,||f|l,=1
He“(G) = inf Hp(U).

— Clearly, Ho(G) > H};’C(G).

If G is Lie group of dimension d, is

Hy< (G) = Hy* (8) = By? (4)




Yes, if G = T¢.

— Further motivation for this question: Articles by Garcia-Cuerva,
Marco, and Parcet,'2003/04 on H-Y -estimates for vector valued (more
precisely: operator space valued) functions on non-commutative groups.
— An important step in their work consisted in proving the following:

Let G be a compact, semi-simple Lie group, and define the local

H-Y-constant constant H,l;”gentral(G) in the same way as before, only

restricted to central functions f. Then H°¢ _ (G) > 0.

p,central

If G is a compact Lie group, then

,central

H})oc (G) — B;lim G.
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Il. Global H-Y on nilpotent Lie groups/ the Heisenberg
group

Let G be a connected, simply-connected nilpotent Lie group, and let m be
the dimension of the generic codjoint orbits in g*. Then, for 1 < p <2,

dim G—7

Hp(G) < By : (5)

The Heisenberg group H, = R" x R” x R, with product
1
(v, t)- (V)Y =(w+d v+ VvV t+t + E(UV/_ u'v)).
Here, m =2n,d =2n+1, so (5) yields

Hp(H,) < BS™" = Byt



B
Heisenberg group

If p/ is an even integer, then H,(H,) = BS.

Remark. We have an extension of this result (for even integer p’) to
classes of solvable Lie groups, including all exponential solvable Lie groups.

CONJECTURE: H,(H,) = BS = B3™ for every p € [1,2].

The results above on the Helsenberg group can easily be reduced by means
of a partial Fourier transform in the center to corresponding results on the
Weyl transform p : For f on R” x R" = R?", say a Schwartz function, let

p(f) = // f(u, v)e?™ DX dudy

n n
on L2(R", dx), where uD := u;D; and vX = v; X,
jLj G
j=1 j=1
9/23



Weyl transform
with
1 0

@¢U%=§;5gﬂ@, Xjp(x) = xj(x).

Explicitly, p(f) is the integral operator

pmﬂ@Z/Mwnﬂﬂw,
with integral kernel
Ke(x,y) == / Fly — x,v)e™ ) dy.,
f on R?" is polyradial, if

fu,v) = follzil, -+ Iz]),

where we have put z; := u; + iv; € C.



B
Weyl transform

If £ € C§°(IR?") is polyradial, then

2

lo(F)llsw < B3TIIF €27 pggany, 1< p<2. (6)

- So, as supp f — {0}, the right-hand side tends to B2"[|f||,, and we get
an analogue to the local result for central functions on compact Lie groups
in Theorem 1.

— Regretfully, the result cannot be scaled — one would indeed expect to get
the analogue of (15) without the weight e%Hz, and even for non-polyradial
functions. This would also imply the conjecture above about H,(H,).
Remark: Theorem 1 and 2 can be seen as particular instances of a more
general setting, namely that of Gelfand pairs (G, K).



Alternative approach to L (G) : Let G be any unimodular loc. compact
group. Following Segal '50, Kunze '58, let M be the von Neumann
algebra M = Cv?(G) of L?-bounded left convolution operators on G.
Define a “generalised trace” 7 on its positive part M by

T(Le-ur) 1= ||Fl3 = £ % f(e) (7)
(where Lj denotes the convolution operator ¢ — h % ¢) and put
1Fllq == (7((Lpesr) /)1,

According to Klein/Russo, if G is separable and of type |, this norm
agrees with the previous g-norm, i.e.,

17la = ([ 11 dutm)” = 1PlLage )
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..
Alternative approach to LP(G)

Note: If his a positive definite function on G, then

h(e) = llhlloe = lILall1-00,

and in conclusion
IFIE = I(Leosr) 2100 (9)

Let G be a unimodular Lie group, with Lie algebra g, which we regard as a
commutative group under addition. Then

Hy°(G) > Hp(a) = By™C.




Given any open neighborhood U of e in G, we need to prove that

Hp(g) < Hp(U). (10)
By (9), we have
171 = sup  ((Leeur)?g, h). (11)
lglls, |1l <1

Scaling: Let 2 C g be an open neighbourhood of the origin such that
Q= —Qand exp|q : 2 — exp(Q2) is a diffeomorphism. For all
fe Glg), 1<p<oo, A>0,define fAP: G — C by

AP (x) ATPF(A Y exp ot (X)) if x € exp(Q),
Plx) =
0 otherwise.
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Sketch of Proof

One easily shows:

1FPlleey < Cllfllie(g)

. )\’ o
A'[pOHf Pleecey = IIflleea)
Also, using Baker-Campbell-Hausdorff,

exp(X1)---exp(Xx) = exp(X1 + -+ + Xk + B(X1, ..., Xk)),

where
AIB(AXL, ..., X ) =0 as A — 0,

one finds that for fi,..., fx, g € Co(g)

B B e = (R gl (12)

15 /23



Also (fM1)* = (F*)M1, and thus an earlier estimate implies
ILranysprallzie)—izey < 1D+ P |6y < ClIF I g-

Hence the positive operators L(fx1y«,¢x.1 are bounded on L?(G) uniformly
in A. Therefore, for all ® € C([0,00)), the operator ®(Lsx1y+fr1) is
bounded and depends only on ®|k, where K = [0, C2||f\|i1(g)]. Let

Fi= {cb e C(K) : Vg, he Golg) :
fim ((Liprayeaprn)g™? 1) 12() = (@(Lpar)g, h>L2(g)}' (13)

F is a linear subspace of C(K), closed under conjugation. Moreover, F
contains all polynomials:
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D
Sketch of Proof

Indeed,if ®(u) = u", then by (12), as A — 0,
<¢(L(f>\,1)**f/\,1)g)\’2’ h)\’2>L2(G) _ <((f*))\,1 % f-)\,l)(*N) % g)\,l’ h)\,oo>
— (o F) N s g h) = (O(Lpesr)gs M) 12(g)-

— Finally, one easily sees that F is closed in C(K). Thus, by

Stone-Weierstral3,
F = C(K).

— Choosing ®(u) := uP'/2 in F, by (13) we obtain:



For all Vf, g, h € Co(G),
AT (Liprooyeuprce )P 2N B 2(6) = ((Leear)? P8, h) 12(g) (14)

as A — 0.
— Assuming that X is so small that f4>°, g1 AN are supported in U, and
recalling (11), i.e.,

wp((Lyeur) 28 ) = [FIE.
llgllz,llAlli<1

we see that the left-hand side of (14) is bounded by
A=IED (Hp(U)IE21,) P llg I ™ 1
= Hp(U)P'[F2P15 g™l ™ -
Since limy_0 [|¢™P||e(6) = l¢llLo(g), in the limit as A — 0, we find that

((Lrer)P g h)12(g) < Ho(U)P (£ llg 1]l
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D
Sketch of Proof

Hence
1Pl g < HolDIFln(q).

This implies Hp(g) < Hp(U), and since U was arbitrary, we arrive at the
desired estimate
Hp(g) < Hy* (G).

for your attention! I




Proof of Theorem 2

If £ € C§°(R?") is polyradial, then

.2
lo(F)llsw < B3I €2Vl pgany, 1< p<2. (15)

Proof. Key identity relating Laguerre polynomials to Bessel functions:

o(x) = / t+a/2 ) 2 /xt)e T dt,  x>0.  (16)
0

— In order to avoid technicalities, let us assume n = 1.

—If f(z) = fo(|z|) is a radial L'-function on R2, one may represent the
operator p(f) with respect to the orthonormal basis of Hermite functions
h, k € N, of L2(R) as an infinite diagonal matrix, with diagonal elements

0 = D) = [ @) DL rlaPYdz, kN, ()

e X—a/2




Proof of Theorem 2

In particular,
lo(F)llsa = [[les-

Recall also that the Euclidean Fourier transform of any radial L!- function
g(z) = go(|z|) on R? can written in polar coordinates as

g(()=2r /000 go(r)Jo(2m|C|r)r dr. (18)

Put F(z) = e(™/2)lz£(2). Since also F is radial, we may write
F(¢) = Fo(|¢]). Combining (16) — (18), we obtain

N SSINS tk .
)= [ RalV/eTm) et o (19)



For suitable functions ¢ on the positive real line, let us write

e’} t'k
3(k) ;:/ p(t)getdt, kel
0 .

We claim that
Bllea < llollars gy, 1< q < oo0. (20)

Indeed, this estimate is trivial for ¢ = o0, since the %e‘t dt are probability
measures, and for p = 1 we may estimate

o0

L CIE A |Z—e-fdt—usou1.

k=0

Thus, (20) follows by the complex interpolation theorem of Riesz and
Thorin.
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Proof of Theorem 2

From (20) and (19) we get

- RN 1/q o
Pl < ([ (/eI )" = [Flhagee,
and thus by the sharp Hausdorff-Young inequality on R? we obtain

lo(F)llse = [Fllea < BRIIF I,

hence (15). O

for your attention! I
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