Multipliers on compact Lie groups

Veronique Fischer

University of Bath

Interactions of Harmonic Analysis and Operator Theory School of Mathematics, University of Birmingham, 13-16 September 2016 I. Multiplier theorems on \mathbb{R}^n and \mathbb{T}^n

II. Fourier analysis on compact Lie groups G

III. Derivatives and Sobolev spaces on \widehat{G} .

IV. Fourier multiplier theorems on compact Lie groups.

Marcinkiewicz, J. (1939)

Marcinkiewicz, J. (1939)

Fourier multipliers on $\mathbb T$

Let $\sigma: \mathbb{Z} \to \mathbb{C}$ be a sequence on the integers. The corresponding Fourier multipliers on the torus is defined via

$$Op(\sigma)\phi(e^{i\theta}) = \sum_{\ell=-\infty}^{+\infty} e^{i\ell\theta}\sigma(\ell)\widehat{\phi}(\ell),$$

when $\phi(e^{i\theta}) = \sum_{\ell=-\infty}^{+\infty} e^{i\ell\theta} \widehat{\phi}(\ell)$ has only finite terms (e.g.).

Marcinkiewicz, J. (1939)

Fourier multipliers on $\mathbb T$

Let $\sigma: \mathbb{Z} \to \mathbb{C}$ be a sequence on the integers. The corresponding Fourier multipliers on the torus is defined via

$$Op(\sigma)\phi(e^{i\theta}) = \sum_{\ell=-\infty}^{+\infty} e^{i\ell\theta}\sigma(\ell)\widehat{\phi}(\ell),$$

when $\phi(e^{i\theta}) = \sum_{\ell=-\infty}^{+\infty} e^{i\ell\theta} \widehat{\phi}(\ell)$ has only finite terms (e.g.).

Sur les multiplicateurs des séries de Fourier, Studia Math. 8, 78-91. Assume that the suprema

$$\sup_{\ell} |\sigma(\ell)| < \infty \quad \text{and} \quad \sup_{j \in \mathbb{N}_0} \sum_{2^j \leq \ell \leq 2^{j+1}} |\sigma(\ell) - \sigma(\ell+1)| + |\sigma(-\ell) - \sigma(-\ell-1)|$$

are finite. Then $Op(\sigma)$ is bounded on $L^2(\mathbb{T})$ and on $L^p(\mathbb{T})$, 1 .

Multiplier Theorem 1 (Mihlin, 1956)

If $\sigma : \mathbb{R}^n \to \mathbb{C}$ satisfies $|\partial^{\alpha} \sigma(\xi)| \leq C_{\alpha} |\xi|^{-|\alpha|}$ for $|\alpha| \leq [n/2] + 1$, then the Fourier multiplier operator $Op(\sigma)$ defined via

$$\mathcal{F}\left(\mathrm{Op}(\sigma)\phi\right) := \sigma\widehat{\phi} \quad \phi \in \mathcal{S}(\mathbb{R}^n),$$

is bounded on $L^p(\mathbb{R}^n)$ for all 1 .

Multiplier Theorem 1 (Mihlin, 1956)

If $\sigma : \mathbb{R}^n \to \mathbb{C}$ satisfies $|\partial^{\alpha} \sigma(\xi)| \leq C_{\alpha} |\xi|^{-|\alpha|}$ for $|\alpha| \leq [n/2] + 1$, then the Fourier multiplier operator $Op(\sigma)$ defined via

$$\mathcal{F}(\mathrm{Op}(\sigma)\phi) := \sigma\widehat{\phi} \quad \phi \in \mathcal{S}(\mathbb{R}^n),$$

is bounded on $L^p(\mathbb{R}^n)$ for all 1 .

Multiplier Theorem 2 (Hörmander, 1960)

If $\|\sigma\|_{l.u.H^s(\mathbb{R}^n),\eta} := \sup_{r>0} \|\sigma(r \cdot) \eta\|_{H^s(\mathbb{R}^n)}$ is finite for some non-zero function $\eta \in \mathcal{D}(0,\infty)$ and s > n/2, then $\operatorname{Op}(\sigma)$ is bounded on $L^p(\mathbb{R}^n)$ for all 1 .

Multiplier Theorem 1 (Mihlin, 1956)

If $\sigma : \mathbb{R}^n \to \mathbb{C}$ satisfies $|\partial^{\alpha} \sigma(\xi)| \leq C_{\alpha} |\xi|^{-|\alpha|}$ for $|\alpha| \leq [n/2] + 1$, then the Fourier multiplier operator $Op(\sigma)$ defined via

$$\mathcal{F}(\mathrm{Op}(\sigma)\phi) := \sigma\widehat{\phi} \quad \phi \in \mathcal{S}(\mathbb{R}^n),$$

is bounded on $L^p(\mathbb{R}^n)$ for all 1 .

Multiplier Theorem 2 (Hörmander, 1960)

If $\|\sigma\|_{l.u.H^s(\mathbb{R}^n),\eta} := \sup_{r>0} \|\sigma(r \cdot) \eta\|_{H^s(\mathbb{R}^n)}$ is finite for some non-zero function $\eta \in \mathcal{D}(0,\infty)$ and s > n/2, then $\operatorname{Op}(\sigma)$ is bounded on $L^p(\mathbb{R}^n)$ for all 1 .

Note:

• for
$$s \in \mathbb{N}$$
, $\|\sigma\|_{l.u.H^s(\mathbb{R}^n),\eta} \lesssim \max_{|\alpha| \le s} \sup_{\xi \in \mathbb{R}^n} |\xi|^{\alpha} |\partial^{\alpha} \sigma(\xi)|$. So Thm 2 \Rightarrow Thm 1.
• for $s > n/2$, $\|\sigma\|_{l.u.H^s(\mathbb{R}^n),\eta} \asymp \sup_{\mathbb{R}^n} |\sigma| + \sup_{r>0} r^{s-n/2} \|\sigma \eta(r^{-1} \cdot)\|_{\dot{H}^s(\mathbb{R}^n)}$.

Today's questions/problems:

- definition of Fourier multiplier operators on a connected compact Lie group G which is usually non-abelian.
- condition on the Fourier multiplier symbol to ensure $L^p(G)$ -boundedness?
- where does it stand in the literature on the subject?

$Today's \ questions/problems:$

- definition of Fourier multiplier operators on a connected compact Lie group G which is usually non-abelian.
- condition on the Fourier multiplier symbol to ensure $L^p(G)$ -boundedness?
- where does it stand in the literature on the subject?

Notation

- if π is a representation of G, then d_{π} =its dimension, \mathcal{H}_{π} its space and, $\pi_{i,j}$ its entries once a basis has been chosen.
- $\operatorname{Rep}(G)$:= set of (finite dim.) representations modulo equivalence.
- \widehat{G} := set of irreducible representations modulo equivalence.

${\it Today's \ questions/problems:}$

- \bullet definition of Fourier multiplier operators on a connected compact Lie group G which is usually non-abelian.
- condition on the Fourier multiplier symbol to ensure $L^p(G)$ -boundedness?
- where does it stand in the literature on the subject?

Notation

- if π is a representation of G, then d_{π} =its dimension, \mathcal{H}_{π} its space and, $\pi_{i,j}$ its entries once a basis has been chosen.
- $\operatorname{Rep}(G)$:= set of (finite dim.) representations modulo equivalence.
- \widehat{G} := set of irreducible representations modulo equivalence.

The Peter-Weyl Theorem (1927)

The dual \widehat{G} is discrete and countable. The functions $\sqrt{d_{\pi}\pi_{i,j}}$, $1 \leq i, j \leq d_{\pi}$, $\pi \in \widehat{G}$, form an orthonormal basis of the Hilbert space $L^2(G)$.

In other words: group Fourier series

On the torus \mathbb{T} ,

the Fourier series of $\phi : \mathbb{T} \to \mathbb{C}$ is $\phi(e^{i\theta}) = \sum_{\ell=-\infty}^{+\infty} \widehat{\phi}(\ell) e^{i\ell\theta}$, where $\widehat{\phi}(\ell) = (\phi, e^{i\ell\theta})_{L^2(\mathbb{T})}$. Recall $\widehat{\mathbb{T}} = \{e^{i\theta} \mapsto e^{i\ell\theta}, \ell \in \mathbb{Z}\} \sim \mathbb{Z}$.

In other words: group Fourier series

On the torus \mathbb{T} ,

the Fourier series of $\phi : \mathbb{T} \to \mathbb{C}$ is $\phi(e^{i\theta}) = \sum_{\ell=-\infty}^{+\infty} \widehat{\phi}(\ell) e^{i\ell\theta}$, where $\widehat{\phi}(\ell) = (\phi, e^{i\ell\theta})_{L^2(\mathbb{T})}$. Recall $\widehat{\mathbb{T}} = \{e^{i\theta} \mapsto e^{i\ell\theta}, \ell \in \mathbb{Z}\} \sim \mathbb{Z}$.

On G,

$$\phi(x) = \sum_{\pi \in \widehat{G}} \sum_{1 \le i,j \le d_{\pi}} d_{\pi} \underbrace{(\phi, \pi_{i,j})_{L^2(G)}}_{=[\widehat{\phi}]_{j,i}} \pi_{i,j}(x) = \sum_{\pi \in \widehat{G}} d_{\pi} \operatorname{tr}\left(\widehat{\phi}(\pi) \ \pi(x)\right),$$

where

$$\widehat{\phi}(\pi) := \int_G \phi(x) \pi(x)^* dx =: (\mathcal{F}_G \phi)(\pi).$$

Plancherel formula and Fourier multipliers

Plancherel formula

$$\int_{G} |\phi(x)|^{2} dx = \sum_{\pi \in \widehat{G}} d_{\pi} \sum_{1 \le i, j \le d_{\pi}} |(\phi, \pi_{i, j})_{L^{2}(G)}|^{2} = \sum_{\pi \in \widehat{G}} d_{\pi} \|\widehat{\phi}\|_{HS(\mathcal{H}_{\pi})}^{2},$$

where $\|M\|_{HS}^{2} = \sum_{i, j} |M_{i, j}|^{2}$. So $\|\phi\|_{L^{2}(G)} = \|\widehat{\phi}\|_{L^{2}(\widehat{G})}^{2}.$

Plancherel formula and Fourier multipliers

Plancherel formula

$$\int_{G} |\phi(x)|^{2} dx = \sum_{\pi \in \widehat{G}} d_{\pi} \sum_{1 \le i,j \le d_{\pi}} |(\phi, \pi_{i,j})_{L^{2}(G)}|^{2} = \sum_{\pi \in \widehat{G}} d_{\pi} \|\widehat{\phi}\|_{HS(\mathcal{H}_{\pi})}^{2},$$

where $\|M\|_{HS}^{2} = \sum_{i,j} |M_{i,j}|^{2}$. So $\|\phi\|_{L^{2}(G)} = \|\widehat{\phi}\|_{L^{2}(\widehat{G})}^{2}.$

For the symbol $\sigma = \{\sigma(\pi) \in \mathscr{L}(\mathcal{H}_{\pi}) : \pi \in \widehat{G}\}$, the multiplier is

$$\left(\operatorname{Op}(\sigma)\phi\right)(x) = \sum_{\pi \in \widehat{G}} d_{\pi} \operatorname{tr}\left(\widehat{\phi}(\pi) \ \sigma(\pi) \ \pi(x)\right), \quad x \in G.$$

Example: $X^{\beta} = \operatorname{Op}(\mathcal{F}_G(X))$ where $\mathcal{F}_G(X) = \{\pi(X)^{\beta}, \pi \in \widehat{G}\}.$

Plancherel formula and Fourier multipliers

Plancherel formula

$$\int_{G} |\phi(x)|^{2} dx = \sum_{\pi \in \widehat{G}} d_{\pi} \sum_{1 \le i,j \le d_{\pi}} |(\phi, \pi_{i,j})_{L^{2}(G)}|^{2} = \sum_{\pi \in \widehat{G}} d_{\pi} \|\widehat{\phi}\|_{HS(\mathcal{H}_{\pi})}^{2},$$

where $\|M\|_{HS}^{2} = \sum_{i,j} |M_{i,j}|^{2}$. So $\|\phi\|_{L^{2}(G)} = \|\widehat{\phi}\|_{L^{2}(\widehat{G})}^{2}.$

For the symbol $\sigma = \{\sigma(\pi) \in \mathscr{L}(\mathcal{H}_{\pi}) : \pi \in \widehat{G}\}$, the multiplier is

$$(\operatorname{Op}(\sigma)\phi)(x) = \sum_{\pi\in\widehat{G}} d_{\pi}\operatorname{tr}\left(\widehat{\phi}(\pi) \ \sigma(\pi) \ \pi(x)\right), \quad x\in G.$$

Example: $X^{\beta} = \operatorname{Op}(\mathcal{F}_G(X))$ where $\mathcal{F}_G(X) = \{\pi(X)^{\beta}, \pi \in \widehat{G}\}.$

Fourier multiplier problem

If $\sigma \in L^{\infty}(\widehat{G})$, i.e. $\|\sigma\|_{L^{\infty}(\widehat{G})} := \sup_{\pi \in \widehat{G}} \|\sigma(\pi)\|_{\mathscr{L}(\mathcal{H}_{\pi})} < \infty$, then $\operatorname{Op}(\sigma)$ is bounded on $L^{2}(G)$. Condition for L^{p} -boundedness $p \in (1, \infty)$?

Definition of λ_{π}

If \mathcal{L} denotes the (left and right invariant) Laplace operator, then for any $\pi \in \widehat{G}$, $\pi_{i,j}$ is an eigenfunction of \mathcal{L} with eigenvalue $\lambda_{\pi} \geq 0$. The spectrum of \mathcal{L} is $\operatorname{Spec}(\mathcal{L}) = \{\lambda_{\pi}, \pi \in \widehat{G}\}$, a discrete subset of $[0, \infty)$.

Definition of λ_{π}

If \mathcal{L} denotes the (left and right invariant) Laplace operator, then for any $\pi \in \widehat{G}$, $\pi_{i,j}$ is an eigenfunction of \mathcal{L} with eigenvalue $\lambda_{\pi} \geq 0$. The spectrum of \mathcal{L} is $\operatorname{Spec}(\mathcal{L}) = \{\lambda_{\pi}, \pi \in \widehat{G}\}$, a discrete subset of $[0, \infty)$.

Spectral and Fourier multipliers, their kernels

• If $f:\operatorname{Spec}(\mathcal{L}) \to \mathbb{C}$ then $f(\mathcal{L}) = \operatorname{Op}(\sigma)$ with $\sigma(\pi) = f(\lambda_{\pi})$. Furthermore, if $f(\mathcal{L}): \mathcal{D}(G) \to \mathcal{D}'(G)$, then $f(\mathcal{L})\delta_{e_G} \in \mathcal{D}'(G)$ with group Fourier transform σ .

Definition of λ_{π}

If \mathcal{L} denotes the (left and right invariant) Laplace operator, then for any $\pi \in \widehat{G}$, $\pi_{i,j}$ is an eigenfunction of \mathcal{L} with eigenvalue $\lambda_{\pi} \geq 0$. The spectrum of \mathcal{L} is $\text{Spec}(\mathcal{L}) = \{\lambda_{\pi}, \pi \in \widehat{G}\}$, a discrete subset of $[0, \infty)$.

Spectral and Fourier multipliers, their kernels

• If $f:\operatorname{Spec}(\mathcal{L}) \to \mathbb{C}$ then $f(\mathcal{L}) = \operatorname{Op}(\sigma)$ with $\sigma(\pi) = f(\lambda_{\pi})$. Furthermore, if $f(\mathcal{L}): \mathcal{D}(G) \to \mathcal{D}'(G)$, then $f(\mathcal{L})\delta_{e_G} \in \mathcal{D}'(G)$ with group Fourier transform σ .

② For any $s \ge 0$, there exists a constant C > 0 and $d \in \mathbb{N}_0$ such that for any $f : \mathbb{R} \to \mathbb{C}$ continuous with supp $f \cap [0, \infty) \subset [0, 1]$, we have

$$\forall t \in (0,1] \qquad \||x|^s f(t\mathcal{L})\delta_{e_G}\|_{L^1(G)} \le C\sqrt{t}^s \sup_{\ell=0,\dots,d, \ \lambda \ge 0} |f^{(\ell)}(\lambda)|.$$

Similarly for $L^2(G)$ with $\sqrt{t}^{s-\frac{n}{2}}$. (From heat kernel estimates)

Derivatives on \widehat{G} ?

Derivatives on \widehat{G} ?

The dual of \mathbb{T} is $\widehat{\mathbb{T}} \sim \mathbb{Z}$,

and if $\sigma : \mathbb{Z} \to \mathbb{C}$ is a symbol, we can consider the discrete derivatives

$$\Delta^+ \sigma(\ell) = \sigma(\ell+1) - \sigma(\ell), \quad \Delta^- \sigma(\ell) = \sigma(\ell-1) - \sigma(\ell).$$

These quantities intervened in the Marcinkiewicz Theorem! If $\sigma(\ell) = \widehat{\phi}(\ell)$ then $\Delta^+ \sigma(\ell) = \int_{\mathbb{T}} \phi(e^{i\theta}) \underbrace{(e^{i\theta} - 1)}_{|''| \asymp \theta} e^{i\ell\theta} d\theta.$

Derivatives on \widehat{G} ?

The dual of \mathbb{T} is $\widehat{\mathbb{T}} \sim \mathbb{Z}$,

and if $\sigma : \mathbb{Z} \to \mathbb{C}$ is a symbol, we can consider the discrete derivatives

$$\Delta^+ \sigma(\ell) = \sigma(\ell+1) - \sigma(\ell), \quad \Delta^- \sigma(\ell) = \sigma(\ell-1) - \sigma(\ell).$$

These quantities intervened in the Marcinkiewicz Theorem! If $\sigma(\ell) = \widehat{\phi}(\ell)$ then $\Delta^+ \sigma(\ell) = \int_{\mathbb{T}} \phi(e^{i\theta}) \underbrace{(e^{i\theta} - 1)}_{|''| \asymp \theta} e^{i\ell\theta} d\theta$.

Ruzhansky-Turunen difference operators (2010-14)

Choose a suitable collection of functions q_j , j = 1, ..., to replace $(e^{i\theta} - 1)$, and define $\Delta_{q_j} \widehat{\phi} := \widehat{q_j \phi}$. Remark: implicit definition on $\mathcal{FD}'(G)$, and not on the whole set of symbols $\Sigma = \{\sigma(\pi) \in \mathscr{L}(\mathcal{H}_{\pi}), \pi\}$. No locality.

The symbols extend to fields on $\operatorname{Rep}(G)$.

- Indeed $\sigma(\pi_1 \oplus \pi_2) = \sigma(\pi_1) \oplus \sigma(\pi_2), \ \pi_1, \pi_2 \in \operatorname{Rep}(G).$
- Naturally $\mathcal{F}_G \phi(\pi) = \int_G \phi(x) \pi(x)^* dx$ for $\pi \in \operatorname{Rep}(G)$.

The symbols extend to fields on $\operatorname{Rep}(G)$.

- Indeed $\sigma(\pi_1 \oplus \pi_2) = \sigma(\pi_1) \oplus \sigma(\pi_2), \ \pi_1, \pi_2 \in \operatorname{Rep}(G).$
- Naturally $\mathcal{F}_G \phi(\pi) = \int_G \phi(x) \pi(x)^* dx$ for $\pi \in \operatorname{Rep}(G)$.

Intrinsic definition for $\tau \in \operatorname{Rep}(G)$ and $\sigma \in \Sigma$

$$\Delta_{\tau}\sigma(\pi) := \sigma(\tau \otimes \pi) - \sigma(\mathrm{Id}_{\tau} \otimes \pi), \quad \pi \in \mathrm{Rep}(G).$$

The symbols extend to fields on $\operatorname{Rep}(G)$.

- Indeed $\sigma(\pi_1 \oplus \pi_2) = \sigma(\pi_1) \oplus \sigma(\pi_2), \ \pi_1, \pi_2 \in \operatorname{Rep}(G).$
- Naturally $\mathcal{F}_G \phi(\pi) = \int_G \phi(x) \pi(x)^* dx$ for $\pi \in \operatorname{Rep}(G)$.

Intrinsic definition for $\tau \in \operatorname{Rep}(G)$ and $\sigma \in \Sigma$

$$\Delta_{ au}\sigma(\pi) := \sigma(au\otimes\pi) - \sigma(\operatorname{Id}_{ au}\otimes\pi), \quad \pi\in\operatorname{Rep}(G).$$

Comments

• Example on \mathbb{T} , for $\tau_{\pm} : e^{i\theta} \mapsto e^{\pm i\theta}$, we have $\Delta_{\tau_{\pm}} = \Delta^{\pm}$ the usual discrete derivatives on $\mathbb{Z} \sim \widehat{\mathbb{T}}$.

The symbols extend to fields on $\operatorname{Rep}(G)$.

- Indeed $\sigma(\pi_1 \oplus \pi_2) = \sigma(\pi_1) \oplus \sigma(\pi_2), \ \pi_1, \pi_2 \in \operatorname{Rep}(G).$
- Naturally $\mathcal{F}_G \phi(\pi) = \int_G \phi(x) \pi(x)^* dx$ for $\pi \in \operatorname{Rep}(G)$.

Intrinsic definition for $\tau \in \operatorname{Rep}(G)$ and $\sigma \in \Sigma$

$$\Delta_{ au}\sigma(\pi) := \sigma(au\otimes\pi) - \sigma(\operatorname{Id}_{ au}\otimes\pi), \quad \pi\in\operatorname{Rep}(G).$$

Comments

- Example on \mathbb{T} , for $\tau_{\pm} : e^{i\theta} \mapsto e^{\pm i\theta}$, we have $\Delta_{\tau_{\pm}} = \Delta^{\pm}$ the usual discrete derivatives on $\mathbb{Z} \sim \widehat{\mathbb{T}}$.
- We will often restrict ourselves to τ fundamental representation. Recall that any representation occurs in the tensor of a finite number of fundamental representations and that Fund(G) is finite.

The symbols extend to fields on $\operatorname{Rep}(G)$.

- Indeed $\sigma(\pi_1 \oplus \pi_2) = \sigma(\pi_1) \oplus \sigma(\pi_2), \ \pi_1, \pi_2 \in \operatorname{Rep}(G).$
- Naturally $\mathcal{F}_G \phi(\pi) = \int_G \phi(x) \pi(x)^* dx$ for $\pi \in \operatorname{Rep}(G)$.

Intrinsic definition for $\tau \in \operatorname{Rep}(G)$ and $\sigma \in \Sigma$

$$\Delta_{\tau}\sigma(\pi) := \sigma(\tau \otimes \pi) - \sigma(\operatorname{Id}_{\tau} \otimes \pi), \quad \pi \in \operatorname{Rep}(G).$$

Comments

- Example on \mathbb{T} , for $\tau_{\pm} : e^{i\theta} \mapsto e^{\pm i\theta}$, we have $\Delta_{\tau_{\pm}} = \Delta^{\pm}$ the usual discrete derivatives on $\mathbb{Z} \sim \widehat{\mathbb{T}}$.
- We will often restrict ourselves to τ fundamental representation. Recall that any representation occurs in the tensor of a finite number of fundamental representations and that Fund(G) is finite.
- Each Δ_{τ} preserves locality: $\exists C > 0$ s.t. $\forall \sigma \in \Sigma, \forall 0 \le a \le b$: $\sigma(\pi) = 0$ when $\lambda_{\pi} \notin [a, b] \implies \Delta_{\tau} \sigma(\pi) = 0$ when $\lambda_{\pi} \notin [a - C, b + C]$.

Link between Δ_q and Δ_{τ} ?

$$\Delta_{\tau}\sigma(\pi) := \sigma(\tau \otimes \pi) - \sigma(\mathrm{Id}_{\tau} \otimes \pi)$$
 in the case $\sigma = \widehat{\phi}$ yields:

$$\Delta_{\tau}\widehat{\phi}(\pi) = \int_{G} \phi(x)(\tau(x)^* - \mathrm{Id}) \otimes \pi(x)^* dx = \left(\Delta_{q_{i,j}^{(\tau)}}\widehat{\phi}(\pi)\right)_{1 \le i,j \le d_{\pi}},$$

where $q_{i,j}^{(\tau)}(x) = [\tau(x)^* - \mathrm{Id}]_{i,j}$.

Link between Δ_q and Δ_{τ} ?

$$\Delta_{\tau}\sigma(\pi) := \sigma(\tau \otimes \pi) - \sigma(\mathrm{Id}_{\tau} \otimes \pi)$$
 in the case $\sigma = \widehat{\phi}$ yields:

$$\Delta_{\tau}\widehat{\phi}(\pi) = \int_{G} \phi(x)(\tau(x)^* - \mathrm{Id}) \otimes \pi(x)^* dx = \left(\Delta_{q_{i,j}^{(\tau)}}\widehat{\phi}(\pi)\right)_{1 \le i,j \le d_{\pi}},$$

where $q_{i,j}^{(\tau)}(x) = [\tau(x)^* - \mathrm{Id}]_{i,j}$. Therefore

$$\sum_{\pi \in \widehat{G}} d_{\pi} \| \Delta_{\tau} \phi(\pi) \|_{HS(\mathcal{H}_{\pi} \otimes \mathcal{H}_{\tau})}^{2} = \sum_{1 \leq i,j \leq d_{\tau}} \sum_{\pi \in \widehat{G}} d_{\pi} \| \mathcal{F}_{G}(q_{i,j}^{(\tau)} \phi)(\pi) \|_{HS(\mathcal{H}_{\pi} \otimes \mathcal{H}_{\tau})}^{2}$$
$$= \sum_{1 \leq i,j \leq d_{\tau}} \| q_{i,j}^{(\tau)} \phi \|_{L^{2}(G)}^{2} = \int_{G} \| \tau(x)^{*} - \mathrm{Id} \|_{HS(\mathcal{H}_{\tau})}^{2} |\phi(x)|^{2} dx.$$

Link between Δ_q and Δ_{τ} ?

$$\Delta_{\tau}\sigma(\pi) := \sigma(\tau \otimes \pi) - \sigma(\mathrm{Id}_{\tau} \otimes \pi)$$
 in the case $\sigma = \widehat{\phi}$ yields:

$$\Delta_{\tau}\widehat{\phi}(\pi) = \int_{G} \phi(x)(\tau(x)^* - \mathrm{Id}) \otimes \pi(x)^* dx = \left(\Delta_{q_{i,j}^{(\tau)}}\widehat{\phi}(\pi)\right)_{1 \le i,j \le d_{\pi}},$$

where $q_{i,j}^{(\tau)}(x) = [\tau(x)^* - \mathrm{Id}]_{i,j}$. Therefore

$$\sum_{\pi \in \widehat{G}} d_{\pi} \| \Delta_{\tau} \phi(\pi) \|_{HS(\mathcal{H}_{\pi} \otimes \mathcal{H}_{\tau})}^{2} = \sum_{1 \le i,j \le d_{\tau}} \sum_{\pi \in \widehat{G}} d_{\pi} \| \mathcal{F}_{G}(q_{i,j}^{(\tau)} \phi)(\pi) \|_{HS(\mathcal{H}_{\pi} \otimes \mathcal{H}_{\tau})}^{2}$$
$$= \sum_{1 \le i,j \le d_{\tau}} \| q_{i,j}^{(\tau)} \phi \|_{L^{2}(G)}^{2} = \int_{G} \| \tau(x)^{*} - \mathrm{Id} \|_{HS(\mathcal{H}_{\tau})}^{2} |\phi(x)|^{2} dx.$$

The function q_2

The function given by $q_2(x) := \sum_{\tau \in \text{Fund}(G)} \|\tau(x)^* - \text{Id}\|^2_{HS(\mathcal{H}_{\tau})}$ is smooth and non-negative with $q_2(x) \asymp |x|^2$.

Homogeneous Sobolev space $\dot{H}^1(\widehat{G})$

• Definition of $\dot{H}^1(\widehat{G})$ as the set of $\sigma \in \Sigma$ s.t.

$$\|\sigma\|_{\dot{H}^1(\widehat{G})}^2 := \sum_{\tau \in \text{Fund}(G)} \sum_{\pi \in \widehat{G}} d_{\pi} \|\Delta_{\tau} \sigma(\pi)\|_{HS(\mathcal{H}_{\tau} \otimes \mathcal{H}_{\pi})}^2 < \infty.$$

Homogeneous Sobolev space $\dot{H}^1(\widehat{G})$

• Definition of $\dot{H}^1(\widehat{G})$ as the set of $\sigma \in \Sigma$ s.t.

$$\|\sigma\|_{\dot{H}^1(\widehat{G})}^2 := \sum_{\tau \in \mathrm{Fund}(G)} \sum_{\pi \in \widehat{G}} d_{\pi} \|\Delta_{\tau} \sigma(\pi)\|_{HS(\mathcal{H}_{\tau} \otimes \mathcal{H}_{\pi})}^2 < \infty.$$

• We just computed $\|\mathcal{F}_G\phi\|_{\dot{H}^1(\widehat{G})} = \|\phi\|_{L^2(q_2(x)dx)} \asymp \|\phi\|_{L^2(|x|^2dx)}.$

Homogeneous Sobolev space $\dot{H}^1(\widehat{G})$

• Definition of $\dot{H}^1(\widehat{G})$ as the set of $\sigma \in \Sigma$ s.t.

$$\|\sigma\|_{\dot{H}^1(\widehat{G})}^2 := \sum_{\tau \in \mathrm{Fund}(G)} \sum_{\pi \in \widehat{G}} d_{\pi} \|\Delta_{\tau} \sigma(\pi)\|_{HS(\mathcal{H}_{\tau} \otimes \mathcal{H}_{\pi})}^2 < \infty.$$

- We just computed $\|\mathcal{F}_G\phi\|_{\dot{H}^1(\widehat{G})} = \|\phi\|_{L^2(q_2(x)dx)} \asymp \|\phi\|_{L^2(|x|^2dx)}.$
- One can show $\|\sigma\|_{\dot{H}^1(\widehat{G})} = 0 \iff \exists c \in \mathbb{C} \quad \sigma = c \mathrm{Id} = \{c \mathrm{Id}_{\pi}, \pi\}.$

Homogeneous Sobolev space $\dot{H}^1(\widehat{G})$

• Definition of $\dot{H}^1(\widehat{G})$ as the set of $\sigma \in \Sigma$ s.t.

$$\|\sigma\|_{\dot{H}^1(\widehat{G})}^2 := \sum_{\tau \in \operatorname{Fund}(G)} \sum_{\pi \in \widehat{G}} d_{\pi} \|\Delta_{\tau} \sigma(\pi)\|_{HS(\mathcal{H}_{\tau} \otimes \mathcal{H}_{\pi})}^2 < \infty.$$

- We just computed $\|\mathcal{F}_G\phi\|_{\dot{H}^1(\widehat{G})} = \|\phi\|_{L^2(q_2(x)dx)} \asymp \|\phi\|_{L^2(|x|^2dx)}.$
- One can show $\|\sigma\|_{\dot{H}^1(\widehat{G})} = 0 \iff \exists c \in \mathbb{C} \quad \sigma = c \mathrm{Id} = \{c \mathrm{Id}_{\pi}, \pi\}.$

Definition of $\dot{H}^{s}(\widehat{G}), s \in \mathbb{N}$

as the set of $\sigma \in \Sigma$ s.t.

$$\|\sigma\|^2_{\dot{H}^s(\widehat{G})} := \sum_{\tau_1, \dots, \tau_s \in \text{Fund}(G), \ \pi \in \widehat{G}} d_{\pi} \|\Delta_{\tau_1} \dots \Delta_{\tau_s} \sigma(\pi)\|^2_{HS(\mathcal{H}_{\tau_1} \otimes \dots \otimes \mathcal{H}_{\tau_s} \otimes \mathcal{H}_{\pi})} < \infty.$$

Properties of $\dot{H}^{s}(\widehat{G}), s \in \mathbb{N}$

• If $\phi \in \mathcal{D}(G)$, $\|\mathcal{F}_G \phi\|_{\dot{H}^s(\widehat{G})} = \|\phi\|_{L^2(q_2^s(x)dx)} \asymp \|\phi\|_{L^2(|x|^{2s}dx)}$.

Properties of $\dot{H}^s(\widehat{G}), s \in \mathbb{N}$

- If $\phi \in \mathcal{D}(G)$, $\|\mathcal{F}_G \phi\|_{\dot{H}^s(\widehat{G})} = \|\phi\|_{L^2(q_2^s(x)dx)} \asymp \|\phi\|_{L^2(|x|^{2s}dx)}$.
- For every $\sigma \in \dot{H}^s(\widehat{G})$, $\exists ! f \in L^2(q_2^s(x)dx)$ with $\|f\|_{L^2(q_2^s(x)dx)} = \|\sigma\|_{\dot{H}^s(\widehat{G})}$ and $(\phi, f)_{L^2(q_2^s(x)dx)} = (\widehat{\phi}, \sigma)_{\dot{H}^s(\widehat{G})}$ for all $\phi \in \mathcal{D}(G)$. Denote $f := \mathcal{F}_G^{-1}\sigma$.

Properties of $\dot{H}^s(\widehat{G}), s \in \mathbb{N}$

- If $\phi \in \mathcal{D}(G)$, $\|\mathcal{F}_G \phi\|_{\dot{H}^s(\widehat{G})} = \|\phi\|_{L^2(q_2^s(x)dx)} \asymp \|\phi\|_{L^2(|x|^{2s}dx)}$.
- For every $\sigma \in \dot{H}^s(\widehat{G})$, $\exists ! f \in L^2(q_2^s(x)dx)$ with $\|f\|_{L^2(q_2^s(x)dx)} = \|\sigma\|_{\dot{H}^s(\widehat{G})}$ and $(\phi, f)_{L^2(q_2^s(x)dx)} = (\widehat{\phi}, \sigma)_{\dot{H}^s(\widehat{G})}$ for all $\phi \in \mathcal{D}(G)$. Denote $f := \mathcal{F}_G^{-1}\sigma$.
- $\|\sigma\|_{\dot{H}^s(\widehat{G})} = 0 \iff \sigma$ linear combination of $\mathcal{F}_G(X^\beta), |\beta| < s 1.$

Properties of $\dot{H}^{s}(\widehat{G}), s \in \mathbb{N}$

- If $\phi \in \mathcal{D}(G)$, $\|\mathcal{F}_G \phi\|_{\dot{H}^s(\widehat{G})} = \|\phi\|_{L^2(q_2^s(x)dx)} \asymp \|\phi\|_{L^2(|x|^{2s}dx)}$.
- For every $\sigma \in \dot{H}^s(\widehat{G})$, $\exists ! f \in L^2(q_2^s(x)dx)$ with $\|f\|_{L^2(q_2^s(x)dx)} = \|\sigma\|_{\dot{H}^s(\widehat{G})}$ and $(\phi, f)_{L^2(q_2^s(x)dx)} = (\widehat{\phi}, \sigma)_{\dot{H}^s(\widehat{G})}$ for all $\phi \in \mathcal{D}(G)$. Denote $f := \mathcal{F}_G^{-1}\sigma$.
- $\|\sigma\|_{\dot{H}^s(\widehat{G})} = 0 \iff \sigma$ linear combination of $\mathcal{F}_G(X^\beta), |\beta| < s 1.$

Definition of $\dot{H}^{s}(\widehat{G}), s \in \mathbb{R}$,

- the set of symbol $\sigma \in L^2(\widehat{G})$ such that $\mathcal{F}_G^{-1}\sigma \in L^2(|x|^{2s}dx)$ if $s \leq 0$,
- as above if $s \in \mathbb{N}$,
- the set of $\sigma \in \dot{H}^{[s]+1}(\widehat{G})$ such that $\mathcal{F}_{G}^{-1}\sigma \in L^{2}(|x|^{2s}dx)$ if $s \in (0,\infty) \setminus \mathbb{N}$.

13 / 19

Properties of $\dot{H}^s(\widehat{G}), s \in \mathbb{N}$

- If $\phi \in \mathcal{D}(G)$, $\|\mathcal{F}_G \phi\|_{\dot{H}^s(\widehat{G})} = \|\phi\|_{L^2(q_2^s(x)dx)} \asymp \|\phi\|_{L^2(|x|^{2s}dx)}$.
- For every $\sigma \in \dot{H}^s(\widehat{G})$, $\exists ! f \in L^2(q_2^s(x)dx)$ with $\|f\|_{L^2(q_2^s(x)dx)} = \|\sigma\|_{\dot{H}^s(\widehat{G})}$ and $(\phi, f)_{L^2(q_2^s(x)dx)} = (\widehat{\phi}, \sigma)_{\dot{H}^s(\widehat{G})}$ for all $\phi \in \mathcal{D}(G)$. Denote $f := \mathcal{F}_G^{-1}\sigma$.
- $\|\sigma\|_{\dot{H}^s(\widehat{G})} = 0 \iff \sigma$ linear combination of $\mathcal{F}_G(X^\beta), |\beta| < s 1.$

Definition of $\dot{H}^{s}(\widehat{G}), s \in \mathbb{R}$,

- the set of symbol $\sigma \in L^2(\widehat{G})$ such that $\mathcal{F}_G^{-1}\sigma \in L^2(|x|^{2s}dx)$ if $s \leq 0$,
- as above if $s \in \mathbb{N}$,
- the set of $\sigma \in \dot{H}^{[s]+1}(\widehat{G})$ such that $\mathcal{F}_{G}^{-1}\sigma \in L^{2}(|x|^{2s}dx)$ if $s \in (0,\infty) \setminus \mathbb{N}$.

Main property

 $\dot{H}^{s}(\widehat{G})$ quotiented by the kernel of its norm is a Hilbert space isometrically isomorphic to $L^{2}(q_{2}^{s}(x)dx)$. Therefore these sets are growing with s, interpolation etc...

Leibniz property

Leibniz formula

For any $\sigma_1, \sigma_2 \in \Sigma(G)$ and $\tau, \pi \in \operatorname{Rep}(G)$:

 $\Delta_{\tau}(\sigma_1\sigma_2)(\pi) = \Delta_{\tau}(\sigma_1)(\pi) \ \sigma_2(\mathrm{Id}_{\tau}\otimes\pi) + \sigma_1(\tau\otimes\pi) \ \Delta_{\tau}(\sigma_2)(\pi).$

Leibniz property

Leibniz formula

For any $\sigma_1, \sigma_2 \in \Sigma(G)$ and $\tau, \pi \in \operatorname{Rep}(G)$:

$$\Delta_{\tau}(\sigma_1\sigma_2)(\pi) = \Delta_{\tau}(\sigma_1)(\pi) \ \sigma_2(\mathrm{Id}_{\tau}\otimes\pi) + \sigma_1(\tau\otimes\pi) \ \Delta_{\tau}(\sigma_2)(\pi).$$

Leibniz-type estimates

For any $s \in \mathbb{N}_0$, $p = 2, \infty, \sigma_1, \sigma_2 \in \Sigma$

$$\|\sigma_1 \sigma_2\|_{\dot{L}^p_s(\widehat{G})} \le C_{p,s} \sum_{s_1+s_2=s} \|\sigma_1\|_{\dot{L}^\infty_{s_1}(\widehat{G})} \|\sigma_2\|_{\dot{L}^p_{s_2}(\widehat{G})}.$$

Here $\dot{L}^2_s(\widehat{G}) := \dot{H}^s(\widehat{G})$, and $\dot{L}^\infty_s(\widehat{G})$ is the set of $\sigma \in \Sigma$ s.t.

$$\|\sigma\|_{\dot{L}^{\infty}_{s}(\widehat{G})} := \max_{\tau_{1},\ldots,\tau_{s}\in \mathrm{Fund}(G)} \sup_{\pi\in\widehat{G}} \|\Delta_{\tau_{1}}\ldots\Delta_{\tau_{s}}\sigma(\pi)\|_{\mathscr{L}(\mathcal{H}_{\tau_{1}\otimes\ldots\otimes\tau_{s}\otimes\mathcal{H}_{\pi}})} < \infty.$$

Other Leibniz-type estimates with more info on the symbols...

V. Fischer (Bath)

Back to Fourier multiplier theorems - Results (F. 2016?)

Hörmander-type theorem

Let G be a compact Lie group of dimension n. If $\sigma \in L^{\infty}(\widehat{G})$ is s.t.

 $\sup_{r>0} r^{s-\frac{n}{2}} \|\sigma \ \eta(r^{-2}\widehat{\mathcal{L}})\|_{\dot{H}^s(\widehat{G})} < \infty \qquad \text{for some } s > \frac{n}{2} \text{ and } \eta \in \mathcal{D}(0,\infty) \backslash \{0\},$

then $Op(\sigma)$ is bounded on $L^p(G), p \in (1, \infty)$.

Classical proof with Calderòn-Zygmund theory. Only $r = 2^j$, $j \ge j_0$, needed.

Back to Fourier multiplier theorems - Results (F. 2016?)

Hörmander-type theorem

Let G be a compact Lie group of dimension n. If $\sigma \in L^{\infty}(\widehat{G})$ is s.t.

 $\sup_{r>0} r^{s-\frac{n}{2}} \|\sigma \ \eta(r^{-2}\widehat{\mathcal{L}})\|_{\dot{H}^s(\widehat{G})} < \infty \qquad \text{for some } s>\frac{n}{2} \text{ and } \eta \in \mathcal{D}(0,\infty) \backslash \{0\},$

then $Op(\sigma)$ is bounded on $L^p(G), p \in (1, \infty)$.

Classical proof with Calderòn-Zygmund theory. Only $r = 2^j$, $j \ge j_0$, needed. The sharpness in s is obtained by considering the spectral case:

Case of spectral multipliers in \mathcal{L}

For $s' > s > \frac{n}{2}$ with $s \ge 1$ and $\eta \in \mathcal{D}(0,\infty) \setminus \{0\}$,

$$\|f(\widehat{\mathcal{L}})\|_{L^{\infty}(\widehat{G})} + \sup_{r>0} r^{s-\frac{n}{2}} \|\sigma \eta(r^{-2}\widehat{\mathcal{L}})\|_{\dot{H}^{s}(\widehat{G})} \le C_{s,s',\eta} \|f\|_{l.u.H^{s'}(\mathbb{R}),\eta}.$$

Cq: $f(\mathcal{L}) = \text{Op}(f(\widehat{\mathcal{L}}))$ is bounded on $L^p(G), p \in (1, \infty)$. Known on compact manifold (Sogge 1993).

Consequences if the Hörmander-type theorem

Mihlin-type theorem

Let G be a compact Lie group of dimension n. If $\sigma \in L^{\infty}(\widehat{G})$ is s.t. for $s' = 1, \ldots, [n/2] + 1$ and $\tau_1, \ldots, \tau_{s'} \in \text{Fund}(G)$

$$\forall \pi \in \widehat{G} \qquad \|\Delta_{\tau_1} \dots \Delta_{\tau_{s'}} \sigma(\pi)\|_{\mathscr{L}(\mathcal{H}_{\tau_1} \otimes \dots \mathcal{H}_{\tau_{s'}} \otimes \mathcal{H}_{\pi})} \le C_{s'} (1 + \lambda_{\pi})^{-\frac{s'}{2}},$$

then $Op(\sigma)$ is bounded on $L^p(G), p \in (1, \infty)$.

Consequences if the Hörmander-type theorem

Mihlin-type theorem

Let G be a compact Lie group of dimension n. If $\sigma \in L^{\infty}(\widehat{G})$ is s.t. for $s' = 1, \ldots, [n/2] + 1$ and $\tau_1, \ldots, \tau_{s'} \in \text{Fund}(G)$

$$\forall \pi \in \widehat{G} \qquad \|\Delta_{\tau_1} \dots \Delta_{\tau_{s'}} \sigma(\pi)\|_{\mathscr{L}(\mathcal{H}_{\tau_1} \otimes \dots \mathcal{H}_{\tau_{s'}} \otimes \mathcal{H}_{\pi})} \le C_{s'} (1 + \lambda_{\pi})^{-\frac{s'}{2}}$$

then $Op(\sigma)$ is bounded on $L^p(G), p \in (1, \infty)$.

Marcinkiewicz-type theorem

Let G be a compact Lie group of dimension n. For any $\sigma \in \Sigma$ satisfying $\sup_{\pi \in \widehat{G}} \|\sigma(\pi)\|_{HS(\mathcal{H}_{\pi})} < \infty$ and

$$\sup_{j\in\mathbb{N}}\sum_{2^{j}\leq\lambda_{\pi}\leq 2^{j+1}}\|\Delta_{\tau_{1}}\ldots\Delta_{\tau_{[n/2]+1}}\sigma(\pi)\|_{HS(\mathcal{H}_{\tau_{1}}\otimes\ldots\mathcal{H}_{\tau_{[n/2]+1}}\otimes\mathcal{H}_{\pi})}<\infty,$$

then $Op(\sigma)$ is bounded on $L^p(G)$, $p \in (1, \infty)$.

Why was it interesting to me?

Interesting proofs of e.g.

- estimate: $\forall s \in \mathbb{N} \quad \forall t \in (0,1) \quad \forall k \in \mathbb{N} \quad \|e^{ike^{-t\widehat{\mathcal{L}}}}\|_{\dot{H}^s(\widehat{G})} \leq C_s \sqrt{t}^{s-\frac{n}{p}} k^s,$
 - for k = 1, heat kernel estimates
 - for k > 1, $\Delta_{\tau} \sigma^k(\pi) = \Delta_{\tau} \sigma(\pi) \sum_{j_1+j_2=k-1} \sigma(\tau \otimes \pi)^{j_1} \sigma(\mathrm{Id}_{\tau} \otimes \pi)^{j_2}$, and Leibniz-type estimates.

Why was it interesting to me?

Interesting proofs of e.g.

- estimate: $\forall s \in \mathbb{N} \quad \forall t \in (0,1) \quad \forall k \in \mathbb{N} \quad \|e^{ike^{-t\widehat{\mathcal{L}}}}\|_{\dot{H}^s(\widehat{G})} \leq C_s \sqrt{t}^{s-\frac{n}{p}} k^s,$
 - for k = 1, heat kernel estimates
 - for k > 1, $\Delta_{\tau} \sigma^k(\pi) = \Delta_{\tau} \sigma(\pi) \sum_{j_1+j_2=k-1} \sigma(\tau \otimes \pi)^{j_1} \sigma(\mathrm{Id}_{\tau} \otimes \pi)^{j_2}$, and Leibniz-type estimates.
- characterisation: $\|\sigma\|_{\dot{H}^s(\widehat{G})} = 0 \iff \sigma \in \mathcal{F}_G \mathfrak{U}_{s-1}(\mathfrak{g}).$

• i.e.
$$\sigma(\pi) = \sum_{|\beta| \leq s-1} c_{\beta} \pi(X)^{\beta}$$
.

• for $f \in \mathcal{S}'(\mathbb{R})$: $f^{(s)} \equiv 0 \iff f$ polynomial of degree $\leq s - 1$.

Why was it interesting to me?

Interesting proofs of e.g.

- estimate: $\forall s \in \mathbb{N} \quad \forall t \in (0,1) \quad \forall k \in \mathbb{N} \quad \|e^{ike^{-t\widehat{\mathcal{L}}}}\|_{\dot{H}^s(\widehat{G})} \leq C_s \sqrt{t}^{s-\frac{n}{p}} k^s,$
 - for k = 1, heat kernel estimates
 - for k > 1, $\Delta_{\tau} \sigma^k(\pi) = \Delta_{\tau} \sigma(\pi) \sum_{j_1+j_2=k-1} \sigma(\tau \otimes \pi)^{j_1} \sigma(\mathrm{Id}_{\tau} \otimes \pi)^{j_2}$, and Leibniz-type estimates.
- characterisation: $\|\sigma\|_{\dot{H}^s(\widehat{G})} = 0 \iff \sigma \in \mathcal{F}_G \mathfrak{U}_{s-1}(\mathfrak{g}).$

• i.e.
$$\sigma(\pi) = \sum_{|\beta| \le s-1} c_{\beta} \pi(X)^{\beta}$$
.

• for $f \in \mathcal{S}'(\mathbb{R})$: $f^{(s)} \equiv 0 \iff f$ polynomial of degree $\leq s - 1$.

\exists large literature of Fourier multipliers on compact groups

- very often spectral in \mathcal{L} (estimates for Bochner-Riesz in B. Dreseler 1986)
- or central (L. Vretare 1974, N. Weiss 1972), thus $\sigma(\pi)$ is scalar and $\pi \sim$ its highest weight $\in \mathfrak{g}^*$,
- only exceptions known to me: R. Coifman + G. Weiss 1974 on SU(2), M. Ruzhansky + J. Wirth 2014.

② beside a more concrete description for e.g. SU(2), SO(3)

- **(2)** beside a more concrete description for e.g. SU(2), SO(3)
- Interpretent of the second second

- **2** beside a more concrete description for e.g. SU(2), SO(3)
- Interpretent of the second second
- sublaplacians?

 $\label{eq:cowling} \begin{array}{l} {\rm + Klima + Sikora\ 2010:\ Spectral\ multipliers\ for\ the\ Kohn\ sublaplacian\ on\ complex\ spheres \end{array}$

- **(2)** beside a more concrete description for e.g. SU(2), SO(3)
- Interpretent of the second second
- sublaplacians?

 $\label{eq:cowling} \begin{array}{l} {\rm + Klima + Sikora\ 2010:\ Spectral\ multipliers\ for\ the\ Kohn\ sublaplacian\ on\ complex\ spheres \end{array}$

Solution Lizorkin-type theorem, i.e. boundedness $L^p(G) \to L^q(G)$?

- **(2)** beside a more concrete description for e.g. SU(2), SO(3)
- Interpretent of the second second
- sublaplacians?

 $\label{eq:cowling} \begin{array}{l} {\rm + Klima + Sikora\ 2010:\ Spectral\ multipliers\ for\ the\ Kohn\ sublaplacian\ on\ complex\ spheres \end{array}$

- Solution Lizorkin-type theorem, i.e. boundedness $L^p(G) \to L^q(G)$?
- Such boundedness for specific operators, e.g. spectral projectors?

- **(2)** beside a more concrete description for e.g. SU(2), SO(3)
- Interpretent of the second second
- sublaplacians?

 $\label{eq:cowling} \begin{array}{l} {\rm + Klima + Sikora\ 2010:\ Spectral\ multipliers\ for\ the\ Kohn\ sublaplacian\ on\ complex\ spheres \end{array}$

- Solution Lizorkin-type theorem, i.e. boundedness $L^p(G) \to L^q(G)$?
- Such boundedness for specific operators, e.g. spectral projectors?
- other settings: notion of intrinsic difference operators on e.g. the Heisenberg group (contraction?)

THANK YOU FOR YOUR ATTENTION.