The Boundary value problems for second order elliptic operators satisfying Carleson condition

Martin Dindoš

Interactions of Harmonic Analysis and Operator Theory, Birmingham, 13-16 September 2016

Table of contents Formulation of boundary value problems Nontangential maximal function L^p Dirichlet problem L^p Neumann problem Regularity problem Overview of known results Negative result Carleson condition Results for Dirichlet problem $(D)_p$ Results for Neumann and Regularity problems in 2D Results for Neumann and Regularity problems in any dimension Small Carleson norm Proof - main ideas Regularity problem Neumann problem

Open problems

The Boundary value problems for second order elliptic operators satisfying Carleson condition - Formulation of boundary value problems

Dirichlet, Neumann and Regularity boundary value problems

Let $L = \text{div } A \nabla u$ be a second order elliptic operator with bounded **real** measurable coefficients $A = (a_{ij})$ on a Lipschitz domain Ω . That is there is $\Lambda > 0$ such that

$$\Lambda^{-1}|\xi|^2 \leq \sum_{i,j} \mathsf{a}_{ij}(x)\xi_i\xi_j \leq \Lambda|\xi|^2.$$

(Matrix A does not have to be symmetric).

The Boundary value problems for second order elliptic operators satisfying Carleson condition - Formulation of boundary value problems

Dirichlet, Neumann and Regularity boundary value problems

Let $L = \text{div } A \nabla u$ be a second order elliptic operator with bounded **real** measurable coefficients $A = (a_{ij})$ on a Lipschitz domain Ω . That is there is $\Lambda > 0$ such that

$$\Lambda^{-1}|\xi|^2 \leq \sum_{i,j} \mathsf{a}_{ij}(x)\xi_i\xi_j \leq \Lambda|\xi|^2.$$

(Matrix A does not have to be symmetric).

Formulation of boundary value problems

-Nontangential maximal function

Let $\Gamma(.)$ be a collection of nontangential cones with vertices a boundary points $Q \in \partial \Omega$. We define the non-tangential maximal function at Q relative to Γ by

$$N(u)(Q) = \sup_{X \in \Gamma(Q)} |u(X)|.$$

We also consider a weaker version of this object

$$\widetilde{N}(u)(Q) = \sup_{X \in \Gamma(Q)} \left(\delta(X)^{-n} \int_{B_{\delta(X)/2}(X)} |u(Y)|^2 \, dY \right)^{\frac{1}{2}}$$

Formulation of boundary value problems

-Nontangential maximal function

Let $\Gamma(.)$ be a collection of nontangential cones with vertices a boundary points $Q \in \partial \Omega$. We define the non-tangential maximal function at Q relative to Γ by

$$N(u)(Q) = \sup_{X \in \Gamma(Q)} |u(X)|.$$

We also consider a weaker version of this object

$$\widetilde{N}(u)(Q) = \sup_{X \in \Gamma(Q)} \left(\delta(X)^{-n} \int_{B_{\delta(X)/2}(X)} |u(Y)|^2 \, dY \right)^{\frac{1}{2}}$$

Formulation of boundary value problems

 L^p Dirichlet problem

L^p Dirichlet problem

Definition

Let $1 . The Dirichlet problem with data in <math>L^p(\partial\Omega, d\sigma)$ is solvable (abbreviated $(D)_p$) if for every $f \in C(\partial\Omega)$ the weak solution u to the problem Lu = 0 with continuous boundary data f satisfies the estimate

$$\|N(u)\|_{L^p(\partial\Omega,d\sigma)} \lesssim \|f\|_{L^p(\partial\Omega,d\sigma)}$$

The implied constant depends only the operator L, p, and the Lipschitz constant of the domain.

Formulation of boundary value problems

L^p Neumann problem

L^p Neumann problem

Definition

Let $1 . The Neumann problem with boundary data in <math>L^p(\partial\Omega)$ is solvable (abbreviated $(N)_p$), if for every $f \in L^p(\partial\Omega) \cap C(\partial\Omega)$ such that $\int_{\partial\Omega} f d\sigma = 0$ the weak solution u to the problem

$$\begin{cases} Lu &= 0 \quad \text{in } \Omega \\ A\nabla u \cdot \nu &= f \quad \text{on } \partial \Omega \end{cases}$$

satisfies

$\|\widetilde{N}(\nabla u)\|_{L^p(\partial\Omega)} \lesssim \|f\|_{L^p(\partial\Omega)}.$

Again, the implied constant depends only the operator *L*, *p*, and the Lipschitz constant of the domain. Here ν is the outer normal to the boundary $\partial\Omega$.

Formulation of boundary value problems

Regularity problem

Regularity problem

Definition

Let $1 . The regularity problem with boundary data in <math>H^{1,p}(\partial\Omega)$ is solvable (abbreviated $(R)_p$), if for every $f \in H^{1,p}(\partial\Omega) \cap C(\partial\Omega)$ the weak solution u to the problem

$$\begin{cases} Lu = 0 & \text{in } \Omega \\ u|_{\partial B} = f & \text{on } \partial \Omega \end{cases}$$

satisfies

$$\|\widetilde{N}(\nabla u)\|_{L^p(\partial\Omega)} \lesssim \|\nabla_T f\|_{L^p(\partial\Omega)}.$$

Again, the implied constant depends only the operator L, p, and the Lipschitz constant of the domain.

-Overview of known results

└─ Negative result

Negative result

Theorem

There exists a bounded measurable matrix A on a unit disk D satisfying the ellipticity condition such that the Dirichlet problem $(D)_p$, the Regularity problem $(R)_p$ and the Neumann problem $(N)_p$ are not solvable for any $p \in (1, \infty)$.

Hence solvability requires extra assumption on the regularity of coefficients of the matrix *A*.

-Overview of known results

└─ Negative result

Negative result

Theorem

There exists a bounded measurable matrix A on a unit disk D satisfying the ellipticity condition such that the Dirichlet problem $(D)_p$, the Regularity problem $(R)_p$ and the Neumann problem $(N)_p$ are not solvable for any $p \in (1, \infty)$.

Hence solvability requires extra assumption on the regularity of coefficients of the matrix *A*.

Overview of known results

Carleson condition

The Carleson condition - motivation

Consider the boundary value problems associated with a smooth elliptic operator in the region above a graph $t = \varphi(x)$, for φ Lipschitz.

Consider a mapping $\Phi : \mathbb{R}^n_+ \to \{X = (x, t); t > \varphi(x)\}$ defined by

$$\Phi(X) = (x, c_0 t + (\theta_t * \varphi)(x))$$

where $(\theta_t)_{t>0}$ is smooth compactly supported approximate identity and c_0 is large enough so that Φ is one to one. Overview of known results

Carleson condition

The Carleson condition - motivation

Consider the boundary value problems associated with a smooth elliptic operator in the region above a graph $t = \varphi(x)$, for φ Lipschitz.

Consider a mapping $\Phi : \mathbb{R}^n_+ \to \{X = (x, t); t > \varphi(x)\}$ defined by

$$\Phi(X) = (x, c_0 t + (\theta_t * \varphi)(x))$$

where $(\theta_t)_{t>0}$ is smooth compactly supported approximate identity and c_0 is large enough so that Φ is one to one.

Then the function $v = u \circ \Phi$ solves an elliptic equation in \mathbb{R}^n_+ with coefficients satisfying

Overview of known results

Carleson condition

The Carleson condition - motivation

Consider the boundary value problems associated with a smooth elliptic operator in the region above a graph $t = \varphi(x)$, for φ Lipschitz.

Consider a mapping $\Phi : \mathbb{R}^n_+ \to \{X = (x, t); t > \varphi(x)\}$ defined by

$$\Phi(X) = (x, c_0 t + (\theta_t * \varphi)(x))$$

where $(\theta_t)_{t>0}$ is smooth compactly supported approximate identity and c_0 is large enough so that Φ is one to one.

Then the function $v = u \circ \Phi$ solves an elliptic equation in \mathbb{R}^n_+ with coefficients satisfying

Overview of known results

└─ Carleson condition

The Carleson condition - motivation

$$\delta(X)^{-1} \left(\operatorname{osc}_{B(X,\delta(X)/2)} a_{ij} \right)^2$$

is the density of a Carleson measure on $\boldsymbol{\Omega}.$

Definition

A measure μ in Ω is Carleson if there exists a constant $C = C(r_0)$ such that for all $r \leq r_0$ and $Q \in \partial \Omega$,

$$\mu(B(Q,r)\cap\Omega)\leq C\sigma(B(Q,r)\cap\partial\Omega).$$

The best possible C is the Carleson norm. When μ is Carleson we write $\mu \in C$.

Overview of known results

Carleson condition

The Carleson condition - motivation

 $\delta(X)^{-1} \left(\operatorname{osc}_{B(X,\delta(X)/2)} a_{ij} \right)^2$

is the density of a Carleson measure on $\boldsymbol{\Omega}.$

Definition

A measure μ in Ω is Carleson if there exists a constant $C = C(r_0)$ such that for all $r \leq r_0$ and $Q \in \partial \Omega$,

$$\mu(B(Q,r)\cap\Omega)\leq C\sigma(B(Q,r)\cap\partial\Omega).$$

The best possible C is the Carleson norm. When μ is Carleson we write $\mu \in C$.

If $\lim_{r_0\to 0} C(r_0) = 0$, then we say that the measure μ satisfies the vanishing Carleson condition, and we write $\mu \in C_V$.

Overview of known results

Carleson condition

The Carleson condition - motivation

 $\delta(X)^{-1} \left(\operatorname{osc}_{B(X,\delta(X)/2)} a_{ij} \right)^2$

is the density of a Carleson measure on $\boldsymbol{\Omega}.$

Definition

A measure μ in Ω is Carleson if there exists a constant $C = C(r_0)$ such that for all $r \leq r_0$ and $Q \in \partial \Omega$,

$$\mu(B(Q,r)\cap\Omega)\leq C\sigma(B(Q,r)\cap\partial\Omega).$$

The best possible C is the Carleson norm. When μ is Carleson we write $\mu \in C$.

If $\lim_{r_0\to 0} C(r_0) = 0$, then we say that the measure μ satisfies the vanishing Carleson condition, and we write $\mu \in C_V$.

Overview of known results

 \square Results for Dirichlet problem $(D)_p$

Results for Dirichlet problem $(D)_p$

Kenig-Pipher, 2001 If

$$\delta(X)^{-1} \left(\mathsf{osc}_{B(X,\delta(X)/2)} a_{ij} \right)^2$$

is a density of Carleson measure on a Lipschitz domain Ω then $(D)_p$ is solvable for some (large) $p < \infty$.

M.D-Pipher-Petermichl, 2007 For any $p \in (1, \infty)$ there exists C = C(p) > 0 such that if the Carleson norm bounded is less than C(p) and the Lipschitz constant L of the domain Ω is smaller than C(p) then $(D)_p$ is solvable.

Overview of known results

 \square Results for Dirichlet problem $(D)_p$

Results for Dirichlet problem $(D)_p$

Kenig-Pipher, 2001 If

$$\delta(X)^{-1} \left(\operatorname{osc}_{B(X,\delta(X)/2)} a_{ij} \right)^2$$

is a density of Carleson measure on a Lipschitz domain Ω then $(D)_p$ is solvable for some (large) $p < \infty$.

M.D-Pipher-Petermichl, 2007 For any $p \in (1, \infty)$ there exists C = C(p) > 0 such that if the Carleson norm bounded is less than C(p) and the Lipschitz constant L of the domain Ω is smaller than C(p) then $(D)_p$ is solvable.

Overview of known results

Results for Neumann and Regularity problems in 2D

Results for Neumann and Regularity problems in 2D

M.D-Rule, 2010 Let $\Omega \subset \mathbb{R}^2$.

Overview of known results

Results for Neumann and Regularity problems in 2D

Results for Neumann and Regularity problems in 2D

M.D-Rule, 2010 Let $\Omega \subset \mathbb{R}^2$.

For any $p \in (1, \infty)$ there exists C = C(p) > 0 such that if the coefficients of A satisfy a variant of our Carleson condition with norm less than C(p) and the Lipschitz constant L of the domain Ω is smaller than C(p) then $(R)_p$ and $(N)_p$ are solvable.

Overview of known results

Results for Neumann and Regularity problems in 2D

Results for Neumann and Regularity problems in 2D

M.D-Rule, 2010 Let $\Omega \subset \mathbb{R}^2$.

For any $p \in (1, \infty)$ there exists C = C(p) > 0 such that if the coefficients of A satisfy a variant of our Carleson condition with norm less than C(p) and the Lipschitz constant L of the domain Ω is smaller than C(p) then $(R)_p$ and $(N)_p$ are solvable.

Results for Neumann and Regularity problems in any dimension

Small Carleson norm

Main theorem-Regularity

Let $1 and let <math display="inline">\Omega$ be a Lipschitz domain with Lipschitz norm L. Let

$$\delta(X)^{-1} \left(\operatorname{osc}_{B(X,\delta(X)/2)} a_{ij} \right)^2$$

be the density of a Carleson measure on all Carleson boxes of size at most r_0 with norm $C(r_0)$. Then there exists $\varepsilon = \varepsilon(\Lambda, n, p) > 0$ such that if max{ $L, C(r_0)$ } < ε then the $(R)_p$ regularity problem

$$\begin{cases} Lu = 0 \quad \text{in } \Omega \\ u|_{\partial\Omega} = f \quad \text{on } \partial\Omega \\ \widetilde{N}(\nabla u) \in L^p(\partial\Omega) \end{cases}$$

is solvable for all f with $\|\nabla_{\mathcal{T}} f\|_{L^p(\partial\Omega)} < \infty$.

Results for Neumann and Regularity problems in any dimension

Small Carleson norm

Main theorem-Regularity

Let $1 and let <math display="inline">\Omega$ be a Lipschitz domain with Lipschitz norm L. Let

$$\delta(X)^{-1} \left(\operatorname{osc}_{B(X,\delta(X)/2)} a_{ij} \right)^2$$

be the density of a Carleson measure on all Carleson boxes of size at most r_0 with norm $C(r_0)$. Then there exists $\varepsilon = \varepsilon(\Lambda, n, p) > 0$ such that if max{ $L, C(r_0)$ } < ε then the $(R)_p$ regularity problem

$$\begin{cases} Lu = 0 \quad \text{in } \Omega \\ u|_{\partial\Omega} = f \quad \text{on } \partial\Omega \\ \widetilde{N}(\nabla u) \in L^p(\partial\Omega) \end{cases}$$

is solvable for all f with $\|\nabla_T f\|_{L^p(\partial\Omega)} < \infty$. Moreover, there exists a constant $C = C(\Lambda, n, a, p) > 0$ such that

 $\|\widetilde{N}(\nabla u)\|_{L^p(\partial\Omega)} \leq C \|\nabla_T f\|_{L^p(\partial\Omega)}.$

Results for Neumann and Regularity problems in any dimension

Small Carleson norm

Main theorem-Regularity

Let $1 and let <math display="inline">\Omega$ be a Lipschitz domain with Lipschitz norm L. Let

$$\delta(X)^{-1} \left(\operatorname{osc}_{B(X,\delta(X)/2)} a_{ij} \right)^2$$

be the density of a Carleson measure on all Carleson boxes of size at most r_0 with norm $C(r_0)$. Then there exists $\varepsilon = \varepsilon(\Lambda, n, p) > 0$ such that if max{ $L, C(r_0)$ } < ε then the $(R)_p$ regularity problem

$$\begin{cases} Lu = 0 \quad \text{in } \Omega \\ u|_{\partial\Omega} = f \quad \text{on } \partial\Omega \\ \widetilde{N}(\nabla u) \in L^p(\partial\Omega) \end{cases}$$

is solvable for all f with $\|\nabla_T f\|_{L^p(\partial\Omega)} < \infty$. Moreover, there exists a constant $C = C(\Lambda, n, a, p) > 0$ such that

 $\|\widetilde{N}(\nabla u)\|_{L^p(\partial\Omega)} \leq C \|\nabla_T f\|_{L^p(\partial\Omega)}.$

Results for Neumann and Regularity problems in any dimension

Small Carleson norm

Main theorem-Neumann

Let $1 and let <math display="inline">\Omega$ be a Lipschitz domain with Lipschitz norm L. Let

$$\delta(X)^{-1} \left(\operatorname{osc}_{B(X,\delta(X)/2)} a_{ij} \right)^2$$

be the density of a Carleson measure on all Carleson boxes of size at most r_0 with norm $C(r_0)$. Then there exists $\varepsilon = \varepsilon(\Lambda, n, p) > 0$ such that if max{ $L, C(r_0)$ } < ε then the $(N)_p$ Neumann problem

$$\begin{cases} Lu = 0 & \text{in } \Omega \\ A\nabla u \cdot \nu = f & \text{on } \partial \Omega \\ \widetilde{N}(\nabla u) \in L^p(\partial \Omega) \end{cases}$$

is solvable for all $f \in L^p(\partial \Omega)$.

Results for Neumann and Regularity problems in any dimension

Small Carleson norm

Main theorem-Neumann

Let $1 and let <math display="inline">\Omega$ be a Lipschitz domain with Lipschitz norm L. Let

$$\delta(X)^{-1} \left(\operatorname{osc}_{B(X,\delta(X)/2)} a_{ij} \right)^2$$

be the density of a Carleson measure on all Carleson boxes of size at most r_0 with norm $C(r_0)$. Then there exists $\varepsilon = \varepsilon(\Lambda, n, p) > 0$ such that if max{ $L, C(r_0)$ } < ε then the $(N)_p$ Neumann problem

$$\begin{cases} Lu = 0 \text{ in } \Omega\\ A\nabla u \cdot \nu = f \text{ on } \partial\Omega\\ \widetilde{N}(\nabla u) \in L^p(\partial\Omega) \end{cases}$$

is solvable for all $f \in L^{p}(\partial \Omega)$. Moreover, there exists a constant $C = C(\Lambda, n, a, p) > 0$ such that

 $\|\widetilde{N}(\nabla u)\|_{L^p(\partial\Omega)} \leq C\|f\|_{L^p(\partial\Omega)}.$

Results for Neumann and Regularity problems in any dimension

Small Carleson norm

Main theorem-Neumann

Let $1 and let <math display="inline">\Omega$ be a Lipschitz domain with Lipschitz norm L. Let

$$\delta(X)^{-1} \left(\operatorname{osc}_{B(X,\delta(X)/2)} a_{ij} \right)^2$$

be the density of a Carleson measure on all Carleson boxes of size at most r_0 with norm $C(r_0)$. Then there exists $\varepsilon = \varepsilon(\Lambda, n, p) > 0$ such that if max{ $L, C(r_0)$ } < ε then the $(N)_p$ Neumann problem

$$\begin{cases} Lu = 0 \text{ in } \Omega \\ A\nabla u \cdot \nu = f \text{ on } \partial \Omega \\ \widetilde{N}(\nabla u) \in L^p(\partial \Omega) \end{cases}$$

is solvable for all $f \in L^p(\partial\Omega)$. Moreover, there exists a constant $C = C(\Lambda, n, a, p) > 0$ such that

$$\|\widetilde{N}(\nabla u)\|_{L^p(\partial\Omega)} \leq C\|f\|_{L^p(\partial\Omega)}.$$

Proof - main ideas

Regularity problem

Regularity problem - solving p = 2 is enough

M.D-Kirsch, 2012 Assume that $(R)_1$ (Regularity problem in Hardy-Sobolev space) is solvable.

Proof - main ideas

Regularity problem

Regularity problem - solving p = 2 is enough

M.D-Kirsch, 2012 Assume that $(R)_1$ (Regularity problem in Hardy-Sobolev space) is solvable.

Then for $p\in(1,\infty)$ we have

Proof - main ideas

Regularity problem

Regularity problem - solving p = 2 is enough

M.D-Kirsch, 2012 Assume that $(R)_1$ (Regularity problem in Hardy-Sobolev space) is solvable.

Then for $p\in(1,\infty)$ we have

$$(R)_p \iff (D^*)_{p'}.$$

Here $\frac{1}{p} + \frac{1}{p'} = 1$ and (D^*) is the Dirichlet problem for the adjoint operator L^* .

Proof - main ideas

Regularity problem

Regularity problem - solving p = 2 is enough

M.D-Kirsch, 2012 Assume that $(R)_1$ (Regularity problem in Hardy-Sobolev space) is solvable.

Then for $p\in(1,\infty)$ we have

$$(R)_{p} \iff (D^{*})_{p'}.$$

Here $\frac{1}{p} + \frac{1}{p'} = 1$ and (D^*) is the Dirichlet problem for the adjoint operator L^* . Since $(R)_2$ implies $(R)_1$ we get solvability of $(R)_p$ for small Carleson norm from solvability of $(R)_2$.

Proof - main ideas

Regularity problem

Regularity problem - solving p = 2 is enough

M.D-Kirsch, 2012 Assume that $(R)_1$ (Regularity problem in Hardy-Sobolev space) is solvable.

Then for $p\in(1,\infty)$ we have

$$(R)_p \iff (D^*)_{p'}.$$

Here $\frac{1}{p} + \frac{1}{p'} = 1$ and (D^*) is the Dirichlet problem for the adjoint operator L^* . Since $(R)_2$ implies $(R)_1$ we get solvability of $(R)_p$ for small Carleson norm from solvability of $(R)_2$.

Proof - main ideas

Regularity problem

Reduction to differentiable coefficients

The idea comes from [DPP]. For a matrix A satisfying our Carleson condition with ellipticity constant Λ one can find (by mollifying coefficients of A) a new matrix \widetilde{A} with same ellipticity constant Λ such that \widetilde{A} satisfies that

Proof - main ideas

Regularity problem

Reduction to differentiable coefficients

The idea comes from [DPP]. For a matrix A satisfying our Carleson condition with ellipticity constant Λ one can find (by mollifying coefficients of A) a new matrix \widetilde{A} with same ellipticity constant Λ such that \widetilde{A} satisfies that

 $\sup\{\delta(X)|(\nabla \widetilde{A})(Y)|^2; Y \in B(X, \delta(X)/2)\}$

Proof - main ideas

Regularity problem

Reduction to differentiable coefficients

The idea comes from [DPP]. For a matrix A satisfying our Carleson condition with ellipticity constant Λ one can find (by mollifying coefficients of A) a new matrix \widetilde{A} with same ellipticity constant Λ such that \widetilde{A} satisfies that

$$\sup\{\delta(X)|(\nabla\widetilde{A})(Y)|^2; Y \in B(X,\delta(X)/2)\}$$

and

$$\sup\{\delta(X)^{-1}|(A-\widetilde{A})(Y)|^2; Y \in B(X,\delta(X)/2)\}$$
Proof - main ideas

Regularity problem

Reduction to differentiable coefficients

The idea comes from [DPP]. For a matrix A satisfying our Carleson condition with ellipticity constant Λ one can find (by mollifying coefficients of A) a new matrix \widetilde{A} with same ellipticity constant Λ such that \widetilde{A} satisfies that

$$\sup\{\delta(X)|(
abla \widetilde{A})(Y)|^2;\;Y\in B(X,\delta(X)/2)\}$$

and

$$\sup\{\delta(X)^{-1}|(A-\widetilde{A})(Y)|^2; Y \in B(X,\delta(X)/2)\}$$

are (small) Carleson norms.

Proof - main ideas

Regularity problem

Reduction to differentiable coefficients

The idea comes from [DPP]. For a matrix A satisfying our Carleson condition with ellipticity constant Λ one can find (by mollifying coefficients of A) a new matrix \widetilde{A} with same ellipticity constant Λ such that \widetilde{A} satisfies that

$$\sup\{\delta(X)|(
abla \widetilde{A})(Y)|^2;\;Y\in B(X,\delta(X)/2)\}$$

and

$$\sup\{\delta(X)^{-1}|(A-\widetilde{A})(Y)|^2; Y \in B(X,\delta(X)/2)\}$$

are (small) Carleson norms. The solvability of the regularity problem for perturbed operators has been studied in Kenig-Pipher.

Proof - main ideas

Regularity problem

Reduction to differentiable coefficients

The idea comes from [DPP]. For a matrix A satisfying our Carleson condition with ellipticity constant Λ one can find (by mollifying coefficients of A) a new matrix \widetilde{A} with same ellipticity constant Λ such that \widetilde{A} satisfies that

$$\sup\{\delta(X)|(
abla \widetilde{A})(Y)|^2;\;Y\in B(X,\delta(X)/2)\}$$

and

$$\sup\{\delta(X)^{-1}|(A-\widetilde{A})(Y)|^2; Y \in B(X,\delta(X)/2)\}$$

are (small) Carleson norms. The solvability of the regularity problem for perturbed operators has been studied in Kenig-Pipher.

Proof - main ideas

Regularity problem

p = 2 and Square function

Main goal is to establish and two estimates:

$\|S(\nabla u)\|_{L^2}^2 \lesssim ext{boundary data } + \varepsilon \|\widetilde{N}(\nabla u)\|_{L^2}^2$

Proof - main ideas

Regularity problem

p = 2 and Square function

Main goal is to establish and two estimates:

$$\|S(
abla u)\|_{L^2}^2 \lesssim$$
 boundary data $+ \varepsilon \|\widetilde{N}(
abla u)\|_{L^2}^2$

 $\|S(\nabla u)\|_{L^2}^2 \approx \|\widetilde{N}(\nabla u)\|_{L^2}^2.$

Proof - main ideas

Regularity problem

p = 2 and Square function

Main goal is to establish and two estimates:

$$\|S(\nabla u)\|_{L^2}^2 \lesssim$$
 boundary data $+ \varepsilon \|\widetilde{N}(\nabla u)\|_{L^2}^2$

 $\|S(\nabla u)\|_{L^2}^2 \approx \|\widetilde{N}(\nabla u)\|_{L^2}^2.$

Proof - main ideas

Regularity problem

The Square function

For any $v: \Omega \to \mathbb{R}$ we consider

$$S(v)(Q) = \left(\int_{\Gamma(Q)} |\nabla v(X)|^2 \delta(x)^{2-n} dX\right)^{1/2},$$

for all $Q \in \partial \Omega$. Observe that

$$\|S(v)\|_{L^2}^2 \approx \int_{\Omega} |\nabla v(X)|^2 \delta(X) \, dX.$$

Proof - main ideas

Regularity problem

The Square function

For any $v: \Omega \to \mathbb{R}$ we consider

$$S(v)(Q) = \left(\int_{\Gamma(Q)} |\nabla v(X)|^2 \delta(x)^{2-n} dX\right)^{1/2},$$

for all $Q \in \partial \Omega$. Observe that

$$\|S(v)\|_{L^2}^2 \approx \int_{\Omega} |\nabla v(X)|^2 \delta(X) \, dX.$$

Proof - main ideas

Regularity problem

First estimate

Key ingredient: Deal separately with

 $\|S(\nabla_T u)\|_{L^2}^2$

Proof - main ideas

Regularity problem

First estimate

Key ingredient: Deal separately with

 $\|S(\nabla_T u)\|_{L^2}^2$ and $\|S(A\nabla u \cdot \nu)\|_{L^2}^2$.

Proof - main ideas

Regularity problem

First estimate

Key ingredient: Deal separately with

 $\|S(\nabla_T u)\|_{L^2}^2$ and $\|S(A\nabla u \cdot \nu)\|_{L^2}^2$.

We establish a local estimate for $||S(\nabla_T u)||^2_{L^2}$. In local coordinates we might assume that $\nabla_T u = (\partial_1 u, \partial_2 u, \dots, \partial_{n-1} u)$ and $\nabla_\nu u = \partial_n u$.

Proof - main ideas

Regularity problem

First estimate

Key ingredient: Deal separately with

 $\|S(\nabla_T u)\|_{L^2}^2$ and $\|S(A\nabla u \cdot \nu)\|_{L^2}^2$.

We establish a local estimate for $||S(\nabla_T u)||_{L^2}^2$. In local coordinates we might assume that $\nabla_T u = (\partial_1 u, \partial_2 u, \dots, \partial_{n-1} u)$ and $\nabla_\nu u = \partial_n u$.

For $w_k = \partial_k u$, $i = k, 2, \ldots, n-1$ we use the fact that

$$\|S(w_k)\|_{L^2}^2 \approx \int_{\mathbb{R}^{n-1}} \frac{a_{ij}}{a_{nn}} \partial_i w_k \partial_j w_k t \, dx \, dt.$$

Proof - main ideas

Regularity problem

First estimate

Key ingredient: Deal separately with

$$\|S(\nabla_T u)\|_{L^2}^2$$
 and $\|S(A\nabla u \cdot \nu)\|_{L^2}^2$.

We establish a local estimate for $||S(\nabla_T u)||_{L^2}^2$. In local coordinates we might assume that $\nabla_T u = (\partial_1 u, \partial_2 u, \dots, \partial_{n-1} u)$ and $\nabla_\nu u = \partial_n u$.

For $w_k = \partial_k u$, $i = k, 2, \dots, n-1$ we use the fact that

$$\|S(w_k)\|_{L^2}^2 \approx \int_{\mathbb{R}^{n-1}} \frac{a_{ij}}{a_{nn}} \partial_i w_k \partial_j w_k t \, dx \, dt.$$

Next, we integrate by parts. Several type of terms arise, in particular:

Proof - main ideas

Regularity problem

First estimate

Key ingredient: Deal separately with

$$\|S(\nabla_T u)\|_{L^2}^2$$
 and $\|S(A\nabla u \cdot \nu)\|_{L^2}^2$.

We establish a local estimate for $||S(\nabla_T u)||_{L^2}^2$. In local coordinates we might assume that $\nabla_T u = (\partial_1 u, \partial_2 u, \dots, \partial_{n-1} u)$ and $\nabla_\nu u = \partial_n u$.

For $w_k = \partial_k u$, $i = k, 2, \dots, n-1$ we use the fact that

$$\|S(w_k)\|_{L^2}^2 \approx \int_{\mathbb{R}^{n-1}} \frac{a_{ij}}{a_{nn}} \partial_i w_k \partial_j w_k t \, dx \, dt.$$

Next, we integrate by parts. Several type of terms arise, in particular:

Proof - main ideas

Regularity problem

Terms of the estimate:

$$\iint_{\mathbb{R}^n} \frac{1}{a_{nn}} w_k(Lw_k) t \, dx dt$$

Here we use the fact that for k < n the PDE w_k satisfies has relatively "nice" right hand side.

Proof - main ideas

Regularity problem

Terms of the estimate:

$$\iint_{\mathbb{R}^n} \frac{1}{a_{nn}} w_k(Lw_k) t \, dx dt$$

Here we use the fact that for k < n the PDE w_k satisfies has relatively "nice" right hand side. However, the estimate fails for k = n.

Proof - main ideas

Regularity problem

Terms of the estimate:

$$\iint_{\mathbb{R}^n} \frac{1}{a_{nn}} w_k(Lw_k) t \, d\mathsf{x} dt$$

Here we use the fact that for k < n the PDE w_k satisfies has relatively "nice" right hand side. However, the estimate fails for k = n.

$$\iint_{\mathbb{R}^n} w_k(\partial_j w_k) \frac{a_{nj}}{a_{nn}} \, dx dt$$

Proof - main ideas

Regularity problem

Terms of the estimate:

$$\iint_{\mathbb{R}^n} \frac{1}{a_{nn}} w_k(Lw_k) t \, dx dt$$

Here we use the fact that for k < n the PDE w_k satisfies has relatively "nice" right hand side. However, the estimate fails for k = n.

$$\iint_{\mathbb{R}^n} w_k(\partial_j w_k) \frac{a_{nj}}{a_{nn}} \, dx dt$$

For j = n this gives us a boundary term $-\frac{1}{2} \int_{\mathbb{R}^{n-1}} w_k^2 dx$.

Proof - main ideas

Regularity problem

Terms of the estimate:

$$\iint_{\mathbb{R}^n} \frac{1}{a_{nn}} w_k(Lw_k) t \, dx dt$$

Here we use the fact that for k < n the PDE w_k satisfies has relatively "nice" right hand side. However, the estimate fails for k = n.

$$\iint_{\mathbb{R}^n} w_k(\partial_j w_k) \frac{a_{nj}}{a_{nn}} \, dx dt$$

For j = n this gives us a boundary term $-\frac{1}{2} \int_{\mathbb{R}^{n-1}} w_k^2 dx$.

Proof - main ideas

Regularity problem

Terms of the estimate:

$$\iint_{\mathbb{R}^n} |w_k| |\nabla w_k| |\nabla A| t \, dx dt$$

This is the error term where the Carleson condition on the coefficients is used. This term has an estimate

Proof - main ideas

Regularity problem

Terms of the estimate:

$$\iint_{\mathbb{R}^n} |w_k| |\nabla w_k| |\nabla A| t \, dx dt$$

This is the error term where the Carleson condition on the coefficients is used. This term has an estimate

$$\|(\nabla A)^2 t\|_{Carl} \|S(w_k)\|_{L^2} \|N(\nabla u)\|_{L^2}$$

Proof - main ideas

Regularity problem

Terms of the estimate:

$$\iint_{\mathbb{R}^n} |w_k| |\nabla w_k| |\nabla A| t \, dx dt$$

This is the error term where the Carleson condition on the coefficients is used. This term has an estimate

$$\|(\nabla A)^2 t\|_{Carl} \|S(w_k)\|_{L^2} \|N(\nabla u)\|_{L^2}.$$

For the remaining estimate of the square function of the co-normal derivative we use the original equation Lu = 0 together with the established estimate for $||S(\nabla_T u)||_{L^2}^2$.

Proof - main ideas

Regularity problem

Terms of the estimate:

$$\iint_{\mathbb{R}^n} |w_k| |\nabla w_k| |\nabla A| t \, dx dt$$

This is the error term where the Carleson condition on the coefficients is used. This term has an estimate

$$\|(\nabla A)^2 t\|_{Carl} \|S(w_k)\|_{L^2} \|N(\nabla u)\|_{L^2}.$$

For the remaining estimate of the square function of the co-normal derivative we use the original equation Lu = 0 together with the established estimate for $||S(\nabla_T u)||_{L^2}^2$.

Proof - main ideas

Regularity problem

Second estimate: $\|S(\nabla u)\|_{L^2}^2 \approx \|N(\nabla u)\|_{L^2}^2$

Difficult direction: $\|N(\nabla u)\|_{L^2}^2 \lesssim \|S(\nabla u)\|_{L^2}^2$.

Proof - main ideas

Regularity problem

Second estimate: $\|S(\nabla u)\|_{L^2}^2 \approx \|N(\nabla u)\|_{L^2}^2$

Difficult direction: $\|N(\nabla u)\|_{L^2}^2 \lesssim \|S(\nabla u)\|_{L^2}^2$.

The proof relies on a stopping time argument of Kenig-Pipher-Toro.

Proof - main ideas

Regularity problem

Second estimate: $\|S(\nabla u)\|_{L^2}^2 \approx \|N(\nabla u)\|_{L^2}^2$

Difficult direction: $\|N(\nabla u)\|_{L^2}^2 \lesssim \|S(\nabla u)\|_{L^2}^2$.

The proof relies on a stopping time argument of Kenig-Pipher-Toro.

Proof - main ideas

Neumann problem

Neumann problem - solving for p = 2 and induction for integer p

We do not know an analogue of the result M.D-Kirsch, 2012.

Strategy:

Proof - main ideas

└─ Neumann problem

Neumann problem - solving for p = 2 and induction for integer p

We do not know an analogue of the result M.D-Kirsch, 2012.

Strategy:

Solve the Neumann problem for p = 2 (using solvability of the $(R)_2$).

Proof - main ideas

└─ Neumann problem

Neumann problem - solving for p = 2 and induction for integer p

We do not know an analogue of the result M.D-Kirsch, 2012.

Strategy:

Solve the Neumann problem for p = 2 (using solvability of the $(R)_2$).

Next, establish solvability of $(N)_p$ using $(R)_p$ and induction (for p integer $p \ge 3$).

Proof - main ideas

-Neumann problem

Neumann problem - solving for p = 2 and induction for integer p

We do not know an analogue of the result M.D-Kirsch, 2012.

Strategy:

Solve the Neumann problem for p = 2 (using solvability of the $(R)_2$).

Next, establish solvability of $(N)_p$ using $(R)_p$ and induction (for p integer $p \ge 3$).

Proof - main ideas

-Neumann problem

The induction step:

Let $p \ge 2$ be an integer, $0 \le k \le p - 2$ and integer and u be a solution to $Lu = \operatorname{div} A \nabla u = 0$. Then there exists $\varepsilon > 0$ such that if the Carleson norm of the coefficients $C(r_0) < \varepsilon$ then for some $K = K(\Omega, \Lambda, n, \varepsilon, m, k) > 0$

$$\iint_{\Omega_r} |\nabla_{\mathcal{T}} u|^{p-k-2} |H|^k |\nabla H|^2 \delta(X) \, dX \tag{1}$$

$$\leq (p-k-2)K \iint_{\Omega_{2r}} |\nabla_T u|^{p-k-3} |H|^{k+1} |\nabla H|^2 \delta(X) \, dX$$
$$+ C(r) \iint_{\Omega \setminus \Omega_r} |\nabla u|^p \, dX$$
$$+ K \int_{\partial \Omega} |H|^p \, dx.$$

Here $H = a_{ni}\partial_i u$.

Proof - main ideas

-Neumann problem

The induction step:

Let $p \ge 2$ be an integer, $0 \le k \le p-2$ and integer and u be a solution to $Lu = \operatorname{div} A \nabla u = 0$. Then there exists $\varepsilon > 0$ such that if the Carleson norm of the coefficients $C(r_0) < \varepsilon$ then for some $K = K(\Omega, \Lambda, n, \varepsilon, m, k) > 0$

$$\iint_{\Omega_r} |\nabla_{\mathcal{T}} u|^{p-k-2} |H|^k |\nabla H|^2 \delta(X) \, dX \tag{1}$$

$$\leq (p-k-2)K \iint_{\Omega_{2r}} |\nabla_T u|^{p-k-3} |H|^{k+1} |\nabla H|^2 \delta(X) dX$$
$$+ C(r) \iint_{\Omega \setminus \Omega_r} |\nabla u|^p dX$$
$$+ K \int_{\partial \Omega} |H|^p dx.$$

Here $H = a_{ni}\partial_i u$. This is the co-normal derivative in \mathbb{R}^n_+ .

Proof - main ideas

-Neumann problem

The induction step:

Let $p \ge 2$ be an integer, $0 \le k \le p-2$ and integer and u be a solution to $Lu = \operatorname{div} A \nabla u = 0$. Then there exists $\varepsilon > 0$ such that if the Carleson norm of the coefficients $C(r_0) < \varepsilon$ then for some $K = K(\Omega, \Lambda, n, \varepsilon, m, k) > 0$

$$\iint_{\Omega_r} |\nabla_{\mathcal{T}} u|^{p-k-2} |H|^k |\nabla H|^2 \delta(X) \, dX \tag{1}$$

$$\leq (p-k-2)K \iint_{\Omega_{2r}} |\nabla_T u|^{p-k-3} |H|^{k+1} |\nabla H|^2 \delta(X) dX$$
$$+ C(r) \iint_{\Omega \setminus \Omega_r} |\nabla u|^p dX$$
$$+ K \int_{\partial \Omega} |H|^p dx.$$

Here $H = a_{ni}\partial_i u$. This is the co-normal derivative in \mathbb{R}^n_+ .

The Boundary value problems for second order elliptic operators satisfying Carleson condition $\hfill Open$ problems

Open problem

Is the following analogue of result of Kenig-Pipher, 2001 true?

The Boundary value problems for second order elliptic operators satisfying Carleson condition $\hfill Open$ problems

Open problem

Is the following analogue of result of Kenig-Pipher, 2001 true?

$\delta(X)^{-1} \left(\operatorname{osc}_{B(X,\delta(X)/2)} a_{ij} \right)^2$ (2)

is a density of Carleson measure on a Lipschitz domain Ω then $(R)_p$

Open problem

Is the following analogue of result of Kenig-Pipher, 2001 true? If $\delta(X)^{-1} \left(\operatorname{osc}_{B(X,\delta(X)/2)} a_{ij} \right)^2$ (2)

is a density of Carleson measure on a Lipschitz domain Ω then $(R)_p$ (and $(N)_p)$
Is the following analogue of result of Kenig-Pipher, 2001 true? If $\delta(X)^{-1} \left(\operatorname{osc}_{B(X,\delta(X)/2)} a_{ij} \right)^2$ (2)

is a density of Carleson measure on a Lipschitz domain Ω then $(R)_p$ (and $(N)_p$) boundary value problems are solvable for some p > 1.

Is the following analogue of result of **Kenig-Pipher**, **2001** true? If $\delta(X)^{-1} \left(\operatorname{osc}_{2}(x,y_{1}) \otimes 2^{n} \right)^{2}$ (2)

$$\delta(X)^{-1} \left(\operatorname{osc}_{B(X,\delta(X)/2)} a_{ij} \right)^2$$
(2)

is a density of Carleson measure on a Lipschitz domain Ω then $(R)_p$ (and $(N)_p$) boundary value problems are solvable for some p > 1.

Hint of solution for the Regularity problem:

Is the following analogue of result of **Kenig-Pipher**, **2001** true? If $\delta(X)^{-1} (\cos \cos \cos \cos 2x)^2$

$$\delta(X)^{-1} \left(\operatorname{osc}_{B(X,\delta(X)/2)} a_{ij} \right)^2$$
(2)

is a density of Carleson measure on a Lipschitz domain Ω then $(R)_p$ (and $(N)_p$) boundary value problems are solvable for some p > 1.

Hint of solution for the Regularity problem: Prove that $(R)_1$ holds under the assumption (1).

Is the following analogue of result of **Kenig-Pipher**, **2001** true? If $(\chi)^{-1} (222 - \chi)^2$

$$\delta(X)^{-1} \left(\operatorname{osc}_{B(X,\delta(X)/2)} a_{ij} \right)^2$$
(2)

is a density of Carleson measure on a Lipschitz domain Ω then $(R)_p$ (and $(N)_p$) boundary value problems are solvable for some p > 1.

Hint of solution for the Regularity problem: Prove that $(R)_1$ holds under the assumption (1). Then by [M.D-Kirsch, 2012] $(R)_{1+\varepsilon}$ holds for some small $\varepsilon > 0$.

Is the following analogue of result of **Kenig-Pipher**, **2001** true? If $S(X)^{-1}$ (and $S(X)^{-1}$ (and S

$$\delta(X)^{-1} \left(\operatorname{osc}_{B(X,\delta(X)/2)} a_{ij} \right)^2$$
(2)

is a density of Carleson measure on a Lipschitz domain Ω then $(R)_p$ (and $(N)_p$) boundary value problems are solvable for some p > 1.

Hint of solution for the Regularity problem: Prove that $(R)_1$ holds under the assumption (1). Then by [M.D-Kirsch, 2012] $(R)_{1+\varepsilon}$ holds for some small $\varepsilon > 0$.

Systems with real coefficients

(joint work with Marius Mitrea and Sukjung Hwang).

Systems with real coefficients

(joint work with Marius Mitrea and Sukjung Hwang).

Consider the following PDE system

$$\mathcal{L}u = \left[\partial_i \left(A_{ij}^{\alpha\beta}(x)\partial_j u_\beta\right) + B_i^{\alpha\beta}(x)\partial_i u_\beta\right]_{\alpha\beta}$$

for $i, j \in \{0, ..., n-1\}$ and $\alpha, \beta \in \{1, ..., N\}$, where $u = (u_{\alpha})$ is a vector valued function.

Systems with real coefficients

(joint work with Marius Mitrea and Sukjung Hwang). Consider the following PDE system

$$\mathcal{L}u = \left[\partial_i \left(A_{ij}^{\alpha\beta}(x)\partial_j u_\beta\right) + B_i^{\alpha\beta}(x)\partial_i u_\beta\right]_{\alpha}$$

for $i, j \in \{0, ..., n-1\}$ and $\alpha, \beta \in \{1, ..., N\}$, where $u = (u_{\alpha})$ is a vector valued function.

The goal is to solve the Dirichlet, Neumann and Regularity problem of the system of N equations $\mathcal{L}u = 0$.

Systems with real coefficients

(joint work with Marius Mitrea and Sukjung Hwang). Consider the following PDE system

$$\mathcal{L}u = \left[\partial_i \left(A_{ij}^{\alpha\beta}(x)\partial_j u_\beta\right) + B_i^{\alpha\beta}(x)\partial_i u_\beta\right]_{\alpha}$$

for $i, j \in \{0, ..., n-1\}$ and $\alpha, \beta \in \{1, ..., N\}$, where $u = (u_{\alpha})$ is a vector valued function.

The goal is to solve the Dirichlet, Neumann and Regularity problem of the system of N equations $\mathcal{L}u = 0$.

Systems with real coefficients

Assumptions: Tensors *A*, *B* real valued *A* satisfying strong ellipticity and bounded.

Outline of objectives:

▶ L^2 Dirichlet problem

Systems with real coefficients

Assumptions: Tensors *A*, *B* real valued *A* satisfying strong ellipticity and bounded.

Outline of objectives:

L² Dirichlet problem done for symmetric operators

Systems with real coefficients

Assumptions: Tensors *A*, *B* real valued *A* satisfying strong ellipticity and bounded.

- L² Dirichlet problem done for symmetric operators
- L² Regularity problem

Systems with real coefficients

Assumptions: Tensors *A*, *B* real valued *A* satisfying strong ellipticity and bounded.

- L² Dirichlet problem done for symmetric operators
- L² Regularity problem good progress, seems doable

Systems with real coefficients

Assumptions: Tensors *A*, *B* real valued *A* satisfying strong ellipticity and bounded.

Outline of objectives:

- L² Dirichlet problem done for symmetric operators
- L² Regularity problem good progress, seems doable

• L^p Dirichlet problem for $2 - \varepsilon$

Systems with real coefficients

Assumptions: Tensors *A*, *B* real valued *A* satisfying strong ellipticity and bounded.

- L² Dirichlet problem done for symmetric operators
- L² Regularity problem good progress, seems doable
- L^p Dirichlet problem for $2 \varepsilon in progress$

Systems with real coefficients

Assumptions: Tensors *A*, *B* real valued *A* satisfying strong ellipticity and bounded.

- L² Dirichlet problem done for symmetric operators
- L² Regularity problem good progress, seems doable
- L^p Dirichlet problem for $2 \varepsilon in progress$
- ▶ Neuman problem, Regularity for other *p*'s

Systems with real coefficients

Assumptions: Tensors *A*, *B* real valued *A* satisfying strong ellipticity and bounded.

- L² Dirichlet problem done for symmetric operators
- L² Regularity problem good progress, seems doable
- L^p Dirichlet problem for $2 \varepsilon in progress$
- Neuman problem, Regularity for other p's ??????

Systems with real coefficients

Assumptions: Tensors *A*, *B* real valued *A* satisfying strong ellipticity and bounded.

- L² Dirichlet problem done for symmetric operators
- L² Regularity problem good progress, seems doable
- L^p Dirichlet problem for $2 \varepsilon in progress$
- Neuman problem, Regularity for other p's ?????

Systems with real coefficients

Assumptions: Tensors *A*, *B* real valued *A* satisfying strong ellipticity and bounded.

- L² Dirichlet problem done for symmetric operators
- L² Regularity problem good progress, seems doable
- L^p Dirichlet problem for $2 \varepsilon in progress$
- Neuman problem, Regularity for other p's ?????

Scalar equation with complex coefficients

(joint work with Jill Pipher) - work in progress.

(joint work with Jill Pipher) - work in progress.

Such PDE can be seen as a real system with a skew-symmetric tensors $A_{ij}^{\alpha\beta}.$

(joint work with Jill Pipher) - work in progress.

Such PDE can be seen as a **real** system with a **skew-symmetric** tensors $A_{ij}^{\alpha\beta}$.

The usual ellipticity assumption:

$$\lambda |\xi|^2 \leq Re \sum_{i,j=0}^{n-1} A_{ij}\xi_i\overline{\xi_j} \leq \Lambda |\xi|^2$$

for $\xi \in \mathbb{C}^n$.

(joint work with Jill Pipher) - work in progress.

Such PDE can be seen as a **real** system with a **skew-symmetric** tensors $A_{ii}^{\alpha\beta}$.

The usual ellipticity assumption:

$$\lambda |\xi|^2 \leq Re \sum_{i,j=0}^{n-1} A_{ij} \xi_i \overline{\xi_j} \leq \Lambda |\xi|^2$$

for $\xi \in \mathbb{C}^n$. Can be rewritten as (for all $\chi, \eta \in \mathbb{R}^n$)

 $|\chi|^2 + |\eta|^2 \approx \langle \operatorname{Re} A \chi, \chi \rangle + \langle \operatorname{Re} A \eta, \eta \rangle + \langle (\operatorname{Im} A - \operatorname{Im} A^t) \chi, \eta \rangle.$

(joint work with Jill Pipher) - work in progress.

Such PDE can be seen as a **real** system with a **skew-symmetric** tensors $A_{ii}^{\alpha\beta}$.

The usual ellipticity assumption:

$$\lambda |\xi|^2 \leq Re \sum_{i,j=0}^{n-1} A_{ij} \xi_i \overline{\xi_j} \leq \Lambda |\xi|^2$$

for $\xi \in \mathbb{C}^n$. Can be rewritten as (for all $\chi, \eta \in \mathbb{R}^n$)

$$|\chi|^2 + |\eta|^2 \approx \langle \operatorname{Re} A \chi, \chi \rangle + \langle \operatorname{Re} A \eta, \eta \rangle + \langle (\operatorname{Im} A - \operatorname{Im} A^t) \chi, \eta \rangle.$$

Scalar equation with complex coefficients

Again, under this assumption the L^2 theory as described above **works**.

New idea:

Scalar equation with complex coefficients

Again, under this assumption the L^2 theory as described above **works**.

New idea: Direct method for L^p solvability

Again, under this assumption the L^2 theory as described above **works**.

New idea: Direct method for L^p solvability (in real case this is done in [DPP]).

Again, under this assumption the L^2 theory as described above **works**.

New idea: Direct method for L^p solvability (in real case this is done in [DPP]).

New ingredient: Concept of L^p dissipativity of Cialdea and Maz'ya.

Again, under this assumption the L^2 theory as described above **works**.

New idea: Direct method for L^p solvability (in real case this is done in [DPP]).

New ingredient: Concept of L^p dissipativity of Cialdea and Maz'ya. C+M define this in the context of parabolic PDEs.

Again, under this assumption the L^2 theory as described above **works**.

New idea: Direct method for L^p solvability (in real case this is done in [DPP]).

New ingredient: Concept of L^{p} dissipativity of Cialdea and Maz'ya. C+M define this in the context of parabolic PDEs. If \mathcal{L} is L^{p} dissipative then $u_{t} - \mathcal{L}u = 0$ satisfies

Again, under this assumption the L^2 theory as described above **works**.

New idea: Direct method for L^p solvability (in real case this is done in [DPP]).

New ingredient: Concept of L^p dissipativity of Cialdea and Maz'ya. C+M define this in the context of parabolic PDEs. If \mathcal{L} is L^p dissipative then $u_t - \mathcal{L}u = 0$ satisfies

 $\|u(t)\|_{L^p} \leq \|u(0)\|_{L^p}, \quad t \geq 0.$

Again, under this assumption the L^2 theory as described above **works**.

New idea: Direct method for L^p solvability (in real case this is done in [DPP]).

New ingredient: Concept of L^p dissipativity of Cialdea and Maz'ya. C+M define this in the context of parabolic PDEs. If \mathcal{L} is L^p dissipative then $u_t - \mathcal{L}u = 0$ satisfies

$\|u(t)\|_{L^p} \leq \|u(0)\|_{L^p}, \quad t \geq 0.$

C+M come with **algebraic** condition that allows to check when \mathcal{L} is L^p dissipative.

Again, under this assumption the L^2 theory as described above **works**.

New idea: Direct method for L^p solvability (in real case this is done in [DPP]).

New ingredient: Concept of L^p dissipativity of Cialdea and Maz'ya. C+M define this in the context of parabolic PDEs. If \mathcal{L} is L^p dissipative then $u_t - \mathcal{L}u = 0$ satisfies

$$\|u(t)\|_{L^p} \leq \|u(0)\|_{L^p}, \quad t \geq 0.$$

C+M come with **algebraic** condition that allows to check when \mathcal{L} is L^p dissipative.

We call ${\mathcal L}$ with complex coefficients ${\bf strongly} \ L^p$ dissipative if

$$\langle \operatorname{Re} A \lambda, \lambda \rangle + \langle \operatorname{Re} A \eta, \eta \rangle + \left\langle \left(\sqrt{\frac{p'}{p}} \operatorname{Im} A - \sqrt{\frac{p}{p'}} \operatorname{Im} A^t \right) \lambda, \eta \right\rangle \approx |\lambda|^2 + |\eta|^2.$$

This is (when p = 2 just the usual ellipticity condition for the complex matrices).

We call ${\mathcal L}$ with complex coefficients ${\bf strongly} \ L^p$ dissipative if

$$\langle \operatorname{Re} A \lambda, \lambda \rangle + \langle \operatorname{Re} A \eta, \eta \rangle + \left\langle \left(\sqrt{\frac{p'}{p}} \operatorname{Im} A - \sqrt{\frac{p}{p'}} \operatorname{Im} A^t \right) \lambda, \eta \right\rangle \approx |\lambda|^2 + |\eta|^2.$$

This is (when p = 2 just the usual ellipticity condition for the complex matrices).

We have the following:

We call $\mathcal L$ with complex coefficients strongly L^p dissipative if

$$\langle \operatorname{Re} A \lambda, \lambda \rangle + \langle \operatorname{Re} A \eta, \eta \rangle + \left\langle \left(\sqrt{\frac{p'}{p}} \operatorname{Im} A - \sqrt{\frac{p}{p'}} \operatorname{Im} A^t \right) \lambda, \eta \right\rangle \approx |\lambda|^2 + |\eta|^2.$$

This is (when p = 2 just the usual ellipticity condition for the complex matrices).

We have the following: Let $A \in L^{\infty}(\Omega)$ be a matrix that is uniformly elliptic. Then there exists $p_0 \in [1,2)$ $(p_0 = 1$ if and only if Im A = 0) such that for all $p \in (p_0, p'_0)$
We call \mathcal{L} with complex coefficients strongly L^p dissipative if

$$\langle \operatorname{Re} A \lambda, \lambda \rangle + \langle \operatorname{Re} A \eta, \eta \rangle + \left\langle \left(\sqrt{\frac{p'}{p}} \operatorname{Im} A - \sqrt{\frac{p}{p'}} \operatorname{Im} A^t \right) \lambda, \eta \right\rangle \approx |\lambda|^2 + |\eta|^2.$$

This is (when p = 2 just the usual ellipticity condition for the complex matrices).

We have the following: Let $A \in L^{\infty}(\Omega)$ be a matrix that is uniformly elliptic. Then there exists $p_0 \in [1,2)$ ($p_0 = 1$ if and only if Im A = 0) such that for all $p \in (p_0, p'_0)$ the above algebraic condition holds.

We call \mathcal{L} with complex coefficients **strongly** L^p dissipative if

$$\langle \operatorname{Re} A \lambda, \lambda \rangle + \langle \operatorname{Re} A \eta, \eta \rangle + \left\langle \left(\sqrt{\frac{p'}{p}} \operatorname{Im} A - \sqrt{\frac{p}{p'}} \operatorname{Im} A^t \right) \lambda, \eta \right\rangle \approx |\lambda|^2 + |\eta|^2.$$

This is (when p = 2 just the usual ellipticity condition for the complex matrices).

We have the following: Let $A \in L^{\infty}(\Omega)$ be a matrix that is uniformly elliptic. Then there exists $p_0 \in [1,2)$ ($p_0 = 1$ if and only if Im A = 0) such that for all $p \in (p_0, p'_0)$ the **above algebraic condition** holds. The Boundary value problems for second order elliptic operators satisfying Carleson condition New developments: Systems and complex coefficients

Scalar equation with complex coefficients

Our calculations show that for p for which this algebraic condition holds one can establish an estimates:

$$\|S_p(u)\|_{L^p}^2 \lesssim \text{boundary data} + \varepsilon \|\widetilde{N}(u)\|_{L^p}^p$$

Our calculations show that for p for which this algebraic condition holds one can establish an estimates:

$$\|S_p(u)\|_{L^p}^2 \lesssim$$
 boundary data $+ \varepsilon \|\widetilde{N}(u)\|_{L^p}^p$

and

 $\|S_p(\nabla u)\|_{L^p}^p \approx \|\widetilde{N}(\nabla u)\|_{L^p}^p.$

Our calculations show that for p for which this algebraic condition holds one can establish an estimates:

$$\|S_p(u)\|_{L^p}^2 \lesssim$$
 boundary data $+ \varepsilon \|\widetilde{N}(u)\|_{L^p}^p$

and

$$\|S_p(\nabla u)\|_{L^p}^p \approx \|\widetilde{N}(\nabla u)\|_{L^p}^p.$$

Hence L^p Dirichlet solvability follows !!!!

Our calculations show that for p for which this algebraic condition holds one can establish an estimates:

$$\|S_p(u)\|_{L^p}^2 \lesssim$$
 boundary data $+ \varepsilon \|\widetilde{N}(u)\|_{L^p}^p$

and

$$\|S_p(\nabla u)\|_{L^p}^p \approx \|\widetilde{N}(\nabla u)\|_{L^p}^p.$$

Hence L^p Dirichlet solvability follows !!!!