The Boundary value problems for second order elliptic operators satisfying Carleson condition

Martin Dindoš

Interactions of Harmonic Analysis and Operator Theory, Birmingham, 13-16 September 2016

Table of contents

Formulation of boundary value problems
Nontangential maximal function
L^{p} Dirichlet problem
L^{p} Neumann problem
Regularity problem
Overview of known results
Negative result
Carleson condition
Results for Dirichlet problem $(D)_{p}$
Results for Neumann and Regularity problems in 2D
Results for Neumann and Regularity problems in any dimension
Small Carleson norm
Proof - main ideas
Regularity problem
Neumann problem
Open problems

Dirichlet, Neumann and Regularity boundary value problems

Let $L=\operatorname{div} A \nabla u$ be a second order elliptic operator with bounded real measurable coefficients $A=\left(a_{i j}\right)$ on a Lipschitz domain Ω. That is there is $\Lambda>0$ such that

$$
\Lambda^{-1}|\xi|^{2} \leq \sum_{i, j} a_{i j}(x) \xi_{i} \xi_{j} \leq \Lambda|\xi|^{2}
$$

(Matrix A does not have to be symmetric).

Dirichlet, Neumann and Regularity boundary value problems

Let $L=\operatorname{div} A \nabla u$ be a second order elliptic operator with bounded real measurable coefficients $A=\left(a_{i j}\right)$ on a Lipschitz domain Ω.
That is there is $\Lambda>0$ such that

$$
\Lambda^{-1}|\xi|^{2} \leq \sum_{i, j} a_{i j}(x) \xi_{i} \xi_{j} \leq \Lambda|\xi|^{2}
$$

(Matrix A does not have to be symmetric).

Let $\Gamma($.$) be a collection of nontangential cones with vertices a$ boundary points $Q \in \partial \Omega$. We define the non-tangential maximal function at Q relative to Γ by

$$
N(u)(Q)=\sup _{X \in \Gamma(Q)}|u(X)| .
$$

We also consider a weaker version of this object

$$
\widetilde{N}(u)(Q)=\sup _{X \in \Gamma(Q)}\left(\delta(X)^{-n} \int_{B_{\delta(X) / 2}(X)}|u(Y)|^{2} d Y\right)^{\frac{1}{2}}
$$

Let $\Gamma($.$) be a collection of nontangential cones with vertices a$ boundary points $Q \in \partial \Omega$. We define the non-tangential maximal function at Q relative to Γ by

$$
N(u)(Q)=\sup _{X \in \Gamma(Q)}|u(X)| .
$$

We also consider a weaker version of this object

$$
\widetilde{N}(u)(Q)=\sup _{X \in \Gamma(Q)}\left(\delta(X)^{-n} \int_{B_{\delta(X) / 2}(X)}|u(Y)|^{2} d Y\right)^{\frac{1}{2}}
$$

L^{p} Dirichlet problem

Definition

Let $1<p \leq \infty$. The Dirichlet problem with data in $L^{p}(\partial \Omega, d \sigma)$ is solvable (abbreviated $(D)_{p}$) if for every $f \in C(\partial \Omega)$ the weak solution u to the problem $L u=0$ with continuous boundary data f satisfies the estimate

$$
\|N(u)\|_{L^{p}(\partial \Omega, d \sigma)} \lesssim\|f\|_{L^{p}(\partial \Omega, d \sigma)}
$$

The implied constant depends only the operator L, p, and the Lipschitz constant of the domain.

L^{p} Neumann problem

Definition

Let $1<p<\infty$. The Neumann problem with boundary data in $L^{p}(\partial \Omega)$ is solvable (abbreviated $\left.(N)_{p}\right)$, if for every
$f \in L^{P}(\partial \Omega) \cap C(\partial \Omega)$ such that $\int_{\partial \Omega} f d \sigma=0$ the weak solution u to the problem

$$
\left\{\begin{array}{lll}
L u & =0 & \text { in } \Omega \\
A \nabla u \cdot \nu & =f & \text { on } \partial \Omega
\end{array}\right.
$$

satisfies

$$
\|\widetilde{N}(\nabla u)\|_{L^{p}(\partial \Omega)} \lesssim\|f\|_{L^{p}(\partial \Omega)}
$$

Again, the implied constant depends only the operator L, p, and the Lipschitz constant of the domain. Here ν is the outer normal to the boundary $\partial \Omega$.

Regularity problem

Definition

Let $1<p<\infty$. The regularity problem with boundary data in $H^{1, p}(\partial \Omega)$ is solvable (abbreviated $\left.(R)_{p}\right)$, if for every
$f \in H^{1, p}(\partial \Omega) \cap C(\partial \Omega)$ the weak solution u to the problem

$$
\left\{\begin{array}{lll}
L u & =0 & \text { in } \Omega \\
\left.u\right|_{\partial B} & =f & \text { on } \partial \Omega
\end{array}\right.
$$

satisfies

$$
\|\widetilde{N}(\nabla u)\|_{L^{p}(\partial \Omega)} \lesssim\left\|\nabla_{T} f\right\|_{L^{p}(\partial \Omega)}
$$

Again, the implied constant depends only the operator L, p, and the Lipschitz constant of the domain.

Negative result

Theorem
There exists a bounded measurable matrix A on a unit disk D satisfying the ellipticity condition such that the Dirichlet problem $(D)_{p}$, the Regularity problem $(R)_{p}$ and the Neumann problem $(N)_{p}$ are not solvable for any $p \in(1, \infty)$.

Hence solvability requires extra assumption on the regularity of coefficients of the matrix A.

Negative result

Theorem

There exists a bounded measurable matrix A on a unit disk D satisfying the ellipticity condition such that the Dirichlet problem
$(D)_{p}$, the Regularity problem $(R)_{p}$ and the Neumann problem $(N)_{p}$ are not solvable for any $p \in(1, \infty)$.

Hence solvability requires extra assumption on the regularity of coefficients of the matrix A.

The Carleson condition - motivation

Consider the boundary value problems associated with a smooth elliptic operator in the region above a graph $t=\varphi(x)$, for φ Lipschitz.
Consider a mapping $\Phi: \mathbb{R}_{+}^{n} \rightarrow\{X=(x, t) ; t>\varphi(x)\}$ defined by

$$
\Phi(X)=\left(x, c_{0} t+\left(\theta_{t} * \varphi\right)(x)\right)
$$

where $\left(\theta_{t}\right)_{t>0}$ is smooth compactly supported approximate identity
and c_{0} is large enough so that Φ is one to one.

The Carleson condition - motivation

Consider the boundary value problems associated with a smooth elliptic operator in the region above a graph $t=\varphi(x)$, for φ Lipschitz.

Consider a mapping $\Phi: \mathbb{R}_{+}^{n} \rightarrow\{X=(x, t) ; t>\varphi(x)\}$ defined by

$$
\Phi(X)=\left(x, c_{0} t+\left(\theta_{t} * \varphi\right)(x)\right)
$$

where $\left(\theta_{t}\right)_{t>0}$ is smooth compactly supported approximate identity and c_{0} is large enough so that Φ is one to one.

Then the function $v=u \circ \Phi$ solves an elliptic equation in \mathbb{R}_{+}^{n} with coefficients satisfying

The Carleson condition - motivation

Consider the boundary value problems associated with a smooth elliptic operator in the region above a graph $t=\varphi(x)$, for φ Lipschitz.

Consider a mapping $\Phi: \mathbb{R}_{+}^{n} \rightarrow\{X=(x, t) ; t>\varphi(x)\}$ defined by

$$
\Phi(X)=\left(x, c_{0} t+\left(\theta_{t} * \varphi\right)(x)\right)
$$

where $\left(\theta_{t}\right)_{t>0}$ is smooth compactly supported approximate identity and c_{0} is large enough so that Φ is one to one.

Then the function $v=u \circ \Phi$ solves an elliptic equation in \mathbb{R}_{+}^{n} with coefficients satisfying

The Carleson condition - motivation

$$
\delta(X)^{-1}\left(\operatorname{osc}_{B(X, \delta(X) / 2)} a_{i j}\right)^{2}
$$

is the density of a Carleson measure on Ω.

Definition
A measure μ in Ω is Carleson if there exists a constant $C=C\left(r_{0}\right)$ such that for all $r \leq r_{0}$ and $Q \in \partial \Omega$,

$$
\mu(B(Q, r) \cap \Omega) \leq C \sigma(B(Q, r) \cap \partial \Omega)
$$

The best possible C is the Carleson norm. When μ is Carleson we write $\mu \in \mathcal{C}$.

The Carleson condition - motivation

$$
\delta(X)^{-1}\left(\operatorname{osc}_{B(X, \delta(X) / 2)^{a j}}\right)^{2}
$$

is the density of a Carleson measure on Ω.

Definition
A measure μ in Ω is Carleson if there exists a constant $C=C\left(r_{0}\right)$ such that for all $r \leq r_{0}$ and $Q \in \partial \Omega$,

$$
\mu(B(Q, r) \cap \Omega) \leq C \sigma(B(Q, r) \cap \partial \Omega)
$$

The best possible C is the Carleson norm. When μ is Carleson we write $\mu \in \mathcal{C}$.
If $\lim _{r_{0} \rightarrow 0} C\left(r_{0}\right)=0$, then we say that the measure μ satisfies the
vanishing Carleson condition, and we write $\mu \in \mathcal{C}_{V}$.

The Carleson condition - motivation

$$
\delta(X)^{-1}\left(\operatorname{osc}_{B(X, \delta(X) / 2)} a_{i j}\right)^{2}
$$

is the density of a Carleson measure on Ω.

Definition

A measure μ in Ω is Carleson if there exists a constant $C=C\left(r_{0}\right)$ such that for all $r \leq r_{0}$ and $Q \in \partial \Omega$,

$$
\mu(B(Q, r) \cap \Omega) \leq C \sigma(B(Q, r) \cap \partial \Omega)
$$

The best possible C is the Carleson norm. When μ is Carleson we write $\mu \in \mathcal{C}$.
If $\lim _{r_{0} \rightarrow 0} C\left(r_{0}\right)=0$, then we say that the measure μ satisfies the vanishing Carleson condition, and we write $\mu \in \mathcal{C}_{V}$.

Results for Dirichlet problem $(D)_{p}$

Kenig-Pipher, 2001 If

$$
\delta(X)^{-1}\left(\operatorname{osc}_{B(X, \delta(X) / 2)} a_{i j}\right)^{2}
$$

is a density of Carleson measure on a Lipschitz domain Ω then $(D)_{p}$ is solvable for some (large) $p<\infty$.
M.D-Pipher-Petermichl, 2007 For any $p \in(1, \infty)$ there exists $C=C(p)>0$ such that if the Carleson norm bounded is less than $C(p)$ and the Lipschitz constant L of the domain Ω is smaller than $C(p)$ then $(D)_{p}$ is solvable.

Results for Dirichlet problem $(D)_{p}$

Kenig-Pipher, 2001 If

$$
\delta(X)^{-1}\left(\operatorname{osc}_{B(X, \delta(X) / 2)} a_{i j}\right)^{2}
$$

is a density of Carleson measure on a Lipschitz domain Ω then $(D)_{p}$ is solvable for some (large) $p<\infty$.
M.D-Pipher-Petermichl, 2007 For any $p \in(1, \infty)$ there exists $C=C(p)>0$ such that if the Carleson norm bounded is less than $C(p)$ and the Lipschitz constant L of the domain Ω is smaller than $C(p)$ then $(D)_{p}$ is solvable.

The Boundary value problems for second order elliptic operators satisfying Carleson condition
L Overview of known results
-Results for Neumann and Regularity problems in 2D

Results for Neumann and Regularity problems in 2D

M.D-Rule, 2010 Let $\Omega \subset \mathbb{R}^{2}$.

Results for Neumann and Regularity problems in 2D

M.D-Rule, 2010 Let $\Omega \subset \mathbb{R}^{2}$.

For any $p \in(1, \infty)$ there exists $C=C(p)>0$ such that if the coefficients of A satisfy a variant of our Carleson condition with norm less than $C(p)$ and the Lipschitz constant L of the domain Ω is smaller than $C(p)$ then $(R)_{p}$ and $(N)_{p}$ are solvable.

Results for Neumann and Regularity problems in 2D

M.D-Rule, 2010 Let $\Omega \subset \mathbb{R}^{2}$.

For any $p \in(1, \infty)$ there exists $C=C(p)>0$ such that if the coefficients of A satisfy a variant of our Carleson condition with norm less than $C(p)$ and the Lipschitz constant L of the domain Ω is smaller than $C(p)$ then $(R)_{p}$ and $(N)_{p}$ are solvable.

Main theorem-Regularity

Let $1<p<\infty$ and let Ω be a Lipschitz domain with Lipschitz norm L. Let

$$
\delta(X)^{-1}\left(\operatorname{osc}_{B(X, \delta(X) / 2)} a_{i j}\right)^{2}
$$

be the density of a Carleson measure on all Carleson boxes of size at most r_{0} with norm $C\left(r_{0}\right)$. Then there exists $\varepsilon=\varepsilon(\Lambda, n, p)>0$ such that if $\max \left\{L, C\left(r_{0}\right)\right\}<\varepsilon$ then the $(R)_{p}$ regularity problem

is solvable for all f with $\left\|\nabla_{T} f\right\|_{L^{p}(\partial \Omega)}<\infty$.

Main theorem-Regularity

Let $1<p<\infty$ and let Ω be a Lipschitz domain with Lipschitz norm L. Let

$$
\delta(X)^{-1}\left(\operatorname{osc}_{B(X, \delta(X) / 2)} a_{i j}\right)^{2}
$$

be the density of a Carleson measure on all Carleson boxes of size at most r_{0} with norm $C\left(r_{0}\right)$. Then there exists $\varepsilon=\varepsilon(\Lambda, n, p)>0$ such that if $\max \left\{L, C\left(r_{0}\right)\right\}<\varepsilon$ then the $(R)_{p}$ regularity problem

$$
\begin{cases}L u & =0 \quad \text { in } \Omega \\ \left.u\right|_{\partial \Omega} & =f \quad \text { on } \partial \Omega \\ \widetilde{N}(\nabla u) & \in L^{p}(\partial \Omega)\end{cases}
$$

is solvable for all f with $\left\|\nabla_{T} f\right\|_{L^{P}(\partial \Omega)}<\infty$. Moreover, there exists
a constant $C=C(\Lambda, n, a, p)>0$ such that

$$
\|\widetilde{N}(\nabla u)\|_{L^{p}(\partial \Omega)} \leq C\left\|\nabla_{T} f\right\|_{L^{p}(\partial \Omega)}
$$

Main theorem-Regularity

Let $1<p<\infty$ and let Ω be a Lipschitz domain with Lipschitz norm L. Let

$$
\delta(X)^{-1}\left(\operatorname{osc}_{B(X, \delta(X) / 2)} a_{i j}\right)^{2}
$$

be the density of a Carleson measure on all Carleson boxes of size at most r_{0} with norm $C\left(r_{0}\right)$. Then there exists $\varepsilon=\varepsilon(\Lambda, n, p)>0$ such that if $\max \left\{L, C\left(r_{0}\right)\right\}<\varepsilon$ then the $(R)_{p}$ regularity problem

$$
\begin{cases}L u & =0 \quad \text { in } \Omega \\ \left.u\right|_{\partial \Omega} & =f \quad \text { on } \partial \Omega \\ \widetilde{N}(\nabla u) & \in L^{p}(\partial \Omega)\end{cases}
$$

is solvable for all f with $\left\|\nabla_{T} f\right\|_{L^{p}(\partial \Omega)}<\infty$. Moreover, there exists a constant $C=C(\Lambda, n, a, p)>0$ such that

$$
\|\widetilde{N}(\nabla u)\|_{L^{p}(\partial \Omega)} \leq C\left\|\nabla_{T} f\right\|_{L^{p}(\partial \Omega)}
$$

Main theorem-Neumann

Let $1<p<\infty$ and let Ω be a Lipschitz domain with Lipschitz norm L. Let

$$
\delta(X)^{-1}\left(\operatorname{osc}_{B(X, \delta(X) / 2)} a_{i j}\right)^{2}
$$

be the density of a Carleson measure on all Carleson boxes of size at most r_{0} with norm $C\left(r_{0}\right)$. Then there exists $\varepsilon=\varepsilon(\Lambda, n, p)>0$ such that if $\max \left\{L, C\left(r_{0}\right)\right\}<\varepsilon$ then the $(N)_{p}$ Neumann problem

is solvable for all $f \in L^{P}(\partial \Omega)$.

Main theorem-Neumann

Let $1<p<\infty$ and let Ω be a Lipschitz domain with Lipschitz norm L. Let

$$
\delta(X)^{-1}\left(\operatorname{osc}_{B(X, \delta(X) / 2)} a_{i j}\right)^{2}
$$

be the density of a Carleson measure on all Carleson boxes of size at most r_{0} with norm $C\left(r_{0}\right)$. Then there exists $\varepsilon=\varepsilon(\Lambda, n, p)>0$ such that if $\max \left\{L, C\left(r_{0}\right)\right\}<\varepsilon$ then the $(N)_{p}$ Neumann problem

$$
\begin{cases}L u & =0 \quad \text { in } \Omega \\ A \nabla u \cdot \nu & =f \quad \text { on } \partial \Omega \\ \widetilde{N}(\nabla u) & \in L^{p}(\partial \Omega)\end{cases}
$$

is solvable for all $f \in L^{p}(\partial \Omega)$. Moreover, there exists a constant
$C=C(\Lambda, n, a, p)>0$ such that
$\|\widetilde{N}(\nabla u)\|_{L^{p}(\partial \Omega)} \leq C\|f\|_{L^{p}(\partial \Omega)}$.

Main theorem-Neumann

Let $1<p<\infty$ and let Ω be a Lipschitz domain with Lipschitz norm L. Let

$$
\delta(X)^{-1}\left(\operatorname{osc}_{B(X, \delta(X) / 2)} a_{i j}\right)^{2}
$$

be the density of a Carleson measure on all Carleson boxes of size at most r_{0} with norm $C\left(r_{0}\right)$. Then there exists $\varepsilon=\varepsilon(\Lambda, n, p)>0$ such that if $\max \left\{L, C\left(r_{0}\right)\right\}<\varepsilon$ then the $(N)_{p}$ Neumann problem

$$
\begin{cases}L u & =0 \quad \text { in } \Omega \\ A \nabla u \cdot \nu & =f \quad \text { on } \partial \Omega \\ \widetilde{N}(\nabla u) & \in L^{p}(\partial \Omega)\end{cases}
$$

is solvable for all $f \in L^{p}(\partial \Omega)$. Moreover, there exists a constant $C=C(\Lambda, n, a, p)>0$ such that

$$
\|\widetilde{N}(\nabla u)\|_{L^{p}(\partial \Omega)} \leq C\|f\|_{L^{p}(\partial \Omega)} .
$$

The Boundary value problems for second order elliptic operators satisfying Carleson condition
L Proof - main ideas
-Regularity problem

Regularity problem - solving $p=2$ is enough

M.D-Kirsch, 2012 Assume that $(R)_{1}$ (Regularity problem in Hardy-Sobolev space) is solvable.

The Boundary value problems for second order elliptic operators satisfying Carleson condition
LProof - main ideas
\llcorner Regularity problem

Regularity problem - solving $p=2$ is enough

M.D-Kirsch, 2012 Assume that $(R)_{1}$ (Regularity problem in Hardy-Sobolev space) is solvable.

Then for $p \in(1, \infty)$ we have

$$
(R)_{p} \Longleftrightarrow\left(D^{*}\right)_{p^{\prime}} .
$$

Regularity problem - solving $p=2$ is enough

M.D-Kirsch, 2012 Assume that $(R)_{1}$ (Regularity problem in Hardy-Sobolev space) is solvable.

Then for $p \in(1, \infty)$ we have

$$
(R)_{p} \Longleftrightarrow\left(D^{*}\right)_{p^{\prime}} .
$$

Regularity problem - solving $p=2$ is enough

M.D-Kirsch, 2012 Assume that $(R)_{1}$ (Regularity problem in Hardy-Sobolev space) is solvable.

Then for $p \in(1, \infty)$ we have

$$
(R)_{p} \Longleftrightarrow\left(D^{*}\right)_{p^{\prime}} .
$$

Here $\frac{1}{p}+\frac{1}{p^{\prime}}=1$ and $\left(D^{*}\right)$ is the Dirichlet problem for the adjoint operator L^{*}. Since $(R)_{2}$ implies $(R)_{1}$ we get solvability of $(R)_{p}$ for small Carleson norm from solvability of $(R)_{2}$.

Regularity problem - solving $p=2$ is enough

M.D-Kirsch, 2012 Assume that $(R)_{1}$ (Regularity problem in Hardy-Sobolev space) is solvable.

Then for $p \in(1, \infty)$ we have

$$
(R)_{p} \Longleftrightarrow\left(D^{*}\right)_{p^{\prime}} .
$$

Here $\frac{1}{p}+\frac{1}{p^{\prime}}=1$ and $\left(D^{*}\right)$ is the Dirichlet problem for the adjoint operator L^{*}. Since $(R)_{2}$ implies $(R)_{1}$ we get solvability of $(R)_{p}$ for small Carleson norm from solvability of $(R)_{2}$.

Reduction to differentiable coefficients

The idea comes from [DPP]. For a matrix A satisfying our Carleson condition with ellipticity constant Λ one can find (by mollifying coefficients of A) a new matrix \widetilde{A} with same ellipticity constant Λ such that A satisfies that

Reduction to differentiable coefficients

The idea comes from [DPP]. For a matrix A satisfying our Carleson condition with ellipticity constant Λ one can find (by mollifying coefficients of A) a new matrix \widetilde{A} with same ellipticity constant Λ such that \widetilde{A} satisfies that

$$
\sup \left\{\delta(X)|(\nabla \widetilde{A})(Y)|^{2} ; Y \in B(X, \delta(X) / 2)\right\}
$$

Reduction to differentiable coefficients

The idea comes from [DPP]. For a matrix A satisfying our Carleson condition with ellipticity constant Λ one can find (by mollifying coefficients of A) a new matrix \widetilde{A} with same ellipticity constant Λ such that \widetilde{A} satisfies that

$$
\sup \left\{\delta(X)|(\nabla \widetilde{A})(Y)|^{2} ; Y \in B(X, \delta(X) / 2)\right\}
$$

and

$$
\sup \left\{\delta(X)^{-1}|(A-\widetilde{A})(Y)|^{2} ; Y \in B(X, \delta(X) / 2)\right\}
$$

Reduction to differentiable coefficients

The idea comes from [DPP]. For a matrix A satisfying our Carleson condition with ellipticity constant Λ one can find (by mollifying coefficients of A) a new matrix \widetilde{A} with same ellipticity constant Λ such that \widetilde{A} satisfies that

$$
\sup \left\{\delta(X)|(\nabla \widetilde{A})(Y)|^{2} ; Y \in B(X, \delta(X) / 2)\right\}
$$

and

$$
\sup \left\{\delta(X)^{-1}|(A-\widetilde{A})(Y)|^{2} ; Y \in B(X, \delta(X) / 2)\right\}
$$

are (small) Carleson norms.

Reduction to differentiable coefficients

The idea comes from [DPP]. For a matrix A satisfying our Carleson condition with ellipticity constant Λ one can find (by mollifying coefficients of A) a new matrix \widetilde{A} with same ellipticity constant Λ such that \widetilde{A} satisfies that

$$
\sup \left\{\delta(X)|(\nabla \widetilde{A})(Y)|^{2} ; Y \in B(X, \delta(X) / 2)\right\}
$$

and

$$
\sup \left\{\delta(X)^{-1}|(A-\widetilde{A})(Y)|^{2} ; Y \in B(X, \delta(X) / 2)\right\}
$$

are (small) Carleson norms. The solvability of the regularity problem for perturbed operators has been studied in Kenig-Pipher.

Reduction to differentiable coefficients

The idea comes from [DPP]. For a matrix A satisfying our Carleson condition with ellipticity constant Λ one can find (by mollifying coefficients of A) a new matrix \widetilde{A} with same ellipticity constant Λ such that \widetilde{A} satisfies that

$$
\sup \left\{\delta(X)|(\nabla \widetilde{A})(Y)|^{2} ; Y \in B(X, \delta(X) / 2)\right\}
$$

and

$$
\sup \left\{\delta(X)^{-1}|(A-\widetilde{A})(Y)|^{2} ; Y \in B(X, \delta(X) / 2)\right\}
$$

are (small) Carleson norms. The solvability of the regularity problem for perturbed operators has been studied in Kenig-Pipher.

The Boundary value problems for second order elliptic operators satisfying Carleson condition
L Proof - main ideas
-Regularity problem

$p=2$ and Square function

Main goal is to establish and two estimates:

$$
\|S(\nabla u)\|_{L^{2}}^{2} \lesssim \text { boundary data }+\varepsilon\|\widetilde{N}(\nabla u)\|_{L^{2}}^{2}
$$

The Boundary value problems for second order elliptic operators satisfying Carleson condition
\llcorner Proof - main ideas
$\left\llcorner_{\text {Regularity problem }}\right.$

$p=2$ and Square function

Main goal is to establish and two estimates:

$$
\|S(\nabla u)\|_{L^{2}}^{2} \lesssim \text { boundary data }+\varepsilon\|\widetilde{N}(\nabla u)\|_{L^{2}}^{2}
$$

$$
\|S(\nabla u)\|_{L^{2}}^{2} \approx\|\widetilde{N}(\nabla u)\|_{L^{2}}^{2} .
$$

The Boundary value problems for second order elliptic operators satisfying Carleson condition
\llcorner Proof - main ideas
\llcorner Regularity problem

$p=2$ and Square function

Main goal is to establish and two estimates:

$$
\begin{gathered}
\|S(\nabla u)\|_{L^{2}}^{2} \lesssim \text { boundary data }+\varepsilon\|\widetilde{N}(\nabla u)\|_{L^{2}}^{2} \\
\|S(\nabla u)\|_{L^{2}}^{2} \approx\|\widetilde{N}(\nabla u)\|_{L^{2}}^{2} .
\end{gathered}
$$

The Boundary value problems for second order elliptic operators satisfying Carleson condition
\llcorner Proof - main ideas
\llcorner Regularity problem

The Square function

For any $v: \Omega \rightarrow \mathbb{R}$ we consider

$$
S(v)(Q)=\left(\int_{\Gamma(Q)}|\nabla v(X)|^{2} \delta(x)^{2-n} d X\right)^{1 / 2}
$$

for all $Q \in \partial \Omega$. Observe that

$$
\|S(v)\|_{L^{2}}^{2} \approx \int_{\Omega}|\nabla v(X)|^{2} \delta(X) d X
$$

The Square function

For any $v: \Omega \rightarrow \mathbb{R}$ we consider

$$
S(v)(Q)=\left(\int_{\Gamma(Q)}|\nabla v(X)|^{2} \delta(x)^{2-n} d X\right)^{1 / 2}
$$

for all $Q \in \partial \Omega$. Observe that

$$
\|S(v)\|_{L^{2}}^{2} \approx \int_{\Omega}|\nabla v(X)|^{2} \delta(X) d X
$$

The Boundary value problems for second order elliptic operators satisfying Carleson condition
LProof - main ideas
-Regularity problem

First estimate Key ingredient: Deal separately with

$$
\left\|S\left(\nabla_{T} u\right)\right\|_{L^{2}}^{2}
$$

The Boundary value problems for second order elliptic operators satisfying Carleson condition
LProof - main ideas
\llcorner Regularity problem

First estimate
 Key ingredient: Deal separately with

$$
\left\|S\left(\nabla_{T} u\right)\right\|_{L^{2}}^{2} \text { and }\|S(A \nabla u \cdot \nu)\|_{L^{2}}^{2} .
$$

First estimate

Key ingredient: Deal separately with
$\left\|S\left(\nabla_{T} u\right)\right\|_{L^{2}}^{2}$ and $\|S(A \nabla u \cdot \nu)\|_{L^{2}}^{2}$.
We establish a local estimate for $\left\|S\left(\nabla_{T u}\right)\right\|_{L^{2}}^{2}$. In local coordinates we might assume that $\nabla_{T} u=\left(\partial_{1} u, \partial_{2} u, \ldots, \partial_{n-1} u\right)$ and $\nabla_{\nu} u=\partial_{n} u$.

First estimate

Key ingredient: Deal separately with

$$
\left\|S\left(\nabla_{T} u\right)\right\|_{L^{2}}^{2} \text { and }\|S(A \nabla u \cdot \nu)\|_{L^{2}}^{2} .
$$

We establish a local estimate for $\left\|S\left(\nabla_{T} u\right)\right\|_{L^{2}}^{2}$. In local coordinates we might assume that $\nabla_{T} u=\left(\partial_{1} u, \partial_{2} u, \ldots, \partial_{n-1} u\right)$ and $\nabla_{\nu} u=\partial_{n} u$.

For $w_{k}=\partial_{k} u, i=k, 2, \ldots, n-1$ we use the fact that

$$
\left\|S\left(w_{k}\right)\right\|_{L^{2}}^{2} \approx \int_{\mathbb{R}^{n-1}} \frac{a_{i j}}{a_{n n}} \partial_{i} w_{k} \partial_{j} w_{k} t d x d t
$$

First estimate

Key ingredient: Deal separately with
$\left\|S\left(\nabla_{T} u\right)\right\|_{L^{2}}^{2}$ and $\|S(A \nabla u \cdot \nu)\|_{L^{2}}^{2}$.
We establish a local estimate for $\left\|S\left(\nabla_{T} u\right)\right\|_{L^{2}}^{2}$. In local coordinates we might assume that $\nabla_{T} u=\left(\partial_{1} u, \partial_{2} u, \ldots, \partial_{n-1} u\right)$ and $\nabla_{\nu} u=\partial_{n} u$.

For $w_{k}=\partial_{k} u, i=k, 2, \ldots, n-1$ we use the fact that

$$
\left\|S\left(w_{k}\right)\right\|_{L^{2}}^{2} \approx \int_{\mathbb{R}^{n-1}} \frac{a_{i j}}{a_{n n}} \partial_{i} w_{k} \partial_{j} w_{k} t d x d t
$$

Next, we integrate by parts. Several type of terms arise, in particular:

First estimate

Key ingredient: Deal separately with
$\left\|S\left(\nabla_{T} u\right)\right\|_{L^{2}}^{2}$ and $\|S(A \nabla u \cdot \nu)\|_{L^{2}}^{2}$.
We establish a local estimate for $\left\|S\left(\nabla_{T} u\right)\right\|_{L^{2}}^{2}$. In local coordinates we might assume that $\nabla_{T} u=\left(\partial_{1} u, \partial_{2} u, \ldots, \partial_{n-1} u\right)$ and $\nabla_{\nu} u=\partial_{n} u$.

For $w_{k}=\partial_{k} u, i=k, 2, \ldots, n-1$ we use the fact that

$$
\left\|S\left(w_{k}\right)\right\|_{L^{2}}^{2} \approx \int_{\mathbb{R}^{n-1}} \frac{a_{i j}}{a_{n n}} \partial_{i} w_{k} \partial_{j} w_{k} t d x d t .
$$

Next, we integrate by parts. Several type of terms arise, in particular:

The Boundary value problems for second order elliptic operators satisfying Carleson condition
\llcorner Proof - main ideas
\llcorner Regularity problem

Terms of the estimate:

$$
\iint_{\mathbb{R}^{n}} \frac{1}{a_{n n}} w_{k}\left(L w_{k}\right) t d x d t
$$

Here we use the fact that for $k<n$ the PDE w_{k} satisfies has relatively "nice" right hand side.

The Boundary value problems for second order elliptic operators satisfying Carleson condition
\llcorner Proof - main ideas
$\left\llcorner_{\text {Regularity problem }}\right.$

Terms of the estimate:

$$
\iint_{\mathbb{R}^{n}} \frac{1}{a_{n n}} w_{k}\left(L w_{k}\right) t d x d t
$$

Here we use the fact that for $k<n$ the PDE w_{k} satisfies has relatively "nice" right hand side. However, the estimate fails for
$k=n$.

Terms of the estimate:

$$
\iint_{\mathbb{R}^{n}} \frac{1}{a_{n n}} w_{k}\left(L w_{k}\right) t d x d t
$$

Here we use the fact that for $k<n$ the PDE w_{k} satisfies has relatively "nice" right hand side. However, the estimate fails for $k=n$.

$$
\iint_{\mathbb{R}^{n}} w_{k}\left(\partial_{j} w_{k}\right) \frac{a_{n j}}{a_{n n}} d x d t
$$

Terms of the estimate:

$$
\iint_{\mathbb{R}^{n}} \frac{1}{a_{n n}} w_{k}\left(L w_{k}\right) t d x d t
$$

Here we use the fact that for $k<n$ the PDE w_{k} satisfies has relatively "nice" right hand side. However, the estimate fails for $k=n$.

$$
\iint_{\mathbb{R}^{n}} w_{k}\left(\partial_{j} w_{k}\right) \frac{a_{n j}}{a_{n n}} d x d t
$$

For $j=n$ this gives us a boundary term $-\frac{1}{2} \int_{\mathbb{R}^{n-1}} w_{k}^{2} d x$.

Terms of the estimate:

$$
\iint_{\mathbb{R}^{n}} \frac{1}{a_{n n}} w_{k}\left(L w_{k}\right) t d x d t
$$

Here we use the fact that for $k<n$ the PDE w_{k} satisfies has relatively "nice" right hand side. However, the estimate fails for $k=n$.

$$
\iint_{\mathbb{R}^{n}} w_{k}\left(\partial_{j} w_{k}\right) \frac{a_{n j}}{a_{n n}} d x d t
$$

For $j=n$ this gives us a boundary term $-\frac{1}{2} \int_{\mathbb{R}^{n-1}} w_{k}^{2} d x$.

The Boundary value problems for second order elliptic operators satisfying Carleson condition
LProof - main ideas
-Regularity problem

Terms of the estimate:

$$
\iint_{\mathbb{R}^{n}}\left|w_{k}\right|\left|\nabla w_{k}\right||\nabla A| t d x d t
$$

The Boundary value problems for second order elliptic operators satisfying Carleson condition
\llcorner Proof - main ideas
\llcorner Regularity problem

Terms of the estimate:

$$
\iint_{\mathbb{R}^{n}}\left|w_{k}\right|\left|\nabla w_{k}\right||\nabla A| t d x d t
$$

This is the error term where the Carleson condition on the coefficients is used. This term has an estimate

$$
\left\|(\nabla A)^{2} t\right\|_{C a r l}\left\|S\left(w_{k}\right)\right\|_{L^{2}}\|N(\nabla u)\|_{L^{2}} .
$$

Terms of the estimate:

$$
\iint_{\mathbb{R}^{n}}\left|w_{k}\right|\left|\nabla w_{k}\right||\nabla A| t d x d t
$$

This is the error term where the Carleson condition on the coefficients is used. This term has an estimate

$$
\left\|(\nabla A)^{2} t\right\|_{C a r l}\left\|S\left(w_{k}\right)\right\|_{L^{2}}\|N(\nabla u)\|_{L^{2}} .
$$

For the remaining estimate of the square function of the co-normal derivative we use the original equation $L u=0$ together with the established estimate for $\left\|S\left(\nabla_{T} u\right)\right\|_{L^{2}}^{2}$.

Terms of the estimate:

$$
\iint_{\mathbb{R}^{n}}\left|w_{k}\right|\left|\nabla w_{k}\right||\nabla A| t d x d t
$$

This is the error term where the Carleson condition on the coefficients is used. This term has an estimate

$$
\left\|(\nabla A)^{2} t\right\|_{C a r l}\left\|S\left(w_{k}\right)\right\|_{L^{2}}\|N(\nabla u)\|_{L^{2}} .
$$

For the remaining estimate of the square function of the co-normal derivative we use the original equation $L u=0$ together with the established estimate for $\left\|S\left(\nabla_{T} u\right)\right\|_{L^{2}}^{2}$.

The Boundary value problems for second order elliptic operators satisfying Carleson condition
LProof - main ideas
Regularity problem

Second estimate: $\|S(\nabla u)\|_{L^{2}}^{2} \approx\|N(\nabla u)\|_{L^{2}}^{2}$

Difficult direction: $\|N(\nabla u)\|_{L^{2}}^{2} \lesssim\|S(\nabla u)\|_{L^{2}}^{2}$.

Second estimate: $\|S(\nabla u)\|_{L^{2}}^{2} \approx\|N(\nabla u)\|_{L^{2}}^{2}$

Difficult direction: $\|N(\nabla u)\|_{L^{2}}^{2} \lesssim\|S(\nabla u)\|_{L^{2}}^{2}$.
The proof relies on a stopping time argument of Kenig-Pipher-Toro.

The Boundary value problems for second order elliptic operators satisfying Carleson condition
\llcorner Proof - main ideas
\llcorner Regularity problem

Second estimate: $\|S(\nabla u)\|_{L^{2}}^{2} \approx\|N(\nabla u)\|_{L^{2}}^{2}$

Difficult direction: $\|N(\nabla u)\|_{L^{2}}^{2} \lesssim\|S(\nabla u)\|_{L^{2}}^{2}$.
The proof relies on a stopping time argument of Kenig-Pipher-Toro.

The Boundary value problems for second order elliptic operators satisfying Carleson condition
LProof - main ideas
— Neumann problem

Neumann problem - solving for $p=2$ and induction for integer p

We do not know an analogue of the result M.D-Kirsch, 2012.

Strategy:

The Boundary value problems for second order elliptic operators satisfying Carleson condition
\llcorner Proof - main ideas
— Neumann problem
Neumann problem - solving for $p=2$ and induction for integer p

We do not know an analogue of the result M.D-Kirsch, 2012.

Strategy:

Solve the Neumann problem for $p=2$ (using solvability of the $\left.(R)_{2}\right)$.

Neumann problem - solving for $p=2$ and induction for integer p

We do not know an analogue of the result M.D-Kirsch, 2012.

Strategy:

Solve the Neumann problem for $p=2$ (using solvability of the $\left.(R)_{2}\right)$.

Next, establish solvability of $(N)_{p}$ using $(R)_{p}$ and induction (for p integer $p \geq 3$).

Neumann problem - solving for $p=2$ and induction for integer p

We do not know an analogue of the result M.D-Kirsch, 2012.

Strategy:

Solve the Neumann problem for $p=2$ (using solvability of the $\left.(R)_{2}\right)$.

Next, establish solvability of $(N)_{p}$ using $(R)_{p}$ and induction (for p integer $p \geq 3$).

The induction step:

Let $p \geq 2$ be an integer, $0 \leq k \leq p-2$ and integer and u be a solution to $L u=\operatorname{div} A \nabla u=0$. Then there exists $\varepsilon>0$ such that if the Carleson norm of the coefficients $C\left(r_{0}\right)<\varepsilon$ then for some $K=K(\Omega, \Lambda, n, \varepsilon, m, k)>0$

$$
\begin{align*}
& \iint_{\Omega_{r}}\left|\nabla_{T} u\right|^{p-k-2}|H|^{k}|\nabla H|^{2} \delta(X) d X \tag{1}\\
\leq & (p-k-2) K \iint_{\Omega_{2 r}}\left|\nabla_{T} u\right|^{p-k-3}|H|^{k+1}|\nabla H|^{2} \delta(X) d X \\
& +C(r) \iint_{\Omega \backslash \Omega_{r}}|\nabla u|^{p} d X \\
& +K \int_{\partial \Omega}|H|^{p} d x .
\end{align*}
$$

The induction step:

Let $p \geq 2$ be an integer, $0 \leq k \leq p-2$ and integer and u be a solution to $L u=\operatorname{div} A \nabla u=0$. Then there exists $\varepsilon>0$ such that if the Carleson norm of the coefficients $C\left(r_{0}\right)<\varepsilon$ then for some $K=K(\Omega, \Lambda, n, \varepsilon, m, k)>0$

$$
\begin{align*}
& \iint_{\Omega_{r}}\left|\nabla_{T} u\right|^{p-k-2}|H|^{k}|\nabla H|^{2} \delta(X) d X \tag{1}\\
\leq & (p-k-2) K \iint_{\Omega_{2 r}}\left|\nabla_{T} u\right|^{p-k-3}|H|^{k+1}|\nabla H|^{2} \delta(X) d X \\
& +C(r) \iint_{\Omega \backslash \Omega_{r}}|\nabla u|^{p} d X \\
& +K \int_{\partial \Omega}|H|^{p} d x .
\end{align*}
$$

Here $H=a_{n i} \partial_{i} u$. This is the co-normal derivative in \mathbb{R}_{+}^{n}.

The induction step:

Let $p \geq 2$ be an integer, $0 \leq k \leq p-2$ and integer and u be a solution to $L u=\operatorname{div} A \nabla u=0$. Then there exists $\varepsilon>0$ such that if the Carleson norm of the coefficients $C\left(r_{0}\right)<\varepsilon$ then for some $K=K(\Omega, \Lambda, n, \varepsilon, m, k)>0$

$$
\begin{align*}
& \iint_{\Omega_{r}}\left|\nabla_{T} u\right|^{p-k-2}|H|^{k}|\nabla H|^{2} \delta(X) d X \tag{1}\\
\leq & (p-k-2) K \iint_{\Omega_{2 r}}\left|\nabla_{T} u\right|^{p-k-3}|H|^{k+1}|\nabla H|^{2} \delta(X) d X \\
& +C(r) \iint_{\Omega \backslash \Omega_{r}}|\nabla u|^{p} d X \\
& +K \int_{\partial \Omega}|H|^{p} d x .
\end{align*}
$$

Here $H=a_{n i} \partial_{i} u$. This is the co-normal derivative in \mathbb{R}_{+}^{n}.

The Boundary value problems for second order elliptic operators satisfying Carleson condition
$L_{\text {Open problems }}$

Open problem

Is the following analogue of result of Kenig-Pipher, 2001 true?

Open problem

Is the following analogue of result of Kenig-Pipher, 2001 true?

$$
\begin{equation*}
\delta(X)^{-1}\left(\operatorname{osc}_{B(X, \delta(X) / 2)} a_{i j}\right)^{2} \tag{2}
\end{equation*}
$$

is a density of Carleson measure on a Lipschitz domain Ω then $(R)_{p}$

Open problem

Is the following analogue of result of Kenig-Pipher, 2001 true?
If

$$
\begin{equation*}
\delta(X)^{-1}\left(\operatorname{osc}_{B(X, \delta(X) / 2)} a_{i j}\right)^{2} \tag{2}
\end{equation*}
$$

is a density of Carleson measure on a Lipschitz domain Ω then $(R)_{p}$ (and $(N)_{p}$)

Open problem

Is the following analogue of result of Kenig-Pipher, 2001 true?
If

$$
\begin{equation*}
\delta(X)^{-1}\left(\operatorname{osc}_{B(X, \delta(X) / 2)} a_{i j}\right)^{2} \tag{2}
\end{equation*}
$$

is a density of Carleson measure on a Lipschitz domain Ω then $(R)_{p}$ (and $(N)_{p}$) boundary value problems are solvable for some $p>1$.

Open problem

Is the following analogue of result of Kenig-Pipher, 2001 true?
If

$$
\begin{equation*}
\delta(X)^{-1}\left(\operatorname{osc}_{B(X, \delta(X) / 2)} a_{i j}\right)^{2} \tag{2}
\end{equation*}
$$

is a density of Carleson measure on a Lipschitz domain Ω then $(R)_{p}$ (and $(N)_{p}$) boundary value problems are solvable for some $p>1$.

Hint of solution for the Regularity problem:

Open problem

Is the following analogue of result of Kenig-Pipher, 2001 true?
If

$$
\begin{equation*}
\delta(X)^{-1}\left(\operatorname{osc}_{B(X, \delta(X) / 2)} a_{i j}\right)^{2} \tag{2}
\end{equation*}
$$

is a density of Carleson measure on a Lipschitz domain Ω then $(R)_{p}$ (and $(N)_{p}$) boundary value problems are solvable for some $p>1$.

Hint of solution for the Regularity problem: Prove that $(R)_{1}$
holds under the assumption (1).

Open problem

Is the following analogue of result of Kenig-Pipher, 2001 true?
If

$$
\begin{equation*}
\delta(X)^{-1}\left(\operatorname{osc}_{B(X, \delta(X) / 2)} a_{i j}\right)^{2} \tag{2}
\end{equation*}
$$

is a density of Carleson measure on a Lipschitz domain Ω then $(R)_{p}$ (and $(N)_{p}$) boundary value problems are solvable for some $p>1$.

Hint of solution for the Regularity problem: Prove that $(R)_{1}$ holds under the assumption (1). Then by [M.D-Kirsch, 2012] $(R)_{1+\varepsilon}$ holds for some small $\varepsilon>0$.

Open problem

Is the following analogue of result of Kenig-Pipher, 2001 true?
If

$$
\begin{equation*}
\delta(X)^{-1}\left(\operatorname{osc}_{B(X, \delta(X) / 2)} a_{i j}\right)^{2} \tag{2}
\end{equation*}
$$

is a density of Carleson measure on a Lipschitz domain Ω then $(R)_{p}$ (and $(N)_{p}$) boundary value problems are solvable for some $p>1$.

Hint of solution for the Regularity problem: Prove that $(R)_{1}$ holds under the assumption (1). Then by [M.D-Kirsch, 2012] $(R)_{1+\varepsilon}$ holds for some small $\varepsilon>0$.

The Boundary value problems for second order elliptic operators satisfying Carleson condition
$\left\llcorner_{\text {New }}\right.$ developments: Systems and complex coefficients

Systems with real coefficients

(joint work with Marius Mitrea and Sukjung Hwang).

Systems with real coefficients

(joint work with Marius Mitrea and Sukjung Hwang).
Consider the following PDE system

$$
\mathcal{L} u=\left[\partial_{i}\left(A_{i j}^{\alpha \beta}(x) \partial_{j} u_{\beta}\right)+B_{i}^{\alpha \beta}(x) \partial_{i} u_{\beta}\right]_{\alpha}
$$

for $i, j \in\{0, \ldots, n-1\}$ and $\alpha, \beta \in\{1, \ldots, N\}$., where $u=\left(u_{\alpha}\right)$ is
a vector valued function.

Systems with real coefficients

(joint work with Marius Mitrea and Sukjung Hwang).
Consider the following PDE system

$$
\mathcal{L} u=\left[\partial_{i}\left(A_{i j}^{\alpha \beta}(x) \partial_{j} u_{\beta}\right)+B_{i}^{\alpha \beta}(x) \partial_{i} u_{\beta}\right]_{\alpha}
$$

for $i, j \in\{0, \ldots, n-1\}$ and $\alpha, \beta \in\{1, \ldots, N\}$., where $u=\left(u_{\alpha}\right)$ is a vector valued function.

The goal is to solve the Dirichlet, Neumann and Regularity problem of the system of N equations $\mathcal{L} u=0$.

Systems with real coefficients

(joint work with Marius Mitrea and Sukjung Hwang).
Consider the following PDE system

$$
\mathcal{L} u=\left[\partial_{i}\left(A_{i j}^{\alpha \beta}(x) \partial_{j} u_{\beta}\right)+B_{i}^{\alpha \beta}(x) \partial_{i} u_{\beta}\right]_{\alpha}
$$

for $i, j \in\{0, \ldots, n-1\}$ and $\alpha, \beta \in\{1, \ldots, N\}$., where $u=\left(u_{\alpha}\right)$ is a vector valued function.

The goal is to solve the Dirichlet, Neumann and Regularity problem of the system of N equations $\mathcal{L} u=0$.

Systems with real coefficients

Assumptions: Tensors A, B real valued A satisfying strong ellipticity and bounded.

Outline of objectives:

- L^{2} Dirichlet problem

Systems with real coefficients

Assumptions: Tensors A, B real valued A satisfying strong ellipticity and bounded.

Outline of objectives:

- L^{2} Dirichlet problem done for symmetric operators

Systems with real coefficients

Assumptions: Tensors A, B real valued A satisfying strong ellipticity and bounded.

Outline of objectives:

- L^{2} Dirichlet problem done for symmetric operators
- L^{2} Regularity problem

Systems with real coefficients

Assumptions: Tensors A, B real valued A satisfying strong ellipticity and bounded.

Outline of objectives:

- L^{2} Dirichlet problem done for symmetric operators
- L^{2} Regularity problem good progress, seems doable

Systems with real coefficients

Assumptions: Tensors A, B real valued A satisfying strong ellipticity and bounded.

Outline of objectives:

- L^{2} Dirichlet problem done for symmetric operators
- L^{2} Regularity problem good progress, seems doable
- L^{p} Dirichlet problem for $2-\varepsilon<p<\frac{2(n-1)}{n-3}+\varepsilon$

Systems with real coefficients

Assumptions: Tensors A, B real valued A satisfying strong ellipticity and bounded.

Outline of objectives:

- L^{2} Dirichlet problem done for symmetric operators
- L^{2} Regularity problem good progress, seems doable
- L^{p} Dirichlet problem for $2-\varepsilon<p<\frac{2(n-1)}{n-3}+\varepsilon$ in progress

Systems with real coefficients

Assumptions: Tensors A, B real valued A satisfying strong ellipticity and bounded.

Outline of objectives:

- L^{2} Dirichlet problem done for symmetric operators
- L^{2} Regularity problem good progress, seems doable
- L^{p} Dirichlet problem for $2-\varepsilon<p<\frac{2(n-1)}{n-3}+\varepsilon$ in progress
- Neuman problem, Regularity for other p 's

Systems with real coefficients

Assumptions: Tensors A, B real valued A satisfying strong ellipticity and bounded.

Outline of objectives:

- L^{2} Dirichlet problem done for symmetric operators
- L^{2} Regularity problem good progress, seems doable
- L^{p} Dirichlet problem for $2-\varepsilon<p<\frac{2(n-1)}{n-3}+\varepsilon$ in progress
- Neuman problem, Regularity for other p's ??????

Systems with real coefficients

Assumptions: Tensors A, B real valued A satisfying strong ellipticity and bounded.

Outline of objectives:

- L^{2} Dirichlet problem done for symmetric operators
- L^{2} Regularity problem good progress, seems doable
- L^{p} Dirichlet problem for $2-\varepsilon<p<\frac{2(n-1)}{n-3}+\varepsilon$ in progress
- Neuman problem, Regularity for other p's ??????

Systems with real coefficients

Assumptions: Tensors A, B real valued A satisfying strong ellipticity and bounded.

Outline of objectives:

- L^{2} Dirichlet problem done for symmetric operators
- L^{2} Regularity problem good progress, seems doable
- L^{p} Dirichlet problem for $2-\varepsilon<p<\frac{2(n-1)}{n-3}+\varepsilon$ in progress
- Neuman problem, Regularity for other p's ??????

The Boundary value problems for second order elliptic operators satisfying Carleson condition
$\left\llcorner^{\text {New }}\right.$ developments: Systems and complex coefficients

Scalar equation with complex coefficients

(joint work withJill Pipher) - work in progress.

Scalar equation with complex coefficients

(joint work withJill Pipher) - work in progress.
Such PDE can be seen as a real system with a skew-symmetric tensors $A_{i j}^{\alpha \beta}$.

Scalar equation with complex coefficients

(joint work withJill Pipher) - work in progress.
Such PDE can be seen as a real system with a skew-symmetric tensors $A_{i j}^{\alpha \beta}$.
The usual ellipticity assumption:

$$
\lambda|\xi|^{2} \leq R e \sum_{i, j=0}^{n-1} A_{i j} \xi_{i} \overline{\xi_{j}} \leq \Lambda|\xi|^{2}
$$

for $\xi \in \mathbb{C}^{n}$.

Scalar equation with complex coefficients

(joint work withJill Pipher) - work in progress.
Such PDE can be seen as a real system with a skew-symmetric tensors $A_{i j}^{\alpha \beta}$.
The usual ellipticity assumption:

$$
\lambda|\xi|^{2} \leq \operatorname{Re} \sum_{i, j=0}^{n-1} A_{i j} \xi_{i} \overline{\xi_{j}} \leq \Lambda|\xi|^{2}
$$

for $\xi \in \mathbb{C}^{n}$. Can be rewritten as (for all $\chi, \eta \in \mathbb{R}^{n}$)

$$
|\chi|^{2}+|\eta|^{2} \approx\langle\operatorname{Re} A \chi, \chi\rangle+\langle\operatorname{Re} A \eta, \eta\rangle+\left\langle\left(\operatorname{Im} A-\operatorname{Im} A^{t}\right) \chi, \eta\right\rangle .
$$

Scalar equation with complex coefficients

(joint work withJill Pipher) - work in progress.
Such PDE can be seen as a real system with a skew-symmetric tensors $A_{i j}^{\alpha \beta}$.
The usual ellipticity assumption:

$$
\lambda|\xi|^{2} \leq \operatorname{Re} \sum_{i, j=0}^{n-1} A_{i j} \xi_{i} \overline{\xi_{j}} \leq \Lambda|\xi|^{2}
$$

for $\xi \in \mathbb{C}^{n}$. Can be rewritten as (for all $\chi, \eta \in \mathbb{R}^{n}$)

$$
|\chi|^{2}+|\eta|^{2} \approx\langle\operatorname{Re} A \chi, \chi\rangle+\langle\operatorname{Re} A \eta, \eta\rangle+\left\langle\left(\operatorname{Im} A-\operatorname{Im} A^{t}\right) \chi, \eta\right\rangle .
$$

Scalar equation with complex coefficients

Again, under this assumption the L^{2} theory as described above works.

New idea:

Scalar equation with complex coefficients

Again, under this assumption the L^{2} theory as described above works.

New idea: Direct method for L^{P} solvability

Scalar equation with complex coefficients

Again, under this assumption the L^{2} theory as described above works.

New idea: Direct method for L^{p} solvability (in real case this is done in [DPP]).

Scalar equation with complex coefficients

Again, under this assumption the L^{2} theory as described above works.

New idea: Direct method for L^{p} solvability (in real case this is done in [DPP]).

New ingredient: Concept of L^{p} dissipativity of Cialdea and Maz'ya.

Scalar equation with complex coefficients

Again, under this assumption the L^{2} theory as described above works.

New idea: Direct method for L^{p} solvability (in real case this is done in [DPP]).

New ingredient: Concept of L^{p} dissipativity of Cialdea and Maz'ya. $\mathrm{C}+\mathrm{M}$ define this in the context of parabolic PDEs.

Scalar equation with complex coefficients

Again, under this assumption the L^{2} theory as described above works.

New idea: Direct method for L^{p} solvability (in real case this is done in [DPP]).

New ingredient: Concept of L^{p} dissipativity of Cialdea and Maz'ya. $\mathrm{C}+\mathrm{M}$ define this in the context of parabolic PDEs. If \mathcal{L} is L^{P} dissipative then $u_{t}-\mathcal{L} u=0$ satisfies

Scalar equation with complex coefficients

Again, under this assumption the L^{2} theory as described above works.

New idea: Direct method for L^{p} solvability (in real case this is done in [DPP]).

New ingredient: Concept of L^{p} dissipativity of Cialdea and Maz'ya. $\mathrm{C}+\mathrm{M}$ define this in the context of parabolic PDEs. If \mathcal{L} is L^{p} dissipative then $u_{t}-\mathcal{L} u=0$ satisfies

$$
\|u(t)\|_{L^{p}} \leq\|u(0)\|_{L^{p}}, \quad t \geq 0
$$

Scalar equation with complex coefficients

Again, under this assumption the L^{2} theory as described above works.

New idea: Direct method for L^{p} solvability (in real case this is done in [DPP]).

New ingredient: Concept of L^{p} dissipativity of Cialdea and Maz'ya. $\mathrm{C}+\mathrm{M}$ define this in the context of parabolic PDEs. If \mathcal{L} is L^{p} dissipative then $u_{t}-\mathcal{L} u=0$ satisfies

$$
\|u(t)\|_{L^{p}} \leq\|u(0)\|_{L^{p}}, \quad t \geq 0
$$

$\mathrm{C}+\mathrm{M}$ come with algebraic condition that allows to check when \mathcal{L} is L^{p} dissipative.

Scalar equation with complex coefficients

Again, under this assumption the L^{2} theory as described above works.

New idea: Direct method for L^{p} solvability (in real case this is done in [DPP]).

New ingredient: Concept of L^{p} dissipativity of Cialdea and Maz'ya. $\mathrm{C}+\mathrm{M}$ define this in the context of parabolic PDEs. If \mathcal{L} is L^{p} dissipative then $u_{t}-\mathcal{L} u=0$ satisfies

$$
\|u(t)\|_{L^{p}} \leq\|u(0)\|_{L^{p}}, \quad t \geq 0
$$

$\mathrm{C}+\mathrm{M}$ come with algebraic condition that allows to check when \mathcal{L} is L^{p} dissipative.

Scalar equation with complex coefficients

We call \mathcal{L} with complex coefficients strongly L^{p} dissipative if
$\langle\operatorname{Re} A \lambda, \lambda\rangle+\langle\operatorname{Re} A \eta, \eta\rangle+\left\langle\left(\sqrt{\frac{p^{\prime}}{p}} \operatorname{Im} A-\sqrt{\frac{p}{p^{\prime}}} \operatorname{Im} A^{t}\right) \lambda, \eta\right\rangle \approx|\lambda|^{2}+|\eta|^{2}$.
This is (when $p=2$ just the usual ellipticity condition for the complex matrices).

Scalar equation with complex coefficients

We call \mathcal{L} with complex coefficients strongly L^{p} dissipative if
$\langle\operatorname{Re} A \lambda, \lambda\rangle+\langle\operatorname{Re} A \eta, \eta\rangle+\left\langle\left(\sqrt{\frac{p^{\prime}}{p}} \operatorname{Im} A-\sqrt{\frac{p}{p^{\prime}}} \operatorname{Im} A^{t}\right) \lambda, \eta\right\rangle \approx|\lambda|^{2}+|\eta|^{2}$.
This is (when $p=2$ just the usual ellipticity condition for the complex matrices).

We have the following:

Scalar equation with complex coefficients

We call \mathcal{L} with complex coefficients strongly L^{p} dissipative if
$\langle\operatorname{Re} A \lambda, \lambda\rangle+\langle\operatorname{Re} A \eta, \eta\rangle+\left\langle\left(\sqrt{\frac{p^{\prime}}{p}} \operatorname{Im} A-\sqrt{\frac{p}{p^{\prime}}} \operatorname{Im} A^{t}\right) \lambda, \eta\right\rangle \approx|\lambda|^{2}+|\eta|^{2}$.
This is (when $p=2$ just the usual ellipticity condition for the complex matrices).

We have the following: Let $A \in L^{\infty}(\Omega)$ be a matrix that is
uniformly elliptic. Then there exists $p_{0} \in[1,2)\left(p_{0}=1\right.$ if and only
if $\operatorname{Im} A=0)$ such that for all $p \in\left(p_{0}, p_{0}^{\prime}\right)$

Scalar equation with complex coefficients

We call \mathcal{L} with complex coefficients strongly L^{p} dissipative if
$\langle\operatorname{Re} A \lambda, \lambda\rangle+\langle\operatorname{Re} A \eta, \eta\rangle+\left\langle\left(\sqrt{\frac{p^{\prime}}{p}} \operatorname{lm} A-\sqrt{\frac{p}{p^{\prime}}} \operatorname{lm} A^{t}\right) \lambda, \eta\right\rangle \approx|\lambda|^{2}+|\eta|^{2}$.
This is (when $p=2$ just the usual ellipticity condition for the complex matrices).

We have the following: Let $A \in L^{\infty}(\Omega)$ be a matrix that is uniformly elliptic. Then there exists $p_{0} \in\left[1,2\right.$) ($p_{0}=1$ if and only if $\operatorname{Im} A=0)$ such that for all $p \in\left(p_{0}, p_{0}^{\prime}\right)$ the above algebraic

Scalar equation with complex coefficients

We call \mathcal{L} with complex coefficients strongly L^{p} dissipative if
$\langle\operatorname{Re} A \lambda, \lambda\rangle+\langle\operatorname{Re} A \eta, \eta\rangle+\left\langle\left(\sqrt{\frac{p^{\prime}}{p}} \operatorname{lm} A-\sqrt{\frac{p}{p^{\prime}}} \operatorname{lm} A^{t}\right) \lambda, \eta\right\rangle \approx|\lambda|^{2}+|\eta|^{2}$.
This is (when $p=2$ just the usual ellipticity condition for the complex matrices).

We have the following: Let $A \in L^{\infty}(\Omega)$ be a matrix that is uniformly elliptic. Then there exists $p_{0} \in\left[1,2\right.$) ($p_{0}=1$ if and only if $\operatorname{Im} A=0)$ such that for all $p \in\left(p_{0}, p_{0}^{\prime}\right)$ the above algebraic condition holds.

Scalar equation with complex coefficients

Our calculations show that for p for which this algebraic condition holds one can establish an estimates:

$$
\left\|S_{p}(u)\right\|_{L^{p}}^{2} \lesssim \text { boundary data }+\varepsilon\|\widetilde{N}(u)\|_{L^{p}}^{p}
$$

Scalar equation with complex coefficients

Our calculations show that for p for which this algebraic condition holds one can establish an estimates:

$$
\left\|S_{p}(u)\right\|_{L^{p}}^{2} \lesssim \text { boundary data }+\varepsilon\|\widetilde{N}(u)\|_{L^{p}}^{p}
$$

$$
\left\|S_{p}(\nabla u)\right\|_{L^{p}}^{p} \approx\|\widetilde{N}(\nabla u)\|_{L^{p}}^{p} .
$$

Scalar equation with complex coefficients

Our calculations show that for p for which this algebraic condition holds one can establish an estimates:

$$
\left\|S_{p}(u)\right\|_{L^{p}}^{2} \lesssim \text { boundary data }+\varepsilon\|\widetilde{N}(u)\|_{L^{p}}^{p}
$$

and

$$
\left\|S_{p}(\nabla u)\right\|_{L^{p}}^{p} \approx\|\widetilde{N}(\nabla u)\|_{L^{p}}^{p} .
$$

Hence L^{P} Dirichlet solvability follows !!!!

Scalar equation with complex coefficients

Our calculations show that for p for which this algebraic condition holds one can establish an estimates:

$$
\left\|S_{p}(u)\right\|_{L^{p}}^{2} \lesssim \text { boundary data }+\varepsilon\|\widetilde{N}(u)\|_{L^{p}}^{p}
$$

and

$$
\left\|S_{p}(\nabla u)\right\|_{L^{p}}^{p} \approx\|\widetilde{N}(\nabla u)\|_{L^{p}}^{p} .
$$

Hence L^{p} Dirichlet solvability follows !!!!

