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Analytic contraction semigroups

Suppose that (T(t))t>0 is a Co-semigroup on LP(u), p > 1, s.t.
IT@)fllp < Ifllp VF € LP(n)
whenever t > 0 and p € [1, o).

Let —A, denote its generator on LP(1), 1 < p < co. Suppose that
Ay is 1-1.

Suppose that the numerical range of A, is contained in a sector of
angle < 7/2: let 95 € [0,7/2) be the smallest angle s.t.

Im (Aof, £),2| < tands - Re (Aof, f)2, VF € D(Ay)

For every ¥ € [0,7/2), set

v i=7/2 -9
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e Lumer-Phillips theorem: || T(2)||, < 1, for all z € Sy,

e Complex interpolation: for all p € (1,00) 3, > 0 s.t.
|T(2)][, <1 forall z € Sy, (¥, denotes the largest angle)

e A, is sectorial with sectoriality angle w(Ap) < U5 e

o(Ap) C Sy, and H(C—A H D¢ITY, V¢ e C\Sy, 9>

ey

\ 7




Functional calculus (Mclntosh 1986) Let ¥ > w(A,). For, say,
m € H>(Sy) one can define the closed d.d. (possibly unbounded)
operator m(Ap). For m with polynomial decay at 0 and co

m(Ap)f = 1 /Mﬂ m(¢)(¢ — Ap)THFdC

27

Definition (bounded H*°-calculus)

We say that A, has bounded H>(Sy)-calculus if

e me H*(Sy) = m(Ap) € B(LP(u))
o [[m(Ap)ll < Climlleo, ¥V m € H*(Sy)

wH(Ap) == inf{¥ € (w(Ap), ) : Ap has bounded H>*(Sy)-calculus}



For all generators of analytic contractions we have

e wy(Ap) < m/2: Fendler's dilatation and C-W transference
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For all generators of analytic contractions we have

e wy(Ap) < m/2: Cowling’s complex interpolation

e wy(Az) = w(A2): General result by Mclntosh

Questions to ask: Let 1 < p < 0o, p # 2

e wy(Ap) =w(Ap)? Unknown. (False on reflexive B. spaces)
e Sharp lower bound for 1,7

o wy(Ap) <957

Recall w(Ap) < U5, where 9, = m/2 — 9}, is the contractivity angle

For generators of symmetric contraction semigroups we can answer
the last two questions



Symmetric contraction semigroups

For 1 < p < oo define

-2
@ = arctan M

P 2yp—1’ p=T/2=

Theorem (Kriegler 2011)

For all symmetric contraction semigroups 9, = ¢p; i.e.

IT(2)l, <1, VzeS,,

e Proved by Bakry (1989) for symmetric diffusion semigroups
e Proved by Liskevich and Perelmuter (1995) for sub-Markovian
semigroups

The angle ¢, is sharp because it is sharp for the Euclidean heat
semigroup on R"” (Bakry 1989 or Weissler 1979 + Epperson 1989)



Functional calculus for generators of symmetric contractions:

e Stein 1970:
wh(Ap) < /2 V¥ Markovian gen.
e Cowling 1983:
wr(Ap) < (1/2—1/p| := 9§
e Kunstmann and Strkalj 2003:

wH(Ap) < 19?3 < 195 V sub—Markovian gen.

e Kriegler 2011: The condition that the generator is
sub-Markovian can be removed



Note: ¢y, < ﬂgé < 19,(5-, when p # 2

Theorem (C., Dragicevi¢ 2013)

For all generators of symmetric contraction semigroups

wr(Ap) < ¢,

Moreover, for all ¥ > ¢7, and m € H>°(Sy)

Im(Ap)II S (p%* log p) - (9 — ¢5) >

¢}, is sharp: by Epperson’s theorem,

wH(Lp) = w(Lp) = ¢,
where L = A 4+ x -V on R” endowed with the standard Gaussian
measure.

Garcia-Cuerva, Mauceri, Meda, Sjogren, Torrea 2001:
wh(Lp) = ¢p, with [[m(Lp)| < C(n, p)



Nonsymmetric Ornstein-Uhlenbeck operators on R”

Let Q,A € R™" st
e @ is symmetric and positive definite
° O'(A) c Cy

Set S(t) = e ™A and define
t e’}
Q = /0 S(u)QS*(u)du, Qu = /0 S(u)QS*(u) du.
Lyapunov equation:

Gaussian measure of covariance Q:

1 (Q¢ 'x,x)
D) = G dergp) 2 P <_t2> dx, 1<tsoo




O-U semigroup via Kolmogorov's formula:
T(OF() = [ FSEx+y)dnly), f € Co®")

® Yo is the invariant measure

e (T(t))t>0 extends to a positivity preserving semigroup of
contractions on LP(7ys), 1 < p < 0.

For 1 < p < o0, denote its generator on LP(vs) by —£p
The space C°(R") is a core for £, and

LF(x) = —%div(QVf)(x) V() Ao, f € C(RM)
Denote by V%  the formal adjoint of V on L?(7s). Then,

Lf = Vi (QuA*VF), fe C(R")



B = QxA*, Bs:=(B"+B)/2, B,:=(B—-B")/2
By Lyapunov equation Bs = Q/2 > 0. Therefore,

|Im <B£7£>(C"| < tanﬁ; -Re <B£a§>(c”a

where
Y5 = arctan "B§1/2BaB;1/2”

The O-U operator L is associated with the sesquilinear form
a(f.g) = [ (BYF.Vg)drm, Dla) = WH¥(1)
RI‘I
The form a is d.d., closed and Kato-sectorial of angle 93.

Hence the O-U semigroup is analytic and contractive on Sy,



For p € (1, 00), define ‘Recall: Lo = Vi BV

\/ (p—2)? + p?(tan ¥3)?

= arccot
Jp=ar 2 p—l

Theorem (Chill, Fasangova, Metafune, Pallara 2005)
e IT@)l, <1 VzeSy,

o [T(2)ll, < CforallzeSy= 1<,

Up = Vp/(p-1)

Lo is self-adjoint iff B = B* iff ¥5 = 0. In this case ¥, = ¢,

By the second item in the theorem w(L,) = ¥},

Maas and van Neerven 2007: Analogous result for analytic O-U
semigroups on abstract Wiener spaces



Theorem (C., Dragicevi¢ 2016)
Sharp bounded H*°-calculus for O-U operators:

wh(Lp) = ) = w(Lp),
for every p € (1,00).
e For symmetric O-U operators 0}, = ¢,

¢ Nondegeneracy condition N(Q) = {0} can be removed and
replaced by analyticity on L? of the semigroup

e Analogous result for generators of analytic O-U semigroups on
abstract Wiener spaces

van Neerven, Maas, Goldys, Chojnowska-Michalik, Fuhrman,
Da Prato, Lunardi...

NOTATION: q = p/(p — 1)




Nazarov-Treil Bellman function: Fix p > 2 and 6 > 0

P> 1<lP < Iml®
Q , = P+ q"‘(s 2 2
(¢m) = I¢1P + Inl 2P+ (2= 1)l s 1P > Il
p q

e Q(¢,m) < (IKIP + |nl7)
e Qe CHRY
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Nazarov-Treil Bellman function: Fix p > 2 and 6 > 0

ISRl FICP < Inlf
2

Q(¢,m) = ¢IP + [nl + 4
(Gm) = I¢IP + In| {2<p+(_1) [0l 1P >
p q

(¢, m) = (I¢IP +[nl?)
Q € CYR*) and Q € C?(R*\ Ty), where
To={(¢,;n) € RZ xR?; (n=0) v (I¢P = [n]%)}

10:Q(¢, I £ max{I¢IP~H, [nl},  18,Q(C,m)| < Inl9~*

Oc = (0¢, —i0;,) and Oy = (Op, — i0p,)

Nontrivial convexity properties...this will come next



Our approach to bounded H*°-calculus

The target is to prove wy(Lp) = w(Lp) =V}, where 0, is the
contractivity angle of the O-U semigroup
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contractivity angle of the O-U semigroup

Cowling, Doust, Mclntosh and Yagi 1996: it is enough to prove

00 . -
L7 | ety e g v de < Clfloligles 0 <0,
0 Rn

The “classical” approach to such bilinear inequality is based on
square functions; e.g.

2 dt 1/2
)

6,(F)C) = ([~ |0y (e ()

Problem: how to prove the boundedness of Gy on LP(7)?

We use a different technique based on heat-flow monotonicity and
convexity of Q



Consider the functional
&(0) = [ Q(T(e ), T (7)) drec

The properties of Q ensure that £ is “regular” and satisfies the
initial condition

E0) < (115 + 1111g)
Suppose that

[ & T (te*)(F) T*(te¥7)(g) e (1)

—&(t)2

Then, by integrating both sides of (1) from 0 to oo, we obtain the
desired bilinear embedding

(replace (f, g) with (Af,A\"1g) and minimize in A > 0)



Condition (1) reduces to:

A Lfgd’yw’ SRG/R (eim((?(Q)(f,g)L1‘—|—e$"ﬁ((’9¢,Q)(1",g)L*g)d’yoO
for all f € D(£Lp) and all g € D(£7) and all ¥ < 9,

Note that
Q(¢,0) ~ [¢[P,  Q(0,n) ~ |n|T

Therefore, the integral condition implies dissipativity:

Re(eim/ ﬂf|p*2£}f d’yoo) >0, Re(eiiﬁ/ g|g|q*2L*g d’yoo) >0
R~ R~



A general result (C., Dragicevic) Let A be a closed, d.d. and
1-1 operator on LP(u). Suppose that there exists ¢ € [0, 7/2) s.t.

[ afgdu] sRef (0@, )T (0,Q)(F, 04"
Q Q

for all f € D(A) and all g € D(A*). Then,

(i) —A is the gen. of an analytic contr. semigroup on LP(u) of
angle ¢

(ii) —A* is the gen. of an analytic contr. semigroup on L9(u) of
angle 9

(iii) wp(A) < 0*
Problem: Find pointwise conditions on second-order partial
derivatives of O such that the integral inequality above holds

We are able to solve the problem when:
e A is the negative generator of a symmetric contraction (2013)

e A has a special form; e.g. A = L is a O-U operator (2016)



Generalised convexity of the Bellman function Q

Given D € C™" define
ReD —-ImD
Im D ReD

M(D) = : R?" — R2"

For v € R*, w = (a, 3) € R*", and D, E € C™" define

HE P [v;w] == (HessQ(v) ® far)w, [M(D) & M(E)] w)gs.

H(QD’E)[V; ] is the quadratic form on R*" associated with the matrix
T
ReD —ImD
ImD ReD

(HessQ(v) ® Ign)
ReE —ImE

Im E Re E



Let B € R™" be strictly accretive. Then its numerical range angle
¥% belongs to [0,7/2). Recall the notation

\/p 2)2 + p?(tan ¥%)?
2 p—l

p = arccot

Theorem (C., Dragievi¢ 2016)

Let p > 2. For every 0 <9 < U, there exist §, ap > 0 such that, if
Q is the Bellman function associated with &, and

Ce {eiﬁB, efi‘ﬂB7 eiﬁB*7 efiﬁB*}7

Hg lviw] > a0 |[VBsi, |

for all v € R*\ To and w = (a, B) € R?" x R2",

then

The constant ag is dimension-free.

If @ = (a1, a2), then & := a3 + iap
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Theorem (C., Dragievi¢ 2016)

Let p > 2. For every 0 <9 < U, there exist §, ap > 0 such that, if
Q is the Bellman function associated with &, and

Ce {eiﬁB, efi‘ﬂB7 eiﬁB*7 efiﬁB*}7

C,C*
(Q*d) )[v w] = ap - H\/ e n‘
for all v € R* and w = (o, B) € R?" x R?",

then

The constant ag is dimension-free.

If @ = (a1, a2), then & := a3 + iap



e For proving the universal sharp multiplier theorem for
generators of symmetric contractions, it is enough to consider
the case B = Ig; i.e. C = T (C., Dragicevi¢ 2013)

e The theorem also holds in infinite dimension: replace
B € R™" with a strictly accretive bounded operator acting on
a real separable Hilbert space H.
This is relevant for studying bounded H*°-calculus for O-U
operators on abstract Wiener spaces.
In this case H is the RKHS associated with the diffusion Q.

For general accretive C € C™"? This is the subject of a
forthcoming paper in collaboration with O. Dragicevic.

Applications to semigroup contractivity and functional calculus for
divergence-form operators with complex symbols.
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Sharp bounded H*-calculus for O-U generator £

Recall that Lf = V% (BVf), f € C°(R"), where B = Q. A*.
The target is to prove wy(Lp) = U},

We reduced the problem to prove the integral inequality (V¢ < ¥p)

/H\/ BSVfHH\/ Bngdeyoo 5Re/(eim(acg)(f,g)ﬁf+ejF’.19((9nQ)(ﬁg)£*gj
for all f,g € C°(R").
Generalised Cauchy-Schwarz inequality:

[(Bz, w)en| < (1 + tan3) H\/Bsz

VB
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Recall that Lf = Vi (BVf), f € C°(R"), where B = QxA*.
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We reduced the problem to prove the integral inequality (V¢ < ¥p)

JIVE ]| VBs | e (e @00 v)Fg)L T (32 ¢ 1)

for all f,g € C°(R").



Sharp bounded H*-calculus for O-U generator £

Recall that Lf = V% (BVf), f € C°(R"), where B = Q. A*.
The target is to prove wy(Lp) = U},

We reduced the problem to prove the integral inequality (V¢ < ¥p)

JIVEH||VETe|ar s [ HELTT (7. 00: (97, V)] dre
for all f,g € C°(R").

The inequality above now follows from our convexity theorem.



Let B € R™" be strictly accretive. Then its numerical range angle
¥% belongs to [0,7/2). Recall the notation

\/(p — 2)? + p?(tan ¥%)>?
2v/p—1

¥, = arccot

Theorem (C., Dragicevi¢ 2016)

Let p > 2. For every 0 <V < ¥, there exist 6,ag > 0 such that, if
Q is the Bellman function associated with §, and

Ce{e”B,e""B,e"B" eV B},
then

5t e |V, |V
for all v € R*\ Tg and w = (a, B) € R?" x R?",

‘cn’

The constant ag is dimension-free.

If @ = (a1, a2), then & := a3 + iap
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Convexity of power functions

We extrapolate the theorem from the “generalised convexity” of
power functions:

F(Q):=1[¢I", CeER?’ 0<r<oo

Note that

(1+25/p)Fp@1+[1+6(1-2/p)1®Fq, if [C]P > 0|9

Fror@l+1® Fy+0F® Fg, it [C]P < Inl9



Convexity of power functions

We extrapolate the theorem from the “generalised convexity” of
power functions:

FQO) =" ¢eR? 0<r<oo
For Ce C™", v € R*\ Tg and w = (a, B) € R?" x R?"

(1+26/p)HE [¢;al + 1 + 6(1 — 2/p)]HE  [n; 6]

Ho viw] =
(c.c*)

HE (G ol + HE [0 B] + 0Hp5r, [vie]



Convexity of power functions

We extrapolate the theorem from the “generalised convexity” of
power functions:

F(Q):=[¢I", ¢eR? 0<r<o
For Ce C™, v € R*\ T and w = (, B) € R?" x R2"
(1+25/p)HE [Ci o] + [1 + 6(1 — 2/p)HE, [n: 5]

H(QC’C*)[v;w] =

* c,c*
HE (G o] + HE [ B + SHSLE) [viw]

2))

Where for o = (a1, ap) € R?"

ReC —-ImC
Im C Re C

aq
)

HE (G o] = <HGSS(FP>(<)

a2

R2n



The map C — H,_gp[s; a] is R-linear.
In particular, for B € R™",
HE "BCia] = cos9 - HE [ o] £sind - HE[C; o

Suppose now that B € R™" is strictly accretive. Recall that 93
denotes its numerical range angle and

\/p 2)2 + p?(tan ¥%)>?
2 p—l

¥p = arccot

Lemma

For all o € R?" we have

HB[G: €]] < cot 9, - HE [G: o]

The lemma can be deduced from (sharp) analyticity of O-U
semigroup on LP (7).



Set
_sin(v, — 1)

P

The lemma implies that
eiiﬂ
HE "Pl¢:a] = Ap, 9)HE [¢; al,

and the same estimate holds with B replaced by B*.
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Set

The lemma implies that

HE,"P[¢;al > D(p. 9)HE,[G; V/Boal,

and the same estimate holds with B replaced by B*.

Lemma
Let £ € R2". Then for all ¢ € R? we have

HE, (¢ ] > pl¢IP2 [|od?

It follows that for every ¥} < 1), the quadratic form Hﬁ—:wB[C; ] is
strictly positive definite...



The symmetric case: nonlocal operators

Let T(t) = exp(—tA), t > 0 be a symmetric contraction
semigroup on (2, u).

Recall that the goal is to prove
wi(Ap) < 5 = arcsin[L —2/pl,  p € (1,00)

We use the generalised convexity of Q with C = eiiﬁlc, v < Pp

Equivalent to study the quadratic form on R* associated with

oI o
0o o

Oy 0
0 Oy

5 - Hess(Q) + Hess(Q) -

Ry(Q) == 1 (

)

where Oy := Rotation of angle ¥ in R?



We reduced the problem to prove the integral inequality

[ ANgdn| s [ Re(e=acQ(r, )af +¢770,0(¢. £)Ag) dn
Q Q

for all f € D(Ap), g € D(Ag), and all ¥ < ¢p.
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We reduced the problem to prove the integral inequality

[ ANgdn| s [ Re(e=acQ(r, )af +¢770,0(¢. £)Ag) dn
Q Q

for all f € D(Ap), g € D(Ag), and all ¥ < ¢p.

(i) The Integral inequality is true for the two-point generator:

L
A=G=
-1 1
on C? = [*({a, b}, vap), Vap = (624 0p)/2
2 Su-vdy,p = [u(a) — u(b)] - [v(a) — v(b)]

{a,b}

The integral inequality for G follows by the mean value theorem
and positiveness of Ry(Q).



We reduced the problem to prove the integral inequality

0= TN PR | < [ Re (001 £)(1- T()F+- ) d
Q Q
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L
A=G=
-1 1
on C? = [*({a, b}, vap), Vap = (624 0p)/2
2 Su-vdy,p = [u(a) — u(b)] - [v(a) — v(b)]

{a,b}

The integral inequality for G follows by the mean value theorem
and positiveness of Ry(Q).



(ii) Suppose that (T(t))s>0 is Markovian and it has a kernel
ke(x,y), t > 0.

In this case we have the following representation formula:

/5.2(/7 T(t))(u)vdu = /QxQ (/{ny} Su - vd1/X7y> ke(x,y) du(x) du(y)

and the integral inequality follows from that for G (recall that
ks > 0)

(iii) In the general case we have to “adapt” the representation
formula



Thank you for your attention!



