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Alan McIntosh’s fields of contributions:

Functional analysis
Partial differential equations
Functional calculus
Multilinear analysis
Singular integrals
Hardy spaces
Clifford algebra for multidimensional analysis
Geometry
Dirac operators
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the mathematician

Interaction between fields and topics
Algebraic way of doing analysis
Challenges (Kato’s conjecture)
Depth
Conciseness
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the man

Kindness
Friendship
Generosity
(Un)confidence
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Passion for science

End of June 2016:

“’The only {new} maths I have done these few months is to get
my son Keith and my math son Andreas working together on a
first order approach to Maxwell scattering on Photovoltaic solar
cells. It is common to roughen the back surface of the cell with
small pyramids on roughly light scale and Keith wants to
produce fast models of the reflection and refraction from
incoming waves that can be accessed from his website quickly.
I would love to be more involved.”

P. Auscher Some mathematical legacy from Alan McIntosh



PhD Thesis in 1966 at UC Berkeley, 85 journal articles. Career
at Macquarie University, Australian National University
(Australia). 2002 Moyal Medal, 2015 Hannan Medal in the
mathematical sciences awarded by the Australian academy of
sciences.
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The Kato problem

Early 1960: T. Kato studied fractional powers of maximal
accretive operators on a Hilbert space. Maximal accretive
means dense domain, that the numerical values (Au,u) are
contained in the right half complex plane and that the resolvent
is invertible. He proved that domains of Aα and A∗α coincide
when 0 ≤ α < 1/2. J.L. Lions proved shortly after this is wrong
when α = 1/2.

For operators A coming from regularly accretive forms (ie
β(u, v) = (Au, v): the form β is represented by a maximal
accretive operator A), Kato remarked α = 1/2 (the most
interesting case for applications) was still unknown.

McIntosh (PhD topic on forms) found a counterexample (1972):
H = `2(Z), A = D(I + zB)D for some z ∈ C, with Dej = 2jej and
Bej =

∑
bnen+j where the Fourier series

∑
bneinτ agrees with

the periodic sawtooth τ/π − 1 on (0,2π).
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The Kato problem II

McIntosh stressed that the counterexample tells us nothing
about the case of operators coming from PDE’s, the ones that
motivated Kato. He formulated the “Kato square root
conjecture” (For the story, Kato always claimed this conjecture
is not due to him). Here is the simplest case: Consider

Lu =
∑
−∂j(ajk (x)∂ku), x ∈ Rn.

ajk are complex, L∞ coefficients with bound Λ defined on Rn,
with for some λ > 0

λ|ξ|2 ≤ Re
∑

ajkξkξj , ξ ∈ Cn.

The conjecture: prove with C depending only on n, λ,Λ,

‖
√

Lu‖L2(Rn) ≤ C‖∇u‖L2(Rn),
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McIntosh’s multilinear approach

One can normalize the matrix (ajk ) to be I − B with ‖B‖ < 1.
Then L = −div(I − B)∇,

√
Lu = −2

π

∫ ∞
0

(1− t2div(I − B)∇)−1div(I − B)∇u dt

and doing a Neumann series expansion wrt to B

√
Lu = −2

π

∫ ∞
0

Qt (∇u)
dt
t
− 2
π

∑
k≥0

∫ ∞
0

Qt (B(I−Pt ))kBPt (∇u)
dt
t

with Qt = −tdiv(1− t2div∇)−1, Pt = (1− t2div∇)−1.

Problem: Prove that each term is bounded in L2 by
ck‖B‖k+1

∞ ‖∇u‖2 and control ck to sum when ‖B‖∞ < 1.

P. Auscher Some mathematical legacy from Alan McIntosh



McIntosh’s multilinear approach II

√
Lu = −2

π

∫ ∞
0

Qt (∇u)
dt
t
− 2
π

∑
k≥0

∫ ∞
0

Qt (B(I−Pt ))kBPt (∇u)
dt
t

• constant term (wrt B) is a classical operator, equal to
√
−∆u.

• term of order 1 in 1d is already hard to control: related to the
Calderon commutator [g,

√
−∆] with g′ = B. The L2(R)

boundedness of it was obtained in 1965 (using complex
methods).
• Subsequent terms related to iterated commutators whose
boundedness was proved by Coifman-Meyer (1977). Main tools
were singular integral operators and in particular Carleson
measure/BMO estimates. McIntosh proposed this multilinear
scheme to them leading to the solution of the Kato conjecture in
1d due to some algebraic miracles to obtain convergence
(1981). For multidimensions, the methods have limitations and
no one knows how to control ck directly.
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Cauchy integrals

Kenig and Meyer (1985) wrote an article entitled “Kato’s square
of accretive operators and Cauchy operators on Lipschitz
curves are the same”.

Actually, this was known to McIntosh as early as the proof of
the Kato conjecture in 1981 and the simultaneous proof of the
L2(R) boundedness of the Cauchy operator on arbitrary
Lipschitz curves (Calderón’s conjecture).

A convenient parametrization allows to do the same kind of
multilinear series as for square roots.

P. Auscher Some mathematical legacy from Alan McIntosh



McIntosh 1989 review on the Kato problem:

‘We see in retrospect the difficulties faced by anyone who tried
to solve the Kato problem for elliptic sesquilinear forms in the
60’s and 70’s. The term of order 1 in the simplest case and in
1d is at least as difficult to estimate as the Calderón
commutator integral! Of course, the 80’s have seen a great deal
of progress in the estimation of such integrals.”

But it was not yet enough development to obtain the
multidimensional Kato conjecture.
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outgrowth: the Tb theorem

• In 1983, David-Journé proved a criterion for L2 boundedness
of singular integrals T called the T 1 theorem. The necessary
and sufficient condition is that T 1,T ∗1 be in the space BMO
along with some mild control of the operator on the diagonal.
• McIntosh and Meyer (1985) realized that the proof of Kato
problem also yield the complex interpolation result
[Ḣ1(Rn),bḢ−1(Rn)]1/2 = L2(Rn) when b is a bounded and
accretive function on Rn. This allowed them to formulate a Tb
theorem, the first of this nature: they proved that T 1 = 0 and
T ∗b = 0 plus a (different) diagonal condition suffices to
conclude for the boundedness of the singular integral T .
• This theorem has been extended in many ways: different
settings, different operators with different proofs (not relying on
the solution of the Kato problem), more general conditions. One
of these extensions was precisely devised toward the solution
of the Kato conjecture on Rn (A., Hofmann, Lacey, McIntosh,
Tchamitchian, 2002)
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outgrowth: layer potential on Lipschitz surfaces

There is a multidimensional analogue of the Cauchy operator
on Lipschitz curves: this requires to use the setup of Clifford
algebras and the concept of monogenic functions replacing that
of holomorphic functions. A function on an open set of Rn+1

taking values in the Clifford algebra with unit e0 and generated
by e1, . . . ,en is left monogenic if f annihilates the Dirac operator
Df ≡

∑n
k=0 ∂k fS ekeS = 0. The function k(x) = cn

x̄
|x |n+1 , is

called the Cauchy-Clifford kernel: it is left (and right) monogenic
away from 0. “Convolution” with k on Lipschitz surfaces Γ is
called the Cauchy-Clifford operator. T (b) method allows to
prove it is bounded on Lp(Γ,dS), 1 < p <∞. This was first
proved by Li, McIntosh, Semmes without this technology
(extending some method of Coifman, Jones, Semmes with
square function estimates of “à la” Kenig). The scalar part of
the CC operator is the double layer potential on the domain
bounded by Γ, useful to solve boundary value problems
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A landmark

One of McIntosh’s definitive contribution for posterity is the
theory of bounded holomorphic functional calculi for non
self-adjoint operators. Indeed, trying to solve the Kato problem,
one looses self-adjointness but one keeps the spectral fact that
the spectrum is contained in a sector of the complex plane
(sectorial) or a symmetric double sector (bisectorial) together
with invertibility of the resolvent with appropriate estimates. Let
T be such an operator, assumed bisectorial.
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H∞(Sµ) functional calculus for T on Hilbert space H is the
existence of a unique Banach algebra homomorphism

Φµ : H∞(Sµ) → B(R(T ))

with Φµ(1) = 1, Φµ((1 + iz)−1) = (1 + iT )−1 restricted to R(T )
and that is continuous in the following sense: uniformly
convergent sequences on compact sets of Sµ are mapped to
strongly convergent sequences of operators.

Uniqueness implies consistency with change of angle µ.
Notation Φµ(ϕ) = ϕ(T ). Boundedness means

‖ϕ(T )h‖ . ‖ϕ‖∞‖h‖, ∀ϕ ∈ H∞(Sµ), ∀h ∈ R(T ).

Theorem: Boundedness holds iff the square function estimate∫ ∞
0
‖λT (1 + λ2T 2)−1h‖2 dλ

λ
∼ ‖h‖2, ∀h ∈ R(T )

and the one for T ∗ hold. Choice of z(1 + z2)−1 irrelevant.
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Main application to Kato conjecture

D :=

[
0 −div
∇ 0

]
, B :=

[
I 0
0 A

]
, A = (ajk ).

T := BD on L2(Rn,Cn+1) is bisectorial.

(BD)2 =

[
−divA∇ 0

0 −A∇div

]
,
√

(BD)2 =

[√
L 0

0
√

M

]
.

Let sgn(z) = 1 if Re z > 0 and −1 if Re z < 0. If BD has a
bounded holomorphic functional calculus on L2, sgn(BD) is a
bounded involution on R(BD). Since

√
(BD)2 = sgn(BD)BD,

we get for u ∈ L2(Rn,Cn+1) under appropriate domain
assumptions that,

‖
√

Lu‖2 =

∥∥∥∥√(BD)2
[
u
0

]∥∥∥∥
2
≈
∥∥∥∥BD

[
u
0

]∥∥∥∥
2

= ‖A(∇u)‖2 ≈ ‖∇u‖2.

Approach developed successfully by Axelsson, Keith, McIntosh
(2007): reproves Kato and gives more.
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Extending classical theory

Assume T is bisectorial with BHFC. Set χ± = 1±Re z>0 and
H±T , the image of R(T ) under χ±(T ). These two operators are
bounded complementary projectors, hence one has the
spectral splitting R(T ) = H+

T ⊕ H−T . The extension

(Ch)(λ) =

{
e−λTχ+(T )h, λ > 0
e−λTχ−(T )h, λ < 0

solves the equation

∂λCh + TCh = 0, h ∈ R(T ), λ 6= 0

and has limits χ±(T )h when λ→ 0±.
If T = 1

i
d
dz on a Lipschitz curve, these is the Cauchy extension

of h (Plemelj formulas) and the spectral spaces are the
well-known holomorphic Hardy spaces. In the 1980’s, McIntosh
had worked out the case of T being the Clifford-Dirac operator
D on a Lipschitz surface.
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Hardy spaces I

Here too, McIntosh’s vision allowed to make substantial
progress in a theory that has proved useful and popular.

Originally Hardy spaces on the unit circle arise as traces of
some holomophic function spaces on the unit disk.

In the 1960’s and 1970’s, Stein, Weiss, Fefferman, Coifman,
Latter and others developed a theory of spaces freeing its
dependence to holomorphy (hence to the d bar operator), valid
in any dimension.

As universal these spaces may be, they were not adapted to
certain problems: we had to go back to the relation between
space and operator.

P. Auscher Some mathematical legacy from Alan McIntosh



Hardy spaces II

With Duong and McIntosh, we introduced (2003) a family of
Hardy spaces adapted to a sectorial operator using the concept
of tent spaces. In the years the theory grew by making the
hypotheses (setting and operator) as minimal as possible. For
example, with McIntosh and Russ, we developed a Hardy
space theory on a doubling complete Riemannian manifold
adapted to the Hodge-Dirac operator D = d + d∗. Important to
have “generic” functions called molecules (or atoms). McIntosh
said they should be in the range of D with some further
localization properties. It looked too simple to be correct in
general for me but it turned out to be the right point of view as
he proved first in articles with his student Lou (in Euclidean
situation with differential forms of some degree)
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A strong legacy: first order operators

McIntosh advocated for the systematic use of first order
operators for second order problems because they are simpler
to treat. This was also the motivation of the pioneers (Dirac,
Clifford, Maxwell...)
In his publications, one clearly sees the evolution of his
thoughts on the matter building from different topics over the
years and merging into a conceptual approach applicable in
many different situations. Let us list some of them that he dealt
with
• The Dirac operator D in Clifford setting.
• The matrix D in the Kato problem.
• The Maxwell-Dirac operator D + ke4 in 3d.
• The Hodge-Dirac operator d + d∗ in Riemannian geometry.
• Stokes operator in Lipschitz domains.
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What could explain the long time (more than one century)
before the actual success of these first order methods is the
lack of analytic methods to treat rough situations until very
recently.
It is precisely, the modern Tb theory that was developed
following the insight of McIntosh that allows for results under
perturbations of these models with non smooth coefficients or
in non smooth geometries.

This is certainly a line of thoughts to keep following in the future.
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May you rest in peace, Alan. We’ll miss you.
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