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Semidefinite programming (SDP)

“generalized” mathematical program

minf(x)
subject to
g(x) =0
A(x) =0
A(x) — (non)linear matrix operator R" — S™
(A(X) = Ao + > XiAj)



SDP notations

S" ... symmetric matrices of order n x n

A > 0...A positive semidefinite
A>0...A-B>0

(A,B) :=Tr(AB)...inner product on S"

A[R" — S™]. .. linear matrix operator defined by

n
A(y) = ZyiAi with A, € sm
i=1

A*[S™ — R"]...adjoint operator defined by
A*(X) = [(AL, X), .. (A, XOTT
and satisfying

(A*(X),y) = (A(y), X) forally € R"



Primal-dual SDP pair

inf(C, X) := Tr(CX) (P)
st A (X)=b  [(A,X)=bi,i=1,..n
X=0
Sup b y ZbM (D)
y,S

st Ay)+S=C D _yA+S=C]
S+0

Weak duality: Feasible X,y, S satisfy
(C,X) = (by) = (A(Y) +S.X) = D_Vi{Ai,X) = (S,X) = 0

duality gap nonnegative for feasible points



Linear Semidefinite Programming

Vast area of applications. . .

LP and CQP is SDP

eigenvalue optimisation

robust programming

control theory

relaxations of integer optimisation problems
approximations to combinatorial optimisation problems
structural optimisation

chemical engineering

machine learning

many many others. ..



Why nonlinear SDP?

Problems from
e Structural optimization
e Control theory

e Mathematical Programming with Equilibrium Constraints
e Examples below

There are more but the researchers just don’t know about. ..



Nonlinear SDP?

The general nonlinear SDP (NSDP) problem

sl

subject to
gi(x) <0, i=1,...,ng
hi(x) =0, i=1,...,ny
A(x) <0

b eR"and A : R" — S™ nonlinear, nonconvex
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Free Material Optimization

Aim:

Given an amount of material, boundary conditions and external
load f, find the material (distribution) so that the body is as stiff
as possible under f.

The design variables are the material properties at each point of
the structure.

M. P. Bendsge, J.M. Guades, R.B. Haber, P. Pedersen and
J. E. Taylor: An analytical model to predict optimal material prop-
erties in the context of optimal structural design. J. Applied Me-
chanics, 61 (1994) 930-937



Free Material Optimization
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FMO SL primal formulation

FMO-problem (minimum volume formulation)

m
min E TrE;
UER™Ey,....Em £

subject to

EitO,BSTrEiEﬁ, i=1,...

flu<c
AE)u =f



FMO SL primal formulation

FMO-problem with vibration/buckling constraint

m
min E TrE;
UERMEy,....Em

subject to
Ei=0,p<TIEi<p, i=1,....,m
flu<c
AE)u =f
A(E)+G(E,u) =0



FMO SL primal formulation

FMO-problem with vibration/buckling constraint

m
min E TrE;
UERMEy,....Em

subject to
Ei=0,p<TIEi<p, i=1,....,m
flu<c
AE)u =f
A(E)+G(E,u) =0

... nonlinear, non-convex semidefinite problem



PENNON collection

PENNON (PENalty methods for NONlinear optimization)
a collection of codes for NLP, (linear) SDP and BMI

— one algorithm to rule them all —

READY
e PENNLP AMPL, MATLAB, C/Fortran
e PENSDP MATLAB/YALMIP, SDPA, C/Fortran
e PENBMI MATLAB/YALMIP, C/Fortran

NEW
e PENNON (NLP + SDP) extended AMPL, MATLAB



The problem

Optimization problems with nonlinear objective subject to
nonlinear inequality and equality constraints and semidefinite
bound constraints:

min f(x,Y)
xe,Y,€SP1,... Y, €SPk
subjectto gij(x,Y) <0, i=1,...,mg
hi(x,Y) =0, i=1,...,my, (NLP-SDP)
Al =Y =X i=1,....k.



The problem

Here
e X € R" is the vector variable
e Y. €SP ... Y, €SPk are the matrix variables, k
symmetric matrices of dimensions p; X p1,...,Pk X Pk

e wedenoteY = (Yy,...,Yk)
e f, gi and h; are C? functions from R" x SP1 x ... x SP« to R

e )\ and ) are the lower and upper bounds, respectively, on
the eigenvalues of Y;, i =1,...,k



The problem

Any nonlinear SDP problem can be furmulated as NLP-SDP,
using slack variables and (NLP) equality constraints:

g(X)=0
write as

g(X) =S element-wise
S>0



The algorithm

Based on penalty/barrier functions ¢4 : R — R and
dp - SP — SP:

gi(X) <0 < pigg(gi(x)/pi) <0, i=1,....m
Z =<0+ 9p(Z2)=0, ZeSP.

Augmented Lagrangian of (NLP-SDP):

F(x,Y,u,U,0,p)=F(x,Y )+ 1% uipiwg(gi(x,Y)/pi)
3K UL P (N =Y )+ K (0, 0p (Yi—Xil))

here u € R™ and U;, U; are Lagrange multipliers.



The algorithm

A generalized Augmented Lagrangian algorithm (based on R.
Polyak '92, Ben-Tal-Zibulevsky 94, Stingl '05):

Given xl,Yl,ul,gl,Ul;pil >0,i=1,...,mgand P > 0.
Fork =1,2,... repeattill a stopping criterium is reached:

(i) Find xk+1 and YK+1 st || Wy F (xKHE v kL uk, Uk U%, Pl <K

(i) uft = ufeg(ei (X pl), i=1,...,mg
UKt =D gop (A1 - Yi)iUF), i=1,...,k
U = Do ((Yi — NI\ UY), i=1,... .k
(i)  ptt<pk,i=1,...,mg

plrt < pk.




Interfaces

How to enter the data — the functions and their derivatives?

e Matlab interface
e AMPL interface



Matlab interface

User provides six MATLAB functions:

f ...evaluates the objective function

df ...evaluates the gradient of objective function
hf ...evaluates the Hessian of objective function
g ...evaluates the constraints

dg ...evaluates the gradient of constraints

hg ...evaluates the Hessian of constraints



Matlab interface

Matrix variables are treated as vectors , using the function
svec : S™ — R(M+M/2 gdefined by

ai; A2 ... AQim
dpp ... adom

svec
sym amm

.
= (a11,a12,a22, . .., 81m, 82m, &mm)



Matlab interface

Matrix variables are treated as vectors , using the function
svec : S™ — R(M+M/2 gefined by

a;r A2 ... Aim
dpo ... aom
svec .
sym amm
T
= (a11,a12, a2, . ..,81m, 82m, 8mm)

Keep a specific order of variables, to recognize which are

matrices and which vectors. Add lower/upper bounds on matrix

eigenvalues.
Sparse matrices available, sparsity maintained in the user
defined functions.



AMPL interface

AMPL does not support SDP variables and constraints. Use
the same trick:

Matrix variables are treated as vectors , using the function
svec : S™ — R(M+M/2 gdefined by

a;r A12 ... Aim
ayo ... aAom
svec
sym amm
.
= (a11,a12,a22, . .. , 81m, 82m, &mm)

Need additional input file specifying the matrix sizes and
lower/upper eigenvalue bounds.



Example: nearest correlation matrix

Find a nearest correlation matrix:

n
4 iJZ:l(Xij — Hy)?
subject to
Xi=1, i=1
X =0

PR

)

n

(1)



Example: nearest correlation matrix
AMPL code:

param h{1..21};
set ind within {1..21};

# Nonlinear SDP variables
var x{1..21} default 0;

minimize Obj: sum{i in 1..21} (x[i]-h[i])"2;

subject to
[1{i in ind}:
X[i] = 1;

data;

param h:=
1 1.0000 2 -0.4400 3 1.0000 4 -0.2000 5 0.8700
8 -0.3800 9 -0.1700 10 1.0000 11 -0.4600 12- 0.8100



Example:

For

1
-0.44
—-0.20

0.81
—0.46
—0.05

Hext =

the eigenvalues of the correlation matrix are

eigen =

nearest correlation matrix

-044 -0.20 0.81
1 087 -0.38
.87 1 -0.17
-0.38 -0.17 1
081 065 -0.37
—-0.58 -0.56 -0.15

—-0.46 -0.05
0.81 -0.58
0.65 -0.56
-0.37 -0.15
1 —0.08
0.08 1

0.0000 0.1163 0.2120 0.7827 1.7132 3.1757



Example: nearest correlation matrix
The condition number of the nearest correlation matrix must be
bounded.
Add new variables y,z € R and new cosntraints

X =zl (2
X <yl 3
y <Kz (4)

where & is the required condition number.

The constraints do not fit into our required NLP-SDP problem
structure. Introduce two new (slack) matrix variables, say, P
and Q, and replace (2) and (3) by

X—-—zl—-P=0
X—-yl—-Q=0
P>0

Q=0



Example: nearest correlation matrix
More ellegant way: rewrite constraints (2)—(3) as

| <X <&l (5)

assuming that y = «z and using the transormation of the
variable X:

zZX =X,
The new problem:
n ~
an Z(inj — Hij)z (6)
z,X ij=1
subject to
z)~(,, =1, i=1...,n



Example: nearest correlation matrix

For

X =
1.0000 -0.3775 -0.2230 0.7098 -0.4272 -0.0704
-0.3775 1.0000 0.6930 -0.3155 0.5998 -0.4218
-0.2230 0.6930 1.0000 -0.1546 0.5523 -0.4914
0.7098 -0.3155 -0.1546 1.0000 -0.3857 -0.1294
-0.4272 0.5998 0.5523 -0.3857 1.0000 -0.0576
-0.0704 -0.4218 -0.4914 -0.1294 -0.0576 1.0000

the eigenvalues of the correlation matrix are

eigen =
0.2866 0.2866 0.2867 0.6717 1.6019 2.8664



Example: nearest correlation matrix

Cooperation with Allianz SE, Munich:
Matrices of size up to 3500 x 3500

Code PENCOR:

C code, data in xml format

feasibility analysis

sensitivity analysis w.r.t. bounds on matrix elements



Example: Approximation by nonnegative splines
Letf : [0,1] — R. Given its (noisy) function values b;,
i=1,...,natpointst € (0,1).

Find a smooth approximation of f by a cubic spline:

P(t ZP (t —aj_1)

for a pointt € [a;_4, a;], where 0 —gp<a1<...<am=1are
the knots and Plg')(i =1,...,m, k =0,1,2,3) the coefficients
of the spline.
Spline property: fori =1,....m—1
Pt Pl PO —a 1) - PV (@ —a_ 1) —P{'(a—a_1)*=0
(7
P _pM) _2pW(a —a 1) — 3P (aj —a;_1)? =0
(8
2P{* _2p{) _6P{)(aj —a 1) = 0.
€©)



Example: Approximation by nonnegative splines

The function f will be approximated by P in the least square
sense: minimize

> (P() — by)?

j=1
subject to (7),(8),(9).

Now, f is assumed to be nonnegative, so P > 0 is required.



Example: Approximation by nonnegative splines
de Boor and Daniel '74: while approximation of a nonnegative
function by nonnegative splines of order k gives errors of order h,
approximation by a subclass of nonnegative splines of order k
consisting of all those whose B-spline coefficients are nonnegative
may yield only errors of order h?.

Nesterov 2000: P()(t) nonnegative < there exist two
symmetric matrices

(@) — (XY gl) — (Si Vi
Vi zi)’ Vi Wi

such that
P = (aj —ai_1)si (10)
PO —xi —si+2(ai —ai_1)vi (11)
PY) =2y, — 2vi + (& —a_1)w; (12)
P —z —w (13)

X0 =0, s®x-o. (14)



Example: Approximation by nonnegative splines

We want to solve an NLP-SDP problem

n

min Y (P(4) —by)? (15)
Pé')ER i=1
i=1,...m, k=0,1,2,3
subject to
(7),(8),(9), i=1,....m

(10)— (14), i=1,...,m



Example: Approximation by nonnegative splines

Example, n = 500, m = 7, noisy data:
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Figure: Approximation by nonnegative splines: noisy data given in
green, optimal nonnegative spline in red and an optimal spline
ignoring the nonnegativity constraint in blue. The right-hand side
figure zooms on the left valey.



Sensor network localization
(Euclidean distance matrix completion, Graph realization)
We have (in R? (or RY))

n points a;, anchors with known location

m points x;, sensors with unknown location

dj known Euclidean distance between “close”
points

dj = [Ixi —xll, (i,]) € Zx
dig = llax — [l (k.]) € Za
Goal: Find the positions of the sensors!
Find x € R?*™ such that
i — x> =df,  (i,j) € Ix
lax — x> =dy,  (k,j) €Ta



Sensor network localization

Example, 4 anchors, 36 sensors
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Sensor network localization

Applications
e Wireless sensor network localization

habitat monitoring system in the Great Duck Island
detecting volcano eruptions

industrial control in semiconductor manufacturing plants
structural health monitoring

military and civilian surveillance

moving object tracking

asset location

e Molecule conformation



Sensor network localization

Solve the least-square problem
; 2 2 2 32
wn Z ‘Hxi = Xj[|* — dj ‘ + Z ‘Hak = Xj[|7 — dy;
(i) €L (i.)ETa

to global minimum. This is an NP-hard problem.



SDP relaxation
(P. Biswas and Y. Ye, '04)
Let X = [X1 X2 ... Xpn] be ad x n unknown matrix. Then
Ixi — x| = (e — &))" XX (e; — ¢)
o %12 = (2w )" [ B XI(awi e
and the problem becomes
(ei — )" X X (e — ) = df
(@i-e)" () (ai-e) =7

Y =XTX



SDP relaxation

Now relax Y = XTX to Y = XTX, equivalent to
g X
J— >_
z <xT Y> =0

Relaxed problem:

min 0
subject to
Z1.41d = lg
(O;ei —e)'Z(0;ei — &) =di V(i,]) € Iy
(ax: —€)" Z (ay; —€j) = aij v(k.j) € Za
Z >0

Full SDP relaxation, FSDP (linear SDP)



SDP relaxation

Equivalent formulation:

(Ivj)GIX
—2
+ ) (A —€)"Z (ax; —€) — dig)?
(k7j)€Ia
subject to
Zl:d,l:d = Id
Z>0

Full SDP relaxation, FSDP (nonlinear SDP)



SDP relaxation

Take the SDP solution as initial approximation for the original
unconstrained nonconvex problem. Solve both by PENNON.



Sensor network localization

Example, 9 anchors, 720 sensors
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Sensor network localization

Example, 9 anchors, 720 sensors

>o ‘0.0. .0.0‘;
:f' [ -7%\.
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Figure: SDP: 36494 variables, 34334 (4 x 4) LMIs



Other Applications, Availability

polynomial matrix inequalities (with Didier Henrion)
financial mathematics (with Ralf Werner)

structural optimization with matrix variables and nonlinear
matrix constraints (PLATO-N EU FP6 project)

approximation by nonnegative splines

approximation of arrival rate function of a
non-homogeneous Poisson process (F. Alizadeh,
J. Eckstein)

sensor network localization (with Houduo Xi)
detection of definite pairs of matrices (with F. Tisseur)

Many other applications. ... .. any hint welcome

Free academic version of the code available
Free downloadable MATLAB version available soon





