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Structural design with stability, vibration control

FMO—a particular case of structural design
Solving nonconvex SDP by PENNON
Examples

© o 0o b
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Structural design problems

MPEC.:
min F'(p, u)
pyu
S.t.

Y c Uad

u solves E(p, u)
F(p,u) ... costfunctional (weight, stiffness, peak stress...)
P ... design variable (thickness, material properties, shape...)
u ... State variable (displacements, stresses)
U.q ... admissible designs
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Structural design problems

WEIGHT versus STIFENESS:

® W weight > pi

® ( stiffness (compliance) flfu

Equilibrium constraint: u solves E(p,u) — > (p: K;)u = f
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Structural design problems

WEIGHT versus STIFENESS:

® W weight > pi

® ( stiffness (compliance) flfu

Equilibrium constraint: u solves E(p,u) — > (p: K;)u = f

min C min W

S.L S.L
W<W c<C
equilibrium equilibrium
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S. Timoshenko:

Experience showed that structures like bridges or aircrafts
may fail in some cases not on account of high stresses
but owing to insufficient elastic stability.
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Structural design with free vibration control

Three quantities to control:

» W weight Z Pi

® ( stiffness (compliance) flfu
® )\ min. eigenfrequency K(p)u =AM (p)u
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Structural design with free vibration control

Three quantities to control:

» W weight Z Pi

® ( stiffness (compliance) flfu
® )\ min. eigenfrequency K(p)u =AM (p)u

min C min W max A\

S.L S.L S.L
W< W c<C W< W
A > A A > A Cc<C
equilibrium equilibrium equilibrium
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Structural design with stability control

Three quantities to control:

» W weight Z Pi
® ( stiffness (compliance) flfu
® ) critical buckling force K(p)u = AG(p,u)u

min C min W max A

s.t. s.t. S.L.
W< W c<C W< W
A>1 A>1 c<C
equilibrium equilibrium equilibrium
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Structural design with stability control

Lowest (positive) eigenvalue of
K(p)u = AG(p, u)u

(critical force) should be bigger than 1.

min W (p)
s.t.
K(p)u = f
fTu < C
pi >0, 2=1,...,m
A>1
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Structural design with stability control

Two standard tricks:

K(p) =0, u=K(p)'f

ffTK(p)™'f<C <+ (C fT)tO
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Structural design with stability control

Two standard tricks:

K(p) =0, u=K(p)'f

ffTK(p)™'f<C <+ (C fT)tO

K (p)u = AG(p, u)u
A>1

} <~ K(p)—G(p,u) =0
<~ K(p)—G(p) =0

G(p) = G(p, K(p)~1f)
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Structural design with stability control

Formulated as SDP problem:

min W (p)
P
subject to

K(p) — G(p) = 0

(; I%f(q;))) =0

p,,;ZO, izl,...,m

where

K(p) =) piKi, G(p)=)> G
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Free Material Optimization

Aim:

Given an amount of material, boundary conditions and external load f,
find the material (distribution) so that the body is as stiff as possible
under f.

The design variables are the material properties at each point of the
structure.
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Free Material Optimization

Aim:

Given an amount of material, boundary conditions and external load f,
find the material (distribution) so that the body is as stiff as possible
under f.

The design variables are the material properties at each point of the
structure.

1
inf sup —— [ (Fe(u),e(u))dx + f-udx
EZ0  weU 2 Jq
[ tr(E)dz<1

I's
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Free Material Optimization

Aim:

Given an amount of material, boundary conditions and external load f,
find the material (distribution) so that the body is as stiff as possible
under f.

The design variables are the material properties at each point of the
structure.

1

inf sup —— / (Ee(u),e(u)) dx + f-udx
EZ0 weU 2 Jo T,
[ tr(E)dz<1

1

inf sup——/ pl{e(u),e(u)) dr + f-udx
p>0 weU 2 Jo T

J pdxz<1
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Free Material Optimization

Aim:

Given an amount of material, boundary conditions and external load f,
find the material (distribution) so that the body is as stiff as possible
under f.

The design variables are the material properties at each point of the

structure.
1
inf sup —— / (Ee(u),e(u)) dx + f-udx
[ tr(E)dz<1
1
inf sup —— / pl{e(u),e(u)) dr + f-udx
J pdxz<1

. T m T .
inf {a—f ula> —u A;u for zzl,...,m}
aER,uclU 2
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FMO, example

e
<

v
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FMO, example

e
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Structural design with stability control

Formulated as SDP problem:

min W (p)
P
subject to

(; I%i)) =0

pf,;ZO, izl,...,m
K(p) — G(p) = 0

where

K(p) =) piKi, G(p)=)> G
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PENNON for SDP

: . T .
Problem: min {bTx : A(x) < 0}

A:Rn—>8d

Notation:

(A, B)s, :=tr(ATB)inner producton Sq

Sd.,
U € Sq, matrix multiplier (dual variable)

= {A € S4 | A positive semidefinite }

®, penalty function on S4
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PENNON for SDP: algorithm

Generalized augmented Lagrangian algorithm for SDP:
(based on modified barrier method of R. Polyak, 1992)

We have
A(r) 0 < ®,(A(x)) <0

and the corresponding augmented Lagrangian
F(z,U,p) := f(x) + (U, p(A(x)))s,
Algorithm:
(¢)  Find z**1 satisfying |V, F(x, U*, p*)|| < €
(i5) U = Da®,(A(z); U")

(i53)  p"T < p”

Best choice of ®: ®(A)=(A—-I)"1 -1
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PENNON for SDP: theory

Based on Breitfeld-Shanno, 1993; generalized by M. Stingl, 2003

Assume:

1. f, Ae C?
2. x € 2 nonempty, bounded

3. Constraint Qualification

Then 3 an index set IC so that:
® x—x, ke

® U, U, keckK

® (z, U ) satisfies first-order optimality conditions

Nonconvex SDP Problems of Structural Optimization — p.16/26



PENNON for SDP: Hesslian

The reciprocal barrier function in SDP

P(A)=A-I)"1—-1

Hessian
(A@) =7 2B (@) - D ZE (A@) - 1)
+ (AW - D75 202 (aw) - 1
+(AGe) = D 2 (A@) = 1) 20 (AGe) — 1)




PENNON fo SDP: complexity

FMO with stability constraint (honconvex SDP)

K(p) +G(p) =0

M
K(p) =)  pcK.
e=1

M K
G(p) — Z Ge Ge(p) — Z BZkSe,k:(p)Be,kz
e=1 k=1

O3 O2

Ser@) = (7" 72)  oer(p) = pe BT (K (p)f)e
(e o2)
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PENNON fo SDP: complexity

FMO with stability constraint (honconvex SDP)

K(p) +G(p) =0

M
K(p) =)  pcK.
e=1

M K
G(p) — Z Ge Ge(p) — Z BZkSe,k:(p)Be,kz
e=1 k=1

O3 O2

Ser@) = (7" 72)  oer(p) = pe BT (K (p)f)e
(e o2)

memory: O(M?) (M =500 ~ 64 MB)
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PENNON fo SDP: complexity

FMO with stability constraint (honconvex SDP)

K(p) +G(p) =0

M
K(p) — Z PeKe
e=1
M K
G(p) — Z Ge Ge(p) — Z BZkSe,k:(p)Be,kz
e=1 k=1

Ser@) = (7" 72)  oer(p) = pe BT (K (p)f)e
(e o2)

O3 02
memory: O(M?) (M =500 ~ 64 MB)
CPU: O(K? x d? = M?) for one Hessian assembling
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PENNON fo SDP: complexity

FMO with stability constraint (honconvex SDP)

K(p)+G(p) =0

M
K(p) — Z PeKe
e=1
M K
G(p) — Z Ge Ge(p) — Z BZ:kSe,k:(p)Be,kz
e=1 k=1

5.0 = (70 7)) oenlp) = pBLEKT (D)D)

memory: O(M?) (M =500 ~ 64 MB)

CPU: O(K? x d? = M?) for one Hessian assembling
All dense matrix-matrix multiplications implemented in BLAS
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PENNON fo SDP: complexity

FMO with stability constraint (honconvex SDP)

K(p)+G(p) =0

M
K(p) =)  pcK.
e=1

M K
G(p) — Z Ge Ge(p) — Z BZ:kSe,k:(p)Be,kz
e=1 k=1

Scale) = (70 ) genlo) = peBIUE ()

O3 02
memory: O(M?) (M =500 ~ 64 MB)

CPU: O(K? x d? = M?) for one Hessian assembling

Pentium 4, 2.4GHz, ~100 Newton steps:
400 elements ...8h 45min, 1000 elements ...~130 hours
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Examples, FMO w. stability constraint

FMO with vibration constraint (linear SDP)
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Examples, FMO w. stability constraint

FMO with vibration constraint (linear SDP)
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Examples, FMO w. stability constraint

FMO with vibration constraint (linear SDP)

ol

Linear SDP, SDPA input file (Pentium 4, 2.5 GHz):

no. of size of
problem | variables matrix
shmup-3 420 1801+840
shmup-4 800 3361+1600
shmup-5 1800 7441+3660
problem | PENNON SDPT3 SDPA DSDP CSDP SeDuMi
shmup-3 381 417 497 439 1395 23322
shmup-4 2095 2625 2952 2798 5768 >127320
shmup-5 14149 23535 m fail m m
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Examples, FMO w. stability constraint

FMO with vibration constraint (linear SDP)
FMO with stability constraint (nonlinear SDP)

| [ ]
-E H&
HEN [ |
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Examples, FMO w. stability constraint

FMO with vibration constraint (linear SDP)

-E Hz

shmup3 (420 elements) ...6 min 20 sec

FMO with stability constraint (nonlinear SDP)

-E H&

shmup3 (420 elements) ...8 hours
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Examples, FMO w. stability constraint

FMO with vibration constraint (linear SDP)

-
-E Hz
¥ g —

shmup3 (420 elements) ...6 min 20 sec

FMO with stability constraint (nonlinear SDP)

|
-E H&
HEN

shmup3 (420 elements) ...8 hours

shmup3 with no SDP constraints (convex NLP) ...1sec
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Conclusions (so far)

PENNON algorithm works well for nonconvex SDP

—accurate solution within 60-100 internal iterations—
(more experience from BMI problems and truss design)
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Conclusions (so far)

PENNON algorithm works well for nonconvex SDP

—accurate solution within 60-100 internal iterations—
(more experience from BMI problems and truss design)

complexity of second-order method too high
(for “large” problems)

FIRST-ORDER METHOD
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Hesslan free methods

Use conjugate gradient method for solving the Newton system

Use finite difference formula for Hessian-vector products:

VF(xy + hv) — VF(xg)
h

V2F(a3k)v ~

with b = (1 + ||zk[[2v/€)

Complexity: Hessian-vector product = gradient evaluation
need for Hessian-vector-product type preconditioner

Limited accuracy (4-5 digits)
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Nonlinear SDP—FMO with stability constraints

Can CG + approx. Hessian help?
Partly. ..
No preconditioning, approx. Hessian:

as many gradient evaluations as CG steps (good)
CG with no preconditioning inefficient (bad)

Nonconvex SDP Problems of Structural Optimization — p.22/26



Nonlinear SDP—FMO with stability constraints

Can CG + approx. Hessian help?
Partly. ..

No preconditioning, approx. Hessian:
as many gradient evaluations as CG steps (good)
CG with no preconditioning inefficient (bad)

Evaluation of exact diagonal as expensive as evaluation of full Hessian
Evaluation of approx. diagonal ......

Only L-BFGS preconditioner can be used — but it isn’t really efficient
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Conclusions, part Il

Hessian-free SDP:
® First promising results, more testing (and coding) needed
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Solving vibration problem as GEVP

Another option (vibration problems):
Solve the maximum eigenvalue problem formulated as GEVP:

A min. eigenfrequency of K(p)u = AM (p)u

max \

S.t.
W<W
c<C

equilibrium
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Solving vibration problem as GEVP

Another option (vibration problems):
Solve the maximum eigenvalue problem formulated as GEVP:

A min. eigenfrequency of K(p)u = AM (p)u

max \

S.t.
W<W
c<C

equilibrium

(quasiconvex) SDP problem with BMI constraints — solve by PENBMI

max \
Py

s.t.
K(p) —AM(p) = 0

Zpiﬁﬁ\/

pz>09 izl,...,m

(? If;)) =0
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Solving vibration problem as GEVP (example)

FMO with vibration constraint (linear SDP)
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Solving vibration problem as GEVP (example)

FMO with vibration constraint (linear SDP)

FMO with vibration constraint: BMI formulation)

Nonconvex SDP Problems of Structural Optimization — p.25/26



THE END
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