PENNON-AMPL User's Guide (Version 1.3)

Michal Kočvara Michael Stingl

www.penopt.com

August 29, 2003

The problem

We solve optimization problems with nonlinear objective subject to nonlinear inequalities and equalities as constraints:

$$\min_{x \in \mathbb{R}^n} f(x)$$

s.t. $g_i(x) \le 0, \qquad i = 1, \dots, m_g$
 $h_i(x) = 0, \qquad i = 1, \dots, m_h.$ (NLP)

Here f, g_i and h_i are C^2 functions from \mathbb{R}^n to \mathbb{R} .

The algorithm

To simplify the presentation of the algorithm, we only consider inequality constraints. For the treatment of the equality constraints, see [1].

The algorithm is based on a choice of penalty/barrier function $\varphi_g : \mathbb{R} \to \mathbb{R}$ that penalize the inequality constraints. This function satisfies a number of properties (see [1]) that guarantee that for any $p_i > 0$, $i = 1, \ldots, m_g$, we have

$$g_i(x) \le 0 \iff p_i \varphi_g(g_i(x)/p_i) \le 0, \quad i = 1, \dots, m$$

This means that, for any $p_i > 0$, problem (NLP) has the same solution as the following "augmented" problem

$$\min_{x \in \mathbb{R}^n} f(x)$$

s.t. $p_i \varphi_g(g_i(x)/p_i) \le 0, \qquad i = 1, \dots, m_g.$ (NLP_{\phi})

The Lagrangian of (NLP_{ϕ}) can be viewed as a (generalized) augmented Lagrangian of (NLP):

$$F(x, u, p) = f(x) + \sum_{i=1}^{m_g} u_i p_i \varphi_g(g_i(x)/p_i);$$
(1)

here $u \in \mathbb{R}^{m_g}$ are Lagrangian multipliers associated with the inequality constraints.

The algorithm combines ideas of the (exterior) penalty and (interior) barrier methods with the Augmented Lagrangian method.

Algorithm 1 Let x^1 and u^1 be given. Let $p_i^1 > 0$, $i = 1, ..., m_g$. For k = 1, 2, ... repeat till a stopping criterium is reached:

- (i) Find x^{k+1} such that $\|\nabla_x F(x^{k+1}, u^k, p^k)\| \le K$
- (*ii*) $u_i^{k+1} = u_i^k \varphi'_g(g_i(x^{k+1})/p_i^k), \quad i = 1, \dots, m_g$
- (*iii*) $p_i^{k+1} < p_i^k, \ i = 1, \dots, m_g.$

The approximate unconstrained minimization in Step (i) is performed either by the Newton method with line-search or by one of two variants of the Trust Region method (for details, see [1]). The minimization is optionally stopped when either

$$\|\nabla_x F(x^{k+1}, u^k, p^k)\|_2 \le \alpha$$

or

$$\|\nabla_x F(x^{k+1}, u^k, p^k)\|_2 \le \alpha \cdot f(x^0)$$

or

$$\|\nabla_x F(x^{k+1}, u^k, p^k)\|_{H^{-1}} \le \alpha \|\nabla_x F(x^k, u^k, p^k)\|_{H^{-1}}$$

with optional parameter α ; by default, $\alpha = 10^{-1}$.

The multipliers calculated in Step (ii) are restricted in order to satisfy:

$$\mu < \frac{u_i^{k+1}}{u_i^k} < \frac{1}{\mu}$$

with some positive $\mu \leq 1$; by default, $\mu = 0.3$.

The update of the penalty parameter p in Step (iii) is performed in the following way: During the first three iterations we do not update the penalty vector p at all. After this kind of "warm start", the penalty vector is updated by some constant factor dependent on the initial penalty parameter π . The penalty update is stopped, if p_{eps} (by default 10^{-6}) is reached.

Algorithm 1 is stopped when both of the inequalities holds:

$$\frac{|f(x^k) - F(x^k, u^k, p)|}{1 + |f(x^k)|} < \epsilon , \qquad \frac{|f(x^k) - f(x^{k-1})|}{1 + |f(x^k)|} < \epsilon ,$$

where ϵ is by default 10^{-7} (parameter precision).

Program call

PENNON-AMPL is called in the standard AMPL style, i.e., either by a sequence like

```
> model sample.mod;
> data sample.dat;
> options solver pennon;
> options pennon_options 'convex=1 outlev=2'; (for instance)
> solve;
```

within the AMPL environment or from the command line by

```
> pennon stub.nl 'convex=1 outlev=2'
```

Program options

The options are summarized in Table 1.

Recommendations

- Whenever you know that the problem is convex, use convex=1.
- When you have problems with convergence of the algorithm, try to
 - increase (decrease) uinit, e.g., uinit=10000.
 - swith to Trust Region algorithm by ncmode=1
 - decrease alpha, e.g., alpha=1e-3

option	meaning	default
alpha	stopping parameter α for the Newton/Trust region	1.0E-1
-	method in the inner loop	
autoscale	automatic scaling	0
	0 on	
	$1 \dots \text{off}$	
convex	convex problem?	0
	$0 \dots$ generally nonconvex	
1	$1 \dots \text{convex}$	0
hessianmode	check density of the Hessian	0
	0automatic	
ignoreinit	1 dense ignore initial solutions	0
-8	0 do not ignore	Ŭ
	1 do ignore	
maxit	maximum number of outer iterations	100
mu	restriction factor μ of multiplier update	0.3
ncmode	nonconvex mode	0
	0 Modified Newton	_
	1 Trust region	
nwtiters	maximum number of iterations in the inner loop	100
	(Newton or Trust region method)	
nwtstopcrit	stopping criterium for the inner loop	2
1	$0\dots \ \nabla L(x^{k+1})\ _2 < \alpha$	
	$1\dots \ \nabla L(x^{k+1})\ _2^2 < \alpha \cdot f_0$	
	$2 \ \nabla L(x^{k+1})\ _{H^{-1}} < \alpha \cdot \ \nabla L(x^k)\ _{H^{-1}}$	
objno	objective number in the AMPL .mod file	1
outlev	output level	1
	$0 \dots$ silent mode	
	$1 \dots brief$ output	
	$2\ldots$ full output	
penalty	penalty function	0
	0 logarithmic barrier + quadratic penalty	
	1 reciprocal barrier	
penup	penalty update	0.5
peps	minimal penalty	1.0E-6
pinit	initial penalty	1.0E0
precision	required final precision	1.0E-7
timing	timing destination	0
	0 no	
	$1\ldots { m stdout}$	
	$2 \dots stderr$	
	3both	1.0
uinit	initial multiplier scaling factor	1.0
umin	minimal multiplier	1.0E-10
version	report PENNON version	0
	$0\ldots$ yes	
wantsol	1no solution report without -AMPL. Sum of	0
walltsUL	$0 \dots do not write .sol file$	U
	$1 \dots$ write .sol file	
	2 print primal variable	
	4 print dual variable	
	$8 \dots do not print solution message$	

Table 1: PENNON-AMPL options

References

 M. Kočvara and M. Stingl. PENNON—a code for convex nonlinear and semidefinite programming. Optimization Methods and Software, 8(3):317–333, 2003.