PENNON-AMPL User’s Guide (Version 1.3)

Michal Koc¢vara Michael Stingl

WWW.penopt.com

August 29, 2003

The problem

We solve optimization problems with nonlinear objective subject to nonlinear in-
equalities and equalities as constraints:

min f(z)

s.t. gi(z) <0, i=1,...,m, (NLP)

Here f, g; and h; are C? functions from R" to R.

The algorithm

To simplify the presentation of the algorithm, we only consider inequality con-
straints. For the treatment of the equality constraints, see [1].

The algorithm is based on a choice of penalty/barrier function ¢, : R — R that
penalize the inequality constraints. This function satisfies a number of properties
(see [1]) that guarantee that for any p; >0, i =1,...,mg,, we have

This means that, for any p; > 0, problem (NLP) has the same solution as the
following “augmented” problem

min f(z)

s.t. pivg(gi(x)/pi) <0, i=1,...,my. (NLPy)

The Lagrangian of (NLP,) can be viewed as a (generalized) augmented La-
grangian of (NLP):

Flenp) = @)+ S upioe(ai(x)/pi) 1)

i=1

here u € R™¢ are Lagrangian multipliers associated with the inequality constraints.
The algorithm combines ideas of the (exterior) penalty and (interior) barrier
methods with the Augmented Lagrangian method.

Algorithm 1 Let x' and u' be given. Let pi >0,i=1,... ,mg. Fork=1,2,...
repeat till a stopping criterium is reached:

(1) Find 2"t such that |V, F (2" u®, pb)| < K
(i1) ubt! = ufgo;(gi(xkﬂ)/pf), i=1,...,my

k+1 koo
(#7) pitt<pli=1,...,m,.

The approximate unconstrained minimization in Step (i) is performed either by
the Newton method with line-search or by one of two variants of the Trust Region
method (for details, see [1]). The minimization is optionally stopped when either

IV F @ a2 < @

or
||VxF($k+17uk7pk>”2 S a - f(xo)

or
||V€L’F(mk+1’uk>pk)”H*1 < O‘||VIF(xkvuk7pk)”H*1

with optional parameter a; by default, o = 1071,
The multipliers calculated in Step (ii) are restricted in order to satisfy:

k+1 1

i 2
p< =<

u; I

with some positive p < 1; by default, p = 0.3.

The update of the penalty parameter p in Step (iii) is performed in the following
way: During the first three iterations we do not update the penalty vector p at all.
After this kind of “warm start”, the penalty vector is updated by some constant
factor dependent on the initial penalty parameter . The penalty update is stopped,
if peps (by default 1079) is reached.

Algorithm 1 is stopped when both of the inequalities holds:

/(") = Pt ubop)| |f (") — f@™1)]
L4 [f (%)l ’ L4 [f (%)l

<€,

where ¢ is by default 10~7 (parameter precision).

Program call

PENNON-AMPL is called in the standard AMPL style, i.e., either by a sequence
like

model sample.mod;

data sample.dat;

options solver pennon;

options pennon_options ’convex=1 outlev=2’; (for instance)
solve;

V V V V V

within the AMPL environment or from the command line by

> pennon stub.nl ’convex=1 outlev=2’

Program options

The options are summarized in Table 1.

Recommendations
e Whenever you know that the problem is convex, use convex=1.
e When you have problems with convergence of the algorithm, try to

— increase (decrease) uinit, e.g., uinit=10000.
— swith to Trust Region algorithm by ncmode=1
— decrease alpha, e.g., alpha=1e-3

Table 1: PENNON-AMPL options

option meaning default
alpha stopping parameter « for the Newton/Trust region 1.0E-1
method in the inner loop
autoscale automatic scaling 0
0...on
1...0ff
convex convex problem? 0
0 ...generally nonconvex
1 ...convex
hessianmode | check density of the Hessian 0
0...automatic
1 ...dense
ignoreinit | ignore initial solutions 0
0...do not ignore
1 ...do ignore
maxit maximum number of outer iterations 100
mu restriction factor p of multiplier update 0.3
ncmode nonconvex mode 0
0...Modified Newton
1...Trust region
nwtiters maximum number of iterations in the inner loop 100
(Newton or Trust region method)
nwtstopcrit | stopping criterium for the inner loop 2
0...[|VL(zF |2 <
1... ||VL(.Tk+1)||2 <«- fo
2. |IVL(z** Y| g1 < a- || VL(2F)|| g
objno objective number in the AMPL .mod file 1
outlev output level 1
0 ...silent mode
1 ...brief output
2 ... full output
penalty penalty function 0
0...logarithmic barrier + quadratic penalty
1 ...reciprocal barrier
penup penalty update 0.5
peps minimal penalty 1.0E-6
pinit initial penalty 1.0E0
precision required final precision 1.0E-7
timing timing destination 0
0...no
1 ...stdout
2 ...stderr
3 ...both
uinit initial multiplier scaling factor 1.0
umin minimal multiplier 1.0E-10
version report PENNON version 0
0...yes
1...no
wantsol solution report without ~AMPL. Sum of 0

0 ...do not write .sol file

.. write .sol file

.. print primal variable

.. print dual variable

..do not print solution message

0 = N =

References

[1] M. Koc¢vara and M. Stingl. PENNON-—a code for convex nonlinear and
semidefinite programming. Optimization Methods and Software, 8(3):317-333,
2003.

