
PENNON-AMPL User’s Guide (Version 1.3)

Michal Kočvara Michael Stingl

www.penopt.com

August 29, 2003

The problem

We solve optimization problems with nonlinear objective subject to nonlinear in-
equalities and equalities as constraints:

min
x∈Rn

f(x)

s.t. gi(x) ≤ 0, i = 1, . . . ,mg

hi(x) = 0, i = 1, . . . ,mh .
(NLP)

Here f , gi and hi are C2 functions from R
n to R.

The algorithm

To simplify the presentation of the algorithm, we only consider inequality con-

straints. For the treatment of the equality constraints, see [1].
The algorithm is based on a choice of penalty/barrier function ϕg : R → R that

penalize the inequality constraints. This function satisfies a number of properties
(see [1]) that guarantee that for any pi > 0, i = 1, . . . ,mg, we have

gi(x) ≤ 0 ⇐⇒ piϕg(gi(x)/pi) ≤ 0, i = 1, . . . ,m .

This means that, for any pi > 0, problem (NLP) has the same solution as the
following “augmented” problem

min
x∈Rn

f(x)

s.t. piϕg(gi(x)/pi) ≤ 0, i = 1, . . . ,mg . (NLPφ)

The Lagrangian of (NLPφ) can be viewed as a (generalized) augmented La-
grangian of (NLP):

F (x, u, p) = f(x) +

mg∑

i=1

uipiϕg(gi(x)/pi) ; (1)

here u ∈ R
mg are Lagrangian multipliers associated with the inequality constraints.

The algorithm combines ideas of the (exterior) penalty and (interior) barrier
methods with the Augmented Lagrangian method.

Algorithm 1 Let x1 and u1 be given. Let p1
i > 0, i = 1, . . . ,mg. For k = 1, 2, . . .

repeat till a stopping criterium is reached:

(i) Find xk+1 such that ‖∇xF (xk+1, uk, pk)‖ ≤ K

(ii) uk+1

i = uk
i ϕ′

g(gi(x
k+1)/pk

i ), i = 1, . . . ,mg

(iii) pk+1

i < pk
i , i = 1, . . . ,mg .

1



The approximate unconstrained minimization in Step (i) is performed either by
the Newton method with line-search or by one of two variants of the Trust Region
method (for details, see [1]). The minimization is optionally stopped when either

‖∇xF (xk+1, uk, pk)‖2 ≤ α

or
‖∇xF (xk+1, uk, pk)‖2 ≤ α · f(x0)

or
‖∇xF (xk+1, uk, pk)‖H−1 ≤ α‖∇xF (xk, uk, pk)‖H−1

with optional parameter α; by default, α = 10−1.
The multipliers calculated in Step (ii) are restricted in order to satisfy:

µ <
uk+1

i

uk
i

<
1

µ

with some positive µ ≤ 1; by default, µ = 0.3.
The update of the penalty parameter p in Step (iii) is performed in the following

way: During the first three iterations we do not update the penalty vector p at all.
After this kind of “warm start”, the penalty vector is updated by some constant
factor dependent on the initial penalty parameter π. The penalty update is stopped,
if peps (by default 10−6) is reached.

Algorithm 1 is stopped when both of the inequalities holds:

|f(xk) − F (xk, uk, p)|

1 + |f(xk)|
< ε ,

|f(xk) − f(xk−1)|

1 + |f(xk)|
< ε ,

where ε is by default 10−7 (parameter precision).

Program call

PENNON-AMPL is called in the standard AMPL style, i.e., either by a sequence
like

> model sample.mod;

> data sample.dat;

> options solver pennon;

> options pennon_options ’convex=1 outlev=2’; (for instance)

> solve;

within the AMPL environment or from the command line by

> pennon stub.nl ’convex=1 outlev=2’

Program options

The options are summarized in Table 1.

Recommendations

• Whenever you know that the problem is convex, use convex=1.

• When you have problems with convergence of the algorithm, try to

– increase (decrease) uinit, e.g., uinit=10000.

– swith to Trust Region algorithm by ncmode=1

– decrease alpha, e.g., alpha=1e-3

2



Table 1: PENNON-AMPL options

option meaning default
alpha stopping parameter α for the Newton/Trust region

method in the inner loop
1.0E-1

autoscale automatic scaling
0 . . . on
1 . . . off

0

convex convex problem?
0 . . . generally nonconvex
1 . . . convex

0

hessianmode check density of the Hessian
0. . . automatic
1 . . . dense

0

ignoreinit ignore initial solutions
0. . . do not ignore
1 . . . do ignore

0

maxit maximum number of outer iterations 100
mu restriction factor µ of multiplier update 0.3
ncmode nonconvex mode

0. . . Modified Newton
1. . . Trust region

0

nwtiters maximum number of iterations in the inner loop
(Newton or Trust region method)

100

nwtstopcrit stopping criterium for the inner loop
0. . . ‖∇L(xk+1)‖2 < α
1. . . ‖∇L(xk+1)‖2 < α · f0

2. . . ‖∇L(xk+1)‖H−1 < α · ‖∇L(xk)‖H−1

2

objno objective number in the AMPL .mod file 1
outlev output level

0 . . . silent mode
1 . . . brief output
2 . . . full output

1

penalty penalty function
0. . . logarithmic barrier + quadratic penalty
1 . . . reciprocal barrier

0

penup penalty update 0.5
peps minimal penalty 1.0E-6
pinit initial penalty 1.0E0
precision required final precision 1.0E-7
timing timing destination

0 . . . no
1 . . . stdout
2 . . . stderr
3 . . . both

0

uinit initial multiplier scaling factor 1.0
umin minimal multiplier 1.0E-10
version report PENNON version

0 . . . yes
1 . . . no

0

wantsol solution report without -AMPL. Sum of
0 . . . do not write .sol file
1 . . . write .sol file
2 . . . print primal variable
4 . . . print dual variable
8 . . . do not print solution message

0

3



References

[1] M. Kočvara and M. Stingl. PENNON—a code for convex nonlinear and
semidefinite programming. Optimization Methods and Software, 8(3):317–333,
2003.

4


