
PENNON

A Code for Convex Nonlinear and Semidefinite

Programming

Michal Kočvara∗ Michael Stingl∗∗

Abstract

We introduce a computer program PENNON for the solution of problems of con-
vex Nonlinear and Semidefinite Programming (NLP-SDP). The algorithm used
in PENNON is a generalized version of the Augmented Lagrangian method,
originally introduced by Ben-Tal and Zibulevsky for convex NLP problems. We
present generalization of this algorithm to convex NLP-SDP problems, as imple-
mented in PENNON and details of its implementation. The code can also solve
second-order conic programming (SOCP) problems, as well as problems with a
mixture of SDP, SOCP and NLP constraints. Results of extensive numerical
tests and comparison with other optimization codes are presented. The test
examples show that PENNON is particularly suitable for large sparse problems.

1 Introduction

A class of iterative methods for convex nonlinear programming problems, in-
troduced by Ben-Tal and Zibulevsky [3] and named PBM, proved to be very
efficient for solving large-scale nonlinear programming (NLP) problems, in par-
ticular those arising from optimization of mechanical structures. The framework
of the algorithm is given by the augmented Lagrangian method; the difference
to the classic algorithm is in the definition of the augmented Lagrangian func-
tion. This is defined using a special penalty/barrier function satisfying certain
properties; this definition guarantees good behavior of the Newton method when
minimizing the augmented Lagrangian function.

The PBM algorithm has been recently generalized to convex semidefinite
programming problems [10]. The idea is to use the PBM penalty function
to construct another function that penalizes matrix inequality constraints. The
efficiency of this approach is based on a special choice of the penalty function for
matrix inequalities. This special choice affects the complexity of the algorithm,
in particular the complexity of Hessian assembling, which is the bottleneck of all
SDP codes working with second-order information. A slightly different approach

∗Institute of Applied Mathematics, University of Erlangen, Martensstr. 3, 91058 Erlangen,
Germany (kocvara@am.uni-erlangen.de). On leave from the Czech Academy of Sciences.

∗∗Institute of Applied Mathematics, University of Erlangen, Martensstr. 3, 91058 Erlangen,
Germany (stingl@am.uni-erlangen.de).

1

kocvara
Optimization Methods and Software 18(3):317-333, 2003

to the generalization of the PBM algorithm to SDP problems can be found in
[14, 19, 20].

The aim of this paper is to introduce a code PENNON (PENalty method for
NONlinear optimization) as a general tool for solving convex nonlinear optimiza-
tion problems with NLP and SDP constraints and their combination. While in
the NLP branch of the code we basically adapt the PBM method by Ben-Tal and
Zibulevsky, the SDP part is based on ideas mentioned above and presented in
[10]. The code is also capable of solving Second Order Conic Problems (SOCP),
by solving a sequence of NLP approximations.

In Section 2 we define a general NLP-SDP problem and introduce the al-
gorithm for its solution. In the next section, we give details of the algorithm,
as implemented in PENNON. In the following section we present an NLP ap-
proximation of the SOCP problems, suitable for the algorithm. The last section
contains results of extensive numerical tests.

We use the following notation: S
m is a space of all real symmetric matrices of

order m, A < 0 (A 4 0) means that A ∈ S
m is positive (negative) semidefinite,

A ◦ B denotes the Hadamard (component-wise) product of matrices A,B ∈
R

n×m. The space S
m is equipped with the inner product 〈A,B〉Sm = tr(AB).

Let A : R
n → S

m and Φ : S
m → S

m be two matrix operators; for B ∈ S
m we

denote by DAΦ(A(x);B) the directional derivative of Φ at A(x) (for a fixed x)
in the direction B.

2 The NLP-SDP problem and the algorithm

Our goal is to solve optimization problems with nonlinear objective subject to
(linear and nonlinear) vector and matrix inequalities as constraints:

min
x∈Rn

f(x)

s.t. gi(x) ≤ 0, i = 1, . . . ,mg

A(x) 4 0 .
(NLP-SDP)

Here f and gi are convex C2 functions from R
n to R and A : R

n → S
mA

is a convex matrix operator. To simplify the presentation, we only consider
inequality constraints. The equality constraints are, in the currents version of
the code, reformulated through two inequality constraints.

The method is based on a choice of penalty/barrier functions ϕg : R → R

and ΦP : S
mA → S

mA that penalize the inequality constraints. The matrix
penalty function ΦP is defined by means of another one-dimensional function
ϕA : R → R as follows. Let A = ST ΛS, where Λ = diag (λ1, λ2, . . . , λmA

)
T
, be

an eigenvalue decomposition of a matrix A. Using ϕA, we define ΦP : S
m → S

m

as

ΦP : A 7−→ ST

PϕA

(
λ1

P

)
0 . . . 0

0 PϕA

(
λ2

P

) ...
...

. . . 0

0 . . . 0 PϕA

(
λmA

P

)

S , (1)

where P > 0 is a given number.

2

Let ϕg : R → R and ϕA : R → R have the following properties:

(ϕ0) ϕ strictly convex, strictly monotone increasing and C2 ,

(ϕ1) domϕ = (−∞, b) with 0 < b ≤ ∞ ,

(ϕ2) ϕ(0) = 0 ,

(ϕ3) ϕ′(0) = 1 ,

(ϕ4) lim
t→b

ϕ′(t) = ∞ ,

(ϕ5) lim
t→−∞

ϕ′(t) = 0 .

From these properties it follows that for any pi > 0, i = 1, . . . ,mg, and
P > 0 we have

gi(x) ≤ 0 ⇐⇒ piϕg(gi(x)/pi) ≤ 0, i = 1, . . . ,m ,

and
A(x) 4 0 ⇐⇒ ΦP (A(x)) 4 0

which means that, for any pi > 0 and P > 0, problem (NLP-SDP) has the same
solution as the following “augmented” problem

min
x∈Rn

f(x)

s.t. piϕg(gi(x)/pi) ≤ 0, i = 1, . . . ,mg

ΦP (A(x)) 4 0 .
(NLP-SDPφ)

The Lagrangian of (NLP-SDPφ) can be viewed as a (generalized) augmented
Lagrangian of (NLP-SDP):

F (x, u, U, p, P) = f(x) +

mg∑

i=1

uipiϕg(gi(x)/pi) + 〈U,ΦP (A(x))〉SmA
; (2)

here u ∈ R
mg and U ∈ S

mA are Lagrangian multipliers associated with the
inequality constraints.

The basic algorithm combines ideas of the (exterior) penalty and (interior)
barrier methods with the Augmented Lagrangian method.

Algorithm 2.1. Let x1 and U1 be given. Let p1
i > 0, i = 1, . . . ,mg, and

P 1 > 0. For k = 1, 2, . . . repeat till a stopping criterium is reached:

(i) xk+1 = arg min
x∈Rn

F (x, uk, Uk, pk, P k)

(ii) uk+1
i = uk

i ϕ′
g(gi(x

k+1)/pk
i), i = 1, . . . ,mg

Uk+1 = DAΦp(A(x);Uk)

(iii) pk+1
i < pk

i , i = 1, . . . ,mg

P k+1 < P k .

Algorithm 2.1 was implemented (mainly) in the C programming language
and this implementation gave rise to a computer program called PENNON.
In the next sections we will discuss details of the algorithm as implemented
in PENNON: the choice of the penalty functions, the choice of initial values
of x, u, U, p and P , the approximate minimization in step (i) and the update
formulas.

3

3 The choice of penalty functions ϕg and ΦP

As mentioned in the Introduction, Algorithm 2.1 is a generalization of the PBM
method by Ben-Tal and Zibulevsky [3] introduced for convex NLPs. In [3], sev-
eral choices of function ϕ satisfying (ϕ1)–(ϕ5) are presented. The most efficient
one (for convex NLP) is the quadratic-logarithmic function defined as

ϕql(t) =

{
c1

1
2 t2 + c2t + c3 t ≥ r

c4 log(t − c5) + c6 t < r
(3)

where r ∈ (−1, 1) and ci, i = 1, . . . , 6, is chosen so that (ϕ1)–(ϕ5) hold. This is
the function we use as ϕg in the NLP branch of our code.

The choice of function ϕA (and thus ΦP) is discussed in detail in [10]. We
show that ϕql is not a good choice for the definition of ΦP from two reasons.
First, even if the function ϕql and the operator A are convex, the penalty func-
tion Φp defined through the right branch of ϕql is nonmonotone and its compo-
sition with a convex nonlinear operator A may result in a nonconvex function
ΦP (A(x)). This nonconvexity may obviously bring difficulties to Algorithm 2.1
and requires special treatment.

Second, the general definition (1) of the penalty function ΦP may lead to
a very inefficient algorithm. The (approximate) minimization in step (i) of
Algorithm 2.1 is performed by the Newton method. Hence we need to com-
pute the gradient and Hessian of the augmented Lagrangian (2) at each step
of the Newton method. This computation may be extremely time consuming.
Moreover, even if the data of the problem and the Hessian of the (original) La-
grangian are sparse matrices, the computation of the Hessian to the augmented
Lagrangian involves many operations with full matrices, when using the general
formula (1). In [10] we have shown that the complexity of Hessian assembling

is O(m4
A + m3

An + m2
An2). Unfortunately, even if the constraint matrices ∂A(x)

∂xi

are sparse, the complexity formula remains the same.
We avoid the above mentioned drawbacks by a choice of the function ϕA.

In particular, we choose a function that allows for a “direct” computation of
ΦP and its first and second derivatives. The function used in our code is the
reciprocal barrier function

ϕrec(t) =
1

t − 1
− 1 . (4)

Theorem 3.1. Let A : R
n → S

m be a convex operator. Let further Φrec
P be a

function defined by (1) using ϕrec. Then for any x ∈ R
n there exists P > 0 such

that

Φrec
P (A(x)) = P 2Z(x) − PI (5)

∂

∂xi

Φrec
P (A(x)) = P 2Z(x)

∂A(x)

∂xi

Z(x) (6)

∂2

∂xi∂xj

Φrec
P (A(x)) = P 2Z(x)

(
∂A(x)

∂xi

Z(x)
∂A(x)

∂xj

−
∂2A(x)

∂xi∂xj

+
∂A(x)

∂xj

Z(x)
∂A(x)

∂xi

)
Z(x) (7)

where
Z(x) = (A(x) − PI)−1 .

4

Furthermore, Φrec
P (A(x)) is monotone and convex in x.

Using Theorem 3.1 we can compute the value of Φrec
P and its derivatives

directly, without the need of eigenvalue decomposition of A(x). The “direct”
formulas (6)–(7) are particularly simple for affine operator

A(x) = A0 +

n∑

i=1

xiAi with Ai ∈ S
m, i = 0, 1, . . . , n ,

when
∂A(x)

∂xi

= Ai and
∂2A(x)

∂xi∂xj

= 0.

The complexity of Hessian assembling, when working with function ϕrec is
O(m3

An + m2
An2). In contrast to the general approach, for sparse constraint

matrices with O(1) entries, the complexity formula reduces to O(m2
An + n2).

4 Implementation details

4.1 Initialization

As we have seen in Theorem 3.1, our algorithm can start with an arbitrary
primal variable x ∈ R

n. Therefore we simply choose x0 = 0. In many cases the
matrix constraint is block structured and we denote the number of blocks by
M . Using this the initial values of the multipliers are set to

U0
j = τµs

jImj
, j = 1, . . . ,M,

u0
i = τµl

i, i = 1, . . . ,mg,

where Imj
are identity matrices of order mj ,

µs
j = mγ

j max
1≤`≤n

1 +
∣∣∣∂f(x)

∂xj

∣∣∣

1 +
∥∥∥∂A(x)

∂x`

∥∥∥
, (8)

µl
i = max

1≤`≤n

1 +
∣∣∣∂f(x)

∂xi

∣∣∣

1 +
∥∥∥∂g(x)

∂x`

∥∥∥
. (9)

In case we are solving pure SDP problems, we choose

τ = min

(
1,

1000

‖gradF (x0, u0, U0, p0, P 0)‖

)
,

γ = 1.

Otherwise, if we combine NLP and SDP constraints we set γ = 2 and τ = 1.
Furthermore, we calculate π > 0 so that

λmax(Aj(x)) < π, j = 1, . . . , k

and set P 0 = π and p0 = πe where e ∈ R
mg is the vector with ones in all

components.

5

4.2 Unconstrained minimization

The tool used in step (i) of Algorithm 2.1 (approximate unconstrained mini-
mization) is the modified Newton method. In each step we calculate the search
direction d by solving the Newton equation and find αmax so that the conditions

λmax(Aj(x
k + αd)) < pk

j , j = 1, . . . , k

hold for all 0 < α < αmax.
Optionally we combine the Newton method with a cubic linesearch with

safeguard criterion.

4.3 Update of multipliers

First we would like to motivate the multiplier update formula in Algorithm 2.1.

Proposition 4.1. Let xk+1 be the minimizer of the augmented Lagrangian
F with respect to x in the k-th iteration. If we choose U k+1 and uk+1

i , i =
1, . . . ,mg, as in Algorithm 2.1 we have

L(xk+1, uk+1, Uk+1, pk, P k) = 0,

where L denotes the standard Lagrangian of our initial problem (NLP-SDP).

An outline of the proof is given next. The gradient of F with respect to x
reads as

∇xF (x, u, U, p, P) = ∇xf(x)+

mg∑

i=1

uiϕ
′(gi(x)/pi)∇xgi(x)+

〈
U,DAΦP

(
A(x); ∂A(x)

∂x1

)〉

...〈
U,DAΦP

(
A(x); ∂A(x)

∂xn

)〉

 .

(10)
It can be shown that (10) can be written as

∇xf(x) +

mg∑

i=1

uiϕ
′(gi(x)/pi)∇xgi(x) + A∗DAΦP (A(x);U) ,

where A∗ denotes the conjugate operator to A. Now, if we define U k+1 :=
DAΦP

(
A(xk);Uk

)
and uk+1

i := uk
i ϕ′(gi(x

k)/pk
i), we immediately see that

∇xF (xk+1, uk, Uk, pk, P k) = ∇xL(xk+1, uk+1, Uk+1, pk, P k)

and so we get L(xk+1, uk+1, Uk+1, pk, P k) = 0.
For our special choice of the penalty function Φrec

P , the update of the matrix
multiplier can be written as

Uk+1 = (P k)2Z(x)UkZ(x) , (11)

where Z was defined in Theorem 3.1.
Numerical tests indicated that big changes in the multipliers should be

avoided for two reasons. First, they may lead to a large number of Newton
steps in the subsequent iteration. Second, it may happen that already after a
few steps, the multipliers become ill-conditioned and the algorithm suffers from
numerical troubles. To overcome these difficulties, we do the following:

6

• SDP multipliers:

1. Calculate Uk+1 using the update formula in Algorithm 2.1.

2. Choose some positive µA ≤ 1, typically 0.5.

3. Compute λA = min

(
µA, µA

‖Uk‖
F

‖Uk+1−Uk‖F

)
.

4. Update the current multiplier by

Unew = Uk + λA(Uk+1 − Uk). (12)

• NLP multipliers: For each i = 1, . . . ,mg

1. Calculate uk+1
i using the update formula in Algorithm 2.1.

2. Choose some positive µg ≤ 1, typically 0.5.

3. Check the inequalities

µg <
uk+1

i

uk
i

<
1

µg

.

4. If one of the inequalities is violated choose unew
i = µg resp. unew

i = 1
µ g

.

Otherwise accept uk+1
i .

4.4 Stopping criteria and penalty update

When testing our algorithm on pure SDP and pure NLP problems, we observed
that the Newton method needs many steps during the first global iterations.
To improve this, we adopted the following strategy ([3]): During the first three
iterations we do not update the penalty vector p at all. Furthermore, we stop the
unconstrained minimization if ‖∇xF (x, u, U, p, P)‖ is smaller than some α0 > 0,
which is not too small, typically 1.0.

After this kind of “warm start”, the penalty vector is updated by some con-
stant factor dependent on the initial penalty parameter π. The penalty update
is stopped, if some peps (typically 10−6) is reached. The stopping criterion for
the unconstrained minimization changes to ‖∇xF (x, u, U, p, P)‖ ≤ α, where in
most cases α = 0.01 is a good choice.

If we combine SDP with NLP constraints, the testing indicates that it is
much better to update the penalty constraints from the very beginning. There-
fore the “warm start” is not performed in this case.

Algorithm 2.1 is stopped if one of the inequalities holds:

|f(xk) − F (xk, uk, Uk, p, P)|

1 + |f(xk)|
< ε ,

|f(xk) − f(xk−1)|

1 + |f(xk)|
< ε ,

where ε is typically 10−7.

7

4.5 Sparse linear algebra

Many optimization problems have very sparse data structure and therefore have
to be treated by sparse linear algebra routines. Since the sparsity issue is more
important in semidefinite programming, we will concentrate on this case. For
linear SDP with constraint A(x) =

∑
xiAi < 0, we can distinguish three basic

types of sparsity:

• A(x) is a block diagonal matrix with many (small) blocks. This leads to
a sparse Hessian of the augmented Lagrangian; see the mater examples.

• A(x) has few (large) blocks and

– A(x) is dense but Ai are sparse; this is the case of most SDPLIB
examples.

– A(x) is sparse; see the truss examples.

In our implementation, we use sparse linear algebra routines to perform the
following three tasks corresponding to the above three cases:

Cholesky factorization The first task is the factorization of the Hessian. In
the initial iteration, we check the sparsity structure of the Hessian and do the
following:

• If the fill-in of the Hessian is below 20% , we make use of the fact that the
sparsity structure will be the same in each Newton step in all iterations.
Therefore we create a symbolic pattern of the Hessian and store it. Then
we factorize the Hessian by the sparse Cholesky solver of Ng and Peyton
[15], which is very efficient for sparse problems with constant sparsity
structure.

• Otherwise, if the Hessian is dense, we use the Cholesky solver from lapack

which, in its newest version, is very robust even for small pivots.

Construction of the Hessian In each Newton step, the Hessian of the aug-
mented Lagrangian has to be calculated. The complexity of this task can be
drastically reduced if we make use of sparse structures of the constraint matrices

Aj(x) and the corresponding partial derivatives
∂Aj(x)

∂xi
. Since there is a great

variety of different sparsity types, we refer to the paper by Fujisawa, Kojima
and Nakata on exploiting sparsity in semidefinite programming [8], where one
can find the ideas we follow in our implementation.

Fast inverse computation of sparse matrices The third situation con-
cerns the case when A := A(x) is a sparse matrix. When using the reciprocal
penalty function ϕrec, we have to compute expressions of type

(A − I)−1Ai(A − I)−1Aj(A − I)−1.

Note that we never need the inverse (A−I)−1 alone, but always its multiplication
with a sparse matrix, say M . Assume that not only A but also its Cholesky
factor is sparse. Then, obviously, the Cholesky factor of (A − I) will also be

8

sparse. Denote this factor by L. The i-th column of Z := (A− I)−1M can then
be computed as

Zi = (L−1)T L−1M i, i = 1, . . . , n.

If κ is the number of nonzeros in L, then the complexity of computing Z through
Cholesky factorization is O(n2κ), compared to O(n3) when working with the
explicite inverse of (A − I) (a full matrix) and its multiplication by Ak.

5 Extensions

5.1 SOCP problems

Let us recall that Algorithm 2.1 is defined for general problems with combination
of NLP and SDP constraints. It can be thus used, for instance, for solution
of Second Order Conic Programming (SOCP) problems combined with SDP
constraints, i.e., problems of the type

min
x∈Rn

bT x

s.t. A(x) 4 0

Aqx − cq ≤q 0

Alx − cl ≤ 0

where b ∈ R
n, A : R

n → S
m is, as before, a convex operator, Aq are kq × n

matrices and Al is an kl × n matrix. The inequality symbol “≤q” means that
the corresponding vector should be in the second-order cone defined by Kq =
{z ∈ R

q | z1 ≥ ‖z2:q‖}. The SOCP constraints cannot be handled directly
by PENNON; written as NLP constraints, they are nondifferentiable at the
origin. We can, however, perturb them by a small parameter ε > 0 to avoid the
nondifferentiability. So, for instance, instead of constraint

a1x1 ≤
√

a2x2
2 + . . . + amx2

m,

we work with a (smooth and convex) constraint

a1x1 ≤
√

a2x2
2 + . . . + amx2

m + ε.

The value of ε can be decreased during the iterations of Algorithm 2.1. In
PENNON we set ε = p·10−6, where p is the penalty parameter in Algorithm 2.1.
In this way, we obtain solutions of SOCP problems of high accuracy. This is
demonstrated in Section 6.

5.2 Nonconvex problems

Algorithm 2.1 is proposed for general convex problems. A natural question
arises, whether it can be generalized for finding local minima or stationary points
of nonconvex problems. To this purpose we have implemented a modification of
Algorithm 2.1 described below. However, when we tested the modified algorithm
on various nonconvex problems, we realized that the idea is not yet ready and
needs more tuning. It works well on many problems, but it also has severe

9

difficulties with many other problems. The algorithm is also rather sensitive
on various parameters. From these reasons we do not give here any results for
nonconvex problems.

Assume that functions f and gi from (NLP-SDP), or even the operator A,
are generally nonconvex. In this case we use a quite simple idea: we apply
Algorithm 2.1 and whenever we hit a nonconvex point in Step (i), we switch
from the Newton method to the Levenberg-Marquardt method. More precisely,
one step of the minimization method in step (i) is defined as follows:

Given a current iterate (x, U, p), compute the gradient g and Hes-
sian H of F at x.

Compute the minimal eigenvalue λmin of H. If λmin < 10−3, set

Ĥ(α) = H + (λmin + α)I.

Compute the search direction

d(α) = −Ĥ(α)−1g.

Perform line-search in direction d(α). Denote the step-length by s.
Set

xnew = x + sd(α).

Obviously, for a convex F , this is just a Newton step with line-search. For
nonconvex functions, we can use a shift of the spectrum of H with a fixed
parameter α = 10−3. As mentioned above, this approach works well on several
nonconvex NLP problems but has serious difficulties with other problems. This
idea needs more tuning and we believe that a nonconvex version of PENNON
will be the subject of a future article.

6 Computational results

Since there are no standard test examples that combine NLP and SDP con-
straints, we will report on tests done separately for NLP and SDP problems.

To test PENNON on NLP problems, we have created an AMPL interface [7].
We used a test suite of convex quadratic programs by Maros and Mészáros1 [12].
This set contains selected problems from the BRUNEL and CUTE collections
plus some additional problems. We have chosen these test problems, as they
were recently used for the benchmark of QP solvers by Mittelmann [13]. We
should note that PENNON is not a specialized QP solver; on the contrary, it
transforms the QP problem into a general nonlinear one. It does not use any
special structure of the problem, like separability, either.

The second set of NLP examples, called mater, comes from structural opti-
mization. It contains convex quadratically constrained quadratic problems.

The SDP version of PENNON was tested using two sets of problems: the
SDPLIB collection of linear SDPs by Borchers [6]; the set of mater and truss

examples from structural optimization. We describe the results of our testing
of PENNON and three other SDP codes, namely CSDP-3.2 by Borchers [5],

1Available on-line at ftp://ftp.sztaki.hu/pub/oplab/QPDATA. Corresponding AMPL files
are available at ftp://plato.la.asu.edu/pub/ampl files/qpdata ampl.

10

SDPT3-3.0 by Toh, Todd and Tütüncü [18], and DSDP-4.5 by Benson and Ye
[4]. We have chosen these three codes as they were, at the moment of writing
this article, the fastest ones in the independent tests performed by Mittelmann
[13]. We used the default setting of parameters for all codes. We report on
results obtained with PENNON-1.2, a version that is more efficient than the
one tested in [10]. This is why the results differ (sometimes substantially) from
those reported in [10].

Finally, we present results of selected problems from the DIMACS library
[16] that combine SOCP and SDP constraints.

6.1 Convex quadratic programming

Table 1 shows number of successful runs for the problems from the BRUNEL
and CUTE collections and additional problems denoted as MISC. The cause of
failure was mainly lack of convergence. In some cases (the LISWET problems),
the code converged too slowly, in other cases (POWELL20), it actually diverged.

Table 1: QP problems
set problems solved failed memory
BRUNEL 46 45 1
CUTE 76 67 7 2
MISC 16 12 4

The next Table 2 gives CPU times and iteration counts for selected examples
(following [13]).

Table 2: Computational results for selected QP problems using PENNON,
performed on Pentium III-M (1000 MHz) with 512 KB memory running SuSE
LINUX 7.3. The values in column “iter” denote number of outer itera-
tions/number of Newton steps/number of line-search steps.
problem CPU iter
BOYD1 memory
BOYD2 memory
CONT-201 128 20/26/75
CONT-300 444 21/26/75
CVXQP1 M 4 14/42/135
CVXQP1 L 1707 19/75/192
CVXQP2 L 670 15/58/139
CVXQP3 L 4497 15/153/2064
EXDATA memory
LISWET1 376 98/1494/11262
LISWET10 failed

6.2 mater problems

Program PENNON, both the NLP and SDP versions, was actually developed as
a part of a software package MOPED for material optimization. The goal of this

11

package is to design optimal structures considered as two- or three-dimensional
continuum elastic bodies where the design variables are the material properties
which may vary from point to point. Our aim is to optimize not only the
distribution of material but also the material properties themselves. We are thus
looking for the ultimately best structure among all possible elastic continua, in
a framework of what is now usually referred to as “free material design” (see
[21] for details). After analytic reformulation and discretization by the finite
element method, the problem reduces to a large-scale convex NLP problem

min
α∈R,x∈RN

{
α − cT x |α ≥ xTAix for i = 1, . . . ,M

}

with positive semidefinite matrices Ai. Here M is the number of finite elements
and N the number of degrees of freedom of the displacement vector. For real
world problems one should work with discretizations of size M ≈ 20 000.

For the purpose of this paper we used an AMPL model of a typical material
optimization problem. The examples presented in Table 3 differ in the number
of variables and constraints but their character is the same. We must remark
that a direct implementation of the problem (without the AMPL interface) leads
to much more efficient solution, in terms of memory and CPU time.

Table 3: Computational results for mater problems using PENNON, performed
on Pentium III-M (1000 MHz) with 512 KB memory running SuSE LINUX 7.3.
“N” is the number of variables “M” the number of constraints. The values in col-
umn “iter” denote number of outer iterations/number of Newton steps/number
of line-search steps.
problem N M CPU iter
mater-sl-1 162 64 <1 14/32/72
mater-sl-2 4050 1936 50 19/61/128
mater-sl-3 19602 9604 373 21/82/146
mater-sl-4 42050 20736 1073 20/91/194

6.3 SDPLIB

Due to space limitations, we do not present here the full SDPLIB results and
select just several representative problems. Table 4 lists the selected SDPLIB
problems, along with their dimensions, and the results for CSDP, SDPT3,
DSDP, and PENNON2. All codes were used with standard setting; CSDP and
PENNON were linked with ATLAS-BLAS library, SDPT3 (with HKM direc-
tion) ran under Matlab 6.1.

In several SDPLIB problems, CSDP, SDPT3 or DSDP are faster than PEN-
NON. This is, basically, due to the number of Newton steps used by the par-
ticular algorithms. Since the complexity of Hessian assembling is about the
same for all three codes, and the data sparsity is handled in a similar way, the
main time difference is given by the number of Newton steps. While CSDP
and SDPT3 need, in average, 15–30 steps, PENNON needs about 2–3 times
more steps. Recall that this is due to the fact that PENNON is based on an

2This table is overtaken from ftp://plato.la.asu.edu/pub/sdplib.txt with a kind per-
mission of the author.

12

Table 4: Selected SDPLIB problems and computational results using CSDP,
SDPT3, and PENNON, performed on a Pentium II PC (450 MHz) with 512 KB
memory running LINUX-2.4.14 and Matlab 6.1. “s” is the number of correct
digits in the objective function.

no. of size of CSDP SDPT3 DSDP PENNON
problem var. matrix CPU s CPU s CPU s CPU s

arch8 174 335 34 7 63 7 26 5 42 6
control7 136 45 513 7 201 6 1101 5 448 7
control10 1326 150 2551 6 899 6 8531 5 6455 6
control11 1596 165 4404 6 1354 6 13830 5 10863 6
gpp250-4 250 250 45 7 43 7 29 6 34 6
gpp500-4 501 500 375 7 257 7 244 7 224 7
hinf15 91 37 1 5 11 5 1 2 11 3

mcp250-1 250 250 26 7 19 7 2 5 15 7
mcp500-1 500 500 171 7 435 7 14 5 79 7

qap9 748 82 27 7 28 4 69 5 40 5
qap10 1021 101 66 7 51 4 137 5 127 5
ss30 132 426 229 7 194 7 65 7 165 7

theta3 1106 150 70 7 61 7 94 7 126 7
theta4 1949 200 311 7 213 7 427 7 603 7
theta5 3028 250 956 7 647 7 1616 7 1693 7
theta6 4375 300 2629 7 1610 7 5379 7 5861 7
truss7 86 301 1 7 7 6 2 7 1 7
truss8 496 628 29 7 65 7 57 7 85 7

equalG11 801 801 1163 7 1027 7 1151 7 1010 6
equalG51 1001 1001 2342 7 2241 7 2899 7 3135 7
maxG11 800 800 573 7 310 7 44 7 213 6
maxG32 2000 2000 7755 7 4140 7 622 7 2690 7
maxG51 1001 1001 1295 7 1047 7 224 7 1630 7
qpG11 800 1600 3875 7 2579 7 98 7 544 7
qpG51 1000 2000 8087 7 5805 7 1263 7 3074 7

algorithm for general nonlinear convex problems and allows to solve larger class
of problems. This is the price we pay for the generality. We believe that, in this
light, the code is competitive.

The SDPLIB collection includes some very-large-scale problems, which are
impossible to solve on a PC, due to memory limitations. We have solved these
problems on an SGI Origin 3400 parallel computer with 56 GB main memory.
We did not use any paralellization of PENNON but linked it with parallel BLAS
and LAPACK libraries. The examples were solved using 4 processors. Table 5
shows the computational time needed by PENNON. We did not compare these
times with any other SDP code; the purpose of these tests was to see whether
PENNON is able to solve these large-scale problems and whether its behaviour
deteriorates in any way. The results show that PENNON is very robust, at
least for this group of problems. (To get a comparison with other computers,
we included a smaller problem maxG51, contained in Table 4 above. Obviously,
such comparison of a sequential and parallel computer gives only a very vague
idea.).

13

Table 5: Computational results on large SDPLIB problems using PENNON,
performed on SGI Origin 3400 with 56 GB memory using 4 processors. The
values in column “iter” denote number of outer iterations/number of Newton
steps/number of line-search steps. “s” is the number of correct digits in the
objective function.

PENNON
problem n m time s iter
thetaG11 2401 801 991 (16m31s) 9 26/98/124
thetaG51 6910 1001 20277 (5h37m57s) 9 25/106/145
maxG51 1000 1000 554 (9m14s) 7 22/53/66
maxG55 5000 5000 120425 (33h27m5s) 7 22/50/65
maxG60 7000 7000 226586 (62h56m26s) 7 23/47/68

6.4 mater and truss problems

Next we present results of two sets of examples coming from structural optimiza-
tion. The first set contains examples from free material optimization introduced
above. While the single-load problem can be formulated as a convex NLP, the
more realistic multiple-load is modeled by linear SDP as described in [1]. All
examples solve the same problem (geometry, loads, boundary conditions) and
differ only in the finite element discretization.

The linear matrix operator A(x) =
∑

Aixi has the following structure: Ai

are block diagonal matrices with many (∼5 000) small (11× 11–20× 20) blocks.
Moreover, only few (6–12) of these blocks are nonzero in any Ai, as schematically
shown in the figure below.

2x + x + ...1

As a result, the Hessian of the augmented Lagrangian associated with this prob-
lem is a large and sparse matrix. PENNON proved to be particularly efficient
for this kind of problems, as shown in Table 7.

The following results are overtaken from Mittelmann [13] and were obtained3

on Sun Ultra 60, 450 MHz with 2 GB memory, running Solaris 8. Table 6 shows
the dimensions of the problems, together with the optimal objective value. Ta-
ble 7 presents the test results for CSDP, SDPT3 and PENNON. It turned out
that for this kind of problems, the code SeDuMi by Sturm [17] was rather com-
petitive, so we included also this code in the table.

In the second set, we solve problems from truss topology design:

• trto are problems from single-load truss topology design. Normally for-
mulated as LP, here reformulated as SDP for testing purposes (see, eg,
[2, 11]).

3Except of mater-5 solved by CSDP and mater-6 solved by CSDP and SDPT3. These were
obtained using Sun E6500, 400 MHz with 24 GB memory

14

Table 6: mater problems
problem n m Optimal value
mater-3 1439 3588 -1.339163e+02
mater-4 4807 12498 -1.342627e+02
mater-5 10143 26820 -1.338016e+02
mater-6 20463 56311 -1.335387e+02

Table 7: Computational results for mater problems using SDPT3, CSDP, Se-
DuMi, and PENNON, performed on a Sun Ultra 60 (450 MHz) with 2 GB of
memory running Solaris 8. “s” is the number of correct digits in the objective
function.

SDPT3 CSDP SeDuMi PENNON
problem CPU s CPU s CPU s CPU digits
mater-3 569 7 129 8 54 11 48 10
mater-4 7675 5 2555 8 295 11 260 9
mater-5 40902 5 258391 8 692 10 600 8
mater-6 memory memory 1957 8 1612 8

• vibra are single load truss topology problems with a vibration constraint.
The constraint guarantees that the minimal self-vibration frequency of the
optimal structure is bigger than a given value; see [9].

• buck are single load truss topology problems with linearized global buck-
ling constraint. Originally a nonlinear matrix inequality, the constraint
should guarantee that the optimal structure is mechanically stable (does
not buckle); see [9].

All problems from this set are characterized by sparsity of the linear matrix
operator A. These problems are very difficult to solve. From all the tested
SDP solvers, only SDPT3 and PENNON, followed by DSDP, could solve them
efficiently. SeDuMi could only solve small problems and needed unacceptable
length of time for larger ones. CSDP crashed on almost all problems from this
set. In the following tables, we only show comparison of PENNON with SDPT3.
Table 8 gives problem characteristics, while Table 9 presents results of the test
runs.

When we started to test these examples with PENNON, we realized that the
line-search procedure is very inefficient for this group of problems. It turned out
that it is much more efficient to avoid line-search and do always a full Newton
step. Results in Table 9 were obtained with this version of the code. This
idea (to avoid line-search) is, however, not always a good one (in some SDPLIB
examples), and this part of the algorithm needs certainly more attention and
future development.

6.5 DIMACS

Finally, in Table 10 we present results of selected problems from the DIMACS
collection. These are mainly SOCP problems, apart from filter48-socp that
combines SOCP and SDP constraints. The results demonstrate that we can
reach high accuracy even when working with the smooth reformulation of the

15

Table 8: truss problems. (e) denotes known exact optimal value; n is the
number of variables, m the size of the matrix constraint; 25+36 means: matrix
constraint of size 25 and 36 linear constraints
problem n m Optimal value

trto1 36 25+36 1.1045 (e)
trto2 144 91+144 1.28 (e)
trto3 544 321+544 1.28 (e)
trto4 1200 673+1200 1.276582
trto5 3280 1761+3280 1.28 (e)
buck1 36 49+36 14.64192
buck2 144 193+144 292.3683
buck3 544 641+544 607.6055
buck4 1200 1345+1200 486.1421
buck5 3280 3521+3280 436.2292
vibra1 36 49+36 40.81901
vibra2 144 193+144 166.0153
vibra3 544 641+544 172.6130
vibra4 1200 1345+1200 165.6133
vibra5 3280 3521+3280 165.9029

SOCP constraints (see Section 5.1). The results also show the influence of linear
constraints on the efficiency of the algorithm; cf. problems nb and nb-L1. This
is due to the fact that, in our algorithm, the part of the Hessian corresponding
to every (penalized) linear constraint is a dyadic, i.e., possibly full matrix. We
are working on an approach that treats linear constraints separately.

Acknowledgment

The authors would like to thank Hans Mittelmann for his help when testing the
code and for implementing PENNON on the NEOS server. This research was
supported by BMBF project 03ZOM3ER. The first author was partly supported
by grant No. 201/00/0080 of the Grant Agency of the Czech Republic.

References

[1] A. Ben-Tal, M. Kočvara, A. Nemirovski, and J. Zowe. Free material design
via semidefinite programming. The multi-load case with contact conditions.
SIAM J. Optimization, 9:813–832, 1997.

[2] A. Ben-Tal and A. Nemirovski. Lectures on Modern Convex Optimization.
MPS-SIAM Series on Optimization. SIAM Philadelphia, 2001.

[3] A. Ben-Tal and M. Zibulevsky. Penalty/barrier multiplier methods for
convex programming problems. SIAM J. Optimization, 7:347–366, 1997.

[4] S. J. Benson and Y. Ye. DSDP4 users manual. Report ANL/MCS-
TM-248, Argonne National Laboratory, Argonne, 2002. Available at
http://www-unix.mcs.anl.gov/~benson/.

16

Table 9: Computational results for truss problems using SDPT3 and PEN-
NON, performed on a Pentium III PC (650 MHz) with 512 KB memory running
SuSE LINUX 7.3. (S) means that the code failed with “Schur complement not
positive definite” or “Lack of progress” but close to convergence, usually 5–6 dig-
its accuracy. For PENNON, “iter” denotes number of outer iterations/number
of Newtons steps. “s” is the number of correct digits in the objective function.

SDPT3 PENNON
problem CPU iter s CPU iter s

trto1 1 15 7 <1 20/49 8
trto2 8 22 7 5 22/83 8
trto3 102 26 6 89 25/113 8
trto4 777 35 4 486 28/100 8
trto5 7803 35(S) 4 8862 31/142 8
buck1 2 17 7 <1 23/40 7
buck2 15 21(S) 7 8 29/82 7
buck3 298 37(S) 5 164 38/108 7
buck4 1602 35 6 992 50/109 7
buck5 19124 42(S) 4 14577 50/136 7
vibra1 2 14 7 <1 25/61 7
vibra2 18 25 7 7 30/76 7
vibra3 718 36 5 163 35/107 7
vibra4 2910 44 5 818 37/90 8
vibra5 21494 47(S) 5 18571 42/178 8

[5] B. Borchers. CSDP, a C library for semidefinite programming. Op-
timization Methods and Software, 11:613–623, 1999. Available at
http://www.nmt.edu/~borchers/.

[6] B. Borchers. SDPLIB 1.2, a library of semidefinite programming test prob-
lems. Optimization Methods and Software, 11 & 12:683–690, 1999. Avail-
able at http://www.nmt.edu/~borchers/.

[7] R. Fourer, D. M. Gay, and B. W. Kerningham. AMPL: A Modeling Lan-
guage for Mathematical Programming. The Scientific Press, 1993.

[8] K. Fujisawa, M. Kojima, and K. Nakata. Exploiting sparsity in primal-
dual interior-point method for semidefinite programming. Mathematical
Programming, 79:235–253, 1997.

[9] M. Kočvara. On the modelling and solving of the truss design problem
with global stability constraints. Struct. Multidisc. Optimization, 2002. In
print.

[10] M. Kočvara and M. Stingl. PENNON—a generalized augmented La-
grangian method for semidefinite programming. Preprint 286, Institute
of Applied Mathematics, University of Erlangen, 2001.

[11] M. Kočvara and J. Zowe. How mathematics can help in design of mechanical
structures. In D.F. Griffiths and G.A. Watson, editors, Numerical Analysis
1995, pages 76–93. Longman, Harlow, 1996.

17

Table 10: Computational results on DIMACS problems using PENNON, per-
formed on a Pentium III PC (650 MHz) with 512 KB memory running SuSE
LINUX 7.3. Notation like [793x3] indicates that there were 793 (semidefinite,
second-order, linear) blocks, each a symetric matrix of order 3.

PENNON
problem n SDP blocks SO blocks lin. blocks CPU s
nb 123 – [793x3] 4 60 7
nb-L1 915 – [793x3] 797 141 7
nb-L2 123 – [1677,838x3] 4 100 8
nb-L2-bessel 123 – [123,838x3] 4 90 8
qssp30 3691 – [1891x4] 2 10 6
qssp60 14581 – [7381x4] 2 55 5
nql30 3680 – [900x3] 3602 17 4
filter48-socp 969 48 49 931 283 6

[12] I. Maros and C. Mészáros. A repository of convex quadratic programming
problems. Optimization Methods and Software, 11&12:671–681, 1999.

[13] H. Mittelmann. Benchmarks for optimization software. Available at
http://plato.la.asu.edu/bench.html.

[14] L. Mosheyev and M. Zibulevsky. Penalty/barrier multiplier algorithm for
semidefinite programming. Optimization Methods and Software, 13:235–
261, 2000.

[15] E. Ng and B. W. Peyton. Block sparse cholesky algorithms on advanced
uniprocessor computers. SIAM J. Scientific Computing, 14:1034–1056,
1993.

[16] G. Pataki and S. Schieta. The DIMACS library of
mixed semidefinite-quadratic-linear problems. Available at
http://dimacs.rutgers.edu/challenges/seventh/instances.

[17] J. Sturm. Using SeDuMi 1.02, a MATLAB toolbox for optimization over
symmetric cones. Optimization Methods and Software, 11 & 12:625–653,
1999. Available at http://fewcal.kub.nl/sturm/.

[18] R.H. Tütüncü, K.C. Toh, and M.J. Todd. SDPT3 — A MATLAB software
package for semidefinite-quadratic-linear programming, Version 3.0. Avail-
able at http://www.orie.cornell.edu/~miketodd/todd.html, School of
Operations Research and Industrial Engineering, Cornell University, 2001.

[19] M. Zibulevsky. New penalty/barrier and lagrange multiplier approach for
semidefinite programming. Research Report 5/95, Optimization Labora-
tory, Technion, Israel, 1995.

[20] M. Zibulevsky. Penalty/barrier multiplier methods for large-scale nonlinear
and semidefinite programming. PhD thesis, Technion—Israel Institute of
Technology, Haifa, 1996.

18

[21] J. Zowe, M. Kočvara, and M. Bendsøe. Free material optimization via
mathematical programming. Mathematical Programming, Series B, 79:445–
466, 1997.

19

