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Abstract

This thesis presents a method for the solution of nonlinearidefinite programming
problems. The goal of nonlinear semidefinite programminig isolve optimization
problems subjected to nonlinear matrix inequalities. Thethod described can be
interpreted as a generalization of the modified barrier oekfbr the solution of non-
linear programs subjected to vector-valued inequalityst@aints. As such, the method
belongs to the general category of augmented Lagrangiamgihods. Along with a
comprehensive convergence analysis, including local émohfjconvergence aspects,
emphasis is given to the efficient implementation of the meétlA detailed algorithm
is presented and numerical aspects of the computer ced®®N are described. The
thesis concludes with reports on extensive numerical stugerformed with the com-
puter code BNNON . Moreover, two classes of nonlinear semidefinite programgmi
problems arising from structural optimization and continelory are discussed in detail.

The first chaptercontains an overview about related work in the area of nealin
semidefinite programming. Further, examples of applicataf nonlinear semidefinite
programming are given, and a motivation for the developroétite method described
in this thesis is presented.

The second chapteantroduces concepts from the area of matrix analysis. Itigpar
ular, so called primary matrix functions and (directiortajivatives of matrix functions
are defined.

In the third chapterof this thesis, the nonlinear semidefinite programming fewob
is specified in more detail. Several assumptions among theimality conditions of
first and second order and constraint qualifications are dtated. Furthermore the
impact of these assumptions is discussed.

The fourth chapterintroduces a class of matrix penalty functions. Concrete ex
amples of this class are presented and matrix penalty fumgtiwhich are uniquely
defined by associated real-valued penalty functions, aestigated.

Using the class of penalty functions defined in the precedhapter, a class of
augmented Lagrangian functions is introduced in fifth chapter This class is the
basis of the algorithm for the solution of nonlinear semidédiprogramming problems
presented later in the thesis. Various important propedi¢hese functions are proven.

At the beginning of thesixth chaptera (local) algorithm for the solution of non-
linear semidefinite programs is introduced. It is shown thatlocal algorithm is well
defined. A special version of the implicit function theorelays an importantrole here.
Contractivity of the algorithm is established under theuagstion that the penalty pa-
rameter is kept constant. Finally, it is explained why in aaie neighborhood of
the optimum, the solution of a non-convex semidefinite pogning problem can be
replaced by the solution of a sequence of unrestricted comrablems.

In the seventh chaptetwo globalization techniques for the algorithm introddce
in the preceding chapter are proposed. For each of the agfpgeaertain convergence
properties are established. At the end of this chapter,gorighm combining the local
and global convergence properties is presented.

The eighth chapterdeals with the computational complexity of the algorithm.
Complexity formulas are derived, which indicate serioushgms of the (general)
algorithm, when applied to large scale problems. A remedyivien by the choice



of a special penalty function. It is shown that using thiscsglepenalty function, the
computational complexity can be reduced significantly aadous sparsity types in
the problem data can be exploited.

In the ninth chapterof the thesis, several sub-aspects of the algorithm are dis-
cussed. Among them are: the solution of the (generally ramvex) unrestricted
subproblems, multiplier update formulas, penalty paremepdate schemes, solution
techniques for linear systems, initialization formulad atopping criteria.

In chapter tenpnonlinear semidefinite programming problems arisingriactural
optimization and control theory are presented.

The eleventh chaptedescribes and discusses results of comprehensive nuinerica
experiments. Apart from case studies in structural optutidn and benchmarks with
problems from control theory, comparisons &R ON to alternative (linear) semidef-
inite programming solvers are given.

Finally, the twelfth chapterof this thesis offers an outlook on future research and
possible improvements of the method.



Zusammenfassung

In Rahmen dieser Arbeit wird eine Methode zur Losung nick#rer semidefiniter
Programme eingefiihrt. Ziel der nichtlinearen semidefimiProgrammierung ist es,
Optimierungsprobleme mit nichtlinearen Matrixungleinlgen als Nebenbedingungen
zu losen. Die beschriebene Methode kann als Verallgemeigeder modifizierten
Barriere-Methode, die zur Losung nichtlinearer Prograamnit reellen Ungleichheits-
nebenbedingungen entwickelt wurde, betrachtet werdetésstsich als solche in den
allgemeinen Kontext der Augmented-Lagrange-Methodesrdimen. Neben einer um-
fassenden Konvergenzanalyse, in deren Rahmen sowohélalsahuch globale Kon-
vergenzaussagen erarbeitet werden, liegt ein weiterav&gplinkt der Arbeit in einer
effizienten Umsetzung der Methode. Ein detaillierter Altfonus wird vorgestellt,
und numerische Aspekte des Computerprogramre@suBN werden erortert. Im let-
zten Teil der Arbeit wird die Durchfuhrung umfangreichemmerischer Experimente
mit dem ComputerprogrammeRNON beschrieben und deren Ergebnisse diskutiert.
Desweiteren werden nichtlineare semidefinite Programrmaelam Bereich der Struk-
turoptimierung und der Steuerungstheorie genauer eraut

Im ersten Kapiteivird ein Uberblick iiber weitere Arbeiten im Bereich der nichtlin-
earen semidefiniten Programmierung gegeben. Desweitezatew wichtige Anwen-
dungen der nichtlinearen semidefiniten Programmierungigan Schliesslich werden
die Hintergriinde, die zur Idee der im Rahmen dieser Arbaigestellten Methode
fuhrten, erlautert.

Im zweiten Abschnitiverden wichtige Begriffe aus dem Bereich der Matrixanaly-
sis bereitgestellt. Insbesondere werden sogenanntamiétrixfunktionen definiert
und (Richtungs-)ableitungen von Matrixfunktionen digértt

Im dritten Kapiteldieser Arbeit wird das Problem der nichtlinearen semidifimi
Programmierung genauer erlautert. Desweiteren werdestiviedene Voraussetzun-
gen, darunter Optimalitatsbedingungen erster und zw@itdnung, sowie Constraint
Qualifications gemacht und deren Bedeutung diskutiert.

Im vierten Kapitelwird eine Klasse von Penaltyfunktionen fur Matrixnebenbe
dingungen eingefiihrt, die anhand von Beispielen konsiegtiwird. Matrix-Penalty-
funktionen, deren Definition auf Penaltyfunktionen basidie aus dem Bereich der
nichtlinearen Programmierung (mit reellwertigen Nebehibgungen) bekannt sind,
werden auf Ihre Eignung untersucht.

Mit Hilfe der im vorangegangenen Abschnitt eingefuhrtem&tyfunktionen wird
im funften Kapiteleine Klasse von Augmented-Lagrange-Funktionen definierg
hier beschriebene Klasse von Augmented-Lagrange-Furedistellt die Grundlage
des spater eingefuihrten Algorithmus zur Losung nink#irer semidefiniter Programme
dar. Es werden verschiedene entscheidende Eigenschaftthgewiesen.

Im sechsten Kapitekird ein (lokaler) Algorithmus zur Losung nichtlinearearsi-
definiter Programme definiert. Hier liegt der theoretisclebv&rpunkt der Arbeit.
Zunachst werden Wohldefiniertheit des Algorithmus undsEerizaussagen untersucht.
Hierbei spielt eine spezielle Version des Satzes lUbernaitgFunktionen eine beson-
dere Rolle. Anschliessend wird Kontraktivitat des Alglonus bei fest gehaltenem
Penaltyparameter bewiesen. Ferner wird erlautert, datss den gegeben Vorausset-
zungen in einer lokalen Umgebung des Optimums, die Losimesenichtkonvexen
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semidefiniten Optimierungsproblems auf die Losung eimdgé-unrestringierter kon-
vexer Optimierungsprobleme zurtickgefuihrt werden kann.

Das siebte Kapitelbefasst sich mit der Globalisierung des im sechsten Kapitel
vorgestellten lokalen Algorithmus. Es werden zwei Glaodiatiungsansatze vorgestellt
und entsprechende globale Konvergenzaussagen nachgewies

Im achten Abschnitivird die Rechenkomplexitat unseres Algorithmus untensuc
Die errechneten Komplexitatsformeln legen die Wahl egpaziellen Penaltyfunktion
nahe, mit deren Hilfe die Rechenkomplexitat des Algoritisrarheblich reduziert wer-
den kann. Desweiteren wird erlautert, wie spezielle Detteiikturen (dinnbesetzte
Matrizen) ausgenutzt werden kdnnen.

Im neunten Teilder Arbeit werden verschiedene Unteraspekte des Algodthm
genauer erlautert. Dazu gehoren: Losung von (unter Bimaisn nicht-konvexen) un-
restringierten Unterproblemen, Multiplikatorupdatefein, Penaltyparameterupdate-
strategien, die effiziente Losung linearer Gleichungesye, sowie die Initialisierung
des Algorithmus und Abbruchkriterien.

Im zehnten Kapitelverden nichtlineare semidefinite Programme aus den Bengich
der Strukturoptimierung und der Steuerungstheorie geraliutert.

Im elften Abschnittler Arbeit werden die Ergebnisse umfangreicher numerische
Experimente, darunter Fallstudien aus dem Bereich dektsieptimierung, Bench-
marks mit Problemen aus dem Bereich der Steuerungsthewati¢argleiche mit alter-
nativer Software zur Losung (linearer) semidefiniter Paogme berichtet und disku-
tiert.

Abschliessend werden imwdlften AbschnitAusblicke auf mogliche Weiterent-
wicklungen der vorgestellten Methode gegeben und offem&t@ldargelegt.
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Notation

N the natural numbers

R the real numbers

R" realn-dimensional vectors ovék

M m X n-matrices oveR

Sm symmetricm x m-matrices oveR

st positive semidefiniten x m-matrices oveR

Sty positive definiten x m-matrices oveR

(a,b) open interval irR

H™(a,b) symmetricm x m-matrices oveR with spectrum in(a, b)
C(z*) cone of critical directions

O, zero matrix of ordem

I, unit matrix of ordem

[ai]?:l column vector with entrieg; in i-th component
[aiﬂj]z’fj:l m x m-matrix with entriesz; ; in i-th row andj-th column
Aij matrix entry ini-th row andj-th column

[lv]] Euclidian norm of a real vector

| Al Frobenius norm of a matrix

(v, w) standard inner product iR"™

tr trace operator

(A, B) standard inner product "

f real valued objective function
A matrix valued constraint function

® real valued penalty function

) matrix penalty function

Q set of feasible points

Q, relaxed set of feasible points
sk(A) k-th eigenvector of matrid
Ar(A) k-th eigenvalue of matrixd
FEy,E,, Py, P, projection matrices

P(A) Frobenius covariance matrices
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partial derivative oft w. r. t. =

second order partial derivative éfw. r. t.

partial derivative ofA w. r. t. x;

second order partial derivative gf w. r. t. 2; andz;

partial derivative of4 w. r. t. x;, evaluated at*

second order partial derivative gf w. r. t. z; andz;, evaluated at*
derivative ofd w. r. t. A

directional derivative of® w. r. t. A in directionB

second order directional derivative ®fw. r. t. A in directionsB andC
divided difference formula of first order

divided difference formula of second order
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Chapter 1

Introduction

In the recent years (linear) semidefinite programming pnaisl have received more
and more attention. One of the main reasons is the largetyafiapplications leading
to semidefinite programs (see [5], [40], for example). As aseguence, various algo-
rithms for solving linear semidefinite programs have beereliped, as for instance
interior point or dual scaling methods (see, for exampl6],[49], [82] and the refer-
ences therein). However, mathematical models in sevepéitagions lead to problems,
which can not be formulated dimear, but more generally asonlinear semidefinite
programming problems. For example, such an observatiobeamade in control the-
ory: There are many relevant control problems, which boivddo linear semidefinite
programming problems (see [20] for a long list), howevegr¢hare still fundamental
problems for which no linear semidefinite formulation hasréund yet. This was
the reason why so called BMI formulations (problems witlngir matrix inequalities)
of control problems became popular in the mid 1990s [39]. ke3¢ were, however,
no computational methods for solving (non-convex) BMIsymre generally speak-
ing nonlinear semidefinite programs, several groups ofarebers started to develop
algorithms and software for the solution of BMI problemsr Erample, interior-point
constrained trust region methods were proposed in [57] fgpexial class of BMIs.
Further approaches were presented in [33] and [34]. In [8&juential semidefinite
programming, as an extension of quadratic programmingused to solve LMI prob-
lems with additional nonlinear matrix equality constrainthile in [33] the augmented
Lagrangian method was applied to a similar class of problems

Later, more applications, as, for example, robust optitrona(see [5]) or struc-
tural optimization (see, e.g., [4]), appeared, where maai semidefinite program-
ming played an important role. Consequently the interegeimeral purpose nonlinear
semidefinite programming methods and software grew. Noysdhere are several
approaches for the solution of nonlinear semidefinite @ogr: For example, in [28],
the method proposed in [34] is generalized to general perposlinear semidefinite
programming problems and a proof of global convergencevisrgi Another promis-
ing approach for the solution of general purpose nonlinearidefinite programming
problems is presented in [46]. The method is an extensionpsinaal predictor cor-
rector interior method to non-convex programs, where theector steps are based
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on quadratic subprograms that combine aspects of linets@at trust region meth-
ods. Just recently a smoothing type algorithm for the sotudif nonlinear semidefinite
programming problems was introduced in [47] and furtheld@nga in [48].

Our main motivation for the development of an own generappse semidefinite
programming solver was given by nonlinear semidefinite paogning problems aris-
ing in structural optimization. The difficulty with thesegimems is that depending on
the type of constraints which are taken into consideratisnfor example, compliance
constraints, strain constraints, constraints on glolzdikty, etc.), one obtains large
scale semidefinite programs with entirely different sggrsiructures. On the other
hand there exist examples, where the main difficulty is ndhénstructure or size, but
in the nonlinearity of the problem. Consequently we camééoconclusion that there
are at least two basic requirements to be satisfied by a sati@h should be applica-
ble to a wide class of (nonlinear) semidefinite optimizafooblems: First, the solver
should be able to cope with serious non-linearities andyregicthe solver should be
able to exploit various types of sparsity in the problem dak the time when we
started with the development of our algorithm, there waseutdbest knowledge — no
such solver available.

As a consequence of the special requirements, it seemed donbéural idea to
search for a concept, which combined in a certain way thefeabf highly developed
(standard) nonlinear programming algorithms with theitiddd of (large-scale) linear
semidefinite programming solvers. Our first and probablytlst obvious idea was to
generalize interior point algorithms which were succdispplied to both, nonlinear
programming problems and linear semidefinite programmioglpms. However, we
encountered some difficulties in the generalization of therior point idea, as, for ex-
ample, the combination of the symmetrization issue withréfugiirement of preserving
sparsity in the problem data. Consequently we drew our tteto another promis-
ing method, the so called Penalty-Barrier-Multiplier medh(PBM), which had been
recently invented by Ben-Tal and Zibulevsky for the solataf convex programming
problems (see [7]) and later adapted by Zibulevsky and Mgshéor the application
to linear semidefinite programming problems (see [63] ard)[8Nevertheless, also
the Zibulevsky/Mosheyev approach turned out to have someusedrawbacks. First
of all, the convergence theory was done solely for convegiamming problems and,
second, the semidefinite version of the PBM method was basetyenvalue decom-
positions of the constraint matrices, which are known to ttitical numerical opera-
tions not only in terms of computational complexity, butcals terms of robustness.
The first issue was not that crucial, because there weredglreaccessful attempts
to generalize the PBM idea to non-convex problems (see xamele, [21], where a
global convergence result is given) and there was a richryhfeo the so called mod-
ified barrier function method (MBF), invented by R. Polyakdsfor example, [68],
[69] and [70]), which is in certain respect the basis of thevPBethods. A remedy
for the second issue was discovered, when we investigagedahcepts of PBM and
MBF methods: First we made the observation that a geneddfigd function applied
to a matrix constraint could result in a non-convex functieven in the case of con-
vex problem data. Second, we found a way how to avoid eigaevdécompositions,
when using a (generalized version of a) special modifieddraiunction instead. A
nice consequence of this observation was that with the apeuwbice of the modified
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barrier function, we saw a clear way, how to preserve spapsitterns in the prob-
lem data. Consequently we decided to base our algorithmendhcept of the MBF
method. Nevertheless, we did not want to restrict our thealeconsiderations (con-
vergence proofs, etc.) to an algorithm, which is based orspgeific penalty function.
Therefore we decided to develop

e an augmented Lagrangian algorithm based on the MBF methodioed with
a wide class of penalty functions,

e a comprehensive local and global convergence theory, and

e aspecialized code which allows for the solution of largdesnanlinear semidef-
inite programs by extensive utilization of problem inhdrgparsity structures.



Chapter 2

Functions of Matrices

In the course of this section we introduce a class of matnictions defined on the
space of symmetrienx m-matrices and henceforth denoted . The definition
of these functions is based on a spectral decomposition pfnangtric matrix and a
real-valued function.

Definition 2.1 (Primary matrix function) Letp : R — R be a given function
and A € S™ be a given symmetric matrix. Let further = SAST, whereA =
diag (A, ..., )\m)T, be an eigenvalue decomposition4f Then the primary matrix
function® corresponding ta is defined by

d . S —-8§"

0
0 0 ¢(Am)

Definition 2.1 is a version of a more general definition forhitian matrices presented
in [45].

Example 2.1 Consider the real-valued function

{RHR
@ 2

r = X

Then the primary matrix functiof® : S™ — S™ is given by

X0 ... 0
) .
oAy =s| 0 M ST — §A2T — A2,
: 0
0 ... 0 A2

whereSAST is an eigenvalue decomposition 4f
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By the following definition we introduce a notation for the 8¢ symmetric matrices
with spectrum in a certain interval.

Definition 2.2 Let (a,b) € R andm € N be given. Then byl (a,b) we define
the set of all symmetric matrice$ € S™ with \;(A4) > a and \,,(4) < b, where
A1 (A), A2(A),..., \n(A) are the increasingly ordered eigenvaluesbf

Next we want to discuss monotonicity and convexity of prignaatrix functions. Be-
fore we are able to do this, we need to introduce a partialraydehe space of sym-
metric matrices. We start with the following definition:

Definition 2.3 A matrix A € S™ is said to bepositive semidefiniteif all eigenvalues
of A are nonnegative.

In analogy to definition 2.3 a matrid € S™ is said to benegative semidefinitéf

all eigenvalues ofd are non-positive. It is well known that the set of all postiv

semidefinitern x m-matrices, denoted b’ is a pointed convex cone. This cone
induces a partial order of", the so called Loewner (partial) order: For two given
matricesA, B € S™, we define

A = B :& B — Ais positive semidefinite
and
A > B :& A — Bis positive semidefinite.

In accordance with this definition we use the notatibi 0 to indicate that the matrix
A is positive semidefinite and < 0 for negative semidefinite matrices.

Now we are prepared for the following definition:

Definition 2.4 A given matrix functiord : S™ — S™ is said to be monotoneif for
any two matricesd, B € S™ with A > B the inequality®(A) = ®(B) is satisfied.
Furthermore® is said to beconvexif the inequality

PAA+(1—=XN)B) = AP(A) + (1 —N)P(B)
isvalidorall A, B € S™and any0 < A < 1.

The following example demonstrates that it is generallyngréo conclude from the
monotonicity/convexity ofp to the monotonicity/convexity of the corresponding pri-
mary matrix function:

Example 2.2 Let ¢ be given as in example 2.1. Obviouslyis monotone on the
interval [0, c0). Nevertheless, the same property does not hold for the sporeling
primary matrix function. To see this, consider the follog/counter example:

20 2 2 1 . 18 1
LetA = ( 5 1 >andB_ < 1 05 > Thenthe matrixd — B = ( 1 05 >

has two strictly positive eigenvalues. On the other handrhgix

A% - B2 = ( ??395 2972 ) has one positive and one negative eigenvalue.
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A useful criterion for the determination of monotonicitycaoonvexity of a primary
matrix function is based on the following definition and fadated in Lemma 2.1

Definition 2.5 Let (a,b) be a given real interval, lety, t,. .., ¢, bem real values
and lety : R — R be a twice continuously differentiable function. Then winde
p(ti) — o(t)) oy
Ap(tist;) = L=t , Tori#s,
(pl(ti) ; fori:ja
A(P(ti,tk) : 4@(%7“@) ’ for i #1’
g j
20,(t. 1. — ) — _
Al te) = AMt“tJt)_ - éw(tk’m , fori=j+#k,
©" (i) , fori=j==F.

Lemma 2.1 Let(a, b) be a given real interval. Let furthep : (a,b) — R be a twice
continuously differentiable function. Then:

a) The primary matrix functio® corresponding tap is monotone o™ (a, b) ,

if and only if the matrixAe(t;, t;)] =1 is positive semidefinite for each set of
real valuesty, ..., ¢, € (a,b).

b) The primary matrix functio® corresponding top is convex onH™(a,b), if
and only if the matrix{AQgp(ti, tj, tl)] :;.:1 is positive semidefinite for each set
of real valueg, ..., t, € (a,b).

Proof. See, for example, [45, p. 537ff]. O

Lemma 2.1 allows us to conclude from certain properties tf the monotonicity and
convexity of the corresponding primary matrix function.i§ motivates the following
definition:

Definition 2.6 A real-valued functiorp defined on an intervala, b)) C R is
a) operator monotonen (a, b), if [A<p(ti,tj)]znj:1 = 0forallty, ... t, € (a,b)
and allm € N.

b) operator convexn (a,b), if [A%p(t;,t;,t1)] = 0forall t1,...,tm €

(a,b) and allm € N.

m
4,j=1

In the remainder of this section we want to discuss deriedtivmula for a mapping
composed from a twice continuously differentiable mappihgR™ — S™ and a pri-
mary matrix function or§™. A useful tool in this context is provided by the following
definition:

Definition 2.7 (Frobenius covariance matrices) Let : D ¢ R™ — S™ be a given
mapping. Let\; (), A2(z), ..., M) (x) denote theu(x) increasingly ordered distinct
eigenvalues ofd(z). Let furtherA(z) = S(z)A(x)S(x)" be an eigenvalue decom-
position of A(z), with A(z) = diag(Ai(x),..., A\ (2), ..., Aug@)s -+ 5 Au(a))» Where
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each eigenvalue occurs in its given multiplicityaat Then theFrobenius covariance
matricesare defined by

Pyi(z) = S(z)diag(0,...,0,...,1,...,1,...,0,...,0)S(2) ", i=1,...,u(z),

where the non-zeros in the diagonal matrix occur exacthhmpositions of\;(x) in
A.

Some important properties of Frobenius covariance matrice summarized in the
following Lemma:

Lemma 2.2 Let A(x) € S™ be given.Then the following equations hold:
1 Pai(z) 4+ ...+ Pay@) (@) = Ins
2. Pai(x)Pg(x)=0foralli #j,4,5=1,..., p(x);
3. Pai(2)f = Pyi(x)forall k> 1,i=1,...,u(z).
Proof. See, for example, [45, p. 403]. O

For simplicity of notation we omit the subscrigtand henceforth use the abbreviation
Py(x) = Pag(x) foralli =1,...,u(x) and allz € R™.

In the scope of the following Theorem we want to present fdaméor partial deriva-
tives of the mappin@ o A: D — S™. In order to keep notation as brief as possible,
we introduce the abbreviations

/ 0 " 02
Ai(z) = (“)x»A(I) and A7 ;(z) = D201
2 T J

for the first and second order partial derivatives of the nragpgl.

A(x)

Theorem 2.3 Let(a,b) C R, m € NandA: D C R" — S™ be a twice continuously
differentiable mapping. Denote byi (x), A2(z), . . ., Ay (z) the u(x) increasingly
ordered distinct eigenvalues of(z) and let\;(z) > a and A, (x) < b for all

x € D. Letfurthery : (a,b) — R be a twice continuously differentiable function and
® be the corresponding primary matrix function. Then A is twice differentiable for
all z € D and the following formulas hold:

ai‘l’“‘(‘”” = 3 Ap(h(@) M) Pi(@) Al (2) ()

= 5(@) (13eOn(@) M@y ¢ [S@) T A(@)S@)] ) S@)T
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where the matrix\/ is given by
M = Py(x)Aj(z) P (2) A (2) Ps(2)

and 'e’ denotes the Hadamard product, definedw B = [A; ; B; ;]i";_; for any
pair of matricesA, B € S™.

Proof. Theorem 2.3 is a direct consequence of Theorem 6.6.30 ]n [45 O

Due to the construction ab o A as a composition of two mappings, the first formula
in Theorem 2.3 can be interpreted as a directional deriati$ at.4(x) in direction
A’(x). The following Corollary generalizes this observation:

Corollary 2.4 Let the assumptions of Theorem 2.3 hold. Let further two ioesr
B,C e S™ be given. Then the directional derivatives df, (A(z)) with respect
to A(z) in direction B is given by:

Do, (A(x)) [B] = D(A(x))[B]

= Z Ap(Ag(x), \i(x)) Py () BP(x)

= 5@ ([BeOu@) @), ¢ (S@)TBS@) ) S@)T.

Furthermore the second order directional derivative®f (A(z)) with respect to4(x)
in directionsB andC' is given by:
32
mq’(v‘l(@)[& ]
= D(D®p(A(x))[B]) [C]

D@, (A(x)) [B: C]

()
2 Y APo(A(@), Mi(x), As(2)) - (N +NT),
k,l,s=1

where the matrixV is given byN = Py (x)BP,(x)C Ps(z).



Chapter 3

Problem Formulation and Basic
Assumptions

Throughout this section we briefly describe the class of defimite programming
problems, we want to solve by our algorithm. Furthermore wamenfilate basic as-
sumptions involving constraint qualifications and optityatonditions for this class
of semidefinite programming problems. For a comprehensagaidsion on optimality
conditions and constraint qualifications for semidefinit@gramming problems we re-
fer the reader, for example, to [17], [72] or [40].

3.1 Problem Formulation

We consider the finite dimensional Hilbert sp&Ceintroduced in Chapter 2, equipped
with the inner product

(A,B) =trA"B =trAB forall A,B € S™,

wheretr denotes the trace operator. As we have already seen in thehfgster of this
thesis S induces a partial ordert” respectively =" on §™. Using this notation, the
basic semidefinite programming problem can be written as

min f(z) (SDP)

st. A(z) 0.
Heref : R® — RandA : R" — S™ are twice continuously differentiable mappings.
In the case whelf and.A are convex, we refer to the basic problem as (CSDP).

Remark . Problem (SDP) belongs to a wider class of optimization [ewis called
conic programs. Other important representatives of tlrisschre (standard) nonlinear
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programming problems of the type
min f(z) (NLP)
st g(z) <0,

whereg maps fromR™ to R™ or problems involving so called second order cone con-
straints. An interesting fact is that the problem (NLP) carcbnsidered as a sub-case
of the problem (SDP), namely, whehis a diagonal matrix. Consequently, the results
in this thesis can be directly applied to inequality conietgd nonlinear programming
problems. Vice versa it should be emphasized that many jplesented in this thesis
are motivated by existing results from the nonlinear progréng literature, as, for ex-
ample, [7], [68], [69], [70], [26], [25] and [21]. It shouldebfurther mentioned that it

is beyond the scope of this thesis to generalize the algositind theory presented for
semidefinite programs to general conic programs.

3.2 Basic Assumptions
Throughout this thesis the following assumptions on (SDP)ywaade:
(A1) z* = argmin{f(z)|z € Q} exists, wher&) = {z € R"|A(x) < 0}.

(A2) The Karush-Kuhn-Tucker necessary optimality conditioniglin 2*. That means
there existd/* € S™ such that

P+ (U AN, = 0
tr(UA(z*)) = 0
ur = 0
A(z®) =0, 3.1)
where we denote hyl; the:—th partial derivative ofdinz* (i = 1,...,n). The

second condition is called complementary slackness dondit_ater we will
prove that the complementary slackness condition can agivthe equivalent
form

M(UAi(A(z*)) =0 forall i=1,...,m,

where\;(U*) and \;(A(z*)), ¢ = 1,...,m denote the increasingly ordered
eigenvalues of/* and.A(z*), respectively. If in each of the above equations
one factor is non-zero the complementary slackness condgisaid to be strict.
Throughout this thesis we assume the strict complementacirsess condition
to hold.

(A3) The nondegeneracy condition holds. This means that ififet » < m the
vectorss,,—r+1,.-.,5m € R™ form a basis of the null space of the matrix
A(z*), then the following set of-dimensional vectors is linearly independent:

viyj:(sjAlsj,...,siT.Ansj)T, m—r+1<i< j<m.
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(A4)

(A5)

The nondegeneracy condition is a well known constraintification for the
problem (SDP) and implies that the mattiX is unique (see, for example, [17]).

Define Ey = (Sm—rt1s---5Sm), Wheres,,_,41,..., sy, are the vectors intro-
duced in assumptiof43). Then thecone of critical directionst z* is defined
as

C(z*) = {h ER™: > B Ao <0, f'(z*) h = o} .

=1
Now we assume the following second order sufficient optityalondition to
hold at(z*,U*): Forallh € C(z*) with h # 0 the inequality

R (L (2", U*) + H(z*,U*)) h >0,
is satisfied, wheré. is the classical Lagrangian for (SDP) defined as
L(z,U) = f(z) + (U, A(z)) ,
H(z*,U*) is defined by
H(z*,U*)i; = —2(U*, Ai[A(z*)]T A;) (3.2)

(see, for example, [17, p. 490]) afd(z*)]" is the Moore-Penrose inverse of
A(x*).

Define
Q, ={z e R"|A(z) < bpln},

whereb is a positive constant andis a positive real value, which will play the
role of a penalty parameter later. Then we assume the follpgiowth condition
to hold:

Ir > 0 andr > 0 such thatmax {||A(z)|| |z € Q,} < T, (3.3)

It is clear that the existence of suchraimplies the validity of (3.3) for any
0<m<m.

Later we will make use of the following lemma.

Lemma 3.1 In case the strict complementarity condition holds the coheritical
directions simplifies to

Cz*) = {h €R": Y hEj AiE = o} :

=1

Proof. See, for example, [17]. O



Chapter 4

A Class of Penalty Functions

4.1 Idea and Definition

Using the concept of primary matrix functions introducedinapter 2 and recalling
that the negative semidefiniteness of a matrix is equivatetite non-positivity of its
eigenvalues, the following idea is easy to understand: 4 bt a real-valued func-
tion defined on an intervdk, b)) C R, which penalizes positive arguments. Then the
corresponding primary matrix function penalizes any matriviolating the constraint

A <0, sincep penalizes each positive eigenvaluefofThis gives rise to the following
definition:

Definition 4.1 Lety : (—oo,b) — R be a function with the following properties:

(¢o0) ( strictly convex, strictly monotone increasing and twice
continuously differentiable

domy = (—o0,b) With0 < b < 0,

¢(0) =0,

¢'(0) =1,

3Cy,— such thatp(t) > C, _o foranyt < 0,

A

3 Cyr o such thaty” (o /p) < p*Cyn» for anyo < 0 andp > 0,
PH}) O (t) =00, , lim ¢'(t) =0, ¢’ convex

(e1)
(¢p2)
(¢#3)
(¢pa)
(p5) 3C,. such thaty'(c/p) < pCy, foranyo < 0 andp > 0,
(w6)
(#7)
(ps)  Is operator monotone of-oo, b),

(¢ps)

 Is operator convex ofroo, b).

Define furtherp, (t) = pp(t/p) for all t € domy, = (—o0, bp), wherep is a positive

12
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penalty parameteiThen amatrix penalty functior®,, : S™ — S™ is defined as

op (M (2)) 0 . 0
@A) —s@ | 0 e ; ST
: .. 0
0 e 0 ¢ (Am(z))

whereA(x), S(x), \i(z), i = 1,...,m, are defined as in Definition 2.1.

Remark . Using the matrix penalty functio,, we are able to rewrite our initial
problem (SDP) as

IIlelﬁgI}z f(x) (SDPRs,)

s.t. &,(A(x)) 0.
If we write down the Lagrangian for problem (SQB we obtain the function
La,(2,U) = f(x) + (U, ®p(A(x))) ,

which will be further considered in Section 5.

Remark . Let us briefly discuss the role of assumptidns) and(¢9): As we will
see later (compare Section 6) assumptiang and(yg) are not used in the proofs of
the main theoretical results presented in this thesis. Rleeiess they are important
for the following reason®,, is a convex and monotone matrix function foralle N

if and only if assumptiongys) and(yg) hold. Using this fact it is easy to see that
for convex f and A assumptiongys) and(¢9) guarantee that problef8DPy,) is
convex. In Section 5 we will see that in this case also thetfand ¢, is convex.
On the contrary, if assumptioniss) and (¢9) do not hold, problem (SDQE;) may
be non-convex even a for linear mappidg As a consequence it may happen that
the augmented Lagrangidns, is also non-convex for certaiii ~ 0. After reading
Section 6 we will understand that this would mean that we hawlve a series of
potentially non-convex optimization problems in order tdve a problem, which is
originally convex. This effect is avoided by the inclusiohassumptiongys) and
(9) in Definition 4.1.

Remark . Replacingp,4) by the weaker assumption
() lim pcp(g) — 0foranye <0
p—0 p
enables us to use a wider class of penalty functions, as wedernhonstrate below.

Throughout this thesis we assuifye;) to hold and explain, how our results have to be
modified, if the weaker conditiofy, ) is used instead.

4.2 Examples

The goal of this section is to present a collection of typjpahalty— and barrier—type
functions from the nonlinear programming literature (deegxample, [68], [69], [7]
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and [80]) and discuss their suitability with respect to thsuanptions required in defi-
nition 4.1:

e Thelogarithmicpenalty function is defined as

Plog(t) = —log(1 —1).

Looking at the derivative formulas

1 1
() =—— and ¢ (t) = ——
wlog( ) 1—+¢ (plog( ) (1 _ t)2

it is obvious to see thatyg) to (¢3), (¢}) and(ps) to (¢7) are satisfied. The
validity of (vs) and(yy) is proved, for example, in [75].

e Thehyperbolicpenalty function is defined as

1
Pryp(t) = T—; L
Here the derivatives are given by

1
(1)
and(yo) to (p7) are verified easily. Properti€gs) and(yg9) have been estab-

lished in [75]. Note that the functions,,; andyn,, have been introduced in
[68] as so callednodified barrier functions

and ¢} () =2

1
/
whyp(t) = (1 . t)2 hyp

e Theparabolicpenalty function is defined as
Ypar(t) = —2vV1 —t+ 2.

The first and second derivatives of this function are

1 1 _3
Ppar(t) = (1 —1)72 and ¢, (t) = =17

In analogy to the hyperbolic penalty function one can shoat i) to (¢3),
(¢}) and(vs) to (¢9) are satisfied. | slight disadvantage of this function is that
par does not tend to infinity at the right boundary of its domain.

e Theexponentiapenalty function is defined as

Vexp(t) = et — 1.
Again the first and second derivative formulas

Phar(t) = Phar(t) = €'

imply the validity of propertiegyo) to (¢7). Unfortunately the corresponding
matrix function is neither monotone nor convex in the serisessumptions$ys)
and (¢9) (see, for example, [45]). Note that in [30] the exponentiahalty
function is used to construct an alternative algorithm f& $olution of linear
semidefinite programs.
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e Another interesting class of functions was introduced jrnajéd further studied
in[7], [64] and [22]. The so called penalty/barrier functsare constructed from
analytic penalty functiong in the following way:

N o(t) for ¢t <,
P(t) = { at?> + bt +c¢ for t > r, (4.1)

wherer € [-1,1] anda, b andc are real numbers, which can be adjusted so
that ¢ is at least twice continuously differentiablesn Obviously in this case,
the right branch of is nothing else as the quadrafi@-extrapolation of the left
branchy. Two important advantages of such a choice are that

— domp = (—o0, 00), which simplifies penalty parameter initializations and
update strategies in penalty type methods,

— the second derivative ap is bounded, which is a very useful property,
when Newton type methods are applied.

Numerical studies in nonlinear programming indicated thtmization meth-
ods based on penalty/barrier functions as defined in (4elptien superior to
methods based on classical barrier or modified barrier fomst Moreover it is
quite easy to see that any penalty/barrier funciaronstructed from a function
 according to (4.1) satisfies the properties) to () if and only if the same
properties hold forp. However it can be shown that the matrix function corre-
sponding to the right branch of the functigns — as a quadratic matrix function
— non-monotone in the sense of definition 2.4 (compare Exa@\g)).

An interesting fact is that all valid candidates of penaltydtions we have found so far
have two common properties:

e They are analytic on their full domain and
e they have a pole on the positive real half axis.

The following Theorem is a direct consequence of resultseried in C. Loewner’s
paper on monotone matrix functions [29] and help to intdrfirese observations:

Theorem 4.1 Let(a,b) C R.

a) If ® is a monotone matrix function o™ (a, b), theny has at leastm — 3
continuous derivatives.

b) ¢ is operator monotone o™ (a,b) if and only if ¢ is the restriction of an
analytic function defined on the upper complex half planehtreal interval
(a,b) . Furthermore each such function can be represented as

f(2)2a2+5+/00{ ! . }dﬂ(u),

o lu—z w21

wherea > 0, 8 € R anddy is a Borel measure that has no masginb).
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An immediate consequence of Theorem 4.1 a) is that any apearetnotone function
© must be analytic. Moreover if is such a function, ifa, b) = R andy(x) < oo for
all x € R, we conclude from part b) of Theorem 4.1 thais linear and therefore vio-
lates several assumptions required by Definition 4.1. lemotiords, it is not possible
to find a valid penalty function in the sense of Definition 4.ithwhe full real line as
its domain. From this point of view the functiogg,,, ¢ioe andep,, are “optimal”
choices.

Remark . Any appropriately scaled version and any convex combnaif the func-
tioNs pnyp, Yiog @Ndyp,, results in a valid penalty function.

Remark . The functionspnyp, vioe andyp., are special cases of the following for-
mula:

t
wal(t) = 6a/ (1- s)“_lds + Ya,
0

where—1 < a < 1 andd,, and~, are uniquely determined by assumptigps) and
(p3). Depending orx we obtain the following classes of penalty functions:

0 < a < 1 : parabolic penalty functions,
a = 0 : logarithmic penalty function,
—1 < a < 0 : hyperbolic penalty functions.
So far it can be proven that all members of the family of palialand at least some

members of the family of hyperbolic penalty functions hawe $ame properties as the
representativegyy, andyp,, presented earlier in this section (see, for example, [45]).



Chapter 5

A Class of Augmented
Lagrangians

At the beginning of this chapter we define a class of augmebhégplangians — the
heart of our algorithm. The definition is based on the classatfix penalty functions
introduced in the preceding chapter.

We start with some useful notations, which will be used tigimaut Chapter 5 and 6.
Leth <...<Ap—r < Ap—rt+1 = ... = A, = 0 denote the ordered eigenvalues of
A(z*) andsy, ..., s, € R™ the corresponding eigenvectors. Further define

o A=diag(A1,..., A\m) €S™, 5 =(81,...,8m) € M™™,
o Ao =diag(MNm—ri1,---,Am) €S", AL =diag (A1,..., Apm—yr) € S™T,
e Fo= (Sm—rtls--+rSm) EM™" E| = (s1,...,8m—r) € M™™ " and
o Py=EE] €S™ P, =E,E] € S™.

Note that

e the columns of£, form a basis oKer (A(z*)),

the columns ofZ; form a basis oIm (A(z*)),
A(z*) = SAST,
Py+ P, = SDOST + SDJ_ST = I,,, Where

Dy = diag(0,...,0,1,...,1),
—— ——
D, = diag(l,...,1,0,...,0).
S—— ——

17
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e using the notation of Definition 2.7, we see that

plx™)—1

Py=Py(z*)andPL = Y P(a),
k=1

whereP;(z*) for k € {1, ..., u(z*)} are the Frobenius covariance matrices for
the u(z*) distinct eigenvalues ofl(z*).

Next we define a class of augmented Lagrangians for the pro@®P).

Definition 5.1 Given a twice differentiable functiofi: R — R, a twice differential
matrix operator4 : R — S™ and a penalty functio®, : S™ — S™ as given in
Section 4, we define the following class of Augmented Laggarg

Fe :R"xS" xR — R
(z,U,p) —  [f(z)+ (U, p(Alx))) -
The following Theorem summarizes the most important prigeof Fi:
Theorem 5.1 The augmented Lagrangidn, (z, U, p) has the following properties:
a) Fo(a™,U",p) = f(z7).
b) Fg (2", U*,p) = f'(a") + [(U*, A)[iZ, = 0.

C) Fg ,o(a*,U*,p) = L (z*,U*) + Hy(z*,U*) + p~' M, where H,(z*,U*)
and M are symmetric matrices anff,(z*,U*) — H(z*,U*) for p — 0,
Ker(M) = C(z*) andy " My > 0 for all y ¢ C(x*).

If f and.A are convex, then

d) Fo(z,U,p) is convexine for all z € Q.

Remark . Properties 5.1 a), b) and d) are shared by the classicadhg@n function
L associated with problem (SDP) and our augmented choice ekewas we will see
later, property 5.1 c) is the reason for some advantagésmfer L.

For simplicity of notation we lef’ = F§ in the remainder of this section. For the proof
of Theorem 5.1 we make use of the following Lemmas.

Lemma 5.2 (von Neumann — Theobald) Ldt B € S™ be given. Denote the ordered
eigenvalues o, Bby A1 (A) < --- < A\ (A)and A (B) < --- < A\(B). Then

tr(AB) < zm: Ai(A)Ai(B),
i=1

where equality holds if and only it and B have a simultaneous ordered spectral
decomposition.
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Proof. See, for example, [77]. O

Lemmab5.3 LetA € ST and B € S™ be given. Denote the ordered eigenvalues of
A, Bby A (A4) < --- < A\p(A)and A (B) < -+ < A\p(B). Then the following
conditions are equivalent:

a) (A,B)=0.
b) AB =0.

c) A andB are simultaneously diagonalizable and
Xi(A)N;(B) =0foralli e {1,...,m}.

Proof. LetA = P? andB = —Q? with P,Q € S™ (existence ofP andQ follows
from the semidefiniteness df and B).

"a) = b)” We have

IPQI* = (PQ, PQ) = tr(QP*Q) = tx(Q*P?) = (Q*, P*) = — (B, A) = 0.
Consequenth’@Q = 0 andAB = —P(PQ)Q = 0.

"b) = ¢)” FromLemma 5.2 we get

——
>0 <0

0=tr(AB) = (A, B) < Y Xi(A) \i(B) <0.
=1 N——
Immediately we sea; (A)\;(B) =0forall: € {1....,m}. Moreover we have
BA=B'"AT =(AB)T =0=AB
and thusA and B are simultaneously diagonalizable.

"c) = a)” From the fact thatl and B are simultaneously diagonalizable follows the
existence of an orthonormal matigkand diagonal matrices 4, A g such that

A=SA,ST andB = SAEST.

Thus we obtain

(A,B) = tr (SA4ABST) = i Ni(A)Ni(B) =0

i=1

and we have showfy, B) = 0. O

Lemma 5.4
a) PLA(x*)PL = A(z*), PoA(x*)Py = PLA(x*)Py = Py A(z*) P = Oyp,.
by PLU*P, = P U*Py = PRbU*P, = Q,,, PLLU*Py =U".
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Proof.

a) Using the spectral decompositionéfz*), we obtain

P L A(z*)P, = SD,STSASTSD,S" =SD,AD, ST
SAST = A(z*).

Exemplary we show

Py A(z*) P, SDySTSASTSDyS = SDyADyS "

= 50,,5T =0,,.

b) From the first order optimality conditions, Lemma 5.2 aredrima 5.3 follows
U* = SAy-ST, whereAy- = diag(A\1 (U*), ..., A\ (U*)) and0 = A\ (U*) =
v = A (U*) < Ap—rp 1 (U*) <o A (U*). Now we obtain

PU*Py = SDoSTSAy-STSDyST = SDoAy«DyS T
= SAy-ST =U*.

Exemplary we show

P U'P, = SD,S"SAy-S"SD,S=SD Ay-D, ST
= 50,5" =0y,
(]
Now we are able to prove Theorem 5.1
a) From the first order optimality conditions (3.1) and LenmBrZwe obtain
ANi(U*)=0forallie{1,...,m—r}.
By definition of ®,, we have
wp (N (A(z™))) =0foralli € {m—r+1,...,m}.
Now Lemma 5.3 impliesU*, @, (A(z*))) = 0 andF(z*,U*,p) = f(z¥).
b) The first equality follows from the fact that
U* = D&, (A(z")) [U"], (5.1)

which we will prove below. The second equality follows frogX). The follow-
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ing equation completes this part of the proof:

D&, (Aa*)) [U"]
wz™)
= Y Ag (e MBE) (U7) A)

k=1

*

w(z™)

= 3 Ap (e WP (") (BU” Py) Pi(a)
k=1

p(z™)

= Z ANy M) P (27) Py (2 )U* Py (27) P (%)
k,l=1

= App(Mu(ar)s Aue) Pugan) (@)U Pyary (27)
= ¢, (0)PU" P, =U".

¢) Taking into account Theorem 2.3 and Lemma 5.4 and denoting

82

AiJ‘ - 6:51- 6,Tj

A(z*)foralli,j=1,...,n,

we have

El.(z*,U",p)

2 n

= @)+ [<P0U*P0, %8%% (A(x*))ﬂi,j_l

n(z™)
= f”(x*) + <U*,Po (Z A(pp()\k,)\l)Pk(.’L'*)Ai,jP[(.’L'*)) P0> +

k=1

*

(™)
<U*, D P, (A, Aty Ao) Pr(a*) A P )Asz(I*)P0> +

k,l,s=1

w(z™) n
<U*, Po A @ (N Aty As) Pro(a*) A Pi ( )Az'Ps(I*)P0>

,s=1

ij=1
= fx")+

[(U”, Agy *M (@) Pu z*>(ff*)«4u Puan @ )]7 oy +

(U, Py (@) Nij Pyam (2" >] i

[< P (@ )Nji Bu(a=) (") >]z
= + [(U*, Py, (0 .A”P0>]Z

Ly, (x",U")

j= 1
=1
20T N

J= 1,j=1"
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where
n(z")
Nij=Ai | Y A%0(A,0,0)Pi(z*) | Ajforalli,j=1,....n.
k=1

Now we calculate\®p, (A, 0,0). We consider two cases:
k= p(z*):
A%0, (A, 0,0) = A%, (0,0,0) = p~'¢"(0) — oo for p — 0.
k< p(z*):
peQr/p) _ q

1
A%p,(\g,0,0) = — M, forp—0.
Ak Ak

The latter limit follows from\;, < 0 and the properties @f. Defining
Hy(z*,U*) = 2[(U*, A (457 A%0, (Ar, 0,0) Py(z%)) A;)]
and M =2[(U*, A" (0)Po(a*)A;)];";_, we see that

m

4,j=1

FY (@, U, p) = L, (2", U") + Hy(2",U") + p~' M,

where

Hy(a*,U*) — —2

for p — 0. To complete the proof, we will show next that
Ker(M) = C(z").

This can be seen from

M = 20"(0)[(U*, AiPy(x*) A"

ij=1

= 290//(()) <U*7-Ai< Z S;ﬁl) AJ>]
L k=m—r+1 ii—1

]

= 2@//(0) <SAU*ST,AZ< i Sk82> AJ>]

k=m—r+1 ij=1

r m m m
= 2()0”(0) Z UlSlTAZ ( Z sksz> AjSl]
Li=m—r+1 k=m—r+1 i,j=1
r m

m

= 2@//(0) Z wuy (SlTAZ‘SkSZAjSl)

k,l=m—r+1

= 2¢"(0)BUBT,

5,5=1

22

(5.2)

(5.3)

* — 1 T " * *
<U,Ai<;xsk8k>¢4j>‘|” IZH(,T,U)
- ,)=
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d)

whereU = diag(tm—r41y--sUmy .- oy Um—rtly---sUm) € s and thei-th
row of B € M™"” is defined by

T T
bi = ( Sm—r+1AiSm—’r+17 XN SmAiSm—T-‘rla ceey

T T T
Sm—rir1AiSmy - S Aism )

From the strict complementarity condition follows tligt < S, | and by Lemma
3.1 we obtairKer(M) = C(z*) and the claimthag " My > 0 forall y ¢ C(z*).

We have to show thaU, @, (A(z))) is convex for allp > 0, U = 0 andz €
Q, = {z € R"|A(z) < bpL,,}. Given\ € [0;1] andz,y € ,, the convexity
of A assures

M(z) + (1= NA®y) — A(dz + (1 - A)y) = 0. (5.4)
By the monotonicity ofb,, we get

D) (AMA(z) + (1 = X A(Y)) — @p (A(Az + (1 = N)y)) = 0.
The latter inequality combined with the convexity®§ show
0, (MA(z)) + (1= X)@p (A(y)) — Pp (A(Az + (1 = A)y)) = 0.
SinceU > 0, it follows that
tr [UT [@, (AA(2)) + (1=2)p (A(y)) — @, (A (Az + (1=N)y))]] = 0.

Finally, the latter inequality and the linearity of(-) imply the convexity of
(U, @ (A(x))). O

The following Corollary points out two important advantagd F' over the classical
Lagrangian’:

Corollary 5.5

a)

b)

There existpy > 0 such thatF'(z, U*, p) is strongly convex for alp < pg in a
neighborhood of*.

There exist constants> 0 andp, > 0 such that
¥ = argmin {F(z,U",p)lz € R, ||z — z*|| <€} Vp < po.
Moreover, if f and .4 are convex, then
¥ = argmin {F(x,U",p)|x € R"} Vp > 0.

In other words, if the optimal Lagrangian multipligr* is known, problem
(SDP) can be solved by solving one smooth optimization problem.
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Proof.

a) Below we will show that there exists> 0 such thaty " F”/ (z*, U*, p)y > ~ for
all y € R with ||ly|| = 1, whenevep is small enough. By Theorem 5.1 we know

that
Fyy(x*,U*, p) = Ly, (a*,U") + Hy(a*,U*) + p~ ' M,
where
Hy(z*,U*) — H(z*,U*)forp — 0 (5.5)
and
Ker(M) =C(z*), y' My > 0forally ¢ C(z*). (5.6)

We consider two cases:
y € C(z*): From the second order optimality conditions {&tDP) it follows
that there existy > 0 such that
y (L (x*,U*) + H(z*,U*))y > yforally € C(z*) with ||ly|| = 1. (5.7)
Now, (5.5) implies
y Er (et U ply =y (L (", U") + Hy(2",U*))y > 7
for p small enough.

y ¢ C(x*): From (5.6) we see that
y' p My — oo forp — 0.
On the other hand
T " * * * *
is bounded for alp < p, for apy € R small enough. Thus we obtain
y Fr (e, U p)y > v
for p small enough.

b) is a direct consequence of a) and Theorem 5.1. O

Remark . Note that the assertion of Corollary 5.5 a) is generallyngror the clas-
sical Lagrangian.. Even for convex problem datA and A strong convexity ofZ
may not hold. Moreover it is a well known fact that the chagaeation in part b) of
Corollary 5.5 may fail for the classical Lagrangian (see gdoample, [71]). In case of
the augmented Lagrangian, Corollary 5.5 a) guaranteefithédst assertion of Corol-
lary 5.5 b) holds even for non-convgxand.A, providedp is small enough and the
optimization is started close enoughito



Chapter 6

A Locally Convergent
Augmented Lagrangian
Algorithm

At the beginning of this chapter we present a basic algorftirhe solution of problem
(SDP). Then, in the main part, we deal with the (local) cogeece properties of this
algorithm.

6.1 Basic Algorithm

On the basis of Definition 5.1 we define the following algarith

Algorithm 6.1.1 Letz® € R",U% € ST, andp® > 0 be given. Then fok =
0,1,2,...repeattill a stopping criterium is reached:

(1) oF = arg m%@n F(x,U", pk)
IE n
(i) UM =D, (A@"M)) [U]
(’LZZ) pk+1 < pk'

Obviously Algorithm 6.1.1 consists of three steps, an ust@med minimization step
and two update formulas:

¢ In the first step we calculate the global minimumfofwith respect tor, where
the multiplier and the penalty parameter are kept const@fitcourse, to find
the global minimum of a generally non-convex function is Hidilt task in
practice, and in the worst case one may not be able to solvegk groblem of
type 6.1.1(i). We will return to this point at the end of Seat6, where we will
show, how Algorithm 6.1.1 can be adapted for local minima.

25
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e The second step of Algorithm 6.1.1 is the multiplier updaterfula. The mul-
tiplier update formula can be interpreted as the directidesivative of &, in
direction of the current multiplier, evaluated.dtz*+1).

e The third step describes the penalty parameter update faymhich is given
in the most general form here. A possible update scheme witldveloped in
Section 9.1.

For a more detailed discussion on the particular steps obrilym 6.1.1 we refer to
Section 9.

6.2 Local Convergence Properties

We start with the analysis of the local convergence progeuf Algorithm 6.1.1. In
particular we are interested in the behavior of the algorjttvhen it is started with a
penalty parameter,, which is small enough and an initial multiplier matfik, which
is close enough t&’*. These relations are formalized by the following definition

Definition 6.1 Let A, (U™), ..., A\ (U*) denote the eigenvalues bf* in increasing
order. Let further0 < ¢ < A1 (U*) and A,,, (U*) < © be given. Then we define

V(U*ap07§a€7®) = {(Uap)ESTXR ||U_U*||§§p_17p<p0} N
{Wp esyxr: U<} N
{(U,p) esm xR:siTUsiZE,ieIact},

wherel,.t = {m—r+1,...,m}.

Motivation . The se®(U*, po, d, €, ©) is constructed as an intersection of three sets.
Below we give an interpretation for each of the sets:

i) The first set allows for any initial multipliei” € S'? provided the parameteris
small enough. Thus we can start with multipliers arbitgafidr from the optimal
multiplier U* for the price of a small penalty parameter.

i) The norm of the initial multipliel/ should be restricted.

iii) The diagonal entries of the projection of the initial tiplier onto the nullspace
of A(z*) should be bounded away from zero.

Next we want to give a short overview about the goals we waattdeve in the re-
mainder of this section:

(G1) First we show that Algorithm 6.1.1 igell defined To this end we prove that
for each pai(U,p) € V(U*, po, 6, ¢, ©) with appropriately chosen parameters
Do, 9, €, O, there exists a unique vector

& = &(U,p) = argmin{ F(z, U, p)|x € R"}
such thatF) (&, U, p) = 0.
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(G2) Then we prove the estimate
max {2 — 2" |, |T - U*||} < Cp U - U (6.)
for the pairz and
U =U(U.p) = D2, (A@(U,p)) [U],

whereC is a constant which is independentofin other words we demonstrate
that for appropriately chosen parameteyss, €, © and forp < po small enough
the mappindJ : V(U*, pg, d,¢,0) — V(U*, po, 9, €, ©) is acontractionwith
fixed pointU*. Using this fact we conclude that Algorithm 6.1.1 converged
that the rate of convergence for the primal and dual iteliatdetermined by the
contraction constantC'.

(G3) Finally we verify that the functiod(x, U, p) is strongly convex with respect to
2 in a neighborhood of (U, p) for all (U,p) € V(U*,po,d, ¢, ©). This prop-
erty guarantees fast convergence of Newton-type methqul®dio the uncon-
strained minimization problems in step (i) of Algorithm 6.1

As mentioned already earlier in this thesis our method isreegdization of Polyak’s
modified barrier function method, introduced in [68]. In thain part of this section
we basically follow the ideas presented in [68] in order tover assertion$G1) to
(G3). However it will turn out during the proof that the generatipn to nonlinear
semidefinite programs is not always straight forward.

Before we start with the verification of (G1) to (G3) some pnétharies are needed. We
start with the projection matrice/ and P, introduced at the beginning of Chapter 5
which are used to decompose the multiplier matfix= U (U, p) in the following way:

0= R0P + (PJ?PO + PUP, + PJ?PL) . (6.2)

Note that the matrix® U P, is the orthogonal projection df onto the null space of
A(z*). Motivated by this fact we define the matrices

Ut = PUP,
Uinact = PUPy+PRUP.+P UP,.
Next we introduce a variable transformatidn= p(U — U*) and matrices
Uy=E,UE, €S, U; =EJU*E, €S".
Furthermore we define the mappiﬁg R x §™ x R — S™ by

Ui(z,T,p) = PLD®,(A(x)) [p~'T+U*] PL +
PoD®, (A(z)) [p~'T +U*] PL+
P.D®, (A(x)) [p~'T + U*] F. (6.3)
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Using these definitions we observe

Uwt = FEoUoE] and (6.4)
ﬁinact = ﬁL(j?vp(U - U*)vp) (65)

We will further make use of the mappirkg: R™ x S™ x R — R"™ defined by
b, T,p) = [(Us(a. Top), Ai(a))] (6.6)

Next we define local neighborhoods
o 5(Qgm,0) ={T : | T <6},
o S(U3.c0) = {V S : |V~ U3l < e} and
o S(z*,e0) ={z € R": ||z — z*| < ¢} for giveney > 0,
and, using these neighborhoods, the following pair of maggi
Uy S(z*,€0) x S(Uj,€0) x S(0,9) x (0,00) — R"”
(2,00, T,0) = £'@) + [(BDoES, Ai@))| + b, Tp), (67)

1=

Uy : S(z*, €0) x S(Uj,€0) x S(0,9) x (0,00) — S"
(,Uo, T,p) = pEg (D®, (A(x)) [p'T + U"]) Eo — plo. (6.8)
A frequently used isometry is provided by the following défom:

Definition 6.2 Given a symmetric matrid € S™ we define the operator
svec: S™ — R™mH)/2 ag

svedA) = (a11, V2a12, az, V2a13, V2a23, ass, ...) T € R™mH/2,
Further we define the operat@mat: R™(™1)/2 _, S™ as the inverse ofvec

Using definition 6.2 we defin@ = r(r+1)/2,/m = m(m+1)/2, u§ = sveqUy), the
neighborhoods i
S(up,€0) ={t € R" : |4 — uj|| < e}

and i
S(Opm, ) ={t e R™ ¢ ||t]| < do}-

and a mapping
T S(2*,e0) x S(uf, €0) x S(Ogm, ) x (0,00) — R™H7
by
U(z, g, t,p) = (\111(:10, smat(ig), smat(t),p),
svec(¥s(z, smat(ig), smat(t),p))). (6.9)

Now we are prepared to start with the proof of assertion (@Hhe idea is to apply
the following implicit function theorem, which is a sligitimodified version of the
Implicit Function Theorem 2 presented in [12, p. 12].
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Theorem 6.1 (Implicit Function Theorem) Le$ be an open subset & ", X be a
compact subset dR™, andh : S — R™ be a function such thdt € C! on S. Assume
thatV, h(z,y) exists and is continuous gh Assumeg € R is a vector such that the
matrix V,h(z, 3) is nonsingular for allz € X. Then there exist scalaes> 0,5 > 0,
and a functiony : S(X;e) — S(;0) such thaty € C* on S(X;e),y = ¢(z) for all

z € X, andh[z, ¢(x)] = 0 for all x € S(X;e¢). The functionp is unique in the sense
thatifz € S(X;¢),y € S(X;0) andh(z,y) = 0, theny = ¢(x).

The following table identifies functions and sets in Theofeinwith the corresponding
functions and sets in the notation used in this thesis:

Theorem 6.1 our notation

m m+1

n n4+r

S CR™™  S(x* ) x S(ug,e0) X S(Ogm,d) x (0,00) C ROFH+0n+1)

X K ={Og~} x I, wherel C R, is a compact interval
y (2", ug)
h v

In order to satisfy all assumptions of Theorem 6.1 we havéowshat
e U is continuous with respect to all variables,
o U(z* uf,0,p) =0,
e U is continuously differentiable with respecttanddg and

o U/

:E,ﬁ[)

(z*,ug, 0, p) is nonsingular for alp small enough.
We start with discussing some basic properties,of; andVs.

Lemma 6.2 If A is a twice continuously differentiable operator, then thadtionh
defined in (6.6) is continuously differentiable with respgec: and

a) h(z*,0,p) = 0.

b) hl(z*,0,p) = Hy(z*,U*) and hl,(z*,0,p) — H(z*,U*) for p — 0, where
H(z*,U*) is defined by formula (3.2).

Proof. The differentiability ofh is obvious.

a) Taking into account (5.1) and Lemma 5.4 we obtain

-~

UL(z®,0,p) = PLD®,(A(")) U] PL
FRD, (A(x)) [U"] P. + P DD, (A(x")) [U°] Py
= P U*P, +PU*P, + P LU*Py=0. (6.10)

Thus we obtairk(z*, 0, p) = 0.
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b) Using Corollary 2.4 we get for any matrix € S™

0
o,
w(w)
= > A%(Nj, Ak, M) Py () Aj(2) P () BP () +
3.k, l=1

D®, (A(x)) [B] = D*®,, (A(x)) [B; Aj()]

w(w)
> A0, (A, Ak, M) Py () BPy () Aj (2) Py ().
Jkil=1

Now, performing the same steps as in the proof of Theorem .we easily
conclude

0 . . . .
o Do (A U] = D0, (A@") [U75 Al
p(@™)
= Z A%, ( Ak, 0,0) Py (2*) AU +
k=1
n(a®)
Z AQSDp(/\ka 0, O)U*.AiPk(x*)_
k=1
Considering/*P, = P, U* = 0 we obtain

pz*)—-1
0, ,(2",0,p) = [ 3 A%, (A, 0,0) Pl AU +
k=1
plz)—1 "
3 A2¢p(Ak,o,0)U*Aipk(x*)] -
k=1 =
and using (6.10)

n

hl(z*,0,p) = 2

k=1

plz)—1
<U*,Ai( > A2<pp()\k,O,O)Pk(a:*)) Aj>

ij=1.

The latter matrix is equal to the matri, («*, U*) defined in the proof of The-
orem 5.1. Thus we can show that the right hand side of the kadtieation con-
verges toH (z*,U*) asp tends to0 using exactly the same arguments as in the
proof of Theorem 5.1. O
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Lemma 6.3
Uy (z*,U§,0,p) = ¥a(x*,Uf,0,p) = 0forall p > 0.

Proof. Using (5.1) we can show that

n

Uy (2%, U5,0,p) = f'(a")T + [(EoE) U EoE] , Ai)],_, + h(z*,0,p)
= Li@07) =0,
Uy(2*,Us,0,p) = pEg (DP, (A(x)) [U*]) By — pEg U Eq
= pEJU*Ey — pEy U*Ey = 0.
forall p > 0. O
As a direct consequence of Lemma 6.3 we obtain
U(x*, uy,0,p) = 0forall p > 0. (6.11)

Next, we investigate the differentiability df;, and ¥, and give formulas for partial
derivatives.

Lemma 6.4 Let. A and f be twice continuously differentiable. Then the functigns
and ¥, defined in (6.7) and (6.8) are twice continuously differaolié and the follow-
ing formulas for the derivatives df; and W5 hold true:

\Ijll7x(xa ijaTap) = f”(fﬂ) + |:<E0fj0EJ7"4{L/j (:E)>:|7,]:l + hlx(x7Tap)7
R ()
W@, 00, Top) = o[ Y A2(), M), M(a))
Gk, l=1

Eq (P;(@)4)(@) Pe(e) (07T + U*) Pi(a) +
Pi@)(p7'T + U Pu@) Ai(@) A(@) ) B
= B DRy (A@)lp T + U A @) B

i=1

V) 5 (.00, T,p) = [Eq Aj(z)Eo],_,
\If’zﬁo(:c,ﬁo,T,p) = —pE, whereE; ; = 1foralli,j € {1,...,7}.

Proof. The first and third formula follow easily from the linearity the trace opera-
tor. For the second formula we only note that

0

707 D20 (A(@)) [B] = D?®;, (A(x)) [B; Aj(x)]

for any matrixB € S™. The last equation can be seen directly. O
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Corollary 6.5
\pll,m(x*v Uga Ovp) = L”(I*v U*) + HP(I*v U*)v
b o, U5, 0.p) = ¢ (0) | Bg (AU™ +U"A) Eo

n
. )
1=

n

\11/17[70 (:E*7 U(Ta 0,]9) = [EJAlEO} i=1"
\Iﬂz,ﬁo (z*,U;,0,p) = —pE, where[E]; ; = 1forall 4,5 € {1,...,r}.
Proof. The first formula can be seen using Lemma 6.2 b). The secanuifa fol-

lows from Lemma 6.4 using the same arguments as in the prddfedrem 5.1 c). The
remaining formulas can be directly seen from Lemma 6.4. O

In the following Lemma and Corollary we derive the partiatidative of ¥ with re-
spect tar andy.

Lemma 6.6 Let 4 and f be twice continuously differentiable. Then the function
defined in (6.9) is continuously differentiable with respecr, i, andt¢ and the fol-
lowing formula holds:

\Ijlm,ﬁo (‘Ta ’&Oa t7p) =

( £(w) + [( B0y ALy (@) ]| H. Tp) - [svee(E] Ai(a) o)), )
p ([ES Day(A(@) [Aj(w):p™' T + U Eo]) pl;

Proof. Lemma 6.6 is a direct consequence of Lemma 6.4 and [76],eMoemulas

for the derivatives of the functionsvecand smatare presented. O
Corollary 6.7
I(p) = \Ijgc,ﬁo(x*a ug, 0,p) =
L' (2*,U*) 4+ Hy(x*,U*) [svec(Eq AiEo)]_,
([svec(y”(0)Ey (AU* +U*A;) Eo)]?:l)T j26
Proof. Corollary 6.7 follows directly from Lemma 6.6 and Corolld&g.5. O

Along with ¥/ . (z*, ug, 0,p) we define

Wiy = lim Wi g, (2%, u5,0,p) = (6.12)
L"(x*,U*) 4+ H(x*,U*) [svec(Eq AiEo)] .,
([svec(y”(0)Ey (A;U*+U*A;) Eo)]?:l)T 0

The following Lemma and Corollary provide information albthe regularity of\IIEO)

/
and\I/(p).
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Lemma 6.8 \IJ’(O) is nonsingular.

Proof. Forany pait(y,v) € R**" with ‘I’Eo) (y,v) = 0 the following equations hold:
(L"(z*,U*) + H(z*,U"))y + [svec(E] AiEo)],_,v = 0  (6.13)
n T
([svec(y”(0)B] (AU* +U"A) Eo)|_, ) y = 0. (614)

Now let A1 (U*), ..., A (U*) denote the increasingly ordered eigenvalue§ tfde-
fine Ay, = diag( A1 (U*), ..., A (U*)) € ST, and recall that, (U*) = ... =
Am—r(U*) =0andEy = (Sm—rt1,- -, Sm). Then we conclude

U* = Z )\k(U*)SkS]I = Iy *UOEJ

k=m-—r+1

and

(6.14) & Y yi (B Ai (EoAy, Eg ) Eo + Eg (EoAy, By ) AiEo) =0
=1

& Y i (B AiBoAy, + Ap, Eq AiEo) =0
=1

= Zyi [SgAiSl/\l(U*) + /\k(U*)SgAiSl]k,z:m—rﬂ =

=1

0

m

& S w [OwU) + MU s Aisi] oy =0
=1

Aad [)‘k(U*) + /\l(U*)]Z?l:m—T-l-l ® (Z Yi [S;Alsl} :l_mr+1> =0
i=1

n
< Zyi [SgAlSl} Z,ll:mfrJrl =0
=1

& y' [svec(E) AiEy)],_ =0. (6.15)
Hence, multiplying (6.13) by " from left we get
y (L"(«*,U*) + H(z*,U*))y = 0.

Now from the second order optimality conditions {&DP) follows eithery ¢ C(x*)
ory = 0. Therefore from (6.15) and Lemma 3.1 we conclgde: 0. Finally (6.13)
together with assumptiof3) showv = 0 and therefordf’(o) is nonsingular. O
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Corollary 6.9 There exispg > 0 andp > 0 such that||\112;)1|| < pforall p < po.
Furthermore\IJEp) is nonsingular for allp < po.

Proof. Lemma 6.8 guarantees that

a) there exists, > 0 such thaﬂ|\1/2* I <~0and

1
0)
b) there existgiy > 0 such that|¥{, w||* > uo||w||® for all w € R™*7.

From b) and the continuity o¥’_, with respect tg, which can be easily derived from
Theorem 5.1, it follows that we fingy > 0 such that

[Wywl? > %HWHQ for allw € R™™ and allp < py.

Consequently the smallest eigenvalude;) is larger tharg, \If’(p) is nonsingular and
there existy > 0 independent o such thaﬂ|\1/’(;)1|\ < pforall p < po. O

Now we are able to state the following proposition, whichtlyaroves assertion (G1):

Proposition 6.10 There existy > 0 andpy > 0 small enough such that for given
O > A\, (U*), any0 < € < A\p—rp1(U*) and any(U, p) € V(U*, po, 9, €, ©) there
exists a vectof: = Z(U, p) such that the equatioR’,(Z, U, p) = 0 holds.

Proof. We have shown that we fing) > 0 such that
o U(z* uf,0,p) =0,
e U is continuously differentiable with respecttanddg and
, .
. \I/(p) is nonsingular

forall 0 < p < pp. Now letp; < po be arbitrary small and define the compact set
K = {0 € R™} x [p1,po]. Then it follows from the implicit function Theorem 6.1
that there exisb > 0 and smooth functions(¢, p) and (¢, p) defined uniquely in a
neighborhood

S(K,8) = {(t,p) € R™™ 1 ||t]| <&, p € [p1.po]}
of the compact st such that
o U(x(t,p),uo(t,p),t,p) =0 forall (t,p) € S(K,d) and
o 2(0,p) = 2", 10(0, p) = g foranyp & [p1, po].

Recalling thatsmat(t) = T = p(U — U*) and||v| = | smat(v)|| we conclude
svedp(U — U*)) € S(K,¢) forany (U, p) € V(U*, po, d, €,0). Thus

&= 2(U,p) = z(svedp(U — U*)), p)

and N R
Uo = Uo(U,p) = smat(io(svedp(U —U™)),p)).
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exist and the following equations hold true:

@7+ [(BDoE]  A@)] " +hla.pU = U").p)

=1

pEq (D®, (A(#))[U]) Eo —pUy = 0. (6.17)

0 (6.16)

From the latter equation we see that = E] (D®, (A(2)) [U]) Ey and after substi-
tution of Uy in (6.16) we obtain

0 = f'(@)" + (P (DD (A()) [U]) Po, Ai(2)];,
+ (0L, p( - U*),p)aAé(i)ﬂ;
= @)+ (DB, (AG@) 0], A(@)) ]
= J@7 + (U, D, (A@) [4(@)]) |
= F.(2,U,p).
This completes the proof of Proposition 6.10. O

Later we will show that: = argmin, . F'(x, U, p) and therefore complete the proof of
assertion (G1). Next we will prove assertion (G2). We stdit the following Lemma.

Lemma 6.11 There exist > 0 andp, > 0 small enough such that for given >
A (U*), any0 < € < A1 (U*) and any(U, p) € V(U*, po, 6, €, ©) the estimate

masc { & —* || By (U~ U")Ea||} < Cp||U ~U"|

holds, where”' is a constant independent pf

Proof. We start by rewriting equations (6.16) and (6.17) using= smat(t) and
UO(tvp) = Smat(ﬁo(t,p)):

7(ato)” + [(Eolo(t ) S Aila(t,p))| +hla(tp). Top) = 0 (6.28)
p svec(Ey (D®, (A(x(t,p))) [p~'T + U*)) Eo) — pio(t,p) = 0.(6.19)

Now, differentiating identity (6.18) with respect tave get

7" (e(t,p)) - it ) + [ (Eolo(t p)ES ALy (e(t,p))) | wi(tp) +

| svec(E] Ai(a(t.p)Eo) | i (tp) + hi(w(t.p) T.p) =0, (6:20)
where 5
and

. 9 . ) . i
u’oﬂf(t,p) = a(uod(t,p),] =1,...,7) e R""™.
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Differentiation of (6.19) with respect toyields:
P (t, p)
0
= py; svec(Ey (D@, A(x(t,p)) [p™'T + U"]) Eo)

— p[svec(E] (D0, A(a(t,p) [T + U*, Ai(a(t,p))]) Bo) | - ai(t.p)

" T
+ <[svec(E0T (D@, A(z(t,p)) [smat(ej)])Eo)TL_l> , (6.21)
wheree; denotes thg —th unit vector inR™. Next we calculaté;(z(¢, p), T, p):
h’( (t,p), T, p)

([< 2(t,p), Tp), Al p)))] )

= < z(t,p)) Py, 8‘9 D, A(z(t,p))p T+ U* ]>} +
(,5)€IxJT
d
Al (z , A(x -1
<P0 z(t,p)) Py achpp (z(t, p T +U* >L”)EM
<PLA’ z(t,p))Po, — 0 D@, A(z(t,p))[p ' T + U*] >}
ot tj (4,5) €I><J
(O (a(t,p), T.p), AL (o, >>>}7_,-xt<t,p>, (6.22)
1,j=1

wherel x J ={(i,j):i=1,...,nandj =1,...,7} and
57 DAt )T + U]
= smat([svec(DQCIJPA(x(t,p)) [pilT + U™, A;(x(t,p))] )T]r:-l %x(t,p)) +
D0, A(a(t,p) [smatc, )]

forall j = 1,...,7. UsingB;(t,p) = D2*®,A(x(t,p)) [p~'T + U*, A (x(t, p))]
forj =1,...,n, recalling that

Watp)tr) = [(Praleo)PByen)]]

< ij=1
:<P Al(x(t,p)) Py, B; >]ij1 n
( [
(

(t,p)
(Pietp) P Bi0))]

J_(‘T(tvp)vTvp)7A;/,j ($(f,p)) }

n
ij=1
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and defining
M(t,p) = %[<PLAg(x(t,p))PL,D@pA(x(t,p))[smat(ej)]>](i7j)€m
+%[G%Axan»ﬂaﬁD@pAu@J»nsmamqﬂnﬁwebd

+]1? [(PLA((t, p)Po, DB A((t, p)) [smat(e)))] , yerxs

from (6.22) we obtain
hy(x(t,p),t,p) = W' (x(t,p), t,p) - 2} (t, p) + M(t,p). (6.23)
Now defining
N(t,p) = [ svec(Ey (D®,A(x(t,p)) [smat(e;)]) Eo)]" |
and combining Lemma 6.6, (6.20), (6.21) and (6.23) we olitarsystem

Wi (G0 ) =- (N ) e

Next we consider the special caise 0. From (6.23) and Lemma 6.2 b) we see that

hi(z(0,p),0,p) = Hy(z*,U™) - 2;(0,p) + Mo, (6.25)
whereM, = M (0, p) with
1 *
Mo, = E(SVG((D%(A(&E ) {PO-AZPJ_ + P APy + P AP, } ))J
=:M-
. nia*)
_ ];svec< 3 Mgy (ks M)(P(a*) M, Py () +Pl(:c*)M1Pk(:v*)))j
k=1 ;
. ple*)—1
_ Esvec< S Ay, M) Pi(a®) A Pi(z*)
k,l=1

J

M )
+ pp k (PoAiPk (I*) + P (,T*)Alpo)) .

Therefore we find the estimate
| Mol < 2M +Cy zn:Hsveo{A-)H ) =C
off = o @0 v i - UM-
Now from (6.20) at = 0 and (6.25) we conclude

(L. (x*) + Hy(z*, U"))-2,(0,p)+ [svec(EOT AiEo)TL_-l%yt(O, p) = —M,.
- (6.26)
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Evaluating (6.21) at = 0 and using Corollary 6.5 we obtain
¢"(0) [Eg (AiU* + U A)Eo] - 24(0,p) — pli - g, (0,p) = =No,  (6.27)
whereNy = N(0, p) with
No,i,; = svec(E, smat(e;)Ey),

and thus
[Noll < 1.

Combining (6.26) and (6.27) we obtain the system
@\ ig,(0,p) No
Ié(o,p) _ ’ -1 MO
( o,4(0,p) ) ( (P)) Ny |- (6.28)

Taking into account Corollary 6.9 and the estimates||fof|| and|| V|| above, we see
that

or equivalently

max {[|z; (0, p)], [5,,(0, p)II} < p(Crs +1).

Furthermore, fob, small enough and ani, p) € {(t,p) € R™"{||t|| < do.p < po},
the inequality

vttt (WD RN ) | < apic ) = G

holds true for any € [0, 1]. Also we have
‘T(tvp) — " _ x(t,p) —.I'(O,p)
( tio(t,p) — ug ) - ( tio(t, p) — 10(0, p) )
-1 - M (z(v, p), do(v,p))
A \I/muo( (V,p),uo(u,p),u,p)< N((E( 0 ) )dV
( (

v, p), o (v, p)
/0 WL Galrtp).dalrtp) rtp) (g o i) )

(‘T(Ttv p)7 o (7, p))

From the latter equation we obtain

Go(t,p) — ug
M (x(7t,p), dg(Tt, !
< ettt (TR 1) [ ar
< Golitll,

and therefore
max {||lz(t, p) — "], 4o (t,p) — a"||} < Collt.
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Consequently fot/ = p~!smat(t) + U* there exists’; > 0 independent of such
that

max { |#(U, p) = ||, | E] (D(U,p) = U") Eoll} <pCallU = U] (6.29)

forall (U,p) € V(U*, po, d, ¢,0) and the proof of Lemma 6.11 is complete. O

Lemma 6.11 proves the assertion of (G2) for the primal végiahd the component of
the multiplier associated with the “active part” @fz*). Based on these results, we
are going to show the remaining part of estimate (6.1) nowstak with the following
inequality:

|0 = Ul < 1P (T = U%) Roll+ 2P (T = U*) ol + [Py (T = U*) P

From (6.29) we conclude

1Py (T - U") Pol

\/<P0 (ﬁ — U*) Po, Py (ﬁ — U*) P0>

Il
$
=
—
s
—

-
|
d
N
s
—
d
|
d
N
N—

I
$
g
~—
=
&,
—

)
|
-
N
=
&,
~—

D
|
-
N
SN—

= |B (7 -v) Bo|| < iU - 7).
Again from estimate (6.29) we obtain
max{ngz(U,p) — 2|, | ET (ﬁ(U,p) - U*) EOH} <60y (6.30)

for all (U,p) € V(U*,po,d,¢,0). From equation (6.30) we conclude that for given
€1 > 0 we findé > 0 small enough, such that

12(U,p) — 2|
1Uo(U, p) = Us |

€1, (6.31)

<
< a (6.32)

for all (U,p) € V(U*,po,0,¢,©). Using these inequalities we are able to prove the
following Lemma:

Lemma 6.12 There exist$ > 0 small enough and a constatit< C> < b such that

A AGUD)) _

=

iS]

foralli =1,...,mandall(U,p) € V
does not depend gn

—~

U*,po, 0, ¢, ©). Furthermore the constarits

Proof. From estimate (6.32) we see that we fing 0 small enough such that

106U, p)| = || Bg (D@ A((U,p))[U]) Eo|| < U5 + €1 (6.33)
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Sinceﬁo(U, p) = 0 we see from (6.33) that

0 < tr (Do(U,p)) < Vi (UG + 1), (6.34)
Now let
A(#(U,p)) = S(A(@(U.p))AA @(U, p)S(A(2(U.p))

be an eigenvalue decompositiondfz (U, p)), denote by ,(Z) = A\ (A (2(U,p)))
the corresponding eigenvalues and &) = sx(A(Z(U,p))) the corresponding
eigenvectors. Then we conclude from inequality (6.31, thetiouity of A and the
continuity of the eigenvectors that we are able to find forgirgn0 < e; < 1adé >0
small enough such that the following estimates hold:

|si(2) " Pos;(2)] < e2 Vi,j=1,....,m, i#j (6.35)
|si(£)TPosi(:i:)} <e Vi=1,...,m—r (6.36)
’si(fc)TPosi(:fc)‘ >l—e Vi=m—r+1,...,m. (6.37)

Due to(U, p) € V(U*, po, 9, €, ©) we know that
SZTUSi >e¢ forall i=m—r+1,...,m

Consequently we find > 0 small enough such that the following inequalities hold:

5:(2) " Usi(2) > ge forall i=m—r+1,...,m. (6.38)

Using the abbreviations

QE) = [App(Ar(#), u(#))]i=1  and  S(2) = S(A(2(U,p)))

we obtain
w (Do ) = tr (EJ (DO, AU, p))[U)) Eo) =
tr (Eg (S(2) [Q(2) ¢ (S(2) US())] S(2)") Eo)
= w(S@ TEoEo t) [Q(2) o (S(2)"US(2))])
= ((S(z)"PS(2)) e (S(2)'US(2)),Q(2)). (6.39)
Next we defineZ (z) = (S(:&)TPOS(:E)) e (S(2)TUS(#)) and subdivide the matrices

Z(z) andQ(z) in the following way:

wo=(4 %) weo-(§ §)

whereZ,,Q, € S™ ", Z5, Q2 € M™ ™" andZ3, Q3 € S". Now from (6.39) we see
that

tr (ﬁO(U;p)) = <Zva1> Z37Q3 + Z Z Z2 zm r+7 QQ)zm r+j-

=m—r+1 i=1
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From the positive semidefiniteness @) and Z (&) we conclude(Z;,Q1) > 0,
hence from (6.34) we see

(Z3,Q3) +2 Y D (£2)ij(Q2)i; < Vm (IUG]| + €1). (6.40)

j=m—r+1 =1

Furthermore from the convexity @f we get0 < (Q);,; < (Q);, foralli < j,j =
m—r+1,...,m. Now from estimates (6.35) to (6.37) and the fact that

|5:(2) "Us; (@) < U] < © (6.41)
foralli,j = 1,..., m we see that we are able to find> 0 small enough such that
|Z;.;] < ;foralli <jj=m—r+1,...,m

6(j —1)
and we conclude
m 7j—1 c m
2y (2)i3(@)ij| < 3 > (Qrk
Jj=m—r+1i=1 k=m—r+1

On the other hand from estimates (6.35) to (6.38) we obtain

2
(Z3)ii > 3¢
for 6 > 0 small enough and thus
m m—r 26 m € m
(Z5,Q3)+2 3 D (22)is(@Q2)iy = 5 D @kr—3 D Qs
j=m—r+1 =1 k=m—r+1 k=m—r+1
€ m
= = > (@
k=m—r+1
Now we immediately obtain from (6.40)
- 3
> @er < 0 (g + e
k=m—r+1
consequently
@k < @ (U]l +€1) forallk =m—r+1,...,m
and finally
)\max 3
< () (2 e ) .
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Remark . If we replace all estimates involving the Frobenius norntheyspectral
norm in the proof of Lemma 6.12 and if we further choesdose enough t0.,,in (U)
we obtain the estimate

)‘maX(UEJk)

)‘min(U(T) .
This observation shows that the const@htin Lemma 6.12 is closely related to the
condition number of the matri& .

Sﬁ;, ()\max) < 2

Next we use Taylor expansion in a neighborhooddfor the calculation of the terms
| Po (17 — U*) P, | and|| P, ((7 — U*) P, ||. Therefore we introduce the function

ﬁ:R”X§T><R — ST
for which the equation B R
U(&(U,p),U,p)) =U(U,p)
holds. Now letP, € {P,, P.} and defineAz = Z(U,p) — z*. Taylors formula
guaratees the existence€ S(z*, €;) such that
P (U, Up)~U") P = P.(D®, (A()) [U] - U") Py
= P (D%, (A(z")) [U] = U") PL+ R(¢)Aw,

whereR(¢) = [P.D*®,A()[U, Aj(£)|P.],_,. The following Lemma provides an
upper bound for the norm of the remainder teR{t).

Lemma 6.13 || R(¢)|| < C5, whereC; € R is a constant independent pf

Proof. Let us denote the increasingly ordered eigenvalued(@f) by X\;(z),i =
1,...,n, the corresponding Frobenius covariance matriceB,py),i = 1,...,n and
the number of distinct eigenvalues.dfx) by i(x). Then we obtainforall = 1,...,n

P.D*®, A(§)[U, A{(€)]PL =

()
Z A2 ()\kl (5)7 )‘kz (5)’ /\ks (5))P*P/€1 (5) [Mk17/€27/€3 (5) + Ml;:,kg,kg (5) )
k1,k2,k3=1

where
My ey ks (§) = PP, (§)U P, (€). A} () Pry (§) P

forall k1,ko, ks = 1,...,u(§) and alli = 1,...,n. Now we assume without loss
of generality (see equation (6.31)) that the eigenvalued (f) are separated in the
following sense: There exists
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such thatforall = 1,...,m there exists exactly onec {1, ..., u(x*)} with
|)\J($) — /\l(:v*)| < 0g.
Next we determine upper bounds for the terms

AQ(/\kl (5)7 )‘k2 (5)7 )‘k3 (5))7 ki, ko ks =1,... 7#(5)'

We definep(z) = max{j e {1,...,u(x)} | X;j(A(z)) < —o0}, assume — again
without loss of generality — thaX, (§) < M, (§) < Ak, (€) and distinguish three
cases:

k; < upp(§)fori=1,2,3: From the convexity of» andy’ follows that

AQSDP(/\M (5)’ Ao (5)’ Ales (5)) < Sﬁ’g(}\kg (5)) < (pZ(—O’o) < pCV?”,—Uo' (6.42)
Jie{1,2,3}: k; < p1(€), 3Fj€{1,2,3}:k; > u1(€): Using the convexity
of ¢ and Lemma 6.12 we obtain

8%, 0 (€)M (6 Ay () = 2202208 = B30 (E)
0 (©) ~ 0w () _ ¢(C)

S Vi (3 vy 73 R

k; > pup(§) fori = 1,2,3: Again from the convexity op andy’ and Lemma 6.12 we
get the estimate

(6.43)

1
AQ(PP(/\kl (5)7 )‘k2 (5)7 )‘k3 (5)) < ‘Pg(CZ) = I;@/I(CQ)- (644)
Now we will show that in the third case whén > p;(€) for i = 1,2, 3 the estimate
| P, (€)PL|| < pC

holds true, wheré€ is a constant independentaf First we obtain

1Pe,(©)PLll = tr(Py(§)PL) = tr (E] Py, (§)EL)
w(§)
< Y tr(E[P(9EL)
k=p1(§)+1
©(§)
- tr(EI( 3 Pk(g))EL). (6.45)
k=p1(§)+1

Now, according to results presented in [73], the maktjx o (£) = Zgglwﬂ Py (¢)

has the following properties:
e P, o(§) is analytic in a neighborhood af*,

o Py o(z*) = Py,



CHAPTER 6. ALOCALLY CONVERGENT AUGM. LAGR. ALGORITHM 44

8 pi(x) plx

* oz, => Z )(Bi,k,l(x)""Bi—,rk,l(x))a

k=1 I= ;L1+1
whereB,; i.1(z) = Py(z) A, (x) P(z) foralli =1,...,n.

From the last equation it is easy to see tﬁu@Pz of H is restricted by a constant
C>0ina neighborhood af*. Using Taylor expansion again, we obtain:

n T

tr (ETPoEL) + [tr (EI%PI*,O(@)EL)] (€~

1=1
< C|Az|| < pCCy||U = U*|| < pCC1(© + ||U*]))  (6.46)

tr (B Pp-o(£)EL)

for someg, € S(z*, €1). Finally the assertion of Lemma 6.13 follows from the combi-
nation of the estimates (6.42) to (6.46) and the fact thahtirens of

o U,
o Py(x)fork=1,...,u(x)and
o Ai(x)fori=1,...,n
are restricted in a compact neighborhoodbdf O

Now, due to (6.29) and Lemma 6.13, we can find a constgnt 0 independent op
such that

|P. (T = U") Pull < |IP. (D@, (A@2")) [U] = U*) Pu]| + pCsl|U = U]

(6.47)
Next, usinglU* P, = 0 we see
[ Po (D@ (A(z™)) [U] = U") PL|
p(z")—1
- H Z pw(/\k/p)POUPk(I*)
Ak
C, _ Cop—oo
< '*” Cocolypp, | = plCelypw - e
< pC4||U U, (6.48)
\C

whereCy = m+—=e—=! °°‘ . Analogously we obtain

1PL (DO, (A(z")) [U] = U") Po
w(z™)—1

H Y Ay M) Pela®)U P (")
k=1

pe'(0/2)|PLUPL|| = pg'(a/2)|[PL(U - U")PL]|
pCs|U = U", (6.49)

[VANVAN
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whereCs; = mpy’(c/2). Finally estimate (6.1) follows from the combination of es-
timates (6.47) to (6.49) with estimate (6.29). We concluaeroof of assertion (G2)
by the following observation: From Theorem 5.1 we gétz(U*, p),U*,p) = 0 and
due to Corollary 5.5 the functioR (z, U*, p) is strongly convex in a neighborhood of
(U™, p). Hence

&(U",p) = argmin{F(z, U",p)|lz € R"} = 2~
and it immediately follows

U(U*.p) = DB, (A) (U] = S G (ORU"Py = U™,

k=m—r+1

It remains to verify (G3) and to complete the proof of (G1).phrticular we have to
show that

e F(z,U,p) is strongly convex in a neighborhood®fU, p) and
o & = argmin{F(z,U,p)lx € R"}.

Equations (6.16) and (6.17) show thiafrom Proposition 6.10 satisfies the equation
E!(Z,U,p) = 0. In Corollary 5.5 we have shown that(z, U*, p) is strongly convex
in a neighborhood af*. Therefore we findy > 0 such that

y Fl (2", U*,p)y > 7|yl?

forally € R™. On the other hand, estimate (6.1) shows that for small empyig>
0 we havez(U, p) near z* andU(U,p) near U* uniformly in V(U*, py, d, €, O).
Consequently we find small enough > 0 andé > 0 such that the inequality

A 1
y FV.(2(U,p),U,p)y > §7||y||2

holds for any(U, p) € V(U*, po,d,¢€,0). HenceF(x,U,p) is strongly convex in a
neighborhood of:(U, p) and the proof of assertion (G3) is complete. Now from (G3)
follows that (U, p) is a local minimum ofF'(z, U, p) in a neighborhood aof (U, p) and
due to (6.1) also in a neighborhood:of. It remains to show that the neighborhood of
x* can be extended @, and consequently t&"™. We start with the estimate:

F(j(U,p), va) < F(.T*, Uap) = f(x*) + <U’ (I)P (‘A(‘T*)»
= [f(@") + (U, Ry®p (A(z")) Po) + (U, PL®p (A(z")) PL)
< f@) + (U, Py®p (A(z¥)) Po) = f(z7). (6.50)

Now suppose that there exists a constant 0 such that for eacpy > 0 there exists
some(U, p) € V(U*, py, d,¢,0©) and some: € Q,, such that

F(jaUap) < F(‘%aUap) -C.
Then from (6.50) we obtain
F(,U,p) < f(z*) - C. (6.51)
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Now let®,(A(2)) = S(Z)A(z )S(:E) and defined, (A(Z))~ = S(Z)A~(2)S(7) T,
whereA™ (:E) diag(min(0, A1 (Z)), ..., min(0, Ay, (:E))) Then from (6.51) we see

that
(@) < f(a") = (U, ®,(A(@)”) = C.
Consequently from assumptid5) and||U| < © we get

C

1@ < 1) -5

for pg small enough and all < py. On the other hand it is clear that
f(@) = min{f(z)|z € Qp}
and from the continuity of follows that
min{ f(@)le € Q) > f(a*) ~
for pg small enough and thus we obtain

1@ = 1) - 5.

This contradiction completes the proof of assertion (GELUs summarize our results
in the following theorem:

Theorem 6.14 Let A(z) be twice continuously differentiable and assumptioAs)
to (A5) hold. Let further® > \,,(U*) and0 < € < A\p—+1(U*). Then there exist
po > 0 and small enough > 0 such that for anyU, p) € V(U*, po, J, €, ©)

a) There exists a vector
& =&(U,p) = argmin{F(x,U, p)|lx € R"}
such thatF (&, U, p) = 0.
b) For the pairz andU = U(U,p) = D®,, (A(2(U,p))) [U] the estimate
max {1 — ", |0 - U*|} < Cp U - U7 (6.52)
holds, where”' is a constant independent pf

c) #(U*,p) = «* andU (U*,p) = U*.

d) The functionF'(x, U, p) is strongly convex with respect toin a neighborhood
of (U, p).
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Remark . Letus briefly discuss in which way Theorem 6.14 has to betadaj
we replace assumptidip,) in Definition 4.1 by the weaker assumpti¢gy; ). It turns
out that, while assertions a), b) and d) remain unchangedsdtimate in assertion c)
becomes R

max { | - 2* |, |T = U*| } < Cpp(=1/p) U - U"]|. (6.53)

Now assumptioriy’ ) guarantees that we findsmall enough, such that the contractive
character of (6.53) can be maintained.

The following Corollary is a direct consequence of Theorefd&):

Corollary 6.15 Lete, ©, 6 andpg be given as in Theorem 6.14. Thengor< p, small
enoughandU*!,p') € V(U*, po, 6, ¢, ©), Algorithm 6.1.1 converges with a linear rate
of convergence. If we choop&t! < p* in step (iii) of Algorithm 6.1.1 for alk > 0
and assume that, — 0 for k¥ — oo the rate of convergence is superlinear.

We conclude this chapter by two remarks.

Remark . Letz™ be alocal minimum of problem (SDP) satisfying assumptié« (

to (A5) and denote by/* the corresponding (unique) optimal multiplier. Assume
further that there exists > 0 such that there is no first order critical poititzz =™
satisfying||z — z*|| < v. Then all statements of Theorem 6.14 remain valid, if we
replace(z*, U*) by (z*, U™) and the functior® (U, p) by

#,(U, p) = argmin{ F (z, U, p)|z € R", ||z — 2| < v}. (6.54)

Moreover Theorem 6.14 d) guarantees the existeneg of 0 such thatF'(z, U, p)
is strongly convex inS(z™*,n) for all (U,p) € V(U™,po,d,¢,©) and appropriately
chosen parametefs, d, ¢ and©. Consequently any local descent method applied to
the problem

(i) Findz"*" such that|| F}(z, U*, p*|| = 0 (6.55)

will automatically find a solution, which satisfies the adtial constraint|z*+* —
at|| < v, if itis started withz! close enough ta:t. Thus, if the first step in Al-
gorithm 6.1.1 is replaced by stépf) above, the resulting algorithm is guaranteed to
converge tqz ™, U™) with at least linear rate of convergence, provided that, p') €
VU™, po,d,¢,0), 1 € S(zT,min{n,v}) andp! is small enough.

Remark . Whenever we solve a problem of type Algorithm 6(1)4in practice, we
have to replace the exact minimum by an approximation ofgegrecision, which
can be determined by a finite procedure. In [70] this probleranalyzed for the so
called nonlinear rescaling method. We have not exploredpghiblem in the context
of nonlinear semidefinite programming so far. Neverthelesschieve results of high
precision with a relatively moderate stopping criteriontfee unconstrained minimiza-
tion in practice (compare Section 9.3.2).



Chapter 7

Globally Convergent
Algorithms

In the preceding section we have seen that Algorithm 6.1rvexges provided the
initial iterates are chosen appropriately. Unfortunabelgnany practical situations no
such initial iterates are known and consequently Algorithth1 is not applicable. A
possible remedy is provided by the following hybrid strgteg

(i) Use a globally convergent algorithm (which is guaradtée converge to a so-
lution of (SDP) for arbitrary initial iterates) to fintl/,p) € V(U*,po, d, ¢, O)
withp < §.

(i) Apply Algorithm 6.1.1.

In the framework of this section we are going to present twdified versions of Algo-
rithm 6.1.1, which both turn out to be globally convergendencertain assumptions.

7.1 The Shifted Barrier Approach

In our first approach, we use a constant multiplier matrixrdyall iterations. The ini-
tial multiplier is chosen to be the identity matrix. Thisdsato the following algorithm,
which we call shifted barrier approach below.

Algorithm 7.1.1 Letz! € R™ andp' > 0 be given. Then fok = 1,2,3,... repeat
till a stopping criterium is reached:

(7) ol = argm%%n F(x, I, p")
ze n
(i) UM = D®y(A"))[Ln]
(iii)  p"tt < ph.
Remark . Again we are searching for a global minimum of an unconsgaiopti-

mization problem in step (i) of Algorithm 7.1.1. From praeti point of view such an

48
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algorithm is only recommendable for problems of moderateetision (where global

optimization techniques can be applied) or if the undegyiroblem is convex. In con-

trast to the preceding section, where we discussed thedocakrgence properties of
Algorithm 6.1.1, the global minimization is essential iretAnalysis presented in this
section.

Definition 7.1 A class of Shifted Barrier function®s : R™ x R — R is defined by

f@) + L, @y (A(x))) = Fo(z, Im,p) for zeQ,

00 for z¢Q,. (7.1)

Me(z,p) :{

In order to simplify notation we omit the subscriptin the remainder of this section.
Along with M (z, p) we define

f(z) for ze€Q

M(z,0) = ;%E%M(x’p) - { 0 for z¢ Q. (7.2)

The latter limit can be seen from the following Lemma.

Lemma 7.1 If Assumptior( A5) holds, then there exisis > 0 such that

f(x) > M(z,p) > f(z) — O (W (‘1))

p

forall z € Q.

Proof. The first inequality follows fromp,, (A(z)) < 0 for all z € Q2. Assumption
(A5) guarantees the existencemf> 0 such that

A (A(z)) > —nforallz € Q, andallk =1,...,m.

Now the right inequality follows from the properties of O

Next we introduce an additional assumption
(A6) There exist®, > 0 such thatl, is a compact set for afl < p, (7.3)

and formulate the following Proposition.

Proposition 7.2 Let f and A be twice continuously differentiable and assume that
(A1) to (A4) and (A6) hold.

a) Then for any < pg there exists
z(p) = argmin{M (z,p)|z € R"}

such that
M, (x(p),p) =0

andlim f(z(p)) = limy M(z(p), p) = f (7).
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b) The pairz(p) andU(p) = D®, (A(x(p))) [I] converge taz*,U*) asp con-
verges td).

Proof. a) The existence of(p) for all p < p, follows immediately from assump-
tion (A6). MoreoverM (z,p) is continuous inint(€2,) and increases infinitely as
approaches the boundary@f,, consequentiy/’ (z(p), p) = 0. Now consider a con-
vergent subsequende(ps)} C {z(p)} and letlim,, .o = Z. Using (7.2) it is easy
to see thatt € Q2. Now, from Lemma 7.1 we see that for aay> 0 we findps; small
enough that

f(z(ps)) — e < f(Z) < f(@) +tr Dy, (A(T)) + € < M(2(ps), ps) + 2¢
and we obtain:
f(x(ps)) < M(I(ps)aps) +3e < M(x*aps) +3e < f(iZ?*) + 3e.

Sincee was chosen arbitrarily, we get
f(z) = lim f(z(ps)) < f(=7) and thusf (z) = f(27).
Consequently for any convergent subsequengg; )} with p, — 0 we have
lim [(2(p.) = /(@) = ("),

hence
lim f(z(p)) = f(z*) and thereford%M(x(p),p) = f(z").

p—0

b) AssumptiongA2) to (A4) guarantee thdt:*, U*) is a unique KKT-pair. Therefore
we conclude from a) thdtm,_.¢ z(p) = z*. Next we will show thalim,_., U(p) =
U*. First we rewrite the multiplier update formula making uge¢h® eigenvalue de-

compositionA(x(p)) = 5 (x(p))diag(\i (2(p). - - A (2(p)))S (2(p)) T

Ulp) = D¢LM(M»M
= S((p)) ([Ap @ @) A @)}y @ S @) InS(@ () ()"
= @, (A=),

where
) S S
¢, (M(z(p))) O 0
Al(p)) = S(a(p)) " | S(a(p)”
S )

From the definitions of:(p) andU (p) and a) we obtain

0= M (z(p),p) = f'(=(p)) + [(®}, (A(z(p))) , Ai(z(p)))]_,
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for all p < po, consequently

0 = 1 () + (% (AE), AEED)],)

Fl@) + Kgli% @}, (A(z(p))) ,Aiﬂ j_l

andlim,, o ®;, (A(z(p))) exists. Furthermore

lim (A(z(p)), @, (A(z(p))) = liy >, Xi(2(p))epp (Ni (2 (p)))

p—0

Now from the uniqueness of the KKT-pdit*, U*) we concluddim U(p) = U*. O

p—0
Next we want to derive upper bounds for the error estimatés) — =*|| and||U (p) —
U*||. Let us therefore definAz = z(p) — 2*, AU = U(p) — U* and a function
U:R"xRy — ST
(z,p) = Dy (A(x)) [I].

Now, using Taylor approximations in local neighborhoods®&nd the notation intro-
duced in Chapter 5 we obtain the following formulas:

Ai(x) = A+ A jAz; + HA(Az), foralli=1,...,m, (7.4)
JRT]
j=1

whereHA : R™ — S™, HA(0) = 0 and||HA|| = o (||Az||) foralli =1,...,n,

U(z,p)

U(z*,p) + Z <%ﬁ(m*,p)> Az + Hﬁ(ASC) (7.5)

Jj=1

= Sdiag (&, (A1 (z%)), ., @ Am—r(2¥)),1,...,1) ST+

3 ([A¢;(Ak(;¢*), NMCA STAjS) STAz; + HY (Ax),

j=1
whereHU : R* — §™, HY(0) = 0 and||HU || = o (| Az||) and finally
(@) = fl(a*)+ f"(a*) Az + H (Ax), (7.6)

whereH/ : R" — R", H/(0) = 0 and || H/|| = o (||Az])).
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Lemma 7.3
a) P,U(z*,p)P. =0.
b) |PLU (2", p)P1| = O(p).
c) PoU(z*,p)Py = P.

Proof.
a) PLU(z*,p)Py = SD1diag(¢), (M (")), .., @ Am—r(2")),1,...,1)DoST =
N——

) | PO p)PL|| =

> ol (@) sesi
k=1

m

c) RU(z",p)P = Z @ (Ak(z))sksi = Po. U

k=m—r+1

Lemma 7.4

=O0(p) forall i=1,...,n

a)’

U(z*,p) Py

pla)—1

. 0 ~ * -1 *
b) ;%Poa—ﬂU(x ,p)PL = — ; (\) " PyAP(2*) and

p(a*)—1

lim P, 86

p—0 X =

C) PO(’“)?C Uz*,p)Py =p " (0) Py A; Py forall i=1,... n.

i

Proof. Foralli=1,...,nwe have:

0 ~
U(x*up)PJ_

P
+ 8$Z

a) HDL ([Acp;(/\l(:v*), M@ )] STAZ-S) DOH

= H[A‘P;(/\l(x*)v)‘k(x*mlk 1 [STA S}lk 1

sinceAg;, (Mi(z7), A(27)) < @ (Am—r(27)) < ¢(0) = O(p).

k=1

m&£ﬂ<ma—%<z%w cmmwwﬁwg&

p(a)-1

wz")-1 / *
1 —pp (A7) p—0 -1
= g ——— " PRA;P, - E A Py A P(z").

— 0 — N(z*) bART) = =1 ) PodsPi(a’)

The second limit follows analogously.

Ua*.p)P=- > (N 'R@)APR foral i=1,...n

=0(p

)

)
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k=1

w(z™)
U(z*,p)Po = Py (Z ep(Ni( ))Pk(x*)AiPl(I*)) Fo
= (pZ(O)PQ.AiP().

The following proposition provides us with error estimafes z(p) and the “active
part” of U(p).

Proposition 7.5 Let f and A be twice continuously differentiable and assume that
(A1) to (A4) and (A6) are satisfied. Then the estimate

max {|[z(p) — 2*||, || Eg U(p)Eo — Ug |} < Cop (7.7)
holds, wheres is a constant independent pf

Proof. Using the Taylor approximations (7.4) to (7.6), we obtain
0 = M(z(p),p) = f'(z") + f"(z") Az + H' (Az) +

(AU + U)o, A; +ZAUA%+HA(AI)>} +

< 1=1
—U(p) =1
(

RU(p)PL+ P U(p)Po + P LU(p) Py, AQ(I(Z’))H

n

=1

{
= @)+ [(PU R AT+ (£ + [(PUT Ry A JAa

4,j=1

(PaUPy, A"+ 1S (8a) + [(Po(AU + U ) o, HA (A0)]

i=1

n

:<P0AUP0, ZAMAIJN; +

j=1

n

(PU®)PL+ PLUMP + PLUM)PL, Ai(a(p))]

=1
. KAU,in,jmjﬂjﬂ +
j=1

KPOU(p)PL +PLU(p)Py + PLU(p)PL, Aiﬂ j:l

= (re+[(rena)] )aes [(rave,a)]” +

H (Az) + [(AU + U7, H;“(A@ﬂ"

=1

n

= (/e + [<P0U*P0,.Ai)j>}zj:1)AI + [(RAUR, 4] o

1=

Ri(p) + Ra(p), (7.8)
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where
Rip) = [(RUGPL+PUPR+PLUGPL A
Rap) = H(Aa)+ [(aU+ U7 1A A0)]” +[(av, zn:Ai,ijjﬂj_l

and||Rz(p)| is of ordero(||Az||), which can be seen from the formulas (7.4) to (7.6)
and the fact that

n

AU =Y <%ﬁ(:r*,p)> Az; + HY (Ax).

j=1

Further, using Lemma 7.3 and Lemma 7.4 we get

n

Ri(p) = :<P0U(:c*,p)PJ_+P¢U(x*,p)P0,Ai>] o+ (7.9)

7=

:<PLU(:1:*,p)PL, ANL +

:<pl(g;mja%wx*,p))pl,&ﬂ_ -

1=
n

(P da )P A+

=1 -
(P Z Doy U ) oA+

7=

:<HU(A:C)7 (PyA; Py + PL AP, +PLA¢PL>TZ

= R3(p) + Ra(p) + M(p)Aw, (7.10)

where||R3(p)| is a term of orden(||Az||), || R4(p)]| is a term of orde©(p) and

n

M(p) = [<Po% (I*vp)PL+PL%U(I*’p)PO’Ai>L,j—1

w1 n
p0 [—2 Z (/\l) <P0~Aipl(x*)v~’4j>Lj_l
1=1 T
na)—1

= oflman s (n) )]

=1

- —2{<P0,AiAT(x*)Aj>r . (7.11)

4,5=1
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Combining (7.8), (7.10) and (7.11), definilju = svedAU) and recalling that
Az — 0 for p — 0 we obtain the equation

L (2*,U%) + M(p)} Az + [svec(PoAiPo)K Au=R(p), (7.12)

where the right hand side ter®R(p) is of orderO(p). On the other hand from the
Taylor approximation fot/ (x, p) we see

~ n o ~
E U(p)Ey = EgU(s*,p)Eo + ZA%EOT%U@*,I?)EO + Ej HY(Az)Ey
J

Jj=1

" n
- L+% ;0) > Aw;Ej AE + E] HY(Ax)Ey. (7.13)
Jj=1

Using the abbreviation&ug = svedE] AUE,) andN = ([svec(EOTAiEo)]?:1)T
we get from (7.13)

—pAug + " (0)NAz = —pE; HY (Az)Ey + psvedU; — 1),
=Q(p)

(7.14)

whereQ(p) is of orderO(p). Finally, combining (7.12) and (7.14) we obtain

D) (ﬁi ) _ ( Lo U+ M) N ) (ﬁw _ ( o ) - (7.19)

Recalling tha( M (p)); ; = —2(Py, A;. AT (2*).A;) and taking into account thd, has
the same eigenvectors and the same non-zero structureesivaiges ag/*, we can
prove exactly in the same way as it was done in the proof of Lar6tB that there
existskg > 0 such that

HD_l(p)H < Ko, forall p < po.
Now from (7.15) we obtain the estimate
max {||z(p) — 2" ||, [luo(p) — ugll} < Cop (7.16)
for a constanCs > 0 independent op. O

The following Lemma provides an error estimate for the “iiha part of U.

Lemma 7.6
|PoU(p)PL + P U(p)Po+ PLU(p)Po| < pCh.

for a constantC; > 0 independent gp.
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Proof. We start with the inequality
[PoU(p)PL+ PLU(p)Po + PLU(p)Boll < 2||[PoU(p)PL|| + [[PLU(p) Pl

From Lemma 7.3, Lemma 7.4 and (7.6) we know th&t U (p) P, || is of orderO(p).
Now letS(p) diag(A1(p), - - -, Am(p))S(p) " be an eigenvalue decompositiondfz(p)),
denote bys;(p) the l-th column of S(p) and consider a single entry of the matrix
PoU(p)Pu:

m

(PoU(p)PL); ; = s{ U(p)s; = Z si si(p)el, (M (p))si(p) " s (7.17)
=1

Sincei € {m—r+1,...,m}andj € {1,...,m—r}wefindforeach € {1,...,m}
in the sum at the right hand side of equation (7.17) a proditgpe

s; s1(p), wherel € {1,...,m —r}

or
si(p) "sj, wherel € {m —r +1,...,m}.

Now, using the same arguments as in the proof of Lemma 6.1 3teéno
5] s1(0)|| = s s1(p)si(p) "si < tr (Eg Poe 1 Eg) = O(p)

and
s; sup)|| = s, si(p)si(p) " s; < tr (E] Py 0EL) = O(p).

Taking further into account that, (A (p)) — A\i(U*) forp — Oand alll = 1,...,m
we gety, (Ai(p)) < 20 (U*) foralll = 1,...,m andp small enough. Finally we con-
clude from (7.17) and the estimates above Mdf (p) P, = O(p) and the assertion of
Lemma 7.6 follows. O

We conclude this section with the following Theorem, whicimsnarizes the conver-
gence properties of Algorithm 7.1.1:

Theorem 7.7 Let f and A be twice continuously differentiable and suppose that as-
sumption (A6) holds. Then

a) For anyp < py there exists
z(p) = argmin{M (z(p), p)|x € R"}

such that
M (&,p) =0

andlim f(x(p)) = lim M(x(p), p) = f(").

If moreover condition$A3) and(A4) are satisfied, then
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b) the estimate
max {||z(p) — 2" |, [|U(p) — U"[|} < Csp (7.18)

holds for the pairz(p) andU (p) = D®, (A(z(p))) [I], whereCs is a constant
independent gf.

Proof. a) follows from Proposition 7.2.
b) follows from Proposition 7.5 and Lemma 7.6. O

7.2 The General Approach

Our second globalization approach deals with the geness, cahere we are faced
with potential non-convexity off and/or A. In this situation we can not expect to
be able to find global minima in step (i) of Algorithm 6.1.1. tghthe unconstrained
minimization process is replaced by the (approximativajaefor a first order critical
point of problem (SDP). The result is the following Algorrith

Algorithm 7.2.1 Letz? € R*,U° € ST, ,p® > 0 andey > 0 be given. Then for
k=0,1,2,...repeattill a stopping criterium is reached:

(i)  Find2"*! such that|| F(«"*!, I, p") || < ex

(i) U =D, (A(z)) [U*]
(iii) PPl < pk kL ek
As a direct consequence of the modifications, which lead gmAthm 7.2.1, we will

no longer be able to guarantee that the sequéntl,.cy generated by Algorithm 7.2.1
converges. Therefore we have to focus on convergent sueseest Let 2"}, be

a convergent subsequence{af } .. The existence of at least one convergent subse-
quence is guaranteed by assumption (A6), which we assunedatisfied throughout

this section. Let furthef = lim; ., ¥ andSAST = A(Z),where
A = A (A®F)) = diag (xl, e Ay AL < xm) ,

\: denote the increasingly ordered eigenvaluesl(f) forall : = 1,...,m and we
assume without loss of generality that there exists 0 such that

M< A< <A <0<0< i1 <ot < A
Further, thei-th column ofS is denoted by; for all i = 1,...,m and we define in
analogy to Chapter 5:
Py=EoE) =SDoS" = Y 53 andPL=E,E] =SD, ST =" 55/
i=m—r—+1 =1

Using these definitions, we reformulate assumptid8) in the following way:
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(A3’) The nondegeneracy constraint qualification holds at thi point z of the se-
quence{z* }cn.

Moreover we introduce two additional assumptions on pro8DP):

(A7) The sequence of the Lagrange multiplier estimates gerEbgtélgorithm 7.2.1
stays bounded.

(A8) U' e ST,

Assumption( A7) is frequently used in the analysis of augmented Lagrangipe t
methods (see, for example, [12]). Next we prove that eadtelypoint of the sequence
(%, U*)ren generated by Algorithm 7.2.1 converges to a first ordercaiitpoint of
problem (SDP). The proof is divided into several steps. Vet stith the following
Proposition, which guarantees that Algorithm 7.2.1 is wlefined:

Proposition 7.8 Suppose that assumption (A6) holds. Let furthend. A be continu-
ously differentiable. Then there exigts > 0 such that for allp < pp and allU > 0
there exists at least onec int (€,) with F, (z, U, p) = 0.

Proof. The assertion follows immediately from the compactnesg,pfnd the fact
thatF" increases infinitely as approaches the boundaryf. O

Next we want to show that the sequence of multiplii’é" },cy converges. We start
with the following Lemma:

Lemma 7.9 U* > 0 for all & > 0.

Proof. Assumption(A8) guarantees that we find sorhg > 0 such that
U* — 0forall k < ko. (7.19)

Now, using the abbreviation$(z*) = S (A(z*)) andX;(z*) = \; (A(«*)) for all
1 =1,...,m we obtain

m

U* = S() ([Ap((@), Ay (@), o S TUR 1 5()) Sk T

i,j=1
The matrixS(z*) T U*S(z*) is positive definite due to assumption (7.19). The matrix
[Ap(Ai(xF), \; (a:kl))]znj:l is positive semidefinite due to the monotonicity ®f
Now the positive definiteness &f*+! follows for example from Theorem 5.3.6 in
[45]. 0

Lemma 7.10 Let (B*),en € (ST be a sequence of positive semidefinite matrices.
Then the following implication holds true:

Jim tx(B*P1) =0 = lim [[B*Py[| =0.
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Proof. Let SBkABkSEk be an eigenvalue decomposition/®f and denote bygr ;

foralli =1,..., m the corresponding eigenvalues. Then we have
tr(B*P)) = tr(E[B*E,) =tr(E|SgrAprSEEL)
_ «— T T _ — T T T
= ) s/ SpelpeSisi =Y (] Spe)Apr(s] Spr)
i=1 i=1

m
= E AB’C,] S; SBk,j) .

=1 j=1

Since all terms are positive we get fraim;, .., tr(B*P,) = 0 that for each pair

(t,7) €{1,....om—r} x{1,...,m}
ABk (s{ spr;)? —0 fork — oo
or equivalently
Apr; — 0fork — oo Vv SZTSB;C_J——»OfOI’k—»oo. (7.20)
On the other hand we derive:

2
|B*PL||” = tr(PL(B*)?PL) =tr(E[(B*)?EL) = tr(E] SpeA%SEeEL)

s) SprfgShisi =Y (s] Spe)Ab(s] Spr)’

i=1

Il
M3

3

-r

= Z/\B’“ (5] spr. )2

1 j=1

3

Finally we conclude from (7.20) thzﬁtB’fPLH2 — 0 for k — oo. O
Now we are able to prove the following Proposition.
Proposition 7.11 UT =P UnP +PURP, +P U"Py— O,, forl — .
Proof. We consider the definition df** in the following form
Ukt = S(z*) ([Acp(xi(xkl),x ()7, oS(mkl)TU’”_IS(mkl)) S(ak)T.
From assumption (A7) follows immediately that the norm @ thatrix
M (M) == [Ap(Ni(@"), Ay (™)) e S(@) TUM s (M)

is bounded from above. Furthermore fo§ < m — r we obtain for | large enough:
g
Ap(i(@), 1) < ¢ (5) = O). (7.21)

Now U* can be written in the following abstract from:

zk zk
Ukt = S(xkr) ( ZZ;((xkz))T gigxklg > ST,
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whereZ; (z*1) € S™~" tends to0 for I — oo and the norms of,(z*1) € M™—""
andZs(z*1) € S are restricted. Due t8(z*') — S for I — co we get

STS(zM) — I, andS(z*)"S — I,,, for | — oo

and
Z1 (ke Zo (ki
(PL,UMY = tr (SDLSTS(:Z?M) ( Z;(;kl)l Zzgx,ﬂg > S(:z:’”)TSDLST)
0 Zg(wkl) .
— tr (DL ( z (:Ckl)T Zg(Ikl) DL =
for I — oo. Now the assertion of Proposition 7.11 follows from LemmEO7. O

The following proposition states convergence of the seqegti™ |, ..

Proposition 7.12 The sequenc%Ué” }z W {PoU* Py}, converges.
€

Proof. We start with the following formula for the partial derixag of F' with respect
tox:

F(zh Ukt phit F (&™) + [(PoA (k) Py, U]+
KA;(:C’W), PLUMPy+ PUM P, + PLU’”PLH ;
= [ (aM) + [(Eq Aj(a™)Eo, B UM Ey)]_ + R™
= f'(a")+RF + (D’”)T svec(E, UMEy), (7.22)
where
RF = [<A;(xkl), PLUMPy + PUR P, + P U" 11>H:1
and

DM = [svec(Eq Aj(«")Eo)]_, -

Using assumptioriA3’), we findl, large enough thaD* has maximal rank for all
[ > ly. Hence we can rewrite equation (7.22) as

svec(E) U Ey) = [D*DMT] ™' DM (f' () + RM 4 Fi(ak, UM =1 phim 1)),

Now from Proposition 7.11 and the fact tHat’ (z*1, Uk =1 pki=1)|| < ek andeht —
0 for I — oo we obtain

svec(Ej UM Ey) — — [DDT] “'Df(z) for | — o,
whereD = lim;_,, D* = [svec(EJAiEo)]nzl and therefore

i

lim PyU" Py = —FE, smat([DDT] - Df’(i:)) E].

l—o0

Now we are able to state the following convergence result:
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Theorem 7.13 Suppose that assumptions (A3’), (A4), (A5), (A6’), (A7) k&) hold.
Let furtherf and.A be twice continuously differentiable and assume tiag_. ., p* =

limg .o, € = 0. Then the limit point of any convergent subsequence of iipeesee
(x*, U*)ren generated by Algorithm 7.2.1 is a KKT-point of problem (SDP)

Proof. Let(x*,U*),cy be a convergent subsequencéof, U*),cn and let

Jim (zF, UR) = (z,0).
Then the stationarity afz, U) follows directly from step (i) of Algorithm 7.2.1 and the
fact thate® — 0 for I — oo. The feasibility ofz follows from F(x, U* p*) = oo
forallz ¢ Q, andp® — 0 for I — oo. It remains to prove that the complementary

slackness condition is satisfied for the g@ir 7). Recalling thaf] /% | andHA(a:kl)H
are bounded and using Proposition 7.11 we obtain

lim (A(z"),U") = Jim (PyA(z") Py, UM) + Jim (A(z™), PLUMP)) +

l—o0

Jim (A("), BRU PL) + lim (A(z"), PLUS Py = 0.

Consequentlyz, f]) is a KKT-point of problem (SDP) and the proof of Theorem 7.13
is complete. O

Let us conclude this section with the following discussibat z* be a local optimum

of problem (SDP) an@/* the corresponding optimal multiplier. Assume further that
the pair(z*, U™) is a cluster point of the sequengé’, U*),cn. Then we can stop the
penalty parameter update for some> 0 and Algorithm 7.2.1 switches automatically
to Algorithm 6.1.1. Of course we do not know this valpga priori. Instead we use
the KKT-error defined by

Trxr (2, U) = min {Amax (A(2)), [(A(@), )], A F (2, U,p)lI},  (7.23)

in order to decide if a penalty update should be performedotr This leads to the
following algorithm

Algorithm 7.2.2 Letz! € R*,U' € ST, p' > 0andey > 0 be given. Then for
k=1,2,...repeattill a stopping criterium is reached:

(i)  Findz"*! such that|| F (", U*, p")|| < e

(i)  SetU*!' =D, (A(z)) [U*].
(i) 1 Txgr(@" U < Tkrr (2, UF) goto(iv). Otherwise
L b,
(iv) Setef Tt < €F.

setp

Note that Algorithm 7.2.2 will be further refined in Chapter 9



Chapter 8

Complexity Issues and
Consequences

In the first part of this chapter we derive a formula for the pomational complexity
of Algorithm 7.2.2. We further observe that the complexityrula is invariant with
respect to sparsity in the problem data. In the second patierenstrate how we can
overcome this problem by the choice of a special penaltytianc

8.1 Complexity Analysis

In order to guess the computational complexity of Algorithr®.2 we have to analyze
the computational complexity of its components — stépto step(iiz). Obviously
the penalty update, as an operation involving just one reailbver can be neglected
in this context. Moreover we will see that the calculatiortted multiplier estimate is
implicitly performed during the solution of the unconstrail minimization problem in
step(i). Consequently we can limit our complexity analysis to thebpem

min F(z,U,p). (8.1)

As we will see in Chapter 9.1, our method of choice for the apjpnate solution of
problem (8.1) is a second order method. The computatiomaptaxity of this method
is dominated by the operations

(01) assembling of(x, U, p),
(02) assembling of” (z,U,p),
(O3) solution of linear systems of the form
(F)(x,U,p) + D)Az = —F,(x,U,p), (8.2)
where D is a diagonal matrix, whose computation is uncritical witspect to

computational complexity.

62



CHAPTER 8. COMPLEXITY ISSUES AND CONSEQUENCES 63

Moreover we assume that

(S1) the number of evaluations of steps (O1) to (O3) is inddpat of the problem
dimensions: andm.

Thus the computational complexity of Algorithm 6.1.1 islfudetermined by the com-
putational complexities of (O1) to (O3).

Now using the abbreviatio (z) = [Ap(Ax(z), \i(2))];,—, we obtain from The-
orem 2.3
Fi(z,Up) = f'(2)+[(U S()(Qz) e [S(x)" Aj(2)S(x)])
= [@)+[(5@) ([$(x) US(2)] ¢ Q(x )) S)T,
= J'(2) + (D2, (A(@))[U], Ai(2)]i_, ,

where the second equation follows from the properties oftthee operator and the
third equation can be seen from Corollary 2.4. Note that #eoed formula has at
least two significant advantages over the first one:

S(@) ],
A<mhl

e We have to calculate just one directional derivative indtean,
o the multiplier update is calculated implicitly.

Now the complexity formula for the computation of the gradiean be constructed
from the steps listed below together with their complexity

e Compute an eigenvalue decompositiondtfr) — O(m?).
e Compute the matriD®,(A(z))[U] — O(m?).
e For alli compute the inner product®®,, (A(z))[U], Ai(z)) — O(m?n).

Consequently the gradient assembling takés® ) +O(m?n) steps. Next we calculate
the complexity of the Hessian assembling. The Hessian oAtltanented Lagrangian
can be written as

Fl(eUp) = f"(x)+ (DR (A@)U), AL ()]",_, +
2 [(D*0, (AU A @) A@)] . (83

Obviously we need(m?n?) time to compute the second term in formula (8.3), if we
assume that the matriv®,(A(z))[U] has already been calculated. Using Theorem
6.6.30 in [45] the last term in formula (8.3) can be refornedbas

[Z su(2)" (@) [S(@) Qi o [S@) US(@)]) S(2) | A;<x>sk<x>] . ©4)

k=1 i,j=1

whereQy.(x) denotes the matrifA2p(\,. (), A (), \x (2))]17—; andsy, is thek-th
row of the matrixS(z). Essentially, the construction of (8.4) is done in thre@ste
shown below together with their complexity:
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e For allk compute matrice$ (z) (Qk . [S(:C)TUS(:U)])S(x)T — O(m*).

e For allk,i compute vectors, (z)T Al (z) — O(nm?).
e Multiply and sum up expressions above- O(m?3n + m?n?).

Consequently the Hessian assembling t&kes* +m3n-+m?n?) time. Finally, taking
into account that the complexity of the solution of one linggstem of type (8.2) is of
orderO(n?), we are able to state the following Theorem:

Theorem 8.1 Suppose that assumptidf1) holds. Then the computational complex-
ity of Algorithm 7.2.2 is of the orde®(m?* + m?n? + n?).

Proof. The assertion of the Theorem follows immediately from tbmplexity for-
mulas above and the fact that»® < m* for n < m andnm? < n?m?forn > m. O

Next we want to discuss the ability of Algorithm 6.1.1 to edipkparsity in the
problem data. We assume that there are at fost m? non-zero entries in the con-
straint matrixA(x) (and consequently in all partial derivativé$(z)). Unfortunately
the complexity formula we obtain in this case, is just tharfola derived in Theorem
8.1 fordenseproblem data. This is due to the fact that the matriggsand.S(x) are
generally dense, even if the matriix) is very sparse. The disenchanting conclusion
is that

Algorithm 7.2.2 is generally not able to exploit sparsityttie problem data

Fortunately the situation can be improved significantly kgpacial choice of the
penalty function®,,.

8.2 A Special Penalty Function

The problem that Algorithm 7.2.2 is not able to exploit sjtgrin the problem data is
mainly caused by the fact that it is based on eigenvalue dpositions. Subsequently
we will show how we can avoid this drawback by a special chofade penalty func-
tion . In particular, we are interested a function that allowssfédirect” computation
of &, and its first and second derivatives. The function of our ct@ the hyperbolic
penalty functiongy,,, introduced in Chapter 4.2.

Theorem 8.2 Let A : R™ — S™ be a convex operator. Let further @@YP the primary
matrix function associated witly,,,. Then for anyz € R™ the following formulas
hold:

B (A(x)) = p*Z(x) I ©5)
D a5 (A) = P Z0) A ) 2(0) 6
o, P = P2 A2 ) — AL ()

+ A;(I)Z(I)A; (x)) Z(x) (8.7)
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where
Z(x) = (Alx) —pI)~".

Proof. Let I,, denote the identity matrix of orden. SinceZ(z) is differentiable
and nonsingular at we have

0 0

0 = gpin= g, [Z@27 (@)
= [aiiZ(:c)} Z Y z) + Z(x) {a‘ziz—l(x)] 7 (8.8)
so the formula
aiZ(:”) = —2(z) [ aiiz_l(x):| Z(z) = —Z(z) [Aj(z)] Z(2) (8.9)

follows directly after multiplication of (8.8) byg(x) and (8.6) holds. For the proof of
(8.7) we differentiate the right hand side of (8.9)

0? o /
(r“)gci(“)gcjz - " Ox; (Z(x) [Aj(x)} Z(I))
- _ [aiiZ(x)} Al (2)Z(x) — Z(2) {61 (A (2)2(x))
= Z(@)Aj(2)Z(x)Ax); 2(z) — Z(2) A} (2) 2(x)
—Z(w)Aj(z) {a%zu)}

and (8.7) follows. O
Using Theorem 8.2 we can compute the valuebgfp and its derivatives directly,
without the need of eigenvalue decomposition4ifr). The “direct” formulas (8.6)—
(8.7) are particularly simple for an affine operator

Alz) = Ag+ > A with A; €S™, i =0,1,...,n,

i=1
OA(z) 92 A(x)
6:101- - Al and 6:@8:5]
by the hyperbolic functior@gyp then, according to Theorem 8.2, the Hessian of the

augmented Lagrangian can be written as
Fl(z,Up) = f'@)+ [(Z@UZ(), Al (@)]] | +

2 [(Z(@)UZ(2) A (2) 2 (), Ai(x))]"

when

= 0. If we replace the general penalty function

(8.10)

ig=1"

The assembling of (8.10) can be divided into the followirepst
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Calculation ofZ(z) — O(m?).

Calculation ofZ(2)U Z(z) — O(m?).

Calculation ofZ(z)U Z(z) AL (z) Z(z) forall i — O(m3n).

Assembling the resD(m?n?).

Now it is straightforward to see that an estimate of the caxipt of assembling of
(8.10) is given byO(m?®n + m?n?). Taking into account that the computational com-
plexity of the calculation of, is dominated by the computational complexity of the
Hessian we can formulate the following Theorem.

Theorem 8.3 Suppose that assumptio§1) holds and letb = ®"?. Then the com-
putational complexity of Algorithm 7.2.2 is of the ord@fm?3n + m?n? + n?).

Of course, in the case of dense problem data, the complexityfla in Theorem 8.3 is
not much better than the complexity formula in Theorem 8.aweler we will show

in the following section that in contrast to the generalaimn the complexity formula
reduces t@)(m? + n?3) for certain types of sparsity structures.

8.3 Various Ways of Exploiting Sparsity

Many optimization problems have very sparse data struendetherefore have to be
treated by sparse linear algebra routines. We distinghigetbasic types of sparsity.

The block diagonal case The first case under consideration is the block diagonal
case. In particular we want to describe the case, where

(S2) the matrixA(x) consists of many (small) blocks.

In this situation the problem (SDP) can be rewritten as

min f(z) (SDP-bl)

rER™
st Ai(x) <0, i=1,....d,

whereA;(z) € S™ foralli = 1,...,d. If we definem = max{m; |i=1,...,d}
we can estimate the computational complexity of Algorithi.Z applied to problem
(SDP-bl) byO(dmn? + m?n? + n?). An interesting subcase of problem (SDP-bl), if

(S3) each of the matrix constraints (x) involves just a few components of

If we denote the maximal number of components involved inraayrix constraint by
n our complexity formula become3(dmn? + dm?n? + n?). If we further assume
that the numbers andm are small compared to andd and moreover independent
of the actual problem size, then the complexity estimatebmfurther simplified to
O(d + n?). Notice that
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e The latter formula is independent from the choice of the figrianction, but
we should mention that also in this case it is advantageouosake use of the
penalty functiond?».

e The termO(n?) coming from the solution of the linear system (8.2) is clgarl
dominating.

Now we can go even further and assume that
(S4) the Hessian of the objectiyées sparsely populated.

Then it follows from assumption (A10) that also the Hessiathe augmented La-
grangian is sparsely populated. Consequently, if we makeofispecialized linear
system solvers designed for sparsely populated matrioesp@re Section 9.1.4), the
computational complexity formula can be again improved.stdmmarize our consid-
erations in the following Corollary.

Corollary 8.4 Suppose that assumptions (S1) to (S4) hold for the probl®R+S).
Then the computational complexity of Algorithm 7.2.2 isrdEoO(d + n?).

A typical example satisfying the assumptions of Corollar§ ®&ill be presented in
Section 11.5.2.

The case whenA(z) is dense andA;(x) are sparse Let us first mention that for
any index pair(i, j) € {1,...,n} x {1,...,n} the non-zero structure of the matrix
Al ;(z) is given by (a subset of the) intersection of the non-zer@insets of the
matricesA;(z) and A’ (x). Now we want to find out, how the complexity estimate
given in Theorem 8.3 improves, if we assume that

(S5) there are at mo&)(1) non-zero entries i1 (z) foralli =1,...,n.

Then the calculation of the term

n

[<Z(x)UZ(x), A;/,j (x)ﬂ i,j=1

can be performed i©(n?) time. In the paper by Fujisawa, Kojima and Nakata on
exploiting sparsity in semidefinite programming [35] salavays are presented how
to calculate a matrix of the form

D151D25, (8.11)

efficiently, if D; andD- are dense anfl; andS; are sparse matrices. In the case when
assumption (S5) holds, it follows that the calculation & thatrix

[(Z@)UZ(@)A(2)2 (@), A @)]],_,
can be performed i®(n?) time. Thus, recalling that for the calculation 8fz) we
have to compute the inverse of &n x m)-matrix, we get the complexity estimate:

Corollary 8.5 Suppose that assumptions (S1) and (S5) hold anél let®"Y?, Then
the computational complexity of Algorithm 7.2.2 is of ordim? + n?).
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Note that in our implementation we follow the ideas preseite[35]. Many linear
SDP problems coming from real world applications have dyabe sparsity struc-
ture discussed in this paragraph. Several of them are tedléc the test case library
SDPLIB (compare Section 11.5).

The case whenA(z) is sparse The third situation concerns the case whéfx) is
a sparse matrix. Also here we can conclude that all parti@atéeses of A(x) of first
and second order are sparse matrices. Therefore it suifiesstime that

(S6) the matrix A(x) has at mo&t(1) non-zero entries.

When using the hyperbolic penalty functi@#¥?, we have to compute expressions of
type
(A(x) = pI)'U(A(z) —pI)~'  and  (A(z) —pI)~".

Note that each of the matrices above can be calculated bynmadlxitwo operations
of the type(A — I)~1 M, whereM is a symmetric matrix. Now assume that not only
A(x) but also its Cholesky factor is sparse. Then, obviously,Ghelesky factor of
(A(z)—pI), denoted by, will also be sparse. This leads to the following assumption

(S7) Each column oL has at mos©(1) non-zero entries.

Now thei-th column ofC := (A(x) — pI)~' M can then be computed as
Cl= L HY'LM,i=1,...,n,

and the complexity of computing by Cholesky factorization i€)(n?), compared to
O(n?) when computing the inverse 6fi(x) — pI) and its multiplication byUU. The
following corollary summarizes our observations:

Corollary 8.6 Suppose that assumptions (S1),(S6) and (S7) hold arie {etd"yP,
Then the computational complexity of Algorithm 7.2.2 isrdBoO(m? + n?).



Chapter 9

Algorithmic Detalls as
Implemented in PENNON

Algorithm 7.2.2 has been implemented in a computer code daPeaiNON . The
code is written in the C-programming languageeNRON is equipped with several
interfaces, among them are

e SDPA interface (see Section 11.5 for more details),
e MATLAB interface,

e C/C++-interface,

e Fortran interface.

Special versions of the code, namelgNBMI and FENSDPare integrated in XLMIP
3.0 [59], a comfortable toolbox based omaMLAB , which can be used to formulate
semidefinite programs, subjected to linear, bilinear artiémewest version also gen-
eral polynomial matrix constraints (compare sections Ah@ 11.3). In the course of
this chapter we present details of our implementation, esXample

e which tool we use for the unconstrained minimization,
e how we perform the multiplier and the penalty update,

e how the algorithm is initialized and when it is stopped.

9.1 The Unconstrained Minimization Problem

Throughout this section we consider the augmented LagrarfghctionF as a func-
tion of z only. Using this, the unconstrained minimization problenstep (i) of Algo-
rithm 7.2.2 becomes

min F(x). (UNC)
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We have implemented two algorithms for the (approximat&jtem of the (possi-
bly non-convex) problem (UNC).

9.1.1 Globalized Newton’s Method

The first algorithm is a globalized version of the Newton'stiv. The globalized
Newton’s method is defined as follows:

Algorithm 9.1 Given an initial iterater, repeat for allk = 1,2, 3, . .. until a stopping
criterion is reached

1. Compute the gradiegtand HessiarH of F' at z.

2. Try to factorizeH by Cholesky decomposition. Af is factorizable, sefl = H
and go to Step 4.

3. Computes € [—Amin, —2Aminl, Whereh,, is the minimal eigenvalue @f and
set R
H=H+p3lI.

4. Compute the search direction

d= —H_lg.

5. Perform line-search in directiod. Denote the step-length by

6. Set
Tpnew = & + sd.

The step-length in directiond is calculated by a gradient free line-search that tries
to satisfy an Armijo condition. Obviously, for a convéx Algorithm 9.1 is just the
damped Newton’s method, which is known to converge undedstal assumptions
(see, for example, [60]).

If, in the non-convex case, the Cholesky factorization iep32 fails, we calculate
the value ofg in Step 3 in the following way:

Algorithm 9.2 For a givengy > 0
1. Set3 = Bo.
2. Try to factorizeH + 31 by the Cholesky method.

3. If the factorization fails due to a negative pivot elemeuatto step 4, otherwise
go to step 5.

4. If 8 > By, setB = 23 and continue with 2. Otherwise go to step 6.
5. If 3 < Gy, sets = % and continue with step 2. Otherwise STOP.
6. Set3 = 23 and STOP.
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Obviously, when Algorithm 9.2 terminates we ha¥es [—Apin, —2Amin). It is well
known from the nonlinear programming literature (see, faraple, again [60]) that
under quite mild assumptions any cluster point of the seggiganerated by Algorithm
9.1 s afirst order critical point of problem (UNC).

Remark . There is one exception, where we use a different stratagyhéocalcula-
tion of 5. The exception is motivated by the observation that theityuafl the search
direction gets poor, if we chooggtoo close to-\,,;,. Therefore, if we encounter bad
quality of the search direction, we use a bisection techeiqualculate an approxima-
tion of Ay, denoted by and replaceg by —1.5)\2

a
min’ min*

9.1.2 The Trust Region Method

The second algorithm we apply to the unconstrained minitinizgproblem in step
(i) of Algorithm 7.2.2 is the standard Trust-Region methdd. particular we have
implemented a version of Algorithm 6.1.1 from [27], wherewge the Euclidian norm
to define the trust region and the standard second order model

m(z+s) = F(x) + {(g,8) + %<G,HS>

with ¢ = F'(z) andH = F"(x) to approximateF’ within the trust region. The step
calculation is performed exactly as described in Algorithi®.4 of [27] and the free
parameters in both algorithms are chosen as recommend2d,ip.[781ff]. A conver-
gence result for the trust region algorithm is provided faaraple by Theorem 6.4.1 in
[27].

9.1.3 Globalized Newton’s Method versus Trust Region Methd

Algorithm 9.1 turned out to be quite robust as long as the idag$ of F'is not too ill
conditioned. In the ill conditioned case, we are still abledlculate approximations of
KKT-points in many cases, but the precision we achieve ispamably low. The trust
region variant on the other hand turned out to be often slolugtrmore robust in a
neighborhood of first order points. Therefore we use as amgltive a combination of
both approaches: At the beginning (typically during thet fi@to 15 outer iterations)
of Algorithm 7.2.2 we use the first approach to solve probl&iNC). As soon as a
certain stopping criterion is met or when running into nuicerdifficulties, the trust
region variant is used instead. In many test cases very fgicélly 3 to 5) iterations
are sufficient to improve the precision of the solution.

9.1.4 How to Solve the Linear Systems?

In both algorithms proposed in the preceding sections osédsolve repeatedly linear
systems of the form
(H+ D)s = —g, (9.1)

whereD is a diagonal matrix chosen such that the matfix- D is positive definite.
There are two categories of methods, which can be used te gobblems of type
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(9.1): iterative and exact methods. Let us first concentratexact methods. Since
the system matrix in (9.1) is forced to be positive definiter method of choice is
the Cholesky method. Depending on the sparsity structurfé,afe use two different
realizations:

o If the fill-in of the Hessian is belo@0% , we use a sparse Cholesky solver which
is based on an ideas of Ng and Peyton [66]. The solver makesfubke fact
that the sparsity structure is the same in each Newton stelb ikerations. The
following steps are performed just once at the beginningebiptimization task:

— At the very beginning the sparsity patternidfis calculated and stored.

— Then the rows and columns @&f are reordered with the goal to reduce
the fill-in in the Cholesky factor. This is done by the minimwagree
algorithm described in [37] and [58].

— A symbolic factorization offf is calculated.

Then, each time the system (9.1) has to be solved, the nuifiaetimrization

is calculated based on the precalculated symbolic faetoz. Note that we
added stabilization techniques described in [86] to makestitver more robust
for almost singular system matrices.

e Otherwise, if the Hessian is dense, we use Aleas implementation of the
LAPACK Cholesky solveDPOTREwhich is (to our best knowledge) the fastest
and most robust solver for dense symmetric positive def@yisgems, which is
available free of charge.

Just recently we have started to use iterative methodsédadlution of linear systems.
A detailed description of this approach along with first nuice experiments are re-
ported in [53]. For linear semidefinite programming probéemve use the following
hybrid approach, whenever the number of variablgsi§ large compared to the size
of the matrix constraint/f): We try to solve the linear systems using the iterative ap-
proach as long as the iterative solver needs a moderate mwhherations. In our
current implementation the maximal number of iteratiodsvedd is 100. Each time
the maximal number of steps is reached, we repeat the solafithe system by an
exact method (as described above). As soon as the iterativer $ails three times in
sequel, we completely switch to the exact method. Note tsistrategy can certainly
be improved significantly as we just recently started to ugen the other hand already
now we were able to improve the run time of several test cagagfisantly (compare
Section 11.5). The main reason is that, when using the ikerapproach, the Hessian
of the Augmented Lagrangian has not to be calculated eXpl{eigain we refer to [53]
for details).

9.2 Update Strategies
9.2.1 The Multiplier Update

First we would like to motivate the multiplier update forrauh Algorithm 7.2.2.
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Proposition 9.1 Let z*+! be the minimizer of the augmented Lagrangfamvith re-
spect taz in the k-th iteration. If we choos&**! as in Algorithm 7.2.2 we have

VL(zF Ukt = o,
where denotes the classical Lagrangian of problem (SDP).
Proof. The gradient of" with respect tar reads as

(U, D®, (A(x))[A}(2)))
Fl(z,U,p) = f'(z) + ) 9.2)
(U, D), (A7, ()))

Now, sinceU**! := D®,, (A(z*)) [U*], we immediately see that
F/(.Tk+1 Uk pk) _ L/ (xk+1 Uk+1)

and we obtainl./ (z*+1, U*1) = 0. 0

The following Proposition follows directly from formula®in Theorem 8.2.

Proposition 9.2 For our special choice of the penalty functi@i}yp, the multiplier
update can be written as

UkJrl _ (pk)QZ(Ik+1)UkZ(Ik+1) ’
whereZ was defined in 8.2.

Next we want to discuss a modification of the multiplier ugdathe reason for the
modification is twofold: First, numerical studies indicétbat big changes in the mul-
tipliers often lead to a large number of Newton steps in thessguent iteration. Sec-
ond, it may happen that already after a few steps, the mieltgdbecome ill-conditioned
and the algorithm suffers from numerical troubles. To owere these difficulties, we
do the following:

Algorithm 9.3 GivenU* in the k-th iteration
1. CalculateU**! using the update formula in Algorithm 7.2.2.
2. Choose a positiva* < 1.

3. Update the current multiplier by
Tk = Uk 4 \H(UR — k).

There are two different strategies how to choa&eln our first strategy we use a fixed
A during all iterations. Typical values range betwéehand0.7. Alternatively, we
choose\* such that the norfjU* ! — U*|| does not violate a certain upper bound.
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Proposition 9.3 Let U* € V(U*,py, 6, ¢,0) and suppose that the parametgr in
Algorithm 9.3 is bounded away from 0, then there exisgsnall enough such that the
estimate B

|T* =T < ~(p) |U* - U (9:3)

holds withvy(p) < 1

Proof. From Theorem 6.14 follows the existence of a constaimdependent op
such that the estimate

||Uk+1 _ U*” < C’p ||Uk _ U*H

holds. Since\* is bounded away from 0, there exists> 0 such that\* > ) for all
k=1,2,...and we conclude

|T*H = U AU+ (1= \U* = U
NUME = U+ (1= NI 0* = U
ACp |U* = U*|| + (1 = )| T* — U™

ACp+ (L= )T =T~

IN A

Now forp small enough the factdnCp + (1 — A)) can be driven arbitrarily close to
(1-)) <1 O

Proposition 9.3 shows that at least the convergence resuhd local Algorithm 6.1.1
remains true, if we replace the original multiplier updaiefiula by Algorithm 9.3. In
the global situation (Algorithm 7.2.1) a similar result igfidult to achieve, since in
general we can not expect that two subsequent iterdtesd 2"+ are close to each
other for large enough, unless we assume that the sequence of itefatels. <y gener-
ated by the algorithm converges. On the other hand, if weoegthe multiplier update
formula in Algorithm 7.2.1 by Algorithm 9.3 and assume that sequencéz® } en
generated by the modified algorithm converges, we can provaef the assumption
that {\*},cn is bounded away from 0) that the sequereé, U*}cn converges to
a first order critical point of the problem (SDP). For the grae can use exactly the
same argumentation as in Section 7.2 with the only diffezethat the assertions of
Lemma 7.9, Proposition 7.11 and Proposition 7.12 have torbeep for two subse-
quent multiplier iterate§’* andU*+! this time.

9.2.2 The Penalty Parameter Update

Let Amax(A(z*)) € (0,p") denote the maximal eigenvalue @f(z"*), x < 1 be a
constant factor (typically chosen betwed@ef and0.6) andzs.,s be a feasible point of
problem (SDP). Then our strategy for the penalty paramgidaie can be described
as follows:

Algorithm 9.4 Given0 < k < 1 perform the following steps

1. Calculate) yay (A(z*)).
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2. If kpF > Apax(A(2%)), sety =k [ =1andgoto5.
3. If 1<3,sety = (Amax(A(z")) +p¥) /2, setl =1+ 1 and goto 5.
4. Lety = &, find\ € (0,1) such that
Amax (AN + (1 = N)peas)) < mp*
and setr" 1 = Az 4 (1 — N)2gens.
5. Update current penalty parameter p§! = yp”.

The redefinition ofz*+! in step 5 guarantees that the values of the augmented La-
grangian in the next iteration remain finite. Of course, iffeasible pointrge,s is
available, step 5 of Algorithm 9.4 is not applicable. In thése, the main Algorithm is
restarted using a different choice of initial multipliec®(npare Section 9.4 for details).

Note that the penalty parameter update is not necessarflyrpeed in each step of
the main algorithm. In fact, we use two different strategies

e Permanent strategyThe penalty parameter is updated (using Algorithm 9.4) in
each step of the main algorithm until a certain vahig reached. Afterwards we
switch to the adaptive strategy in the hope that the penaltgmpeter can be kept
constant.

o Adaptive strategy The penalty parameter update is performed only if

T(l‘k+1, Uk-H) > T(xk, Uk)_

The parametey is typically chosen as0 b,

9.3 Initialization and Stopping Criteria

9.3.1 Initialization

As we have seen in Chapter 6.2, our algorithm can start withrhitrary primal vari-
ablexr € R™. Therefore we simply choos€ = 0. For the description of the multiplier
initialization strategy we rewrite problem (SDP) in theléoling form:

Iin f(z)

st Aiz) <0, i=1,....d.

HereA,(x) € S™ are diagonal blocks of the original constrained mattix:) and we
haved = 1if A(x) consists of only one block. Now the initial values of the ripliers
are setto

Ujlz,ujjmjv j:l,...,d,
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wherel,,; are identity matrices of orden; and

Oxy
i =m,; max ——————
K T 1<i<n i H A(x)

. (9.4)

oxy

Given the initial iterater!, the initial penalty parameter is chosen large enough to
satisfy the inequality
p'I — A(zh) = 0.

9.3.2 Stopping Criteria

Stopping criterion in the sub-problem In the first phase of Algorithm 6.1.1, the
approximate minimization of' is stopped wheﬂa%F(x, U,p)| < a, wherea = 0.01

is a good choice in most cases. In the second phase, aftaaigaecision is reached
(compare Section 9.4 for details),is reduced in each outer iteration by a constant
factor, until a certainy (typically 10~7) is reached.

Stopping criterion for main algorithm  We have implemented two different stop-
ping criteria for the main algorithm.

e First alternative: The main algorithm is stopped if both of the following ineua
ities hold:

|f (=) — F(*, U, p)| <o |f(@*) — f(a*1)]
L+ [f(2¥)] ’ L+ [f (%)l

<E€1,

wheree; is typically 10~ 7.

e Second alternativeThe second stopping criterion is based on the KKT-condition
Here the algorithm is stopped, if

T(Ik, Uk) S £9.

Note that, in case the second stopping criterion is chosenfirst stopping criterion
can used to define, when

¢ the update of the stopping criterion in the sub-problemastst],

e to switch from the globalized Newton’s algorithm (compaeetin 9.1.1) to the
Trust Region algorithm (compare Section 9.1.2) as solvethi® sub-problem.

Remark . In the case of linear semidefinite programs, we have addilipadopted
the DIMACS criteria [61]. To define these criteria, we rewriur problem (SDP) as

min o'z
reR™
subject to (9.5)
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whereC(z) — Cyp = A(x). Recall thatU is the corresponding Lagrangian multiplier
and letC*(-) denote the adjoint operator t&-). The DIMACS error measures are
defined as

_ lle@) - £l
N ]
- _)\min(U) _)\min(C(I) - OO)
errn —maX{O,T”f”} erry _maX{O, 1+ HCOH }
<C()7U>_fTI <C(I) _007U>

ers = erg =

L+ [(Co, U)| + |f | L+ [(Co, )] + |fTa|

Here, erf represents the (scaled) norm of the gradient of the Lagaangis and erg
is the dual and primal infeasibility, respectively, and;eand erg measure the duality
gap and the complementarity slackness. Note that, in oug,ce@ = 0 by defini-
tion; also erg that involves the slack variable (not used in our problenmigation) is
automatically zero. If the “DIMACS stopping criterion” istivated we require that

err < 6DIMACSa ke {1741 57 6} .

9.4 ThePENNON Algorithm
We conclude this chapter with a compact description of theNON -Algorithm:
Algorithm 9.4.1 For givenp, x, o, <, €1, €2, ¥ perform the following steps:

1. Settk=1,1;=1,1,=1and

zt = (0,...,0)

U = diag(iee, ... i1, «-v s fdy-- - ld),
Pl = 2Amax (A(wl)) ,

e = a

2. Repeat unti|| F.(z*+1, U, p)|| < €*:

2.1 Compute the gradiegtand Hessiarf! of F at 2**!.

2.2 Try to factorizeHd by Cholesky decomposition. i is factorizable, set
H = H and go to Step 2.4.

2.3 Compute? € [—A\min, —2Amin] Via Algorithm 9.2, where\,,,;,, is the mini-
mal eigenvalue off and set

H=H+ B3I
2.4 Compute the search direction

d=—H1yg.
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2.5 Perform line-search in directioth Denote the step-length By
2.6 Set
2 = 2F 4 sd.

3. 3.1 Calculate/**! = (p*)2Z(F+H Uk Z(2F+1).
3.2 Choose a positive* < 1.
3.3 Update the current multiplier by

Uk-‘rl _ Uk 4 Ak(Uk-l-l _ Uk)

4, If TKKT(,TIH_l,U]H_l) < ey — STOP.
5. 1If p>]_? or TKKT(,TIH_l,U]H_l) > TKKT(?L‘k,Uk) do

5.1 Calculateyax (A(z")).
5.2 If kp* > Apax(A(z¥)), set v =k, I; =1 and goto 5.5.

5.3 If I < 3, sety = (Amax(A(z¥)) + p*) /2p*, setl;y = I, + 1 and go to
5.5.

5.4 If x5 IS NOt yet available, set
IkJrl — ZCl UkJrl — 19 Ul karl — pl Ek“rl -« 12 — 12 4 1
and go to step 7. Otherwise set= «, find A € (0, 1) such that
Amax (A(/\:v’”l + (1 = N)Tfeas)) < Kkp"

and setr" ! = AzF T 4+ (1 — \)Zfons.

5.5 Set
P = ypk.

otherwise set

Pl = pk

6. If
kY _ B(gk Uk ky _ k-1
max{mx )= FEh Ut p)| [ = /o >|} e
L4 |f(2*)] L+ |f(z?)]

set

e+l — ek
otherwise set

€k+1 = Gk.

7.1f I >3 — STOP. Otherwise sét= k + 1 and go to step 2.
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Remark . Optionally step 2 can be calculated by the Trust Region austkither
from the very beginning, or after the condition in step 6 i foethe first time.

Remark . If we encounter penalty update problems in step 5.4 andawilfle point
of problem (SDP) is available, the algorithm is restartethwarger initial multipliers.
The idea is to put “more weight” to the constraints with thep@dhat the algorithm
finds a feasible point in the next trial. If the algorithm ista&rted several times without
finding a feasible point it has no sense to go on and we giveapere step 7).



Chapter 10

Applications

10.1 Structural Optimization

Structural optimization deals with engineering desigrbems with the aim of finding

an optimal structure (as specified by a given cost functiba) satisfies a number of
given constraints. Typically, the designer is faced to ttedbfem of finding optimal de-

sign parameters such that the resulting structure is ligtitca stiff. A simple example

is the problem of finding the stiffest structure with resgect set of given loads under
the constraint that the weight of the structure is restiictin the following sections

two types of structural optimization problems will be slyrhtroduced, namely the

truss topology design and the material optimization pnaisie In both cases (linear)
semidefinite problem formulations will be presented. Intthied section two ways of

including stability control to these problem formulatiom#l be considered.

10.1.1 Material Optimization

In material optimization (MO) one tries to find a distributiof a given amount of a
given elastic material in a given region, so that the resglstructure is optimal (in
certain sense) with respect to given loads. The materialesan vanish in certain
areas, thus one often speaks of topology optimization. Fugesload MO problemin
the simplest form can be written as follows:

max minl/ p(x)(E(x)e(u(x)),e(u(z)))de— [ f(z)-u(x)dx, (10.1)
pELx(Q): uelU 2 Q T
p>0, [, p dz<V
0<p<p

where(2 is a bounded domain with Lipschitz bounddry= T'; UT, E is the elasticity
tensor of the given materigp, is the design variable;(x) denotes the displacements
in each point of the body () is the small-strain tensop is an upper bound op
and f is an external force acting d,. Further,V is an upper bound on resources
andU C H'(Q) is a set defining boundary conditions and possible unilbteratact
conditions. The design variabtecan be interpreted as thickness in 2D problems or as

80
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a sort of density in 3D problems; see [9] for a detailed dismrs A categorization of
resulting problems for different choices Bfanddim is given in [52]. Here only two
cases are considered:

E=1

E ... elasticity matrix of an isotropic material

We will concentrate on the first case, connected with theadleda Free Material Opti-
mization (FMO) [88, 8, 84] at the moment. The second caseghwisi called variable
thickness sheet (VTS) problem [8, 67] in the two-dimensiaaae, and can be con-
sidered as a sub-case of SIMP [8] in the three-dimensiohatfn will be further
referred in Section 10.1.3. Free material optimization ranch of structural opti-
mization; its goal is to find the ultimately best structuréeato carry given loads. The
design variables are the material properties that can vany point to point. The opti-
mal structure/material can be interpreted by fiber-reitédrcomposites. A description
of the single-load case, together with numerical techragisegiven, for example, in
[88], where the single-load free material optimizationkgemn is formulated as

1
min max [ f(z) u(z)dz— —/(E(:C)e(u(:v)),e(u(x)»d:v. (10.2)
EeL>™(Q): uelU Jp, 2 Jo
Ex0,[, tr(E) do<V
0<tr(E)<p

The tensorE is written as a matrix in this formulation and we only requinat it is
physically attainable; i.e &’ is symmetric and positive semidefinite at each poirf2of
At the first glance, problem (10.2) is much more difficult thha MO problem (10.1)
due to the matrix variabl&. However, it can be shown that after analytical reformu-
lation £ can be eliminated, and we indeed get a special case of prqiler) with

E = I. In order to solve this (infinite-dimensional) problem nuroally, discretized
versions of material optimization problems have been @drivThe discretization is
done by the finite element method. More precis@lyis partitioned intom elements
Q;,i=1,...,m, Eis approximated by a function which is constant on each eiéme
Q; and the displacement vectaris approximated by a piece-wise polynomial func-
tion. If we stay with the notation of the original problemettiscretized version can
be stated as follows:

L& T T
5 u A — . 10.3
ma S 2 e AT 103)

m
> pi<V ,0<p;i<p
=1

The matrices4; are positive semidefinite matrices (more details will beegibelow),

m is the number of finite elements amdthe number of degrees of freedom of the
(discretized) displacement vector. One can see that thexnfatwas analytically re-
duced to a scalar variabjehaving the meaning of trace @; the full matrix £ can
be, however, recovered from the optimal solutipnu) of problem (10.3). There exist
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several equivalent formulations to problem 10.3. For eXargne can rewrite problem
(10.3) as linear SDP or as the following large-scale conweadeatically constrained
NLP problem

. T T .

ae}g}iréw{a—f ula>u'Aufori=1,...,m}. (10.4)
The latter formulation is preferred in practice, due to iggdicantly lower computa-
tional complexity.

For illustration, we consider a three-dimensional sirigled example. The results
presented below were computed byWED, a software package for material optimiza-
tion, which uses a special version cf ®NON as optimization engine. The goal in this
example was the design of a rear fuselage of a cargo airpglareto the large opening
for the door, the fuselage was very weak with respect to endit the same time,
there were huge bending forces at the very rear part, comamg the tail. The goal of
the designer was to carry these forces to the closed pare dfiielage. We solved this
problem using several discretizations ranging from 50@D@00 finite elements. One
of these discretizations is depicted in Figure 10.1, ateftenand side. The right-hand
side of the same figure shows the density distributior), = € Q of this problem, as
computed by MPED.

a”?

Figure 10.1: Cargo airplane; discretization and densiy pl

Next we consider the so called worst-case multiple-loadlern. Here the optimal
structure should be able to withstand a whole collectioh ofdependent loads, acting
at different times. Generalization of formula (10.2) letmlthe following formulation
of the multiple-load case:

min  max max fl(;v)u(:v)dx—1/(E(x)e(u(x)),e(u(:v)))dx (10.5)
Ee€L®>(Q): I=1,...LueU! J, 2 QO
Ex0
Jo tr de<V
0<tr<p

The situation in the multiple-load case is much more corapdid than in the single-
load case and was analyzed in detail in [3]. Since it is nogjtied of this thesis to repeat
this theory here, we restrict ourselves to the presentatidhe discretized version of
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problem (10.5):

i Lot - ; T
2 — 2 witr (Bt . (106
i, I, max g () Z;W r(EiGwhG@h™),  (10.6)
E;>0 =
Zznzl witr(E;) <V
0%tr(E) <7
where(;(u), i = 1,...,m are matrix valued functions calculated from the discretize

strain tensor and positive weights coming from the Gausgnation formula (see [3]
for further details). Again in [3] it was shown that underteém assumptions the follow-
ing semidefinite program is the Lagrange dual to problent(l#nd that the problems
are equivalentin the sense that there is no duality gap:

subject to
v +ym)la Cn(u') Gu?) ... Glub)
Cm(ul) Al
Cm (u?) Aol =0,i=1,...
: . =T e 107)

Cm(uL) )\LIS
712037':17 U
v >0,

Hereby« is a constantd and s are integers defining the dimension §fu), i =
1,...,m, whiler andy are additional variables introduced for the penalizatibcon-
straints in the primal formulation. Unlike in the single tbaase, from computational
point of view, no formulation superior to problem (10.7) isdwn. Due to the rela-
tively large number of matrix inequalities problem (10.@sla strong block structure.
In Section 11.5.2 we will demonstrate that the cogd®&RON is able to exploit this fact.
A typical multiple-load example solved by FMO can be seenigufe 10.2. Here the
goal is to design a frame of a racing bicycle by means of fibergasites. Figure 10.2
top-left shows the design regiéhtogether with the loads—we consider two load-cases
here. The top-right figure presents the strength of the @tinaterial—the variable.
Here the dense areas indicate stiff material, while thehibeigareas stand for a weaker
and weaker material. The final two figures show the optima&ations of the fibers in
the composite material; one figure for each load case.

10.1.2 Truss Topology Design

In Truss Topology Optimization (TTO) we consider the praoblef finding an opti-
mal (stiffest, lightest) truss (pin-jointed framework)tlvirespect to given loads. The
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|@
2

Figure 10.2: FMO design of a bicycle frame.

problem is studied in the so called ground-structure fraorkwsee [31]). Here the
truss is modelled byV nodal points inR4™, dim € {2;3} and each pair of nodes
can be connected by a bar. The design variables are the hamesldenoted by

t; > 0,7 =1,...,mandu € R™ denotes a vector of nodal displacements, where
n is dependant oV. Further we can calculate for each bar a symmetric posiévea-s
definite matrix4;, i = 1,...,m, called (in analogy to MO) the local stiffness matrix.
Exact formulas are given, for example, in [4]. Under the agstion of linear elastic
behavior, the single-load truss topology design problembeawritten as

RS

max min  — g tiu' Aju— flu. (10.8)
teR™: u€UCR" 2

m _ =1

S ti<V ,0<t; <

i=1

The multiple-load truss topology design problem is themfalated as

1 m

max i, 5 2 6T An = (TR0 a09)
PIETEREY

Note the strong analogy to the discretized versions of theriah optimization prob-

lems introduced in the previous section. As in materialraation there exist various

reformulations of the problems above, among them a convebmear version of prob-

lem (10.8) and a linear semidefinite formulation of problelf.9). For details refer,

for example, [5] and [8].

=1
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10.1.3 Structural Optimization with Vibration and Stabili ty
Constraints

Arguably, the most serious limitation of the models presdiin the preceding sections
is that they do not count with possible instability of theio@l structure. Indeed, elas-
tic instability is often the decisive point when designingeal-world” structure, like
a bridge or an aircraft. Experience showed that such strestmay fail in some cases
not on account of high stresses but owing to insufficientiielagability ([78]). In this
thesis we consider two ways of including stability controthe problem formulation.
The first one is based on the so-calleear buckling model This model is based on
an assumption that leads to simplification of the nonlineaictural analysis and that
is naturally satisfied for many real-world structures. Theond one is based on the
control of the minimal eigenfrequency of the structure.Batodels lead to control of
the minimal eigenvalue of a generalized eigenvalue problem

A(p)w = AQ(p)w . (10.10)

In the first case (linear buckling)y is the so-called geometry stiffness matrix that de-
pends in a nonlinear way on the design variablén the second case (self-vibrations),
Q is the mass matrix of the structure and the dependence & lirgeveral problem
formulations are possible now (see [52]), from which we ceotte following:

min W(p)
subject to

Clp)<C
Ap) > A
equilibrium equation

i.e., we minimize the weight of a structure under the comstsahat
¢ the compliance of the structure is restricted,
e the structure is in equilibrium between internal and exkforces,
¢ the minimal positive eigenvalue of problem (10.10) is boeshffom below.

The primary goal is to solve problems with stability consttstbased on the linear
buckling phenomenon. As mentioned above, this approads lEea non-convex ma-
trix inequality constraint, involving the geometry stiéfes matrix. It should be recalled
here that it was exactly this problem which motivated theéhauto develop an al-
gorithm and a computer program for the solution of nonlirsmamidefinite programs.
Later we will see that due to extremely high computationahptexity of this problem,
we can only solve model problems of relatively low dimensithe moment. Hence,
as a viable alternative, we offer the control of self-vimas of the optimal structure.
This results in a formulation with linear matrix inequalitpnstraints (involving the
mass matrix) for which the complexity is much lower.
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In the following we will try to explain these ideas in the framork of material
optimization. As already mentioned in Section 10.1.1 wé usk the assumption

E'is an elasticity matrix of an isotropic material (10.112)

We briefly sketch the discretization for this problem: ketdenote the number of
finite elements and the number of nodes (vertices of the elements). We apprdgima
p(x) by a function that is constant on each element, i.e., cheiaet by a vector
p = (p1,...,pm) Of its element values. Further assume that the displaceveetdr
u(zx) is approximated by a continuous function that is bi- oritrehr (linear in each
coordinate) on every element. Such a function can be wrtseiz) = >, u;9;(z)
wherew; is the value ofu at i-th node andy; is the basis function associated with
i-th node (for details, see [24]). Recall that, at each ndukedisplacement ha&m
components, sa € R¥™ ", Further, element stiffness matricds are defined by

nig

A; =) B, EixBix,
k=1

wherenig is the number of Gauss integration points and the matdfiggse M-dimn

are composed from derivatives of the functiahsi = 1,...m. Now the (global)
stiffness matrixA is defined as a linear combination of the element stiffnedsicea
as follows

Alp) = Z pidi
i=1

and the discretized version of problem (10.1) with assuomptl0.11) becomes

. 1 Z’”

inf sup PN P1<AZU7 ’LL> + <f7 U> .
p20 yeraimn 24

pi<l
i=1

It is well-known that the above problem can be formulated asramum weight
problem as follows (see again [52] and the references therei

m
ming Di
wp =

subject to (10.12)
pi>0, i=1,....m
fTu <c
Alp)u=f.

The stability constraint, in the sense of critical bucklifogce, requires that all
eigenvalues of problem (10.10) are either smaller than aetmgger than one. The
matrix @ in problem (10.10) is replaced by the so-called geometfjnsgs matrix
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defined by

m nig
G(u,p) = PT (Z Gi) P, Gi=) Q1 SikQik,
i=1

k=1

where P is a permutation matrix, the matric€y , are again composed from deriv-
atives of the function®,,7 = 1,...,m, and the non-zero entries of the matrices
Sik € S%m are items of the element “stress vector”

oix = (01 02 03 04 05 0¢ )lTk =pi Bk Bip u
which can be written as
Oik = Pi Ei,k Bi,k A(p)ilf. (1013)

In the last formula we clearly see a nonlinear dependenge tirhas been proven that
condition (10.10) is equivalent to the following matrix qeality (see, e.qg., [51]):

Alp)+Q =0,
so that we are able to combine the optimization problem @)ath the constraint
A(p) + Glu, p) = 0, (10.14)

to get the minimum weight material optimization problemiwgtability constraint. Be-
fore writing down the full problem formulation, we rewritasing the Schur comple-
ment Theorem, the compliance constraint and the equitibequation in one matrix
inequality constraint

Z()-:(C I )»o (10.15)
PPENr A )7 '
Using this, problem (10.12) can be written as:

subject to (10.16)
Z(p) =0
piZO, i:l,...,m

We further eliminate the variablefrom the stability constraint by assuming thvfp)
is nonsingular and setting

G(p) = Glp, A7\ (p)).
The minimum weight problem with stability constraints read

m
ming Di
p 4

i=1

subject to
‘Z( o (10.17)
A(p) + G(p) = 0
pi >0, 1=1,...,m.
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A critical issue of this approach is the computational cajy. For details we
refer again to [52].

Therefore as a viable alternative we use vibration congBéanstead of stabil-
ity constraints. More precisely this means that we want td fime optimal struc-
ture/material such that the lowest eigenfrequency of thuestre is bigger than or equal
to a prescribed valug. Using similar arguments as above the vibration consteaint
be formulated as a linear matrix inequality of the type

A(p) = XM (p) = 0,
where M is the mass matrix andl a given threshold vibration. Hence the optimiza-

tion problem with vibration constraints can be than forneedas a linear semidefinite
programming problem
m
min Z Di
s i=1

subject to
Z(p) =0
A(p) =AM (p) = 0
pi>0, i=1,...,m.

Due to the linearity and a different sparsity structure dtwplexity of this linear SDP
is much lower than the complexity of the nonlinear one pressim (10.17). A related
problem is the following:

(10.18)

max \
PA

subject to (10.19)
A(p) = AM(p) = 0

PzZOa izla"'ama

where we try to maximize the minimal eigenfrequency of a giggucture. Since no
external forces are taken into consideration here, thare @mpliance constraint. Of
course, problem 10.19 makes only sensé/ifs of the form

My + ZPiMu
=1

where M, is a predefined constant mass in the structure. The main tdy&of this
formulation is in the bilinear structure of the non-conveatrix constraint, which is
often easier to solve. Let us conclude this section with dfiewing remark.

Remark .  Similar formulations for minimum weight design problemghnstabil-
ity and vibration constraints in the area of truss topologgign have been developed
already several years before stability constraints wensidered in the context of ma-
terial optimization (see e.qg. [4] or [74]). Again there istabag analogy between these
formulations and the discretized problems presented abBuasequently, instead of
repeating the problem formulations, we restrict ourseledbe presentation of numer-
ical results in Section 11.1.
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10.2 Nonlinear SDPs arising in Control Theory

Many interesting problems in linear and nonlinear systeorgrol cannot be solved
easily and efficiently with currently available softwarevel though several relevant
control problems boil down to solving convex linear matmequalities (LMI) - see
[20] for a long list - there are still fundamental problems fehich no convex LMI
formulation has been found.

BMI formulation of the control problems was made populatia mid 1990s [39];
there were, however, no computational methods for solvorgeonvex BMIs, in con-
trast with convex LMIs for which powerful interior-pointgdrithms were available
[65]. Almost one decade later, this unsatisfactory statthefart in BMI solvers is
almost unchanged, whereas LMI and semidefinite programsohgrs now abound.
There were, however, several attempts to solve BMI probleamserically, and the
following list is far from being exhaustive:

e Global optimization algorithms based on branch-and-bashémes [38] or the
generalized Benders decomposition [11] were the first higsttly to be devel-
oped. More recently, concave minimization algorithms wiascribed [2] but no
software has been developed, and apparently no furthemadskas been carried
out in this direction;

e Various heuristics based on iteratively solving LMI subeans were proposed,
the most efficient of which seems to be the cone compleméntargarization
algorithm [32]. Inefficiency of these methods in solvingywéasic BMI prob-
lems has been shown e.g. in [41], but because of their siityplicese methods
remain widely used in the control community;

e More recently, several researchers have been trying toyappi-convex pro-
gramming techniques to BMI problems, with moderate sucsedar. Interior-
point constrained trust region methods are proposed inifb#tje special case
of static output feedback and low-order controller desidvil®8 The method
is a sequential minimization method of a logarithmic barfienction subject
to a nonlinear matrix constraint. A similar approach, alssdd on logarith-
mic barrier function and using a sophisticated method tontir@mization of
the unconstrained sub-problems was proposed in [46]. $¢iqusemidefinite
programming, as an extension of quadratic programminggs in [34] to solve
LMI problems with additional nonlinear matrix equality cgraints. No publicly
available software came out of these attempts to the besirdfrmwledge.

10.2.1 The Static Output Feedback Problem

A notorious example is the static output feedback controbfam which admits a de-
ceptively simple formulation, but for which no systemataymomial-time algorithm
has been designed so far. It is even unclear whether the staput feedback control
problem belongs to the category of NP-hard problems.

Two basic static output feedback (SOF) control design grmois| namely the SOF—
‘Ho and SOFH ., problem can be described like follows: We consider a LTI oaint
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system of the form

#(t) = Ax(t)+ Biw(t) + Bu(t),
Z(t) = OlI(t) + Dllw(t) + Dlzu(t), (1020)
y(t) = C'x(t) + Dglw(t),

wherex € R"=, u € R™,y € R™, z € R"=, w € R™ denote the state, control input,
measured output, regulated output, and noise input, régelyc The goal of the SOF
problem for a system of type (10.20) is to determine a mdirix R™=*"v of the SOF
control lawu(t) = Fy(t) such that the closed loop system

A(F)a(t) + B(F)w(t),
C(F)z(t) + D(F)w(t),

fulfills some specific control design requirements, wh&(&) = A+ BFC, B(F) =
B1+ BFDs;, C(F) =C1+ D12FC, D(F) = D11+ D12 F D2, Now assuming that
Dy, = 0andDs; = 0, the SOF#, problem reads as follows:

Find a SOF gainF such thatA(F) is Hurwitz and the{s—norm of (10.21) is minimal.
An equivalentH,—BMI formulation is provided by the following Theorem:

Theorem 10.1 The SOFH, problem can be rewritten to the followirig,—BMI prob-
lem formulation:

K-
—~
~+
~

(10.21)

N
—~

~
~—

min Tr(X) s.t. Q >0,

A+ BFC A+ BFC)T + B1Bf <0

X (Ol + D12FO)Q
Q(C1 + D12 FCO)T Q

whereQQ € R"=*"= X ¢ R"=%"=,
Note that (10.22) is bilinear if and@. For a proof see e. g. [55].

=0,

Hoo Synthesis is an attractive model-based control desigratwblt allows incorpora-
tion of model uncertainties in the control design. The opti®@OF3 ., problem can
be formally stated in the following term:

Find a SOF matrixF’ such thatA(F’) is Hurwitz and theH,—norm of (10.21) is
minimal.

We consider the following well know#k{..—BMI version:
Theorem 10.2 The SOF#H ., problem can be equivalently stated as:

min v s.t. X >0, v>0,
AF)TX + XA(F) XB(F) C(F)T
B(F)TX —~1I,, DF)T | <0,
C(F) D(F) = 1In.

wherey € R, X € R"= %",

(10.23)

Due to the bilinearity of the free matrix variablsand.X , the BMI-formulation of the
SOF-H, is non—convex and nonlinearly constrained. Again, for @psee e. g. [55].
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10.2.2 Simultaneous Stabilization BMIs

Another example is the problem of simultaneously stalifiza family of single-input
single-output linear systems by one fixed controller of gigeder. This problem arises
for instance when trying to preserve stability of a contsgdtem under the failure of
sensors, actuators, or processors. Simultaneous stdioifizof three or more systems
was extensively studied in [15]. Later on, the problem wasaghto belong to the
wide range of robust control problems that are NP-hard,that are very unlikely to
be solved in polynomial time [16].

In [44] a BMI formulation of the simultaneous stabilizatiproblem was obtained
in the framework of the polynomial, or algebraic approaclsystems control [54].
This formulation is briefly summarized in this section:

Let the real rational functions

of fixed order simultaneously stabilizing plarf®s(s) when placed in a standard neg-
ative feedback configuration. In other words, given polyrasm;(s), d;(s) of de-
green,, the simultaneous stabilization problem amounts to findislgmomialsz,, (s),
x4(s) of given degree:,, such that all the characteristic polynomials

pi(s) = ni(s)xn(s) + di(s)xa(s), i=1,2,...,N (10.24)

of degreen = n,, + n, have their roots in some specified stability regien

The location of the roots of a polynomial in regi@nis captured by the follow-
ing well-known Hermite stability criterion, which is thersynetric counterpart of the
standard Routh-Hurwitz or Schur-Cohn stability criteria.

Lemma 10.3 The roots of a polynomial(s) = po +p1s+- - -+ p,s™ belong to region
D if and only if the matrix

n n

H(p)=>_> pjprHik
=0 k=0

is positive definite, where the Hermitian matridés;, depend on regiof® only.

For more details the interested reader is referred to [4Bplying Lemma 10.3 to
characteristic polynomials (10.24), we derive easily tiiofving BMI formulation of
the simultaneous stabilization problem.
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Theorem 10.4 The simultaneous stabilization problem fdr plants of ordern,, is
solved with a controller of orden,, if and only if the2n,, + 1 controller coefficients:,
satisfy thelV following BMIs of sizer = n, + n,

H(pi)zzzijkHi,jk =0, 1=1,2...,N
§=0 k=0

where Hermitian matriceg?; ;;, depend only on the stability region and open-loop
plant coefficients.

For explicit expressions for the matricés ;;, and other details, the interested
reader is referred to [44].

In other words our goal is to check, whether a system of BMigasible. In a more
general setting this problem can be reformulated by theviefig procedure: Assume
we want to find a feasible point of the following system of BMIs

Aé + ZIkAZ + ZZxkng,il =<0, i=1,...,N (10.25)
k=1 k=1 ¢=1
with symmetric matricesil};,K;;g e R¥*di L ¢=1,...,ni=1,...,N,andz €

R™. Then we can check the feasibility of (10.25) by solving thiéofving optimization
problem

Drglir){ R)\ (10.26)
TER™ A€

st ALY wmp AL+ 0w Ky < My, i=1,...,N. (10.27)
k=1 k=1 ¢=1

Problem (10.26) is a global optimization problem: we knouatthits global minimum
A is non-negative then the original problem (10.25) is initdlas On the other hand
our algorithm can only find local optima (more preciselytical points). Thus, when
solving (10.26) by our algorithm, the only conclusion we caake is the following:

when\ < 0, the system is strictly feasible;
when\ = 0, the system is marginally feasible;
when) > 0 the system may be infeasible.

During numerical experiments it turned out that the feasiielgion of (10.25) is
often unbounded. We used two strategies to avoid numernffiudties in this case:
First we introduced large enough artificial bounds,.,q. Second, we modify the
objective function by adding the square of the 2-norm of teeterxz multiplied by a
weighting parameter. After these modifications problem (10.26) reads as follows

- 2
ze&{r}\leR)\—i—waHQ (10.28)

k
s.t. — Zhound < T" < Thound, k=1,...

n n n
Aé-‘:—ZZkAZ-FZZIkIgK};@ﬁAIan, i=1,...,N.
k=1 k=1/¢=1
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This is exactly the problem formulation we used in our nuerexperiments (com-
pare Section 11.3).



Chapter 11

Benchmarks and Numerical
Experiments

11.1 Numerical Experiments in Structural Optimiza-
tion
11.1.1 Global Stability and Self Vibration

Throughout this section we present results of several nigalestudies on (partly non-
linear) semidefinite optimization problems arising fromustural optimization, when

global stability is taken into account (compare Sectiod 13). Our studies will involve

both — truss topology optimization problems (TTO) (compseetion 10.1.2) and free
material optimization problems (FMO) (compare sectioriLl1l). In each of the test
scenarios described below, we try to solve a structurahopétion problem in the so
called minimum weight formulation using different numbeifsnodes in the ground
structure (TTO case) respectively different levels of disizations (FMO case) and
different types of constraints. In particular we tried tévedhe following problems for

each ground structure/level of discretization:

e Problem (10.16): no stability is taken into account.

e Problem (10.18): stability is “approximated” by constitaion the self vibration
of the system.

e Problem (10.17): stability is considered in the sense oftecalbuckling force.

Note that the first two problems are linear semidefinite paotg, whereas the third
problem is highly nonlinear. Apart from the nonlinearitetk is a second difficulty
arising, when solving problems of type (10.17), namely tbmputational complex-
ity of the Hessian assembling of the augmented Lagrangiais i$ the reason, why
we used for some of the larger FMO problems an iterative ntkthasolve stef®.1

of Algorithm 9.4.1 (compare also Section 9.1.4), which doesrequire the explicit

94
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Figure 11.1: Scenaridower, ground structure

calculation of the Hessian. Note that these results (mabokezh asterisk in the tables
below) where computed with reduced accuracy. Note furthatrthe same approach
could not be successfully applied to (large) TTO problemfasoFor this reason we
are not able to present results for the stability problenmiheflargest TTO instances
below.

Scenario Tower In our first test scenario we consider a truss, which is fixethat
bottom nodes and subject to a single vertical force at thentmjulle node (compare
Figure 11.1). The result of standard TTO (with no stabiliystraint) is just a single
vertical bar (as depicted in Figure 11.2) —an extremelyalststructure. Adding a
constraint on the self vibration we obtain the truss showFigure 11.3. Finally using
a constraint on the global stability, we obtain a truss preskin Figure 11.4. The
latter two trusses are obviously stable.

Table 11.1: Scenaridower, problem dimensions

#Nodes  #Vars Matsize — compliance  Matsize — stability #dine
constraint constraint constraints
3x3x3 315 55 54 316
3x3x4 594 82 81 595
3x3x5 954 109 108 955
3x3x11 4825 271 270 4826
3x3x16 10260 406 405 10261

Table 11.1 shows the problem dimensions for increasing rurmbnodes in the
ground structure. In Table 11.2 we present the correspgrimputational results,
which are in particular: number of outer/inner iterations aun time in seconds. Note
that single-load problems are usually solved much moreieffity using a different
formulation (compare section 10.1). However, we have amdise linear SDP formu-
lation for comparison purposes.
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Figure 11.2: Scenaridower, single-load result

A

Figure 11.3: Scenaridower, vibration constraint added
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Figure 11.4: Scenaridower, stability constraint added
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Figure 11.5: ScenariGantileverground structure

Figure 11.6: Scenari@antileversingle-load result

Table 11.2: Numerical results for sample cdsever

#Nodes Sl-Iter Sl-time  Vib-lter  Vib-time Buck-iter  Buclkate

3x3x3 10/105 2 10//99 4 10//96 135
3x3x4 11/115 11 11/103 18 11//95 1041
3x3x5 12/121 36 12/118 58 12/116 10056

3x3x11  14/161 4268 14/183 6075 -
3x3x16  16/187 43594 15/225 58649 -

Scenario Cantilever In our second example we try to find an optimal truss, which is
fixed at the upper and lower left nodes. Furthermore the irusabject to a vertical
force at the inner right node (compare Figure 11.5). Thelre$standard TTO, pre-
sented in Figure 11.6 is just a two-dimensional construactibis easy to understand
that such a construction must be unstable against forcésgawnon-zero component,
lying not in the plane described by the single-load-trudse $tability can be signifi-
cantly improved by adding a vibration constraint (see Fedlt.7) or a global stability
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Figure 11.8: ScenariGantilever stability constraint added

constraint (see Figure 11.8).

Table 11.3: ScenariGantilever problem dimensions

#Nodes  #Vars Matsize — compliance  Matsize — stability #dine
constraint constraint constraints
3x2x2 261 55 54 262
5x3x2 420 73 72 421
5x3x3 954 109 108 955
6Xx3x6 5625 271 270 5626
TX3X7 10521 379 378 10522

Table 11.3 shows the problem dimensions for all ground 8iras we have used
for Test Scenari@antilever
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Figure 11.9: ScenariBridge ground structure

The computational results for this test case can be seerble T4.4.

Table 11.4: Scenari€antilever numerical results

#Nodes Sl-Iter Sl-time  Vib-lter  Vib-time Buck-iter  Buclkate

3x2x2 9/101 2 9//99 4 9/103 79
5x3x2 9/115 6 9/126 12 9/111 386
5x3x3 9/110 36 10/137 71 10/137 12120

6Xx3x6 11/189 7779 11/227 11286 -
TX3X7 12/223 54844 12/240 65897 - -

ScenarioBridge In the third and last TTO example we consider a truss, fixeet t
left-most and right-most bottom nodes. Moreover the trassibject to vertical forces
at allinner bottom nodes (compare Figure 11.9). As in thegutang example all barsin
the standard TTO result, depicted in Figure 11.10, lie in@englane parallel spanned
by the initial forces. Thus the truss is again unstable. Asreave can achieve “better”
constructions by adding a constraint on the self vibratomm{pare Figure 11.11) or a
global stability constraint (see Figure 11.12).

Table 11.5: ScenariBridge

#Nodes  #Vars Matsize — compliance  Matsize — stability #dine
constraint constraint constraints
3x2x2 261 55 54 262
5x3x2 420 73 72 421
5x3x3 975 118 117 976
6Xx3X6 5763 307 306 5764
7X3X7 10716 424 423 10717

Tables 11.5 and 11.6 show the problem sizes and the commuaétesults for this
scenario presented in the same style as above.
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Figure 11.10: ScenariBridge single-load result

Figure 11.11: ScenariBridge vibration constraint added

Table 11.6: ScenariBridge numerical results

#Nodes Sl-Iter Sl-time  Vib-lter  Vib-time  Buck-iter = Bucknate

3x2x2 9/182 1 10/101 3 10//92 71
5x3x2 9/80 4 10//187 8 10//98 334
5x3x3 10/96 31 11/104 50 11/103 10170

6Xx3x6 12/135 5954 13/194 10281 -
TX3X7 13/161 41496 13/222 65670 -
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Figure 11.12: ScenariBridge stability constraint added
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Figure 11.13: Scenari®late— Geometry, boundary conditions & forces (left) and
single-load result (right)

ScenarioPlate The next scenario deals with a two-dimensional FMO probléon-
sider a plate (depicted in Figure 11.13, left side) fixed anl#it-hand side and sub-
jected to a horizontal load concentrated on a small parteofight-hand side. The right
part of Figure 11.13 shows a result of the minimum weight fab(10.12) (with no
stability/vibration constraint) for a zero-Poisson-oatmaterial. The optimal structure
only consists of horizontal fibers and is, as such, extremes$table to other than the
given load. Figure 11.14 presents the results of probleid48) and (10.17) for the
same material; the structures are obviously much moreestabl

Table 11.7: ScenariBlate problem dimensions

#Elements Matsize — compliance Matsize — stability #linear
(=#Vars) constraint constraint constraints
10x20=200 440 441 401

14 x30=420 900 901 841

20 x 40 =800 1680 1681 1601

30 x 60 = 1800 3720 3721 3601

Table 11.7 shows the problem dimensions for four discrétina with increasing
number of elements. In Table 11.7 we present the correspgedimputational results,
which are again: number of outer/inner iterations and metin seconds.
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Figure 11.14: ScenariBlate- vibration result (left) and stability result (right)

Table 11.8: ScenariBlate numerical results

#Elements Sl-lter Sl-time Vib-lter Vib-time Buck-iter Bldime

10x20=200  14/96 52 14/99 119 14/188 5709
14x30=420 19/119 515 15/100 923 18/208 57108
20x40=800 22/141 2968  16/108 4721 20/180 27732
30x60=1800 23/142 22334 18/127 30705 13/137115810*)

ScenarioPlate-Narrow ScenarioPlate-Narrovirs very similar to scenari®late The
only difference is in the geometry of the design space (compigure 11.15, left side).
Again the pure single-load result, depicted in Figure 1isliinstable. Just as before
we get much more stable results, when solving problems 8 @&dd (10.17) for the
same material (see Figure 11.16).

Table 11.9: ScenariBlate-Narrowproblem dimensions

#Elements Matsize — compliance Matsize — stability #linear
(=#Vars) constraint constraint constraints
4x32=128 320 321 257
8x64=512 1152 1153 1025
12x96 =1152 2496 2497 2305

16 x 128 = 2048 4352 4353 4097

Table 11.9 shows the problem dimensions for four discriétina with increasing
number of elements, whereas the corresponding compughtiesults are given in Ta-
ble 11.10.
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Figure 11.15: ScenariBlate-Narrow- Geometry, boundary conditions & forces (top),
single-load result (bottom)
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Figure 11.16: ScenariBlate-Narrow- vibration result (top) and stability result (bot-
tom)

—

Table 11.10: ScenariBlate-Narrownumerical results

#Elements Sl-lter  Sl-time Vib-lter Vib-time Buck-iter Bkdime

4x32=128 13/76 16 13/84 50 16/96 936
8x64=512 20/135 976 16/104 1587 17/101 51743
12x96 =1152  35/190 8640 18/137 13265 12/98 47450+)

16 x128=2048 35/199 30616 19/171 57125 8/72 75600+)
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Figure 11.17: Scenaridwo-Forces- Geometry, boundary conditions & forces (left),
single-load result (right)

ScenarioTwo-Forces As in the preceding FMO scenarios, we consider a plate. Again
the plate is fixed on the left-hand side, but this time theeetao horizontal loads
concentrated on two small areas of the right-hand side (gped=11.17, left side).
The right part of Figure 11.17 shows a result of the minimungiveproblem (10.12)
(with no stability/vibration constraint). We can clearbesthat the structure consists of
two horizontal fibers, one at the bottom and another one dbhef the design space.
Both fibres are not connected and thus the structure is agamhle. In Figure 11.18
we present results of problems (10.18) and (10.17) for threesaaterial. In both cases
we can see that most of the material is distributed agairedtottom and the top of the
design space, but this time the fibers at the bottom and theréoponnected. Therefore
the results are more stable with respect to loading scenatier than the given one.

Table 11.11: Scenaridwo-Forcesproblem dimensions

#Elements Matsize — compliance Matsize — stability #linear
(=#Vars) constraint constraint constraints
7 x28=196 406 407 393

10 x 40 =400 880 881 841

14 x 56 =784 1680 1681 1601

20 x 80 = 1600 3360 3361 3601

Table 11.11 and Table 11.12 show problem dimensions and meaheesults for
this test scenario.

Table 11.12: Scenaridwo-Forcesnumerical results

#Elements Sl-lter  Sl-time Vib-lter Vib-time Buck-iter Bkgime

7x28=196 13/81 43 13/76 111 13/92 2723
10x40=400  14/93 367 14/89 717 14/104 25930
14x56=784 15/110 2198  17/110 4363 15/110 21934
20x80=1600 16/120 11874 16/125 20696 14/10553187(*)
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Figure 11.18: Scenaridwo-Forces- vibration result (left) and stability result (right)

)

Figure 11.19: Maximizing Vibration Mode — Geometry and bdary conditions (left),
Optimal Material (Density Plot) (right)

11.1.2 Maximizing the Minimal Eigenfrequency

We want to conclude this section by presenting a numeriadistn material problems
of type (10.19). In our model example we consider a platecvis fixed on the left
hand side. Furthermore there is a prescribed mass on thehagh side of the design
space (compare Figure 11.19, left side). Now we are inteddstfinding a material,
which supports the prescribed mass and the minimal eiggudrecy of which is as
large as possible. Note that the resulting semidefinitelpmlis bi-linear and quasi-
convex. Moreover the problem inherent structure is morertle as in the nonlinear
semidefinite programming problems investigated in thegutang section. Table 11.13
shows results for five different levels of discretizatiohext to computational times
and numbers of iterations we list problem dimensions and#msity of the constraint
matrix. At the right hand side of Figure 11.19 we can see aitleplet of the optimal
material in the above sense for the finest level of discriétiza

Table 11.13: Maximizing Vibration Mode; numerical results

#Elements #Vars #Constr Matsize #lterations #Nwtstps TinDensity

16 17 33 44 15 81 1 1.0
200 201 401 440 20 94 28 .100
420 421 841 900 21 102 152 .0622
800 801 1601 1680 23 109 654 .0415

1800 1801 3601 3720 24 115 8922  .0213
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Remark . If we look at the tables presented in this section, we olestrat for
almost all test scenarios the number of Newton steps redjbiyd®=ENNON in order to
achieve a prescribed precision is growing with increasing sf the test problems. Let
us just mention that this is not a general behavior eRON (compare, for example,
Table 11.13 or Section 11.4), but rather due to the fact tmatproblems presented
throughout this section become more and more ill-condéibwith increasing dimen-
sion.
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11.2 Numerical Experiments withCOMPLib -SOF Prob-
lems

Below we present results of a numerical benchmark with#M1 , a specialized BMI-
version of ENNON, for the static output feedback problem&3®MPLib (COnstrained
Matrix—optimizationProblemlibrary), a benchmark collection for a very wide variety
of algorithms solving matrix optimization problems. Theaheof COMPLIb is the
MATLAB function file COMPIleib.mwhich is available over the internet. This func-
tion returns the data matrices By, B, C1, C, D11, D12 andD»; of the system (10.20)
of each individualCOMPLib example. For a detailed description of the library we refer
to [56].

All tests were performed on a 2.5 GHz Pentium 4 processor machith 1 GB
RDRAM under the operating system LinuxAlmip 3.0 was used to build thE-
andH.,-models and to transform them t&RBMI standard input. The tests where
performed in the following way: We started to run all casemgglefault options.
For many cases the algorithm was restarted few times anditied multipliers where
adapted automatically. In a second run the test cases whetmusing the automat-
ically "optimized” initial multipliers. The results of tlee reruns are presented in the
tables below. Of course apart from CPU-time the results effilst and second runs
are identical.

Tables 11.14 and 11.15 show the results afNBmI on H2-BMI and H..-BMI
problems. The results can be divided into seven groups:

e The first group consists of all test cases solved without gfigulties.

e The second and third group contain all cases, for which wetbaglax our
stopping criterion. These examples are marked by "a” indlées below, if the
achieved precision is still close to our predefined stopphitgrion, and by "A",
if the deviation is significant.

e Then there are examples, for which we could calculate alfeasible solutions,
but which failed to satisfy the Hurwitz-criterion, namel\C& and NN10.

e The fourth group consists of medium and small scale casesHtmh the code
failed due to ill conditioning. In th&{,-setting these cases are AC7, AC9, AC13,
AC18, JE1, JE2, JE3, REA4, DIS5, WEC1, WEC2, WECS3, UWV, PASIIN
NN3, NN5, NN6, NN7, NN9, NN12 and NN17, in thE . -setting JE1, JE2,
JE3, REA4, DIS5, UWV, PAS, TF3, NN1, NN3, NN5, NN6, NN7 and Na\1

e The cases in the sixth group are large scale, ill conditigmedlems, where
PENBMI ran out of time (AC10, AC14, CSE2, EB5).

o Finally, for very large test cases our method ran of memoi§(HBDT2, EB6,
TL, CDP, NN18).

Only the cases of the first three groups are listed in the $digéow.
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Table 11.14: Results ofENBMI onH3-BMI problems

Ex. CPU n m nx/ny/nu/ Al s ACE) Ho-perf  prec
(sec) nw/nz
AC1 079 27 17 5/3/3/3/2 -2.65e-01 1.007e-03
AC2 1.60 39 20 5/3/3/3/5 -2.01e-07 5.041e-02
AC3 0.72 38 20 5/4/2/5/5 -4.53e-01 4.570e+00
AC4 079 15 14 4127111212 -5.00e-02 1.103e+01
AC6 3.22 64 28 714121717 -8.72e-01 3.798e+00
ACS8 8.14 53 29 9/5/1/10/2 -3.14e-01 1.194e+00
AC11 356 38 20 5/4/2/5/5 -3.23e-01  3.942e+00
AC12 1.28 23 13 4/4/3/3/1 -4.41e-01 2.424e-04
AC15 053 37 18 4/3/2/14/6 -3.46e-01 1.261e+01
AC16 266 39 18 4/412/14/6 -3.19e-01 1.230e+01
AC17 035 22 16 4/2/11/4/14 -7.19e-01 4.111e+00
HE1 022 15 14 411721212 -1.21e-01  9.546e-02
HE2 076 24 16 412121414 -3.17e-01 3.434e+00
HE3 1.96 115 34 8/6/4/1/10 -1.43e-01 8.118e-01
HE4 21.72 138 36 8/6/4/8/12 -0.28e-02 2.082e+01
HE5 866 54 28 8/2/4/3/4 -90.83e-03 5.438e+00
HEG6 1101 370 76 20/6/4/6/16 -5.00e-03 6.317e+01
HE7 5135 370 76 20/6/4/9/16 -5.00e-03 6.372e+01
REA1 095 26 16 4/3/2/4/]4 -1.68e+00 1.820e+00
REA2 055 24 16 412121414 -1.22e+00 1.862e+00
REA3 26.29 159 48 12/3/1/12/12 -2.06e-02 1.209e+01
DIS1 6.45 88 32 8/4/4/1/8 -4.33e-01 2.660e+00
DIS2 023 16 12 3/2/2/3/3 -7.58e-01 1.416e+00
DIS3 247 58 24 6/4/4/6/6 -1.40e+00 1.839e+00
DIS4 373 66 24 6/6/4/6/6 -1.01e+00 1.692e+00

TG1 107 114 40 10/2/2/10/10 -3.3%e-01 2.231e+01
AGS 167 160 48 12/2/2/12/12 -2.03e-01 6.995e+00

BDT1 356 96 39 11/3/3/1/6 -1.88e-03 1.745e-02

MFP 059 26 16 4/213/414 -3.20e-02 9.162e+00

IH 376 407 74 21/10/11/21/11  -4.79e-01 8.260e-04
CSE1 5096 308 72 20/10/2/1/12 -5.29e-02 1.208e-02
EB1 2072 59 32 10/1/1/2/2 -5.52e-02 1.700e+00

EB2 2691 59 32 10/1/1/2/2 -8.68e-02 7.736e-01

EB3 892 59 32 10/1/1/2/2 -4.70e-02  8.345e-01

EB4 499 214 62 20/1/1/2/2 -1.71e-05 5.043e+02 A
TF1 165 46 25 714121174 -6.88e-02 1.826e-01

TF2 3769 44 25 713121174 -1.00e-05 1.449e-01 A
TF3 261 44 25 713121174 -3.20e-03 2.781e-01

PSM 257 49 26 713121215 -7.84e-01 1.504e+00

NN2 0.28 7 8 2/1/1/2/2 -4.08e-01 1.565e+00

> o
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Results of BENBMI onH2-BMI problems(cont.)

Ex. CPU n m nx/ny/nu/ Al s ACE) Ho-perf  prec
(sec) nw/nz

NN4 0.38 26 16 413121414 -5.87e-01 1.875e+00

NN8 034 16 12 3/2/2/3/3 -4.64e-01 2.280e+00

NN11 285 157 51 16/5/3/3/3 -3.45e-01 1.198e+02 A

NN13 3.00 31 21 6/2/2/3/3 -2.37e+00 2.622e+01

NN14 348 31 21 6/2/2/3/3 -1.83e+00 3.536e+01

NN15 035 20 13 3/2/2/1/4 -1.17e-01  4.903e-02

NN16 46,57 62 28 8/4/4/8/4 -8.06e-06 3.073e-01 A

Table 11.15: Results ofENBMI onH,-BMI problems

Ex. CPU n m nx/ny/nu/ AP GA(E)  Hing-perf  prec
(sec) nw/nz

AC1 037 25 16 5/3/3/3/2 -2.03e-01  2.505e-06

AC2 057 25 19 5/3/3/3/5 -2.26e-07 1.115e-01

AC3 496 24 21 5/4/2/5/5 -4.12e-01 3.402e+00

AC4 082 13 13 4127111212 -5.00e-02 9.355e-01

AC6 1.28 37 29 714121717 -7.64e-01 4.114e+00

AC7 6.08 48 24 9/2/1/4/1 -1.80e-02 2.097e+00 a

ACS8 6.63 51 31 9/5/1/10/2 -3.55e-01 2.367e+00 a

AC9 4242 76 33 10/5/4/10/2 -1.62e-01 1.039e+00

AC11 800 24 21 5/4/2/5/5 -4.33e+00 2.820e+00

AC12 159 23 13 4/4/13/3/1 -1.13e-01  3.978e-01 a

AC13 6270 419 113 28/4/3/28/28 -2.13e-02 9.438e+02 A

AC15 019 17 19 4137121416 -4.51e-01 1.517e+01

AC16 1.08 19 19 4/1412/141]6 -90.15e-01 1.486e+01

AC17 0.13 13 17 4/12/11/4/14 -7.26e-01 6.612e+00

AC18 56.77 60 29 10/2/2/31/5 1.33e+04 4.410e+02 A

HE1 0.63 13 13 411721212 -1.29e-01 1.538e-01 a

HE2 0.16 15 17 412121414 -4.03e-01 4.249e+00

HE3 432 61 28 8/6/4/1/10 -2.22e-01  9.500e-01

HE4 18.48 61 37 8/6/4/8/12 -6.76e-02 2.284e+01

HE5 491 45 24 8/2/41/3/4 -1.26e-01 8.895e+00

HEG6 1066 235 63 20/6/4/6/16 -5.00e-03 9.712e+02 A

HE7 1096 235 66 20/6/4/9/16 -5.00e-03 1.357e+03 A

REA1 098 17 17 413121414 -2.03e+00 8.657e-01

REA2 3.00 15 17 412121414 -2.63e+00 1.149e+00

REA3 285 82 49 12/3/1/12/12 -2.07e-02 7.425e+01 a

DIS1 10.23 53 26 8/4/4/1/8 -7.15e-01 4.161e+00
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Results of BNBMI onH.-BMI problems(cont.)

Ex. CPU n m nx/ny/nu/ A A(F) Hg-perf prec
(sec) nw/ nz

DIS2 030 11 13 3/2/2/3/3 -9.95e-01 1.055e+00

DIS3 1203 38 25 6/4/4/6/6 -1.31e+00 1.065e+00

DIS4 283 46 25 6/6/4/6/6 -1.45e+00 7.318e-01

TG1 384 60 41 10/2/2/10/10 -3.28e-01 1.285e+01 a
AGS 418 83 49 12/2/2/12/12 -2.07e-01 8.173e+00

WEC1 1030 68 41 10/4/3/10/10 -8.08e-01 4.050e+00 a
WEC2 3393 68 41 10/4/3/10/10 -1.19e+00 4.245e+00 a
WEC3 1091 68 41 10/4/3/10/10 -1.14e+00 4.450e+00 a

BDT1 531 76 30 11/3/3/1/6 -3.31e-03  2.662e-01

MFP 054 17 17 4/213/414 -3.64e-02 3.159e+01 a
IH 326 342 75 21/10/11/21/11  -2.15e-01 4.187e-02
CSE1 36.05 231 54 20/10/2/1/12 -90.22e-02  1.988e-02
EB1 1.83 57 25 10/1/1/2/2 -5.61e-02 3.123e+00

EB2 229 57 25 10/1/1/2/2 -7.83e-02 2.020e+00

EB3 189 57 25 10/1/1/2/2 -3.95e-02 2.058e+00

EB4 7481 212 45 20/1/1/27/2 -2.01e-07 2.056e+00

TF1 503 37 20 714121174 -6.57e-02 4.042e-01 A
TF2 777 35 20 713121174 -1.00e-05 2.556e-01

PSM 074 35 22 713121215 -1.00e+00 9.202e-01

NN2 0.08 5 9 2/1/1/212 -6.36e-01 2.222e+00

NN4 090 17 17 4/3/12/414 -9.42e-01 1.359e+00

NN8 1.85 11 13 3/2/2/3/3 -1.39e+00 2.885e+00

NN9 856 22 17 5/2/3/2/4 -3.50e-01 2.500e+01 A
NN11 268 152 39 16/5/3/3/3 -5.43e-01 1.359%-01 A
NN12 575 26 25 6/2/2/61/6 -1.69e-01 1.629e+01
NN14 141 26 19 6/2/2/3/3 -2.30e+00 1.748e+01 a
NN15 035 11 12 3/2/12/1/4 -9.20e-01  9.809e-02
NN16 164 53 29 8/4/4/8/4 -7.80e-05 9.556e-01
NN17 0.36 9 10 3/1/2/1/2 -4.36e-01 1.122e+01

11.3 Numerical Experiments with Simultaneous Stabi-
lization BMIs

We collected a suite of simultaneous stabilization prolslesslected from the recent
literature. Table 11.16 gives basic characteristics cdalmoblems.



CHAPTER 11. BENCHMARKS AND NUMERICAL EXPERIMENTS 111

Table 11.16: Collection of simultaneous stab. problems

system contr.  nb. of known
problem order order vertices feas. point ref.
discrete 3 2 1 [200 100 50] [83]
fde 3 0 4 -0.8692 [1]
helicopter 3 2 4 [1.8652.061 1.992 4.335 10.50]  [42]
intervall0 3 0 16 0.0380 [13]
intervalll 3 1 16 [66.16 52.01 38.18] [13]
interval20 2 0 8 226.5 [13]
interval21 2 1 8 [397.4 214.4 -135.8] [13]
massspring 1 4 2 [0.2887 1.6761 -2.1434 3.0755 2.7278][85]
obliquewing 4 0 64 0.381 [3]
parametric 2 0 3 24.1489 [23]
servamotor 2 1 4 [1.300, 26.88, 5.439, (] [14]
toyl 3 1 1 [0.5647 1.6138 1.5873] [44]
toy2 3 1 1 [-2.9633 -2.2693 1.2783] [44]

These problems were formulated as feasibility BMIs (10&8]) solved again by
PENBMI on a 2.5 GHz Pentium 4 processor machine with 1 GB RDRAM undant.
All test cases were solved for various initial points. Thigiahpoints were generated
by a strategy described in [42]. Note that the solution of nposblems is obtained in
fractions of seconds byeEiBMI . Thus many initial points cause not a real problem.

Another important issue was the choice of the weighting patarw in (10.28).
After performing many experiments, we obtained the bestltes/ithw = 0.0001.

Table 11.17 presents the results. For each problem, we steonumber of initial
points, the minimum and maximum number of internalNBmI iterations (Hessian
evaluations) and the number of successful and unsuccassisl By a successful
run we mean the case when a feasible point was found (Reealathproblems are
feasible). We also show the number of successful runs whefettsible point was at
the upper or lower bound; in this case the point may not beliliger and has to be
checked a-posteriori. Unsuccessful run means that thenaptialue in (10.28) was
greater than or equal to zero. Note thatalh cases BNBMI converged to a critical
point.

Table 11.17: Results ofENBMI on simultaneous stab. problems

no. of min. max. succ. bound unsucc.
problem init. pts iter iter cases reached cases
discrete 4 17 86 4 2 0
fde 5 63 78 4 0 1

helicopter 5 85 107 3 0 2



CHAPTER 11. BENCHMARKS AND NUMERICAL EXPERIMENTS 112

Results of BNBMI on simultaneous stab. probleiftent.)

no. of min. max. succ. bound unsucc.
problem init. pts iter iter cases reached cases
intervall0 17 56 67 17 0 0
intervalll 17 66 104 16 0 1
interval20 9 53 63 6 6 3
interval2.1 9 63 131 4 4 5
massspring 2 348 397 2 0 0
obliquewing 65 65 90 64 0 1
parametric 4 62 73 3 3 0
servamotor 5 84 179 5 5 0
toyl 4 16 17 4 0 0
toy2 4 66 243 4 3 0

A detailed analysis of these results is given again in [42].

11.4 A Benchmark with a Collection of Random BMI
Problems

In the preceding sections we have investigated the behaf/iBENNON for a special
class of nonlinear SDP problems, namely BMI problems. Irti6ecd 0.2 we mainly
presented numerical results for small to medium scale elesmb this category. The
reason for this choice was twofold: First, many of the larggdes examples presented in
literature (compare, for example, large scale cas€¥MPLib ), were simply to huge
and therefore PNNON was not applicable. Second, the existing large scale exampl
were often very ill conditioned and we were not able to achi@asonable results. In
order to demonstrate thaERNON is generally able to copy with large scale nonlinear
semidefinite cases, we created a library of random BMI problef the following
form:

min A S.t. (11.1)
zER™ AR

— et < 2t < |, (=1,...,n

) 3

n d d
B(z) = Ao + kaAk + Z Z%%‘K@j < M,
k=1

i=1 j=1

whered, € S, k=0,...,n,K;; € S",i,j=1,...,dand0 < d < n. The bounds
ce, £ =1,...,nwere generated by the MLAB functionrandn , a random generator,
which produces arrays of random numbers whose elementsoamaty distributed
with mean 0, variance 1 and standard deviation 1. The matfgek = 0,...,n and
K;;, i,5 =1,...,d were generated by the MLAB functionsprandn : sprandn
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generates a sparse random matrix with approximately normally distributed non-
zero entries, whereis a real value between 0 and 1. We symmetrized the matrices by
copying the upper triangular part to the lower one aftertovaa

The test cases we created can be classified by the parametessed; r). For each
combination of parameters we created at least 20 instardig@slolem (11.1). There
are two major groups of test cases, which we used to demomstia capabilities of
the code:

1. Category I: In the first group we collected cases wheigsignificantly larger
thanm, d is chosen so that the inequalify > n holds and the density of the
data matrices is not too small. This is a quite typical sgttor problems arising
for instance in control theory. The main difficulty with tleeproblems is that
they are highly nonlinear; this is a consequence of the coafyhalarge number
of nonlinear terms in the bilinear constraint.

2. Category II: The second group of examples is charactétizethe equation
n = m, d ~ 100 and a parametet, which guarantees that the matricés,
k=1,...,nandK,;, i,j = 1,...,d have very few (typically 4) non-zero
entries. Sincel and the number of non-zero entries is independent,ahe
matrix B(z) gets sparser and sparser with growingThis group of test cases
is used to demonstrate the ability of the code to solve lacgeesexamples by
exploiting sparsity in the data.

Table 11.18: Random Problems — Category |; numerical r@sult

#Vars Matsize #Nwtsteps #lterations Time
min/avg/max min/avg/max min/avg/max

300 50 79/110/240 10/11/11 6/8/18

600 100 67/96/301 11/11/12 16/25/72

1200 200 104/113/126 18/20/23 420/463/539

2400 400 97/159/238 20/23/24 1157/1973/3011

Table 11.18 and Table 11.19 show results for problems ofjoayd and category
I, respectively. Along with problem dimensions we show ranof iterations, number
of Newton steps and CPU time. For each problem size we givstwmrerage and best
values. Note that for all but one problems we were able tolr@€adigits of precision
in all KKT criteria. When comparing the two tables, we can #e the problems of
category | seem to be more difficult to solve.
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Table 11.19: Random Problems — Category |; numerical r@sult

#Vars avg. Density #Nwtsteps #lterations Time

(= Matsize) NLMI min/avg/max  min/avg/max min/avg/max

250 0.26 61/82/265 13/15/19 4/7/15

500 0.15 68/90/134 14/17/19 33/40/57

1000 0.040 66/96/119 15/19/20 225/327/396
2000 0.027 72/100/285 16/18/21 249/372/1307
4000 0.024 76/93/103 17/21/23 1730/2150/2370
8000 0.021 83/94/105 18/20/22 17645/19638/22057

11.5 A Benchmark with Linear SDP Solvers

The linear SDP version of BNNON , called FENSDPis designed for the solution of the
problem

min b7z

zER™

subject to (11.2)
A(z) <0

whereA(z) = Ao + Y.~ x;4; andA; € S™ foralli = 0,...,n. The code was
tested using two different sets of problems: the SDPLIBemtibn of linear SDPs by
Borchers [19] and a set of various large-scale problemgctltl by Hans Mittelmann
and called here HM-collection.

We describe the results of our testing afNsDP and four other general purpose
(linear) SDP codes available on the NEOS server, namely G&BBy Borchers [18],
SDPA-6.00 by Fujisawat all [36], SDPT3-3.1 by Toh, Todd and Tutuncu [81], and
DSDP-5.6 by Benson and Ye [10]. We have chosen these codésyasvere, at the
moment of writing this thesis, the fastest ones in the inddpat tests performed by
Mittelmann [62]. All codes were used with standard sett@§DP and ENSDPwere
linked with ATLAS-BLAS library, SDPT3 (with HKM directionyan under M\TLAB .
All tests presented in this section where performed on aifaniy PC (3.2 GHz) with
2 GB RDRAM running Linux-2.4.19 and MrLAB 6.5 .

We will present the results of our numerical experimentshia following way:
For each test set we will offer two tables. In the first tablewst list the CPU time
and the average DIMACS error: (compare Section 9.3.2) foh ¢ast case and each
code. In a second table we will present accumulated CPU tamd<DIMACS errors
(sum of CPU times, arithmetic mean of DIMACS errors) for agrtsubsets of each
test case collection. We will further use the notatitestcasel,-testcase2 .
where the nametestcase * stand for the names of particular problems from the
test set, to express that results for all problems, but thes disted with minus signs
are accumulated in the corresponding line of the table. heantore we will use the
abbreviations
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e fail , if some code failed to converge for a certain test case,
e m if some code ran out of memory for a certain test case and

e n.a. , if some accumulation operation is not applicable to thalteproduced
by a certain code, since the code failed on at least one testafathe corre-
sponding test set.

Note that the results presented in the following sectiorgartly taken from the web
pageftp://plato.la.asu.edu/pub/sdplib.txt with a kind permission of
the author.

11.5.1 SDPLIB

SDPLIB is a library of linear semidefinite test cases cofldcirom various applica-
tions. The library is maintained and provided by Brian Baneh The full library can
be downloaded from the internet. Instead of presentingtherkill SDPLIB results we
selected just several representative problems. Tablé®1it® these problems, along
with their dimensions; the results for CSDP, DSDP, SDPA, $BFRand ENSDPare
presented in Table 11.21

Table 11.20: Selected SDPLIB problems.

no. of size of
problem var. matrix
arch8 174 335
control7 136 45
control10 1326 150
controlll 1596 165
equalG11 801 801
equalG51 1001 1001
gpp250-4 250 250
gpp500-4 501 500
hinfl5 91 37
maxG11 800 800
maxG32 2000 2000
maxG51 1001 1001
mcp250-1 250 250
mcp500-1 500 500
gap9 748 82
gapl0 1021 101
gpG11 800 1600
gpG51 1000 2000
ss30 132 426
theta3 1106 150

thetad 1949 200
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Selected SDPLIB problems.cgnt)

no. of size of
problem var. matrix
thetab 3028 250
theta6 4375 300
thetaG11 2401 801
thetaG51 6910 1001
truss7 86 301
truss8 496 628
mcp500-1 500 500

We observe from Table 11.21 thatfRspris for only very few of the SDPLIB
problems the fastest code. This is, basically, due to thebemof (inner) iterations used
by the particular algorithms. Since the complexity of Hasgschur complement ma-
trix assembling is approximately the same for most of theespdnd the data sparsity
is handled in a similar way, the main time difference is gitagrihe number of Newton
steps. While, for instance, CSDP needs, on average, 15ef3§, $£NSDPneeds often
2-3 times more steps (compare, for examptatrol

other hand, apart from theontrol

-set orthetaG51 ). On the
-set the casthetaG51 PENSDPis seems to be

competitive in terms of CPU time. MoreoveeERSDPIs, behind CSDP, the most robust
code concerning the quality of the solution in terms of th&IBCS error measures.

Table 11.21: Computational results for SDPLIB problems LGimes
and average DIMACS errors

problem CSDP DSDP SDPA SDPT3  ERsDP
arch8 3 2 3 5 13
1,0E-09 1,7E-07 1,3E-07 2,0E-08 4,4E-08
control7 33 18 40 91 70
9,6E-09 2,9E-06 1,7E-07 1,4E-07 3,9E-08
control10 151 84 199 104 680
4,4e-08 6,2e-06 1,4e-06 1,8e-06 6,8e-06
controlll 242 131 316 151 1041
4,5e-08 6,4e-06 1,6e-06 2,2e-06 4,3e-08
equalGl1 80 60 63 84 76
9,7e-09 3,8e-08 7,5e-05 3,2e-07 4,5e-09
equalG51 207 112 127 157 208
1,9e-09 1,9e-08 9,1e-06 2,4e-07 2,5e-08
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Computational results for SDPLIB problems — CPU times aretaye

DIMACS errors (cont)

problem CSDP DSDP SDPA SDPT3 ERSDP
gpp250-4 6 2 2 7 3
8,0e-09 8,0e-08 9,2e-06 3,0e-07 2,1e-08
gpp500-4 34 10 18 27 16
6,8e-09 5,0e-07 2,1e-05 2,9e-09 1,8e-07
maxG11 42 10 88 33 19
6,1e-10 1,6e-08 4,1e-09 1,7e-09 1,4e-08
maxG32 391 119 1378 428 195
1,7e-10 2,4e-08 3,3e-09 1,2e-09 5,4e-09
maxG51 105 34 83 70 92
7,7e-10 3,9e-08 7,0e-09 1,3e-10 2,7e-09
mcp250-1 3 1 2 3 1
3,3e-10 3,1e-08 1,0e-08 3,4e-10 2,1e-07
mcp500-1 11 4 13 11 5
3,3e-07 3,6e-08 2,6e-09 1,9e-10 3,8e-08
gap9 2 8 2 3 3
3,3e-07 1,2e-07 1,3e-04 7,1e-05 2,2e-07
gapl0 4 15 5 5 7
6,9e-07 1,6e-06 5,3e-05 9,8e-05 6,1e-07
gpG11 314 50 332 214 73
2,4e-09 6,9e-08 5,7e-09 1,1e-10 1,9e-08
gpG51 459 204 693 428 186
9,4e-10 1,1e-07 6,2e-09 1,7e-09 3,1e-08
ss30 12 7 33 11 17
4,2e-10 1,3e-07 9,7e-08 1,8e-07 1,6e-08
theta3 4 6 5 6 7
1,3e-10 4,7e-09 2,6e-09 4,5e-10 6,2e-08
theta4 18 25 22 19 25
7,1e-10 1,8e-09 3,7e-09 4,7e-10 8,3e-08
thetab 57 73 68 51 40
1,6e-10 1,0e-08 4,0e-09 6,7e-10 3,5e-08
theta6 152 147 180 136 151
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Computational results for SDPLIB problems — CPU times aretaye
DIMACS errors (cont)

problem CSDP DSDP SDPA SDPT3 ERSDP
2,0e-09 1,5e-08 4,1e-09 1,0e-09 5,3e-08
thetaG11 100 232 129 95 217
2,0e-09 1,5e-08 4,1e-09 1,0e-09 5,3e-08
thetaG51 1614 2553 1455 1681 6131
6,4e-10 3,1e-07 1,6e-07 1,9e-07 5,6e-07
truss7 1 1 1 2 1
8,1e-09 7,2e-08 2,4e-07 7,2e-08 8,9e-07
truss8 3 9 17 8 10
3,1e-10 1,6e-08 1,3e-07 6,2e-10 5,2e-07

To see a kind of average behavior, in Tab. 11.22 we show the$@RU times and
the average DIMACS errors for two subsets of problems, atasefor all problems
from Tab. 11.20.

Table 11.22: Sum of CPU times and average DIMACS error foaaer
subsets of SDPLIB problems and for all problems from Tab21.1.

problem CSDP DSDP SDPA SDPT3  ERsSDP
ALL 4048 3917 5274 3830 9287
5,7E-08 7,3E-07 1,2E-05 6,7E-06 4,2E-07
-thetaG51 2434 1364 3819 2149 3156
6,2E-08 7,7E-07 1,3E-05 7,3E-06 4,3E-07
-control*, 2041 1149 3304 1894 1435
-thetaG51 6,3E-08 1,4E-07 1,4E-05 7,7E-06 1,6E-07

11.5.2 HM Collection

Table 11.23 lists a selection of large-scale problems fioerHM collection, together
with their dimensions and number of non-zeros in the dataicestA;, i =1, ..., n.
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Table 11.23: HM collection.

no. of size of no. of
problem var. matrix nzs.
buck-3 544 1,185 7,831
buck-4 1,200 2,545 17,509
buck-5 3,280 6,801 48,385
mater-3 1,439 3,587 45,189
mater-4 4,807 12,497 157,779
mater-5 10,143 26,819 338,757
mater-6 20,463 56,310 690,149
shmup3 420 2,641 21,600
shmup4 800 4,961 36,477
shmup5 1,800 11,041 82,317
trto-3 544 865 3,902
trto-4 1,200 1,873 8,734
trto-5 3,280 5,041 24,158
vibra-3 544 1,185 7,831
vibra-4 1,200 2,545 17,509
vibra-5 3,280 6,801 48,385
G40mb 2,000 2,000 2,003,000
G40mc 2,000 2,000 2,000
G48mc 3,000 3,000 3,000
G55mc 5,000 5,000 5,000
G59mc 5,000 5,000 5,000
butcher 22,843 6,434 206,992
cnhil8 1,716 120 7,260
cnhil10 5,005 220 24,310
cphill0 5,005 220 24,310
cphill2 12,376 363 66,429
neul 3,003 254 31,880
neulg 3,002 252 31,877
neu2 3,003 254 31,880
neu2g 3,002 252 31,877
neu2c 3,002 1,255 158,098
neu3 7,364 420 87,573
neu3g 8,007 462 106,952
rabmo 5,004 6,826 60,287
reimers 6,187 102,606 719,806
rosel3 2,379 105 5,564
rosel5 3,860 137 9,182

tahala 3,002 1,680 177,420
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HM collection problems. dont)

no. of size of no. of

problem var. matrix nzs.
tahalb 8,007 1,609 107,373
cancer 10,470 570 10,569
checker 3,971 3,970 3,970
foot 2,209 2,208 2,440,944
hand 1,297 1,296 841,752
ice.2.0 8,113 8,113 8,113
p_.auss2 9.115 9,115 9,115
BH2.r14 1,743 2,166 142,919
CH2.1.r14 1,743 2,166 142,919
CH2.3.r14 1,743 2,166 142,919
H20+.r14 1,743 2,166 142,919
H20..r14 1,743 2,166 142,919
NH2.r14 1,743 2,166 142,919
H30..r16 2,964 3,162 279,048
NH3.r16 2,964 3,162 279,048
inc_600 3,114 2,515 190,356
inc_1200 6,374 5,175 741,296
neosfbr20 362 7,201 309,624
r1.6000 600 601 180,900
yalsdp 300 5,051 1,005,250

The HM collection consists of test cases arising from vaziaeas of applications.
As a consequence, the structures of the corresponding Siieprs are substantially
different. In order to make the results of our experimentssti@ansparent to the reader
we decided to split the collection in certain subgroupschiare listed below:

1. STRUCTOPT
. GRAPH
. SOSTOOLS & GLOPTYPOLY

2
3
4. IMAGE
5. CHEMICAL
6

. MIXED
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In Table 11.23 these subgroups are separated by horizamgaldnd show up in the
same order as in the list above. In the sequel we will givef biescriptions for each of
the test groups and present the results of our computagompakiments.

The STRUCTOPT set The STRUCTOPT set itself consists of three classes of prob-
lems. The first classifater ) consists of multiple-load case free material optimizatio
problems as formulated in (10.5). All examples solve theesanmoblem (geometry,
loads, boundary conditions) and differ only in the finitenedat discretization. The
linear matrix operatord(z) = > A;x; has the following structure; are block di-
agonal matrices with many5 000) small {1 x 11-20 x 20) blocks. Moreover, only
few (6—12) of these blocks are non-zero in ahyy as schematically shown in the figure

oM [

D.D X, + IDD X+ ..
" "

As aresult, the Hessian of the augmented Lagrangian agsdeiéth this problem is a

large and sparse matrix. The second classhup) consists of free material optimiza-
tion problems subjected to vibration constraints (comgagblem (10.18)). Again

all examples differ only in the finite element discretizatioThe third class includes
problems from truss topology design:

e trto  are problems from single-load truss topology design. Ndynfarmu-
lated as LPs, here reformulated as SDPs for testing purposes

e vibra are single load truss topology problems with a vibrationst@int. The
constraint guarantees that the minimal self-vibrationjfiency of the optimal
structure is bigger than a given value.

e buck are single load truss topology problems with linearizedglduckling
constraint. Originally a nonlinear matrix inequality, tbenstraint should guar-
antee that the optimal structure is mechanically stablegamt buckle).

The problemsmhup, trto , vibra andbuck are characterized by sparsity of
the linear matrix operataod.

Table 11.24: Computational results for STRUCTOPT problen@&PU
times and average DIMACS errors

problem CSDP DSDP SDPA SDPT3 ERSDP

buck-3 89 32 24 30 31
3,1e-07 7,9e-06 5,0e-06 3,0e-05 2,9e-07
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Computational results for STRUCTOPT problems — CPU timaesan
erage DIMACS errors €¢ont)

problem CSDP DSDP SDPA SDPT3 ERSDP
buck-4 536 223 248 130 219
1,0e-07 2,0e-06 4.6e-07 6,1e-06 4,4e-08
buck-5 5005 3964 4960 1350 2173
1,8e-06 5,4e-06 3,0e-06 4,0e-05 1,9e-07
mater-3 12 16 1044 26 5
1,3e-09 3,5e-08 7,9e-09 5,7e-10 7,9e-08
mater-4 290 102 138452 129 27
3,0e-09 4,1e-07 4,3e-09 3,2e-10 1,5e-07
mater-5 3647 412 m 291 74
8,2e-10 2,1e-07 m 4,0e-10 5,8e-07
mater-6 m 1765 m 919 205
m 4,9e-07 m 9,7e-10 2,7e-07
shmup3 1498 232 419 247 233
1,4e-09 8,8e-07 2,4e-06 6,1e-07 3,1e-07
shmup4 3774 1643 1988 1148 1283
7,6e-08 1,0e-06 1,5e-06 5,3e-07 2,6e-07
shmup5 52295 16812 m 8740 9154
1,5e-06 4,7e-06 m 2,1e-06 1,6e-06
trto-3 19 9 12 15 17
2,3e-08 1,5e-05 9,2e-07 8,2e-05 1,0e-06
trto-4 238 86 125 64 81
1,1e-06 2,7e-05 3,8e-06 6,2e-04 7,1e-06
trto-5 2671 1194 1963 694 914
,6e-06 1,2e-04 3,9e-05 1,5e-04 3,5e-06
vibra-3 69 36 28 32 30
3,0e-07 5,7e-06 9,5e-06 4,3e-05 1,7e-07
vibra-4 774 303 269 150 169
2,5e-07 2,0e-05 1,5e-06 5,5e-05 5,6e-07
vibra-5 5984 4396 4740 2269 2050
2,2e-06 9,5e-05 4,9e-06 5,7e-04 5,6e-07
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As one can see from Table 11.24NsDpis particularly efficient for the group of
mater problems. The following table with accumulated resultsighthat ENSDPis
not only the fastest, but also the most robust code for thel STFOPT set.

Table 11.25: Sum of CPU times and average DIMACS error foager
subsets of STRUCTOPT problems and for all problems from Tal24.

problem CSDP DSDP SDPA SDPT3  ERsDP
ALL n. a. 31225 n. a. 16234 16665
n. a. 1,9E-05 5,8E-06 1,0E-04 1,0E-06
-mater6 76901 29460 n. a. 15315 16460
8,2E-07 2,0E-05 n. a. 1,1E-04 1,1E-06
-shmup5, 20657 12118 14776 6129 7200
-mater* 9,8E-07 2,7E-05 6,5E-06 1,5E-04 1,3E-06

The GRAPH set The GRAPH set includes problems arising from SDP relaxation
of max-cut problems collected in the graph library Gsetaligyed and maintained by
Yinyu Ye. The interested reader is referred to

http://www.stanford.edu/ yyyelyyye/Gset/

for further information. The test cases in the GRAPH set &@acterized by very
sparse data matricek, i = 0, ..., n, the equatiom = m + 1, wheren andm are the
dimensions in problem (11.2), and in all but one case a spaasex operatorA.

Table 11.26: Computational results for GRAPH problems — GRigs
and average DIMACS errors

problem CSDP DSDP SDPA SDPT3 ERSDP
G40mb 1896 451 1074 937 1070
2,5E-09 1,4E-05 9,5E-05 2,1E-06 2,3E-08
G40mc 532 285 686 413 680
1,1E-09 3,7E-08 2,0E-09 1,4E-10 3,9E-08
G48mc 1137 312 2077 580 479
1,4E-08 1,3E-07 1,4E-08 1,3E-09 3,9E-08
G55mc 7199 2721 m m 6862
1,3E-09 1,7E-07 m m 4,9E-08
G59mc 9211 3985 m m 11902
3,4E-09 1,1E-07 m m 1,8E-08
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Tables 11.26 and 11.27 show that only three codes where @il@\te all cases.
Among them DSDP is the fastest code. On the other hand théseslculated by
PENSDPand CSDP are more precise. On the smaller set of problem&dsbl all
codes, BNsDPis one of the faster codes behind DSDP and SDPT3.

Table 11.27: Sum of CPU times and average DIMACS error foaaer
subsets of GRAPH problems and for all problems from Tab.6.1.2

problem CSDP DSDP SDPA SDPT3 ERSDP

ALL 19975 7754 n. a. n. a. 20993
4,5E-09 2,9E-06 n. a. n. a. 3,4E-08

-Gb* 3565 1048 3837 1930 2229

5,9E-09 4,7E-06 3,2E-05 7,0E-07 3,4E-08

The SOSTOOLS & GLOPTYPOLY set All test cases in this set are created by one
of the tools

e GloptiPoly —a Matlab add-on to build and solve convex linear matrix ursdity
(LMI) relaxations of the (generally non-convex) globaliopization problem of
minimizing a multivariable polynomial function subject polynomial inequal-
ity, equality or integer constraints. More informatiorfa®nces, downloads etc.
can by found at

http://www.laas.fr/ henrion/software/gloptipoly/

e Sostools- a sum of squares optimization toolbox for MATLAB. Detailiedor-
mation is provided at

http://www.cds.caltech.edu/sostools/

Most problems are characterized by the inequality> m, moderately sparse data
matricesA;, ¢ = 0,...,n and a dense matrix operatdr For an exact description of
the particular test cases we refer to

ftp://plato.asu.edu/pub/sdp/README

Table 11.28: Computational results for SOSTOOLS & GLOPTYFO
problems — CPU times and average DIMACS errors

problem CSDP DSDP SDPA SDPT3 ERSDP

butcher 4032 3223 23864 1475 8600
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Computational results for SOSTOOLS & GLOPTYPOLY problems —

CPU times and average DIMACS errorscdnt)

problem CSDP DSDP SDPA SDPT3 ERSDP
6,5E-09 4,0E-03 6,5E-02 1,6E-02 4,2E-07
cnhil8 22 25 31 7 91
6,6E-09 3,8E-06 1,4E-04 2,0E-06 7,4E-08
cnhil10 398 387 505 54 1375
8,3E-09 3,9E-06 1,1E-04 3,0E-05 7,8E-08
cphill0 93 405 337 31 22
1,1E-10 3,6E-07 1,4E-08 2,0E-09 3,3E-07
cphill2 1078 4511 3825 m 130
1,2E-10 4,9E-07 2,6E-08 m 2,4E-08
neul 581 632 341 fail 1090
2,1E-04 1,6E-02 2,9E-02 fail 1,2E-06
neulg 835 684 279 290 708
4,8E-08 6,5E-04 1,1E-04 2,2E-04 9,9E-07
neu2 852 fail fail fail 1004
1,4E-02 fail fail fail 9,3E-08
neu2g 516 652 fail 601 1565
3,4E-05 7,0E-04 fail 8,8E-04 1,8E-06
neu2c 2531 1335 1082 1532 3484
1,8E-08 2,5E-04 5,1E-04 1,3E-05 4,7E-04
neu3 5807 15922 13938 m 8634
1,8E-04 1,9E-03 4,8E-07 m 6,0E-04
neu3g 10366 20236 7070 fail 8147
3,6E-09 1,5E-03 5,6E-07 fail 4,7E-04
rabmo 615 fail 7199 365 2305
1,8E-09 fail 6,0E-06 2,0E-04 9,7E-08
reimer5 14436 fail m 3373 17502
3,8E-09 fail m 2,7E-06 6,4E-06
rosel3 104 192 72 85 283
2,2E-08 4,9E-03 1,6E-06 5,1E-08 5,0E-08
rosel5 634 fail 293 271 1028
6,4E-04 fail 9,7E-05 4,4E-04 2,0E-06
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Computational results for SOSTOOLS & GLOPTYPOLY problems —
CPU times and average DIMACS errorscdnt)

problem CSDP DSDP SDPA SDPT3 ERSDP

tahala 1440 fail fail 832 2334
1,8E-09 fail fail 2,2E-02 1,2E-07

tahalb 3297 4782 10886 2849 9440

1,4E-09 6,9E-04 1,1E-08 1,5E-09 6,2E-08

Table 11.28 shows that many of the test cases in this classeaydard to solve.
This is mainly due to ill conditioning of the linear systenhsit have to be solved by
the codes. In fact only two codes, namely CSDP asd$bpPwhere able to solve all
instances of this class — but also for these two codes thegegrecision achieved
is considerably low. In Table 11.29 show again average te$ot certain subsets of
problems. In particular we summarized the computatiorgllte for the largest subset
of test cases, which could be successfully solved by eacheofddes CSDP, DSDP,
SDPA and SDPT3. The names of the subsets in Table 11.29 betowoastructed
from the name of the corresponding codes. Moreover we stghifae results for the
groupneu= from the other cases, since this group seems to be particdiéficult to
solve. It is interesting to observe that the average pi@tisi PENSDPon the resulting
(reduced) test set is almost seven digits.

Table 11.29: Sum of CPU times and average DIMACS error foaaer
subsets of SOSTOOLS & GLOPTYPOLY problems and for all protse
from Tab. 11.28.

problem CSDP DSDP SDPA SDPT3 ERSDP
ALL 47637 n.a n. a. n.a 67742
8,4E-04 n. a. n. a. n.a 8,6E-05
-neu* 26149 n. a. n. a. n.a 43110
5,8E-05 n.a n. a. n. a. 8,8E-07
neu* 21488 n. a. n. a. n. a. 24632
2,1E-03 n. a. n. a. n.a 2,2E-04
DSDP-set 29660 52986 n. a. n.a 43569
3,3E-05 2,4E-03 n. a. n. a. 1,2E-04
SDPA-set 30393 n. a. 69722 n. a. 45337
7,4E-05 n. a. 6,8E-03 n. a. 1,1E-04
SDPT3-set 28953 n. a. n. a. 11765 48737

5,2E-05 n. a. n. a. 3,1E-03 3,7E-05
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The IMAGE set

The IMAGE set consists of test cases arising from binary ienzay-

titioning, perceptual grouping and restoration. The ieséed reader is referred to [50],
[49] and the referencesfip://plato.asu.edu/pub/sdp/README
matricesA;, i = 0,...,n of the cases in this class are extremely sparse. Moreover for
all but one cases we have= m and a sparse matrix operatdr In the exceptional
casecancer , the operato is dense.

. The data

Table 11.30: Computational results for IMAGE problems — Cithkes
and average DIMACS errors

problem CSDP DSDP SDPA SDPT3 ERSDP
cancer 2539 1568 1686 m 7261
6,9E-08 8,8E-02 3,8E-05 m 2,5E-07
checker 9915 1940 m 2371 1408
3,2E-09 1,1E-01 m 2,9E-10 2,3E-08
foot 4019 622 2156 1758 1870
2,3E-05 4 9E-07 8,9E-06 2,4E-05 1,7E-08
hand 452 138 253 271 313
1,5E-08 9,4E-07 9,6E-06 8,9E-06 2,5E-07
ice_2.0 m 14979 m m 13122
m 7,0E-08 m m 1,6E-08
p-auss2 m 15758 m m 14110
m 1,4E-07 m m 6,2E-09

Only DSDP and BENsDPwhere able to solve all cases of the IMAGE set. All other
codes ran out of memory in at least two cases. Table 11.31sstimat (apart from
cancer ) PENSDPis one of the fastest codes for this group of test cases. Gnédsh
mention that for the test casancer a low precision result, which is still more precise
as the DSDP result can be achieved BnBDPIN about 1000 seconds.

Table 11.31: Sum of CPU times and average DIMACS error foager
subsets of IMAGE problems and for all problems from Tab. 41.2

problem CSDP DSDP SDPA SDPT3  ERSDP
ALL n. a. 35005 n. a. n. a. 38084
n. a. 3,3E-02 n. a. n. a. 9,4E-08
CSDP set 16925 4268 n. a. n. a. 10852
5,8E-06 5,0E-02 n. a. n. a. 1,4E-07
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Sum of CPU times and average DIMACS error for certain subskts
IMAGE problems and for all problems from Tab. 11.30cadnt)

problem CSDP DSDP SDPA SDPT3  ERSDP

SDPA set 7010 2328 4095 n. a. 9444
7,7E-06 2,9E-02 1,9E-05 n. a. 1,7E-07

SDPTS3 set 14386 2700 n. a. 4400 3591
7,7E-06 3,7E-02 n. a. 1,1E-05 9,7E-08

From Table 11.32 we see that all codes were able to solvesatiases successfully.
Taking into consideration both, the CPU time and the prenisi the solutions, CSDP
seems to be the best code for this group of test cases. Fastétsrwere produced by
the codes SDPT3 and SDPAERSDPis comparably fast as CSDP, but less precise.

The CHEMICAL set The test cases in the set CHEMICAL are extracted from a
larger set of test cases. The full library collects SDP berartk problems from elec-
tronic structure calculations and can be downloaded from

www://cims.nyu.edu/ ithuro/software.html

All test cases are characterized by the inequality> n, moderately sparse data ma-
tricesA;,i = 1,...,n and a dense matrix operatdr

Table 11.32: Computational results for CHEMICAL problem&€RU
times and average DIMACS errors

problem CSDP DSDP SDPA SDPT3  ERSDP
BH2.r14 1995 4770 1495 729 2445
8,3E-10 4,5E-08 3,7E-04 3,7E-10 9,6E-08
C..1ri14 1861 4684 1393 1633 2593
1,0E-09 4,9E-08 2,2E-03 1,3E-02 5,6E-08
C..3.r14 1958 4362 1592 717 2206
8,7E-10 6,1E-08 1,6E-03 5,9E-10 4,6E-08
H20+.r14 1807 4445 1591 1690 2261
1,1E-09 6,1E-08 6,1E-04 4,8E-03 6,4E-08
H20_.r14 1599 4378 1492 1583 1980
1,0E-09 6,0E-08 5,9E-04 1,3E-09 7,8E-08
NH2.r14 1747 4593 1496 1514 2184

1,4E-09 3,7E-08 9,8E-04 2,3E-08 7,1E-08
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Computational results for CHEMICAL problems — CPU times amdr-
age DIMACS errors ¢ont)

problem CSDP DSDP SDPA SDPT3  ERSDP

H30..r16 16087 23123 15189 14154 16664
9,2E-10 2,8E-08 4,3E-08 3,5E-10 4,7E-08

NH3.r16 16917 22120 15190 5268 15962

3,9E-10 3,7E-08 4,0E-08 2,6E-03 1,8E-07

From Table 11.33 we see that SDPT3 was the fastest code fogtbup of test
cases. On the other hand the average precision of the resattsiced by SDPT3 is
much lower as for the codes CSDP, DSDP amiNk&DpP. Taking into account CPU
time and precision, one could come to the conclusion that”Z8Dhe best code for
this group of examples followed byERSDP.

Table 11.33: Sum of CPU times and average DIMACS error foager
subsets of CHEMICAL problems and for all problems from Tah3P.

problem CSDP DSDP SDPA SDPT3 ERSDP

ALL 43971 72475 39438 27288 46295
9,4E-10 4,7E-08 7,9E-04 2,6E-03 8,0E-08

The MIXED set We collected all remaining test cases from the HM collectioa
test set called MIXED. Again we refer to

ftp://plato.asu.edu/pub/sdp/README

for detailed information on the particular test cases. Thecture of the problems can
be seen from Table 11.23.

Table 11.34: Computational results for MIXED problems — Ctithles
and average DIMACS errors

problem CSDP DSDP SDPA SDPT3  ERsSDP

inc_600 549 fail 604 fail 1377
4,4E-04 fail 6,7E-03 fail 2,5E-05

inc_1200 2937 fail fail fail 7550
6,4E-04 fail fail fail 5,2E-04

neosfbr20 1650 1914 1663 1941 2045
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Computational results for MIXED problems — CPU times andrage
DIMACS errors (cont)

problem CSDP DSDP SDPA SDPT3  ERsDP

1,9E-09 2,8E-09 7,1E-09 1,5E-10 6,4E-08

r1.6.0 63 18 30 49 36
1,2E-08  1,3E-07  3,1E-05  9,9E-07  1,5E-08
yalsdp 1154 1311 1108 737 739

3,8E-10 5,2E-07 7,3E-09 2,8E-08 3,9E-09

Tables 11.34 and 11.35 show the results of our experimentie\Wor theinc * -
cases only CSDP andeERsDPwere able to find approximate solutions, all codes be-
haved similar on the other cases contained in the MIXED skis iE the reason, why
we give summarized results for all cases on the one hand aad bt theinc *-cases
on the other hand in Table 11.35.

Table 11.35: Sum of CPU times and average DIMACS error foager
subsets of MIXED problems and for all problems from Tab. 41.3

problem CSDP DSDP SDPA SDPT3 ERSDP

ALL 6353 n. a. n. a. n. a. 11747
2,2E-04 n. a. n. a. n. a. 1,1E-04

-inc* 2867 3243 2801 2727 2820

1,4E-08 6,5E-07 3,1E-05 1,0E-06 8,3E-08

At the end of this section, we want to determine an averagawehof all codes we
have used in our experiments for the full HM collection. As have seen throughout
this section almost all codes failed for certain subsetsesf tases. Consequently
we decided to compareERsSDP to each code separately. The comparison is done
on the maximal subset of problems, which could be succégsfalved by CSDP,
DSDP, SDPA and SDPT3, respectively. The correspondingessilase named CSDP
set, DSDP set, SDPA set and SDPT3 set. Moreover we presemhatated results for
certain sub-groups of these sets. This is in order to avaitittie overall impression is
completely dominated by very few disadvantageous results.
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Table 11.36: Sum of CPU times and average DIMACS error foager
subsets of HM collection problems and for all problems fraah.T1.1.23.

problem CSDP DSDP SDPA SDPT3 ERSDP
CSDP set 211762 174089
2.9E-04 3.8E-05
-mater, 155518 164829
-smhup5 3.2E-04 4.1E-05
-neu*, -inc*, 186154 139502
-rosel5* 7.9E-07 5.7E-07
DSDP set 202688 168426
4.5E-03 3.1E-05
-S0OS,-cancer, 146194 116188
-checker 9.5E-06 5.0E-07
SDPA set 135273 114702
2.4E-03 3.5E-05
-SOS,-inc*, 130574 103881
2.9E-04 1.6E-06
SDPT3 set 64344 120337
6.7E-04 5.4E-07
-SOS,-inc* 47311 55638
5.5E-05 5.8E-07

We want to conclude this section by a few remarks:

Remark .

e From Table 11.36 we can see thaN&DPis a reliable code for a wide class of
linear SDP problems. MoreoveERSDPIs on the average one of the best codes
in terms of CPU time and the quality of the computed approénsalution with
respect to the DIMACS criteria.

e It should be mentioned that the code CSDP achieved (sonmehgnfar) the best
precision for many of the test cases of the HM collection.

e We considered a test run of a code to be failed, whenevertieeage) DIMACS
precision achieved was below 1.0E-01. Note that a diffezkaice could signif-
icantly influence the avaraged information presented indhkes above.

e We did not use all test collected by H. Mittelmann for our expents. A few
test cases have been excluded for different reasons.



Chapter 12

Outlook

In the final chapter of this thesis we would like to give a sloutiook. The following
topics may be of interest in our future research:

e In Chapter 3 we have imposed the nondegeneracy constratification as-
sumption. Unfortunately this condition can be very strobgcause it forces
n > r(r+1)/2, wherer = dim(KerA(z*)). Of course, we can assume the
nondegenaracy condition to hold for each matrix block satedy, if the matrix
constraint is block structured. Nevertheless from the uiadity above follows
that the nondegeneracy condition cannot hold in many of @hgel scale test
cases we have presented in Section 11. On the other handgtréham con-
verged to an optimal solution in many of those cases. Thexdfovould be
interesting to find a convergence proof for the method pre@as this thesis,
which does not require the nondegeneracy constraint qeldin.

e The second point addresses a problem we have already meshhioefly in Sec-
tion 6. There is still a gap between the “theoretical” Alglom 6.1.1, where we
assume that each subproblem is solved exactly, and AlgoBtd.1, where we
work with approximate solutions of the subproblems. R. Bbklgas closed this
gap in the nonlinear programming case; see [69] for furtle¢aits. Of course it
would be interesting to establish a similar result in theternof our method.

e A few years ago R. Polyak has invented the primal-dual nealirrescaling
method for the solution of nonlinear programming problerithe form (NLP)
(see [70]). The method is in certain respect based on the tukfied barrier
function method. Just recently, Polyak has shown asyntpiotadratic conver-
gence for this method. A similar approach would be also @#iéng in the con-
text of our method mainly for two reasons: the first reasorf toarse the faster
convergence in the local neighborhood of the optimum; tloerseé advantage
could be a smaller number of inner iterations due to moreuteatmultiplier
updates.

e Another possible extension concerns the effective hagdfiequality constraints.
There are several interesting applications, where lineapolinear matrix con-

132
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straints occur in combination with nonlinear equalities.f&, we handle such a
situation by replacing the equality constraints by two imgdies. Sometimes the
results produced by this approach are rather unsatisfadtoorder to improve

the situation one could think of a “direct” handling of theuadjty constraints as
it is usually done in primal-dual interior point approaches

e A more practical issue is the implementation of an interfareoptimization
problems subjected to polynomial matrix inequalities afttér order. We have
already started to realize such an approach in cooperaitbniwlL6fberg, the
developer of ¥LMIP 3.0 (see [59]).
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