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Prüfungskommission: Prof. Dr. D.-P. Häder

Erstberichterstatter: Prof. Dr. G. Leugering
Friedrich-Alexander-Universität Erlangen-Nürnberg

Zweitberichterstatter: RNDr. M. Kočvara, DrSc.
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Abstract

This thesis presents a method for the solution of nonlinear semidefinite programming
problems. The goal of nonlinear semidefinite programming isto solve optimization
problems subjected to nonlinear matrix inequalities. The method described can be
interpreted as a generalization of the modified barrier method for the solution of non-
linear programs subjected to vector-valued inequality constraints. As such, the method
belongs to the general category of augmented Lagrangian type methods. Along with a
comprehensive convergence analysis, including local and global convergence aspects,
emphasis is given to the efficient implementation of the method. A detailed algorithm
is presented and numerical aspects of the computer code PENNON are described. The
thesis concludes with reports on extensive numerical studies performed with the com-
puter code PENNON . Moreover, two classes of nonlinear semidefinite programming
problems arising from structural optimization and controltheory are discussed in detail.

The first chaptercontains an overview about related work in the area of nonlinear
semidefinite programming. Further, examples of applications of nonlinear semidefinite
programming are given, and a motivation for the developmentof the method described
in this thesis is presented.

The second chapterintroduces concepts from the area of matrix analysis. In partic-
ular, so called primary matrix functions and (directional)derivatives of matrix functions
are defined.

In the third chapterof this thesis, the nonlinear semidefinite programming problem
is specified in more detail. Several assumptions among them optimality conditions of
first and second order and constraint qualifications are formulated. Furthermore the
impact of these assumptions is discussed.

The fourth chapterintroduces a class of matrix penalty functions. Concrete ex-
amples of this class are presented and matrix penalty functions, which are uniquely
defined by associated real-valued penalty functions, are investigated.

Using the class of penalty functions defined in the precedingchapter, a class of
augmented Lagrangian functions is introduced in thefifth chapter. This class is the
basis of the algorithm for the solution of nonlinear semidefinite programming problems
presented later in the thesis. Various important properties of these functions are proven.

At the beginning of thesixth chapter, a (local) algorithm for the solution of non-
linear semidefinite programs is introduced. It is shown thatthe local algorithm is well
defined. A special version of the implicit function theorem plays an important role here.
Contractivity of the algorithm is established under the assumption that the penalty pa-
rameter is kept constant. Finally, it is explained why in a certain neighborhood of
the optimum, the solution of a non-convex semidefinite programming problem can be
replaced by the solution of a sequence of unrestricted convex problems.

In the seventh chapter, two globalization techniques for the algorithm introduced
in the preceding chapter are proposed. For each of the approaches certain convergence
properties are established. At the end of this chapter, an algorithm combining the local
and global convergence properties is presented.

The eighth chapterdeals with the computational complexity of the algorithm.
Complexity formulas are derived, which indicate serious problems of the (general)
algorithm, when applied to large scale problems. A remedy isgiven by the choice
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of a special penalty function. It is shown that using this special penalty function, the
computational complexity can be reduced significantly and various sparsity types in
the problem data can be exploited.

In the ninth chapterof the thesis, several sub-aspects of the algorithm are dis-
cussed. Among them are: the solution of the (generally non-convex) unrestricted
subproblems, multiplier update formulas, penalty parameter update schemes, solution
techniques for linear systems, initialization formulas and stopping criteria.

In chapter ten, nonlinear semidefinite programming problems arising in structural
optimization and control theory are presented.

The eleventh chapterdescribes and discusses results of comprehensive numerical
experiments. Apart from case studies in structural optimization and benchmarks with
problems from control theory, comparisons of PENNON to alternative (linear) semidef-
inite programming solvers are given.

Finally, the twelfth chapterof this thesis offers an outlook on future research and
possible improvements of the method.
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Zusammenfassung

In Rahmen dieser Arbeit wird eine Methode zur Lösung nichtlinearer semidefiniter
Programme eingeführt. Ziel der nichtlinearen semidefiniten Programmierung ist es,
Optimierungsprobleme mit nichtlinearen Matrixungleichungen als Nebenbedingungen
zu lösen. Die beschriebene Methode kann als Verallgemeinerung der modifizierten
Barriere-Methode, die zur Lösung nichtlinearer Programme mit reellen Ungleichheits-
nebenbedingungen entwickelt wurde, betrachtet werden undlässt sich als solche in den
allgemeinen Kontext der Augmented-Lagrange-Methodeneinordnen. Neben einer um-
fassenden Konvergenzanalyse, in deren Rahmen sowohl lokale als auch globale Kon-
vergenzaussagen erarbeitet werden, liegt ein weiterer Schwerpunkt der Arbeit in einer
effizienten Umsetzung der Methode. Ein detaillierter Algorithmus wird vorgestellt,
und numerische Aspekte des Computerprogrammes PENNON werden erörtert. Im let-
zten Teil der Arbeit wird die Durchführung umfangreicher numerischer Experimente
mit dem Computerprogramm PENNON beschrieben und deren Ergebnisse diskutiert.
Desweiteren werden nichtlineare semidefinite Programme aus dem Bereich der Struk-
turoptimierung und der Steuerungstheorie genauer erläutert.

Im ersten Kapitelwird einÜberblick über weitere Arbeiten im Bereich der nichtlin-
earen semidefiniten Programmierung gegeben. Desweiteren werden wichtige Anwen-
dungen der nichtlinearen semidefiniten Programmierung genannt. Schliesslich werden
die Hintergründe, die zur Idee der im Rahmen dieser Arbeit vorgestellten Methode
führten, erläutert.

Im zweiten Abschnittwerden wichtige Begriffe aus dem Bereich der Matrixanaly-
sis bereitgestellt. Insbesondere werden sogenannte prim¨are Matrixfunktionen definiert
und (Richtungs-)ableitungen von Matrixfunktionen diskutiert.

Im dritten Kapiteldieser Arbeit wird das Problem der nichtlinearen semidefiniten
Programmierung genauer erläutert. Desweiteren werden verschiedene Voraussetzun-
gen, darunter Optimalitätsbedingungen erster und zweiter Ordnung, sowie Constraint
Qualifications gemacht und deren Bedeutung diskutiert.

Im vierten Kapitelwird eine Klasse von Penaltyfunktionen für Matrixnebenbe-
dingungen eingeführt, die anhand von Beispielen konkretisiert wird. Matrix-Penalty-
funktionen, deren Definition auf Penaltyfunktionen basiert, die aus dem Bereich der
nichtlinearen Programmierung (mit reellwertigen Nebenbedingungen) bekannt sind,
werden auf Ihre Eignung untersucht.

Mit Hilfe der im vorangegangenen Abschnitt eingeführten Penaltyfunktionen wird
im fünften Kapiteleine Klasse von Augmented-Lagrange-Funktionen definiert.Die
hier beschriebene Klasse von Augmented-Lagrange-Funktionen stellt die Grundlage
des später eingeführten Algorithmus zur Lösung nichtlinearer semidefiniter Programme
dar. Es werden verschiedene entscheidende Eigenschaften nachgewiesen.

Im sechsten Kapitelwird ein (lokaler) Algorithmus zur Lösung nichtlinearer semi-
definiter Programme definiert. Hier liegt der theoretische Schwerpunkt der Arbeit.
Zunächst werden Wohldefiniertheit des Algorithmus und Existenzaussagen untersucht.
Hierbei spielt eine spezielle Version des Satzes über implizite Funktionen eine beson-
dere Rolle. Anschliessend wird Kontraktivität des Algorithmus bei fest gehaltenem
Penaltyparameter bewiesen. Ferner wird erläutert, dass unter den gegeben Vorausset-
zungen in einer lokalen Umgebung des Optimums, die Lösung eines nichtkonvexen
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semidefiniten Optimierungsproblems auf die Lösung einer Folge unrestringierter kon-
vexer Optimierungsprobleme zurückgeführt werden kann.

Das siebte Kapitelbefasst sich mit der Globalisierung des im sechsten Kapitel
vorgestellten lokalen Algorithmus. Es werden zwei Globalisierungsansätze vorgestellt
und entsprechende globale Konvergenzaussagen nachgewiesen.

Im achten Abschnittwird die Rechenkomplexität unseres Algorithmus untersucht.
Die errechneten Komplexitätsformeln legen die Wahl einerspeziellen Penaltyfunktion
nahe, mit deren Hilfe die Rechenkomplexität des Algorithmus erheblich reduziert wer-
den kann. Desweiteren wird erläutert, wie spezielle Datenstrukturen (dünnbesetzte
Matrizen) ausgenutzt werden können.

Im neunten Teilder Arbeit werden verschiedene Unteraspekte des Algorithmus
genauer erläutert. Dazu gehören: Lösung von (unter Umständen nicht-konvexen) un-
restringierten Unterproblemen, Multiplikatorupdateformeln, Penaltyparameterupdate-
strategien, die effiziente Lösung linearer Gleichungssysteme, sowie die Initialisierung
des Algorithmus und Abbruchkriterien.

Im zehnten Kapitelwerden nichtlineare semidefinite Programme aus den Bereichen
der Strukturoptimierung und der Steuerungstheorie genauer erläutert.

Im elften Abschnittder Arbeit werden die Ergebnisse umfangreicher numerischer
Experimente, darunter Fallstudien aus dem Bereich der Strukturoptimierung, Bench-
marks mit Problemen aus dem Bereich der Steuerungstheorie und Vergleiche mit alter-
nativer Software zur Lösung (linearer) semidefiniter Programme berichtet und disku-
tiert.

Abschliessend werden imzwölften AbschnittAusblicke auf mögliche Weiterent-
wicklungen der vorgestellten Methode gegeben und offene Punkte dargelegt.
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Notation
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n
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[ai,j ]
m
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Ai,j matrix entry ini-th row andj-th column
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Chapter 1

Introduction

In the recent years (linear) semidefinite programming problems have received more
and more attention. One of the main reasons is the large variety of applications leading
to semidefinite programs (see [5], [40], for example). As a consequence, various algo-
rithms for solving linear semidefinite programs have been developed, as for instance
interior point or dual scaling methods (see, for example, [40],[79], [82] and the refer-
ences therein). However, mathematical models in several applications lead to problems,
which can not be formulated aslinear, but more generally asnonlinearsemidefinite
programming problems. For example, such an observation canbe made in control the-
ory: There are many relevant control problems, which boil down to linear semidefinite
programming problems (see [20] for a long list), however, there are still fundamental
problems for which no linear semidefinite formulation has been found yet. This was
the reason why so called BMI formulations (problems with bilinear matrix inequalities)
of control problems became popular in the mid 1990s [39]. As there were, however,
no computational methods for solving (non-convex) BMIs, ormore generally speak-
ing nonlinear semidefinite programs, several groups of researchers started to develop
algorithms and software for the solution of BMI problems. For example, interior-point
constrained trust region methods were proposed in [57] for aspecial class of BMIs.
Further approaches were presented in [33] and [34]. In [34],sequential semidefinite
programming, as an extension of quadratic programming, wasused to solve LMI prob-
lems with additional nonlinear matrix equality constraints, while in [33] the augmented
Lagrangian method was applied to a similar class of problems.

Later, more applications, as, for example, robust optimization (see [5]) or struc-
tural optimization (see, e.g., [4]), appeared, where nonlinear semidefinite program-
ming played an important role. Consequently the interest ingeneral purpose nonlinear
semidefinite programming methods and software grew. Nowadays, there are several
approaches for the solution of nonlinear semidefinite programs: For example, in [28],
the method proposed in [34] is generalized to general purpose nonlinear semidefinite
programming problems and a proof of global convergence is given. Another promis-
ing approach for the solution of general purpose nonlinear semidefinite programming
problems is presented in [46]. The method is an extension of aprimal predictor cor-
rector interior method to non-convex programs, where the corrector steps are based
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CHAPTER 1. INTRODUCTION 2

on quadratic subprograms that combine aspects of line search and trust region meth-
ods. Just recently a smoothing type algorithm for the solution of nonlinear semidefinite
programming problems was introduced in [47] and further explored in [48].

Our main motivation for the development of an own general purpose semidefinite
programming solver was given by nonlinear semidefinite programming problems aris-
ing in structural optimization. The difficulty with these problems is that depending on
the type of constraints which are taken into consideration (as, for example, compliance
constraints, strain constraints, constraints on global stability, etc.), one obtains large
scale semidefinite programs with entirely different sparsity structures. On the other
hand there exist examples, where the main difficulty is not inthe structure or size, but
in the nonlinearity of the problem. Consequently we came to the conclusion that there
are at least two basic requirements to be satisfied by a solver, which should be applica-
ble to a wide class of (nonlinear) semidefinite optimizationproblems: First, the solver
should be able to cope with serious non-linearities and, second, the solver should be
able to exploit various types of sparsity in the problem data. At the time when we
started with the development of our algorithm, there was – toour best knowledge – no
such solver available.

As a consequence of the special requirements, it seemed to bea natural idea to
search for a concept, which combined in a certain way the features of highly developed
(standard) nonlinear programming algorithms with the abilities of (large-scale) linear
semidefinite programming solvers. Our first and probably themost obvious idea was to
generalize interior point algorithms which were successfully applied to both, nonlinear
programming problems and linear semidefinite programming problems. However, we
encountered some difficulties in the generalization of the interior point idea, as, for ex-
ample, the combination of the symmetrization issue with therequirement of preserving
sparsity in the problem data. Consequently we drew our attention to another promis-
ing method, the so called Penalty-Barrier-Multiplier method (PBM), which had been
recently invented by Ben-Tal and Zibulevsky for the solution of convex programming
problems (see [7]) and later adapted by Zibulevsky and Mosheyev for the application
to linear semidefinite programming problems (see [63] and [87]). Nevertheless, also
the Zibulevsky/Mosheyev approach turned out to have some serious drawbacks. First
of all, the convergence theory was done solely for convex programming problems and,
second, the semidefinite version of the PBM method was based on eigenvalue decom-
positions of the constraint matrices, which are known to be critical numerical opera-
tions not only in terms of computational complexity, but also in terms of robustness.
The first issue was not that crucial, because there were already successful attempts
to generalize the PBM idea to non-convex problems (see, for example, [21], where a
global convergence result is given) and there was a rich theory for the so called mod-
ified barrier function method (MBF), invented by R. Polyak (see, for example, [68],
[69] and [70]), which is in certain respect the basis of the PBM methods. A remedy
for the second issue was discovered, when we investigated the concepts of PBM and
MBF methods: First we made the observation that a generalized PBM function applied
to a matrix constraint could result in a non-convex function, even in the case of con-
vex problem data. Second, we found a way how to avoid eigenvalue decompositions,
when using a (generalized version of a) special modified barrier function instead. A
nice consequence of this observation was that with the special choice of the modified
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barrier function, we saw a clear way, how to preserve sparsity patterns in the prob-
lem data. Consequently we decided to base our algorithm on the concept of the MBF
method. Nevertheless, we did not want to restrict our theoretical considerations (con-
vergence proofs, etc.) to an algorithm, which is based on onespecific penalty function.
Therefore we decided to develop

• an augmented Lagrangian algorithm based on the MBF method combined with
a wide class of penalty functions,

• a comprehensive local and global convergence theory, and

• a specialized code which allows for the solution of large scale nonlinear semidef-
inite programs by extensive utilization of problem inherent sparsity structures.



Chapter 2

Functions of Matrices

In the course of this section we introduce a class of matrix functions defined on the
space of symmetricm×m-matrices and henceforth denoted bySm. The definition
of these functions is based on a spectral decomposition of a symmetric matrix and a
real-valued function.

Definition 2.1 (Primary matrix function) Letϕ : R → R be a given function
and A ∈ Sm be a given symmetric matrix. Let furtherA = SΛS⊤, whereΛ =
diag (λ1, . . . , λm)

⊤, be an eigenvalue decomposition ofA. Then the primary matrix
functionΦ corresponding toϕ is defined by

Φ : S
m → S

m

A 7−→ S




ϕ (λ1) 0 . . . 0

0 ϕ (λ2)
...

...
. . . 0

0 . . . 0 ϕ (λm)




S⊤ .

Definition 2.1 is a version of a more general definition for hermitian matrices presented
in [45].

Example 2.1 Consider the real-valued function

ϕ :

{
R → R

x 7→ x2 .

Then the primary matrix functionΦ : Sm → Sm is given by

Φ(A) = S




λ2
1 0 . . . 0

0 λ2
2

...
...

. . . 0
0 . . . 0 λ2

m




S⊤ = SΛ2S⊤ = A2,

whereSΛS⊤ is an eigenvalue decomposition ofA.

4
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By the following definition we introduce a notation for the set of symmetric matrices
with spectrum in a certain interval.

Definition 2.2 Let (a, b) ⊂ R and m ∈ N be given. Then byHm(a, b) we define
the set of all symmetric matricesA ∈ Sm with λ1(A) > a andλm(A) < b, where
λ1(A), λ2(A), . . . , λm(A) are the increasingly ordered eigenvalues ofA.

Next we want to discuss monotonicity and convexity of primary matrix functions. Be-
fore we are able to do this, we need to introduce a partial order on the space of sym-
metric matrices. We start with the following definition:

Definition 2.3 A matrixA ∈ Sm is said to bepositive semidefinite, if all eigenvalues
of A are nonnegative.

In analogy to definition 2.3 a matrixA ∈ Sm is said to benegative semidefinite, if
all eigenvalues ofA are non-positive. It is well known that the set of all positive
semidefinitem×m-matrices, denoted bySm

+ is a pointed convex cone. This cone
induces a partial order onSm, the so called Loewner (partial) order: For two given
matricesA, B ∈ Sm, we define

A � B :⇔ B − A is positive semidefinite

and
A � B :⇔ A − B is positive semidefinite.

In accordance with this definition we use the notationA � 0 to indicate that the matrix
A is positive semidefinite andA � 0 for negative semidefinite matrices.

Now we are prepared for the following definition:

Definition 2.4 A given matrix functionΦ : Sm → Sm is said to bemonotone, if for
any two matricesA, B ∈ Sm with A � B the inequalityΦ(A) � Φ(B) is satisfied.
FurthermoreΦ is said to beconvexif the inequality

Φ(λA + (1 − λ)B) � λΦ(A) + (1 − λ)Φ(B)

is valid or all A, B ∈ Sm and any0 ≤ λ ≤ 1.

The following example demonstrates that it is generally wrong to conclude from the
monotonicity/convexity ofϕ to the monotonicity/convexity of the corresponding pri-
mary matrix function:

Example 2.2 Let ϕ be given as in example 2.1. Obviouslyϕ is monotone on the
interval [0,∞). Nevertheless, the same property does not hold for the corresponding
primary matrix function. To see this, consider the following counter example:

LetA =

(
20 2
2 1

)
andB =

(
2 1
1 0.5

)
. Then the matrixA−B =

(
18 1
1 0.5

)

has two strictly positive eigenvalues. On the other hand thematrix

A2 − B2 =

(
399 39.5
39.5 3.75

)
has one positive and one negative eigenvalue.
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A useful criterion for the determination of monotonicity and convexity of a primary
matrix function is based on the following definition and formulated in Lemma 2.1:

Definition 2.5 Let (a, b) be a given real interval, lett1, t2, . . . , tm bem real values
and letϕ : R → R be a twice continuously differentiable function. Then we define

∆ϕ(ti, tj) =

{
ϕ(ti) − ϕ(tj)

ti − tj
, for i 6= j ,

ϕ′(ti) , for i = j ,

∆2ϕ(ti, tj, tk) =





∆ϕ(ti, tk) − ∆ϕ(tj , tk)
ti − tj

, for i 6= j ,

∆ϕ(ti, tj) − ∆ϕ(tk, tj)
ti − tk

, for i = j 6= k ,

ϕ′′(ti) , for i = j = k.

Lemma 2.1 Let (a, b) be a given real interval. Let furtherϕ : (a, b) → R be a twice
continuously differentiable function. Then:

a) The primary matrix functionΦ corresponding toϕ is monotone onHm(a, b) ,
if and only if the matrix

[
∆ϕ(ti, tj)

]m
i,j=1

is positive semidefinite for each set of

real valuest1, . . . , tm ∈ (a, b).

b) The primary matrix functionΦ corresponding toϕ is convex onHm(a, b) , if
and only if the matrix

[
∆2ϕ(ti, tj , t1)

]m
i,j=1

is positive semidefinite for each set

of real valuest1, . . . , tm ∈ (a, b).

Proof . See, for example, [45, p. 537ff]. �

Lemma 2.1 allows us to conclude from certain properties ofϕ to the monotonicity and
convexity of the corresponding primary matrix function. This motivates the following
definition:

Definition 2.6 A real-valued functionϕ defined on an interval(a, b) ⊆ R is

a) operator monotoneon(a, b), if
[
∆ϕ(ti, tj)

]m
i,j=1

� 0 for all t1, . . . , tm ∈ (a, b)

and allm ∈ N.

b) operator convexon (a, b), if
[
∆2ϕ(ti, tj , t1)

]m
i,j=1

� 0 for all t1, . . . , tm ∈
(a, b) and allm ∈ N.

In the remainder of this section we want to discuss derivative formula for a mapping
composed from a twice continuously differentiable mappingA : Rn → Sm and a pri-
mary matrix function onSm. A useful tool in this context is provided by the following
definition:

Definition 2.7 (Frobenius covariance matrices) LetA : D ⊂ Rn → Sm be a given
mapping. Letλ1(x), λ2(x), . . . , λµ(x)(x) denote theµ(x) increasingly ordered distinct
eigenvalues ofA(x). Let furtherA(x) = S(x)Λ(x)S(x)⊤ be an eigenvalue decom-
position ofA(x), with Λ(x) = diag(λ1(x), . . . , λ1(x), . . . , λµ(x), . . . , λµ(x)), where
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each eigenvalue occurs in its given multiplicity atx. Then theFrobenius covariance
matricesare defined by

PA,i(x) = S(x)diag(0, . . . , 0, . . . , 1, . . . , 1, . . . , 0, . . . , 0)S(x)⊤, i = 1, . . . , µ(x),

where the non-zeros in the diagonal matrix occur exactly in the positions ofλi(x) in
Λ.

Some important properties of Frobenius covariance matrices are summarized in the
following Lemma:

Lemma 2.2 LetA(x) ∈ Sm be given.Then the following equations hold:

1. PA,1(x) + . . . + PA,µ(x)(x) = Im;

2. PA,i(x)PA,j(x) = 0 for all i 6= j, i, j = 1, . . . , µ(x);

3. PA,i(x)k = PA,i(x) for all k ≥ 1, i = 1, . . . , µ(x).

Proof . See, for example, [45, p. 403]. �

For simplicity of notation we omit the subscriptA and henceforth use the abbreviation
Pk(x) = PA,k(x) for all i = 1, . . . , µ(x) and allx ∈ Rn.

In the scope of the following Theorem we want to present formulas for partial deriva-
tives of the mappingΦ ◦ A : D → Sm. In order to keep notation as brief as possible,
we introduce the abbreviations

A′
i(x) =

∂

∂xi
A(x) andA′′

i,j(x) =
∂2

∂xi∂xj
A(x)

for the first and second order partial derivatives of the mappingA.

Theorem 2.3 Let (a, b) ⊆ R, m ∈ N andA : D ⊂ Rn → Sm be a twice continuously
differentiable mapping. Denote byλ1(x), λ2(x), . . . , λµ(x)(x) the µ(x) increasingly
ordered distinct eigenvalues ofA(x) and letλ1(x) ≥ a and λµ(x)(x) ≤ b for all
x ∈ D. Let furtherϕ : (a, b) → R be a twice continuously differentiable function and
Φ be the corresponding primary matrix function. ThenΦ ◦A is twice differentiable for
all x ∈ D and the following formulas hold:

∂

∂xi
Φ(A(x)) =

µ(x)∑

k,l=1

∆ϕ(λk(x), λl(x))Pk(x)A′
i(x)Pl(x)

= S(x)
(
[∆ϕ(λk(x), λl(x))]

m
k,l=1 •

[
S(x)⊤A′

i(x)S(x)
])

S(x)⊤

∂2

∂xi∂xj
Φ(A(x)) =

µ(x)∑

k,l,s=1

∆2ϕ(λk(x), λl(x), λs(x)) · (M + M⊤) +

µ(x)∑

k,l=1

∆ϕ(λk(x), λl(x))Pk(x)A′′
i,j(x)Pl(x),
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where the matrixM is given by

M = Pk(x)A′
i(x)Pl(x)A′

j(x)Ps(x)

and ’•’ denotes the Hadamard product, defined byA • B = [Ai,jBi,j ]
m
i,j=1 for any

pair of matricesA, B ∈ Sm.

Proof . Theorem 2.3 is a direct consequence of Theorem 6.6.30 in [45]. �

Due to the construction ofΦ ◦ A as a composition of two mappings, the first formula
in Theorem 2.3 can be interpreted as a directional derivative ofΦ atA(x) in direction
A′

i(x). The following Corollary generalizes this observation:

Corollary 2.4 Let the assumptions of Theorem 2.3 hold. Let further two matrices
B, C ∈ Sm be given. Then the directional derivatives ofΦp (A(x)) with respect
toA(x) in directionB is given by:

DΦp (A(x)) [B] =
∂

∂A(x)
Φ(A(x))[B]

=

µ(x)∑

k,l=1

∆ϕ(λk(x), λl(x))Pk(x)BPl(x)

= S(x)
(
[∆ϕ(λk(x), λl(x))]

m
k,l=1 •

(
S(x)⊤BS(x)

))
S(x)⊤.

Furthermore the second order directional derivative ofΦp (A(x)) with respect toA(x)
in directionsB andC is given by:

D2Φp (A(x)) [B; C] =
∂2

∂2A(x)
Φ(A(x))[B; C]

= D (DΦp (A(x)) [B]) [C]

= 2

µ(x)∑

k,l,s=1

∆2ϕ(λk(x), λl(x), λs(x)) · (N + N⊤),

where the matrixN is given byN = Pk(x)BPl(x)CPs(x).



Chapter 3

Problem Formulation and Basic
Assumptions

Throughout this section we briefly describe the class of semidefinite programming
problems, we want to solve by our algorithm. Furthermore we formulate basic as-
sumptions involving constraint qualifications and optimality conditions for this class
of semidefinite programming problems. For a comprehensive discussion on optimality
conditions and constraint qualifications for semidefinite programming problems we re-
fer the reader, for example, to [17], [72] or [40].

3.1 Problem Formulation

We consider the finite dimensional Hilbert spaceSm introduced in Chapter 2, equipped
with the inner product

〈A, B〉 = trA⊤B = trAB for all A, B ∈ S
m,

wheretr denotes the trace operator. As we have already seen in the first chapter of this
thesis,Sm

+ induces a partial order “�” respectively “�” on Sm. Using this notation, the
basic semidefinite programming problem can be written as

min
x∈Rn

f(x) (SDP)

s.t. A(x) 4 0 .

Heref : Rn → R andA : Rn → Sm are twice continuously differentiable mappings.
In the case whenf andA are convex, we refer to the basic problem as (CSDP).

Remark . Problem (SDP) belongs to a wider class of optimization problems called
conic programs. Other important representatives of this class are (standard) nonlinear

9
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programming problems of the type

min
x∈Rn

f(x) (NLP)

s.t. g(x) ≤ 0 ,

whereg maps fromRn to Rm or problems involving so called second order cone con-
straints. An interesting fact is that the problem (NLP) can be considered as a sub-case
of the problem (SDP), namely, whenA is a diagonal matrix. Consequently, the results
in this thesis can be directly applied to inequality constrained nonlinear programming
problems. Vice versa it should be emphasized that many ideaspresented in this thesis
are motivated by existing results from the nonlinear programming literature, as, for ex-
ample, [7], [68], [69], [70], [26], [25] and [21]. It should be further mentioned that it
is beyond the scope of this thesis to generalize the algorithms and theory presented for
semidefinite programs to general conic programs.

3.2 Basic Assumptions

Throughout this thesis the following assumptions on (SDP) are made:

(A1) x∗ = argmin{f(x)|x ∈ Ω} exists, whereΩ = {x ∈ Rn|A(x) 4 0}.

(A2) The Karush-Kuhn-Tuckernecessary optimality conditions hold inx∗. That means
there existsU∗ ∈ Sm such that

f ′(x∗) + [〈U∗,Ai〉]mi=1 = 0

tr(U∗A(x∗)) = 0

U∗ � 0

A(x∗) � 0, (3.1)

where we denote byAi thei−th partial derivative ofA in x∗ (i = 1, . . . , n). The
second condition is called complementary slackness condition. Later we will
prove that the complementary slackness condition can be given in the equivalent
form

λi(U
∗)λi(A(x∗)) = 0 for all i = 1, . . . , m,

whereλi(U
∗) andλi(A(x∗)), i = 1, . . . , m denote the increasingly ordered

eigenvalues ofU∗ andA(x∗), respectively. If in each of the above equations
one factor is non-zero the complementary slackness condition is said to be strict.
Throughout this thesis we assume the strict complementary slackness condition
to hold.

(A3) The nondegeneracy condition holds. This means that if for1 ≤ r < m the
vectorssm−r+1, . . . , sm ∈ Rm form a basis of the null space of the matrix
A(x∗), then the following set ofn-dimensional vectors is linearly independent:

vi,j = (s⊤i A1sj , . . . , s
⊤
i Ansj)

⊤, m − r + 1 ≤ i ≤ j ≤ m.
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The nondegeneracy condition is a well known constraint qualification for the
problem (SDP) and implies that the matrixU∗ is unique (see, for example, [17]).

(A4) DefineE0 = (sm−r+1, . . . , sm), wheresm−r+1, . . . , sm are the vectors intro-
duced in assumption(A3). Then thecone of critical directionsat x∗ is defined
as

C(x∗) =

{
h ∈ R

n :

n∑

i=1

hiE
⊤
0 AiE0 � 0, f ′(x∗)⊤h = 0

}
.

Now we assume the following second order sufficient optimality condition to
hold at(x∗, U∗): For allh ∈ C(x∗) with h 6= 0 the inequality

h⊤ (L′′
xx(x∗, U∗) + H(x∗, U∗)) h > 0,

is satisfied, whereL is the classical Lagrangian for (SDP) defined as

L(x, U) = f(x) + 〈U,A(x)〉 ,

H(x∗, U∗) is defined by

H(x∗, U∗)i,j = −2
〈
U∗,Ai[A(x∗)]†Aj

〉
(3.2)

(see, for example, [17, p. 490]) and[A(x∗)]† is the Moore-Penrose inverse of
A(x∗).

(A5) Define
Ωp = {x ∈ R

n|A(x) � bpIm} ,

whereb is a positive constant andp is a positive real value, which will play the
role of a penalty parameter later. Then we assume the following growth condition
to hold:

∃π > 0 andτ > 0 such thatmax {‖A(x)‖ | x ∈ Ωπ} ≤ τ, (3.3)

It is clear that the existence of such aπ implies the validity of (3.3) for any
0 ≤ π̄ < π.

Later we will make use of the following lemma.

Lemma 3.1 In case the strict complementarity condition holds the coneof critical
directions simplifies to

C(x∗) =

{
h ∈ R

n :
n∑

i=1

hiE
⊤
0 AiE0 = 0

}
.

Proof . See, for example, [17]. �



Chapter 4

A Class of Penalty Functions

4.1 Idea and Definition

Using the concept of primary matrix functions introduced inChapter 2 and recalling
that the negative semidefiniteness of a matrix is equivalentto the non-positivity of its
eigenvalues, the following idea is easy to understand: Letϕ be a real-valued func-
tion defined on an interval(a, b) ⊆ R, which penalizes positive arguments. Then the
corresponding primary matrix function penalizes any matrix A violating the constraint
A � 0, sinceϕ penalizes each positive eigenvalue ofA. This gives rise to the following
definition:

Definition 4.1 Letϕ : (−∞, b) → R be a function with the following properties:

(ϕ0) ϕ strictly convex, strictly monotone increasing and twice
continuously differentiable,

(ϕ1) domϕ = (−∞, b) with 0 < b ≤ ∞ ,

(ϕ2) ϕ(0) = 0 ,

(ϕ3) ϕ′(0) = 1 ,

(ϕ4) ∃ Cϕ,−∞ such thatϕ(t) ≥ Cϕ,−∞ for anyt < 0,

(ϕ5) ∃ Cϕ′,σ such thatϕ′(σ/p) ≤ pCϕ′,σ for anyσ < 0 andp > 0,

(ϕ6) ∃ Cϕ′′,σ such thatϕ′′(σ/p) ≤ p2Cϕ′′,σ for anyσ < 0 andp > 0,

(ϕ7) lim
t→b

ϕ′(t) = ∞ , lim
t→−∞

ϕ′(t) = 0 , ϕ′ convex,

(ϕ8) ϕ is operator monotone on(−∞, b),

(ϕ8) ϕ is operator convex on(−∞, b).

Define furtherϕp(t) = pϕ(t/p) for all t ∈ domϕp = (−∞, bp), wherep is a positive

12
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penalty parameter. Then amatrix penalty functionΦp : Sm → Sm is defined as

Φp : A(x) 7−→ S(x)




ϕp (λ1(x)) 0 . . . 0

0 ϕp (λ2(x))
...

...
. . . 0

0 . . . 0 ϕp (λm(x))




S(x)⊤ ,

whereA(x), S(x), λi(x), i = 1, . . . , m, are defined as in Definition 2.1.

Remark . Using the matrix penalty functionΦp we are able to rewrite our initial
problem (SDP) as

min
x∈Rn

f(x) (SDPΦp
)

s.t. Φp(A(x)) 4 0 .

If we write down the Lagrangian for problem (SDPΦp
) we obtain the function

LΦp
(x, U) = f(x) + 〈U, Φp(A(x))〉 ,

which will be further considered in Section 5.

Remark . Let us briefly discuss the role of assumptions(ϕ8) and(ϕ9): As we will
see later (compare Section 6) assumptions(ϕ8) and(ϕ9) are not used in the proofs of
the main theoretical results presented in this thesis. Nevertheless they are important
for the following reason:Φp is a convex and monotone matrix function for allm ∈ N

if and only if assumptions(ϕ8) and(ϕ9) hold. Using this fact it is easy to see that
for convexf andA assumptions(ϕ8) and(ϕ9) guarantee that problem(SDPΦp

) is
convex. In Section 5 we will see that in this case also the function LΦp

is convex.
On the contrary, if assumptions(ϕ8) and (ϕ9) do not hold, problem (SDPΦp

) may
be non-convex even a for linear mappingA. As a consequence it may happen that
the augmented LagrangianLΦp

is also non-convex for certainU ≻ 0. After reading
Section 6 we will understand that this would mean that we haveto solve a series of
potentially non-convex optimization problems in order to solve a problem, which is
originally convex. This effect is avoided by the inclusion of assumptions(ϕ8) and
(ϕ9) in Definition 4.1.

Remark . Replacing(ϕ4) by the weaker assumption

(ϕ′
4) lim

p→0
pϕ(

σ

p
) → 0 for anyσ < 0

enables us to use a wider class of penalty functions, as we will demonstrate below.
Throughout this thesis we assume(ϕ4) to hold and explain, how our results have to be
modified, if the weaker condition(ϕ′

4) is used instead.

4.2 Examples

The goal of this section is to present a collection of typicalpenalty– and barrier–type
functions from the nonlinear programming literature (see,for example, [68], [69], [7]
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and [80]) and discuss their suitability with respect to the assumptions required in defi-
nition 4.1:

• The logarithmicpenalty function is defined as

ϕlog(t) = − log(1 − t).

Looking at the derivative formulas

ϕ′
log(t) =

1

1 − t
and ϕ′′

log(t) =
1

(1 − t)2

it is obvious to see that(ϕ0) to (ϕ3), (ϕ′
4) and(ϕ5) to (ϕ7) are satisfied. The

validity of (ϕ8) and(ϕ9) is proved, for example, in [75].

• Thehyperbolicpenalty function is defined as

ϕhyp(t) =
1

1 − t
− 1.

Here the derivatives are given by

ϕ′
hyp(t) =

1

(1 − t)2
and ϕ′′

hyp(t) = 2
1

(1 − t)3

and(ϕ0) to (ϕ7) are verified easily. Properties(ϕ8) and(ϕ9) have been estab-
lished in [75]. Note that the functionsϕlog andϕhyp have been introduced in
[68] as so calledmodified barrier functions.

• Theparabolicpenalty function is defined as

ϕpar(t) = −2
√

1 − t + 2.

The first and second derivatives of this function are

ϕ′
par(t) = (1 − t)−

1
2 and ϕ′′

par(t) =
1

2
(1 − t)−

3
2 .

In analogy to the hyperbolic penalty function one can show that (ϕ0) to (ϕ3),
(ϕ′

4) and(ϕ5) to (ϕ9) are satisfied. I slight disadvantage of this function is that
ϕpar does not tend to infinity at the right boundary of its domain.

• Theexponentialpenalty function is defined as

ϕexp(t) = et − 1.

Again the first and second derivative formulas

ϕ′
par(t) = ϕ′′

par(t) = et

imply the validity of properties(ϕ0) to (ϕ7). Unfortunately the corresponding
matrix function is neither monotone nor convex in the sense of assumptions(ϕ8)
and (ϕ9) (see, for example, [45]). Note that in [30] the exponential penalty
function is used to construct an alternative algorithm for the solution of linear
semidefinite programs.
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• Another interesting class of functions was introduced in [6] and further studied
in [7], [64] and [22]. The so called penalty/barrier functions are constructed from
analytic penalty functionsϕ in the following way:

ϕ̂(t) =

{
ϕ(t) for t ≤ r,

at2 + bt + c for t ≥ r,
(4.1)

wherer ∈ [−1, 1] anda, b andc are real numbers, which can be adjusted so
that ϕ̂ is at least twice continuously differentiable inr. Obviously in this case,
the right branch of̂ϕ is nothing else as the quadraticC2-extrapolation of the left
branchϕ. Two important advantages of such a choice are that

– domϕ̂ = (−∞,∞), which simplifies penalty parameter initializations and
update strategies in penalty type methods,

– the second derivative of̂ϕ is bounded, which is a very useful property,
when Newton type methods are applied.

Numerical studies in nonlinear programming indicated thatoptimization meth-
ods based on penalty/barrier functions as defined in (4.1) are often superior to
methods based on classical barrier or modified barrier functions. Moreover it is
quite easy to see that any penalty/barrier functionϕ̂ constructed from a function
ϕ according to (4.1) satisfies the properties(ϕ0) to (ϕ7) if and only if the same
properties hold forϕ. However it can be shown that the matrix function corre-
sponding to the right branch of the function̂ϕ is – as a quadratic matrix function
– non-monotone in the sense of definition 2.4 (compare Example 2.2).

An interesting fact is that all valid candidates of penalty functions we have found so far
have two common properties:

• They are analytic on their full domain and

• they have a pole on the positive real half axis.

The following Theorem is a direct consequence of results presented in C. Loewner’s
paper on monotone matrix functions [29] and help to interpret these observations:

Theorem 4.1 Let (a, b) ⊆ R.

a) If Φ is a monotone matrix function onHm(a, b), thenϕ has at least2m − 3
continuous derivatives.

b) ϕ is operator monotone onHm(a, b) if and only if ϕ is the restriction of an
analytic function defined on the upper complex half plane to the real interval
(a, b) . Furthermore each such function can be represented as

f(z) = αz + β +

∫ ∞

−∞

[
1

u − z
− u

u2 + 1

]
dµ(u),

whereα ≥ 0, β ∈ R anddµ is a Borel measure that has no mass in(a, b).
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An immediate consequence of Theorem 4.1 a) is that any operator monotone function
ϕ must be analytic. Moreover ifϕ is such a function, if(a, b) = R andϕ(x) < ∞ for
all x ∈ R, we conclude from part b) of Theorem 4.1 thatϕ is linear and therefore vio-
lates several assumptions required by Definition 4.1. In other words, it is not possible
to find a valid penalty function in the sense of Definition 4.1 with the full real line as
its domain. From this point of view the functionsϕhyp, ϕlog andϕpar are “optimal”
choices.

Remark . Any appropriately scaled version and any convex combination of the func-
tionsϕhyp, ϕlog andϕpar results in a valid penalty function.

Remark . The functionsϕhyp, ϕlog andϕpar are special cases of the following for-
mula:

ϕα(t) = δα

∫ t

0

(1 − s)α−1ds + γα,

where−1 ≤ α < 1 andδα andγα are uniquely determined by assumptions(ϕ2) and
(ϕ3). Depending onα we obtain the following classes of penalty functions:

0 < α < 1 : parabolic penalty functions,

α = 0 : logarithmic penalty function,

−1 ≤ α < 0 : hyperbolic penalty functions.

So far it can be proven that all members of the family of parabolic and at least some
members of the family of hyperbolic penalty functions have the same properties as the
representativesϕhyp andϕpar presented earlier in this section (see, for example, [45]).



Chapter 5

A Class of Augmented
Lagrangians

At the beginning of this chapter we define a class of augmentedLagrangians – the
heart of our algorithm. The definition is based on the class ofmatrix penalty functions
introduced in the preceding chapter.

We start with some useful notations, which will be used throughout Chapter 5 and 6.
Let λ1 ≤ . . . ≤ λm−r < λm−r+1 = . . . = λm = 0 denote the ordered eigenvalues of
A(x∗) ands1, . . . , sm ∈ Rm the corresponding eigenvectors. Further define

• Λ = diag (λ1, . . . , λm) ∈ Sm, S = (s1, . . . , sm) ∈ Mm,m,

• Λ0 = diag (λm−r+1, . . . , λm) ∈ Sr, Λ⊥ = diag (λ1, . . . , λm−r) ∈ Sm−r,

• E0 = (sm−r+1, . . . , sm) ∈ Mm,r, E⊥ = (s1, . . . , sm−r) ∈ Mm,m−r and

• P0 = E0E
⊤
0 ∈ Sm, P⊥ = E⊥E⊤

⊥ ∈ Sm.

Note that

• the columns ofE0 form a basis ofKer (A(x∗)),

• the columns ofE⊥ form a basis ofIm (A(x∗)),

• A(x∗) = SΛS⊤,

• P0 + P⊥ = SD0S
⊤ + SD⊥S⊤ = Im, where

D0 = diag(0, . . . , 0︸ ︷︷ ︸
m−r

, 1, . . . , 1︸ ︷︷ ︸
r

),

D⊥ = diag(1, . . . , 1︸ ︷︷ ︸
m−r

, 0, . . . , 0︸ ︷︷ ︸
r

).

17
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• using the notation of Definition 2.7, we see that

P0 = Pµ(x∗)(x
∗) andP⊥ =

µ(x∗)−1∑

k=1

Pk(x∗),

wherePk(x∗) for k ∈ {1, . . . , µ(x∗)} are the Frobenius covariance matrices for
theµ(x∗) distinct eigenvalues ofA(x∗).

Next we define a class of augmented Lagrangians for the problem (SDP).

Definition 5.1 Given a twice differentiable functionf : Rn → R, a twice differential
matrix operatorA : Rn → Sm and a penalty functionΦp : Sm → Sm as given in
Section 4, we define the following class of Augmented Lagrangians:

FΦ : R
n × S

m × R → R

(x, U, p) 7→ f(x) + 〈U, Φp (A(x))〉 .

The following Theorem summarizes the most important properties ofFΦ:

Theorem 5.1 The augmented LagrangianFΦ(x, U, p) has the following properties:

a) FΦ(x∗, U∗, p) = f(x∗).

b) F ′
Φ,x(x∗, U∗, p) = f ′(x∗) + [〈U∗,Ai〉]mi=1 = 0.

c) F ′′
Φ,xx(x∗, U∗, p) = L′′

xx(x∗, U∗) + Hp(x
∗, U∗) + p−1M , whereHp(x

∗, U∗)
and M are symmetric matrices andHp(x

∗, U∗) → H(x∗, U∗) for p → 0,
Ker(M) = C(x∗) andy⊤My > 0 for all y /∈ C(x∗).

If f andA are convex, then

d) FΦ(x, U, p) is convex inx for all x ∈ Ωp.

Remark . Properties 5.1 a), b) and d) are shared by the classical Lagrangian function
L associated with problem (SDP) and our augmented choice. However, as we will see
later, property 5.1 c) is the reason for some advantages ofF overL.

For simplicity of notation we letF = FΦ in the remainder of this section. For the proof
of Theorem 5.1 we make use of the following Lemmas.

Lemma 5.2 (von Neumann – Theobald) LetA, B ∈ Sm be given. Denote the ordered
eigenvalues ofA, B byλ1(A) ≤ · · · ≤ λm(A) andλ1(B) ≤ · · · ≤ λm(B). Then

tr(AB) ≤
m∑

i=1

λi(A)λi(B),

where equality holds if and only ifA and B have a simultaneous ordered spectral
decomposition.
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Proof . See, for example, [77]. �

Lemma 5.3 Let A ∈ Sm
+ andB ∈ Sm

− be given. Denote the ordered eigenvalues of
A, B by λ1(A) ≤ · · · ≤ λm(A) and λ1(B) ≤ · · · ≤ λm(B). Then the following
conditions are equivalent:

a) 〈A, B〉 = 0.

b) AB = 0.

c) A andB are simultaneously diagonalizable and
λi(A)λi(B) = 0 for all i ∈ {1, . . . , m}.

Proof . Let A = P 2 andB = −Q2 with P, Q ∈ Sm (existence ofP andQ follows
from the semidefiniteness ofA andB).

”a) ⇒ b)” We have

‖PQ‖2
= 〈PQ, PQ〉 = tr(QP 2Q) = tr(Q2P 2) =

〈
Q2, P 2

〉
= −〈B, A〉 = 0.

ConsequentlyPQ = 0 andAB = −P (PQ)Q = 0.

”b) ⇒ c)” From Lemma 5.2 we get

0 = tr(AB) = 〈A, B〉 ≤
m∑

i=1

λi(A)︸ ︷︷ ︸
≥0

λi(B)︸ ︷︷ ︸
≤0

≤ 0.

Immediately we seeλi(A)λi(B) = 0 for all i ∈ {1. . . . , m}. Moreover we have

BA = B⊤A⊤ = (AB)⊤ = 0 = AB

and thusA andB are simultaneously diagonalizable.

”c) ⇒ a)” From the fact thatA andB are simultaneously diagonalizable follows the
existence of an orthonormal matrixS and diagonal matricesΛA, ΛB such that

A = SΛAS⊤ andB = SΛBS⊤.

Thus we obtain

〈A, B〉 = tr
(
SΛAΛBS⊤

)
=

m∑

i=1

λi(A)λi(B) = 0

and we have shown〈A, B〉 = 0. �

Lemma 5.4

a) P⊥A(x∗)P⊥ = A(x∗), P0A(x∗)P0 = P⊥A(x∗)P0 = P0A(x∗)P⊥ = Om.

b) P⊥U∗P⊥ = P⊥U∗P0 = P0U
∗P⊥ = Om, P0U

∗P0 = U∗.



CHAPTER 5. A CLASS OF AUGMENTED LAGRANGIANS 20

Proof .

a) Using the spectral decomposition ofA(x∗), we obtain

P⊥A(x∗)P⊥ = SD⊥S⊤SΛS⊤SD⊥S⊤ = SD⊥ΛD⊥S⊤

= SΛS⊤ = A(x∗).

Exemplary we show

P0A(x∗)P0 = SD0S
⊤SΛS⊤SD0S = SD0ΛD0S

⊤

= SOmS⊤ = Om.

b) From the first order optimality conditions, Lemma 5.2 and Lemma 5.3 follows
U∗ = SΛU∗S⊤, whereΛU∗ = diag(λ1(U

∗), . . . , λm(U∗)) and0 = λ1(U
∗) =

. . . = λm−r(U
∗) ≤ λm−r+1(U

∗) ≤ . . . λm(U∗). Now we obtain

P0U
∗P0 = SD0S

⊤SΛU∗S⊤SD0S
⊤ = SD0ΛU∗D0S

⊤

= SΛU∗S⊤ = U∗.

Exemplary we show

P⊥U∗P⊥ = SD⊥S⊤SΛU∗S⊤SD⊥S = SD⊥ΛU∗D⊥S⊤

= SOmS⊤ = Om.

�

Now we are able to prove Theorem 5.1:

a) From the first order optimality conditions (3.1) and Lemma5.3 we obtain

λi(U
∗) = 0 for all i ∈ {1, . . . , m−r}.

By definition ofΦp we have

ϕp (λi (A(x∗))) = 0 for all i ∈ {m−r+1, . . . , m}.

Now Lemma 5.3 implies〈U∗, Φp (A(x∗))〉 = 0 andF (x∗, U∗, p) = f(x∗).

b) The first equality follows from the fact that

U∗ = DΦp (A(x∗)) [U∗], (5.1)

which we will prove below. The second equality follows from (3.1). The follow-
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ing equation completes this part of the proof:

DΦp (A(x∗)) [U∗]

=

µ(x∗)∑

k,l=1

∆ϕp(λk, λl)Pk(x∗) (U∗)Pl(x
∗)

=

µ(x∗)∑

k,l=1

∆ϕp(λk, λl)Pk(x∗) (P0U
∗P0)Pl(x

∗)

=

µ(x∗)∑

k,l=1

∆ϕp(λk, λl)Pk(x∗)Pµ(x∗)(x
∗)U∗Pµ(x∗)(x

∗)Pl(x
∗)

= ∆ϕp(λµ(x∗), λµ(x∗))Pµ(x∗)(x
∗)U∗Pµ(x∗)(x

∗)

= ϕ′
p(0)P0U

∗P0 = U∗.

c) Taking into account Theorem 2.3 and Lemma 5.4 and denoting

Ai,j =
∂2

∂xi∂xj
A(x∗) for all i, j = 1, . . . , n,

we have

F ′′
xx(x∗, U∗, p)

= f ′′(x∗) +

[〈
P0U

∗P0,
∂2

∂xi∂xj
Φp (A(x∗))

〉]n

i,j=1

= f ′′(x∗) +

[〈
U∗, P0




µ(x∗)∑

k,l=1

∆ϕp(λk, λl)Pk(x∗)Ai,jPl(x
∗)


P0

〉
+

〈
U∗,

µ(x∗)∑

k,l,s=1

P0∆
2ϕp(λk, λl, λs)Pk(x∗)AiPl(x

∗)AjPs(x
∗)P0

〉
+

〈
U∗,

µ(x∗)∑

k,l,s=1

P0∆
2ϕp(λk, λl, λs)Pk(x∗)AjPl(x

∗)AiPs(x
∗)P0

〉]n

i,j=1

= f ′′(x∗) +[〈
U∗, ∆ϕp(λµ(x∗), λµ(x∗))Pµ(x∗)(x

∗)Ai,jPµ(x∗)(x
∗)
〉]n

i,j=1
+

[〈
U∗, Pµ(x∗)(x

∗)Ni,jPµ(x∗)(x
∗)
〉]n

i,j=1
+

[〈
U∗, Pµ(x∗)(x

∗)Nj,iPµ(x∗)(x
∗)
〉]n

i,j=1

= f ′′(x∗) +
[〈

U∗, P0ϕ
′
p(0)Ai,jP0

〉]n
i,j=1︸ ︷︷ ︸

L′′
xx(x∗, U∗)

+ 2 [〈U∗, Ni,j〉]ni,j=1 ,
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where

Ni,j = Ai




µ(x∗)∑

k=1

∆2ϕp(λk, 0, 0)Pk(x∗)



Aj for all i, j = 1, . . . , n.

Now we calculate∆2ϕp(λk, 0, 0). We consider two cases:

k = µ(x∗):

∆2ϕp(λk, 0, 0) = ∆2ϕp(0, 0, 0) = p−1ϕ′′(0) → ∞ for p → 0.

k < µ(x∗):

∆2ϕp(λk, 0, 0) =

pϕ(λk/p)
λk

− 1

λk
→ − 1

λk
for p → 0. (5.2)

The latter limit follows fromλk < 0 and the properties ofϕ. Defining

Hp(x
∗, U∗) = 2

[〈
U∗,Ai

(∑µ(x∗)−1
k=1 ∆2ϕp(λk, 0, 0)Pk(x∗)

)
Aj

〉]m
i,j=1

(5.3)

and M = 2 [〈U∗,Aiϕ
′′(0)P0(x

∗)Aj〉]mi,j=1 we see that

F ′′
xx(x∗, U∗, p) = L′′

xx(x∗, U∗) + Hp(x
∗, U∗) + p−1M,

where

Hp(x
∗, U∗) → −2

[〈
U∗,Ai

(
m−r∑

k=1

1

λk
sks⊤k

)
Aj

〉]m

i,j=1

= H(x∗, U∗)

for p → 0. To complete the proof, we will show next that

Ker(M) = C(x∗).

This can be seen from

M = 2ϕ′′(0) [〈U∗,AiP0(x
∗)Aj〉]mi,j=1

= 2ϕ′′(0)

[〈
U∗,Ai

(
m∑

k=m−r+1

sks⊤k

)
Aj

〉]m

i,j=1

= 2ϕ′′(0)

[〈
SΛU∗S⊤,Ai

(
m∑

k=m−r+1

sks⊤k

)
Aj

〉]m

i,j=1

= 2ϕ′′(0)

[
m∑

l=m−r+1

uls
⊤
l Ai

(
m∑

k=m−r+1

sks⊤k

)
Ajsl

]m

i,j=1

= 2ϕ′′(0)




m∑

k,l=m−r+1

ul

(
s⊤l Aisks⊤k Ajsl

)



m

i,j=1

= 2ϕ′′(0)BU∗
r B⊤,
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whereU∗
r = diag(um−r+1, . . . , um, . . . , um−r+1, . . . , um) ∈ Sr2

and thei-th
row of B ∈ Mn,r2

is defined by

bi = ( s⊤m−r+1Aism−r+1, . . . , s
⊤
mAism−r+1, . . . ,

s⊤m−r+1Aism, . . . , s⊤mAism )⊤.

From the strict complementarity condition follows thatU∗
r ∈ S

r
++ and by Lemma

3.1 we obtainKer(M) = C(x∗) and the claim thaty⊤My > 0 for all y /∈ C(x∗).

d) We have to show that〈U, Φp (A(x))〉 is convex for allp > 0, U � 0 andx ∈
Ωp = {x ∈ Rn|A(x) � bpIm}. Givenλ ∈ [0; 1] andx, y ∈ Ωp, the convexity
of A assures

λA(x) + (1 − λ)A(y) −A (λx + (1 − λ)y) � 0. (5.4)

By the monotonicity ofΦp we get

Φp (λA(x) + (1 − λ)A(y)) − Φp (A (λx + (1 − λ)y)) � 0.

The latter inequality combined with the convexity ofΦp show

Φp (λA(x)) + (1 − λ)Φp (A(y)) − Φp (A (λx + (1 − λ)y)) � 0.

SinceU � 0, it follows that

tr
[
U⊤ [Φp (λA(x)) + (1−λ)Φp (A(y)) − Φp (A (λx + (1−λ)y))]

]
≥ 0.

Finally, the latter inequality and the linearity oftr(·) imply the convexity of
〈U, Φp (A(x))〉. �

The following Corollary points out two important advantages of F over the classical
LagrangianL:

Corollary 5.5

a) There existsp0 > 0 such thatF (x, U∗, p) is strongly convex for allp < p0 in a
neighborhood ofx∗.

b) There exist constantsǫ > 0 andp0 > 0 such that

x∗ = argmin{F (x, U∗, p)|x ∈ R, ‖x − x∗‖ ≤ ǫ} ∀ p < p0.

Moreover, iff andA are convex, then

x∗ = argmin {F (x, U∗, p)|x ∈ R
n} ∀ p > 0.

In other words, if the optimal Lagrangian multiplierU∗ is known, problem
(SDP ) can be solved by solving one smooth optimization problem.
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Proof .

a) Below we will show that there existsγ > 0 such thaty⊤F ′′(x∗, U∗, p)y > γ for
all y ∈ R with ‖y‖ = 1, wheneverp is small enough. By Theorem 5.1 we know
that

F ′′
xx(x∗, U∗, p) = L′′

xx(x∗, U∗) + Hp(x
∗, U∗) + p−1M,

where
Hp(x

∗, U∗) → H(x∗, U∗) for p → 0 (5.5)

and
Ker(M) = C(x∗), y⊤My > 0 for all y /∈ C(x∗). (5.6)

We consider two cases:

y ∈ C(x∗): From the second order optimality conditions for(SDP ) it follows

that there existsγ > 0 such that

y⊤(L′′
xx(x∗, U∗) + H(x∗, U∗))y > γ for all y ∈ C(x∗) with ‖y‖ = 1. (5.7)

Now, (5.5) implies

y⊤F ′′
xx(x∗, U∗, p)y = y⊤ (L′′

xx(x∗, U∗) + Hp(x
∗, U∗)) y > γ

for p small enough.

y /∈ C(x∗): From (5.6) we see that

y⊤p−1My → ∞ for p → 0.

On the other hand

y⊤ (L′′
xx(x∗, U∗) + Hp(x

∗, U∗)) y

is bounded for allp ≤ p0 for ap0 ∈ R small enough. Thus we obtain

y⊤F ′′
xx(x∗, U∗, p)y > γ

for p small enough.

b) is a direct consequence of a) and Theorem 5.1. �

Remark . Note that the assertion of Corollary 5.5 a) is generally wrong for the clas-
sical LagrangianL. Even for convex problem dataf andA strong convexity ofL
may not hold. Moreover it is a well known fact that the characterization in part b) of
Corollary 5.5 may fail for the classical Lagrangian (see, for example, [71]). In case of
the augmented Lagrangian, Corollary 5.5 a) guarantees thatthe last assertion of Corol-
lary 5.5 b) holds even for non-convexf andA, providedp is small enough and the
optimization is started close enough tox∗



Chapter 6

A Locally Convergent
Augmented Lagrangian
Algorithm

At the beginning of this chapter we present a basic algorithmfor the solution of problem
(SDP). Then, in the main part, we deal with the (local) convergence properties of this
algorithm.

6.1 Basic Algorithm

On the basis of Definition 5.1 we define the following algorithm:

Algorithm 6.1.1 Let x0 ∈ Rn, U0 ∈ Sm
++ and p0 > 0 be given. Then fork =

0, 1, 2, . . . repeat till a stopping criterium is reached:

(i) xk+1 = argmin
x∈Rn

F (x, Uk, pk)

(ii) Uk+1 = DΦp

(
A(xk+1)

) [
Uk
]

(iii) pk+1 ≤ pk.

Obviously Algorithm 6.1.1 consists of three steps, an unconstrained minimization step
and two update formulas:

• In the first step we calculate the global minimum ofF with respect tox, where
the multiplier and the penalty parameter are kept constant.Of course, to find
the global minimum of a generally non-convex function is a difficult task in
practice, and in the worst case one may not be able to solve a single problem of
type 6.1.1(i). We will return to this point at the end of Section 6, where we will
show, how Algorithm 6.1.1 can be adapted for local minima.

25
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• The second step of Algorithm 6.1.1 is the multiplier update formula. The mul-
tiplier update formula can be interpreted as the directional derivative ofΦp in
direction of the current multiplier, evaluated atA(xk+1).

• The third step describes the penalty parameter update formula, which is given
in the most general form here. A possible update scheme will be developed in
Section 9.1.

For a more detailed discussion on the particular steps of Algorithm 6.1.1 we refer to
Section 9.

6.2 Local Convergence Properties

We start with the analysis of the local convergence properties of Algorithm 6.1.1. In
particular we are interested in the behavior of the algorithm, when it is started with a
penalty parameterp0, which is small enough and an initial multiplier matrixU0, which
is close enough toU∗. These relations are formalized by the following definition:

Definition 6.1 Let λ1(U
∗), . . . , λm(U∗) denote the eigenvalues ofU∗ in increasing

order. Let further0 < ǫ < λm−r+1(U
∗) andλm(U∗) < Θ be given. Then we define

V(U∗, p0, δ, ǫ, Θ) =
{

(U, p) ∈ S
m
+ × R : ‖U − U∗‖ ≤ δp−1, p < p0

}
∩

{
(U, p) ∈ S

m
+ × R : ‖U‖ ≤ Θ

}
∩

{
(U, p) ∈ S

m
+ × R : s⊤i Usi ≥ ǫ, i ∈ Iact

}
,

whereIact = {m− r+ 1, . . . , m}.

Motivation . The setV(U∗, p0, δ, ǫ, Θ) is constructed as an intersection of three sets.
Below we give an interpretation for each of the sets:

i) The first set allows for any initial multiplierU ∈ Sm
+ provided the parameterp is

small enough. Thus we can start with multipliers arbitrarily far from the optimal
multiplier U∗ for the price of a small penalty parameter.

ii) The norm of the initial multiplierU should be restricted.

iii) The diagonal entries of the projection of the initial multiplier onto the nullspace
of A(x∗) should be bounded away from zero.

Next we want to give a short overview about the goals we want toachieve in the re-
mainder of this section:

(G1) First we show that Algorithm 6.1.1 iswell defined. To this end we prove that
for each pair(U, p) ∈ V(U∗, p0, δ, ǫ, Θ) with appropriately chosen parameters
p0, δ, ǫ, Θ, there exists a unique vector

x̂ = x̂(U, p) = argmin{F (x, U, p)|x ∈ R
n}

such thatF ′
x(x̂, U, p) = 0.
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(G2) Then we prove the estimate

max
{
‖x̂ − x∗‖, ‖Û − U∗‖

}
≤ Cp ‖U − U∗‖ (6.1)

for the pairx̂ and

Û = Û(U, p) = DΦp (A(x̂(U, p))) [U ] ,

whereC is a constant which is independent ofp. In other words we demonstrate
that for appropriately chosen parametersp0, δ, ǫ, Θ and forp < p0 small enough
the mappingÛ : V(U∗, p0, δ, ǫ, Θ) → V(U∗, p0, δ, ǫ, Θ) is a contractionwith
fixed pointU∗. Using this fact we conclude that Algorithm 6.1.1 convergesand
that the rate of convergence for the primal and dual iteratesis determined by the
contraction constantpC.

(G3) Finally we verify that the functionF (x, U, p) is strongly convex with respect to
x in a neighborhood of̂x(U, p) for all (U, p) ∈ V(U∗, p0, δ, ǫ, Θ). This prop-
erty guarantees fast convergence of Newton-type methods applied to the uncon-
strained minimization problems in step (i) of Algorithm 6.1.1.

As mentioned already earlier in this thesis our method is a generalization of Polyak’s
modified barrier function method, introduced in [68]. In themain part of this section
we basically follow the ideas presented in [68] in order to prove assertions(G1) to
(G3). However it will turn out during the proof that the generalization to nonlinear
semidefinite programs is not always straight forward.

Before we start with the verification of (G1) to (G3) some preliminaries are needed. We
start with the projection matricesP0 andP⊥ introduced at the beginning of Chapter 5
which are used to decompose the multiplier matrixÛ = Û(U, p) in the following way:

Û = P0ÛP0 +
(
P⊥ÛP0 + P0ÛP⊥ + P⊥ÛP⊥

)
. (6.2)

Note that the matrixP0ÛP0 is the orthogonal projection of̂U onto the null space of
A(x∗). Motivated by this fact we define the matrices

Ûact = P0ÛP0,

Ûinact = P⊥ÛP0 + P0ÛP⊥ + P⊥ÛP⊥.

Next we introduce a variable transformationT = p(U − U∗) and matrices

Û0 = E⊤
0 ÛE0 ∈ S

r, U∗
0 = E⊤

0 U∗E0 ∈ S
r.

Furthermore we define the mappingÛ⊥ : Rn × Sm × R → Sm by

Û⊥(x, T, p) = P⊥DΦp (A(x))
[
p−1T + U∗

]
P⊥ +

P0DΦp (A(x))
[
p−1T + U∗

]
P⊥ +

P⊥DΦp (A(x))
[
p−1T + U∗

]
P0. (6.3)
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Using these definitions we observe

Ûact = E0Û0E
⊤
0 and (6.4)

Ûinact = Û⊥(x̂, p(U − U∗), p). (6.5)

We will further make use of the mappingh : Rn × Sm × R → Rn defined by

h(x, T, p) =
[〈

Û⊥(x, T, p),A′
i(x)

〉]n
i=1

. (6.6)

Next we define local neighborhoods

• S(OSm , δ) = {T : ‖T ‖ ≤ δ},

• S(U∗
0 , ǫ0) = {V ∈ S

r : ‖V − U∗
0 ‖ ≤ ǫ0} and

• S(x∗, ǫ0) = {x ∈ Rn : ‖x − x∗‖ ≤ ǫ0} for givenǫ0 > 0,

and, using these neighborhoods, the following pair of mappings:

Ψ1 : S(x∗, ǫ0) × S(U∗
0 , ǫ0) × S(0, δ) × (0,∞) → R

n

(x, Û0, T, p) 7→ f ′(x)⊤ +
[〈

E0Û0E
⊤
0 ,A′

i(x)
〉]n

i=1
+ h(x, T, p), (6.7)

Ψ2 : S(x∗, ǫ0) × S(U∗
0 , ǫ0) × S(0, δ) × (0,∞) → S

r

(x, Û0, T, p) 7→ pE⊤
0

(
DΦp (A(x)) [p−1T + U∗]

)
E0 − pÛ0. (6.8)

A frequently used isometry is provided by the following definition:

Definition 6.2 Given a symmetric matrixA ∈ Sm we define the operator
svec: Sm → Rm(m+1)/2 as

svec(A) = (a11,
√

2a12, a22,
√

2a13,
√

2a23, a33, . . .)
⊤ ∈ R

m(m+1)/2.

Further we define the operatorsmat : Rm(m+1)/2 → Sm as the inverse ofsvec.

Using definition 6.2 we definẽr = r(r+1)/2, m̃ = m(m+1)/2, u∗
0 = svec(U∗

0 ), the
neighborhoods

S(u∗
0, ǫ0) = {û ∈ R

r̃ : ‖û − u∗
0‖ ≤ ǫ0}

and
S(ORm̃ , δ0) = {t ∈ R

m̃ : ‖t‖ ≤ δ0}.
and a mapping

Ψ : S(x∗, ǫ0) × S(u∗
0, ǫ0) × S(0Rm̃ , δ0) × (0,∞) → R

n+r̃

by

Ψ(x, û0, t, p) =
(
Ψ1(x, smat(û0), smat(t), p),

svec(Ψ2(x, smat(û0), smat(t), p))
)
. (6.9)

Now we are prepared to start with the proof of assertion (G1).The idea is to apply
the following implicit function theorem, which is a slightly modified version of the
Implicit Function Theorem 2 presented in [12, p. 12].
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Theorem 6.1 (Implicit Function Theorem) LetS be an open subset ofRm+n, X̄ be a
compact subset ofRm, andh : S → Rn be a function such thath ∈ C1 onS. Assume
that∇yh(x, y) exists and is continuous onS. Assumēy ∈ Rn is a vector such that the
matrix∇yh(x̄, ȳ) is nonsingular for allx̄ ∈ X̄. Then there exist scalarsǫ > 0, δ > 0,
and a functionφ : S(X̄; ǫ) → S(ȳ; δ) such thatφ ∈ C1 on S(X̄; ǫ), ȳ = φ(x̄) for all
x̄ ∈ X̄ , andh[x, φ(x)] = 0 for all x ∈ S(X̄; ǫ). The functionφ is unique in the sense
that if x ∈ S(X̄; ǫ), y ∈ S(X̄ ; δ) andh(x, y) = 0, theny = φ(x).

The following table identifies functions and sets in Theorem6.1 with the corresponding
functions and sets in the notation used in this thesis:

Theorem 6.1 our notation
m m̂ + 1
n n + r̂
S ⊂ Rm+n S(x∗, ǫ0) × S(u∗

0, ǫ0) × S(0Rm̃ , δ0) × (0,∞) ⊂ R(n+r̂)+(m̂+1)

X̄ K = {ORm̃} × I, whereI ⊂ R+ is a compact interval
ȳ (x∗, u∗

0)
h Ψ

In order to satisfy all assumptions of Theorem 6.1 we have to show that

• Ψ is continuous with respect to all variables,

• Ψ(x∗, u∗
0, 0, p) = 0,

• Ψ is continuously differentiable with respect tox andû0 and

• Ψ′
x,û0

(x∗, u∗
0, 0, p) is nonsingular for allp small enough.

We start with discussing some basic properties ofh, Ψ1 andΨ2.

Lemma 6.2 If A is a twice continuously differentiable operator, then the functionh
defined in (6.6) is continuously differentiable with respect to x and

a) h(x∗, 0, p) = 0.

b) h′
x(x∗, 0, p) = Hp(x

∗, U∗) andh′
x(x∗, 0, p) → H(x∗, U∗) for p → 0, where

H(x∗, U∗) is defined by formula (3.2).

Proof . The differentiability ofh is obvious.

a) Taking into account (5.1) and Lemma 5.4 we obtain

Û⊥(x∗, 0, p) = P⊥DΦp (A(x∗)) [U∗] P⊥

+P0DΦp (A(x∗)) [U∗] P⊥ + P⊥DΦp (A(x∗)) [U∗] P0

= P⊥U∗P⊥ + P0U
∗P⊥ + P⊥U∗P0 = 0. (6.10)

Thus we obtainh(x∗, 0, p) = 0.
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b) Using Corollary 2.4 we get for any matrixB ∈ Sm

∂

∂xi
DΦp (A(x)) [B] = D2Φp (A(x)) [B;A′

i(x)]

=

µ(x)∑

j,k,l=1

∆2ϕp(λj , λk, λl)Pj(x)A′
i(x)Pk(x)BPl(x) +

µ(x)∑

j,k,l=1

∆2ϕp(λj , λk, λl)Pj(x)BPk(x)A′
i(x)Pl(x).

Now, performing the same steps as in the proof of Theorem 5.1 c), we easily
conclude

∂

∂xi
DΦp (A(x∗)) [U∗] = D2Φp (A(x∗)) [U∗;Ai]

=

µ(x∗)∑

k=1

∆2ϕp(λk, 0, 0)Pk(x∗)AiU
∗ +

µ(x∗)∑

k=1

∆2ϕp(λk, 0, 0)U∗AiPk(x∗).

ConsideringU∗P⊥ = P⊥U∗ = 0 we obtain

Û ′
⊥,x(x∗, 0, p) =

[ µ(x∗)−1∑

k=1

∆2ϕp(λk, 0, 0)Pk(x∗)AiU
∗ +

µ(x∗)−1∑

k=1

∆2ϕp(λk, 0, 0)U∗AiPk(x∗)
]n

i=1

and using (6.10)

h′
x(x∗, 0, p) = 2




〈

U∗,Ai




µ(x∗)−1∑

k=1

∆2ϕp(λk, 0, 0)Pk(x∗)



Aj

〉


n

i,j=1.

The latter matrix is equal to the matrixHp(x
∗, U∗) defined in the proof of The-

orem 5.1. Thus we can show that the right hand side of the latter equation con-
verges toH(x∗, U∗) asp tends to0 using exactly the same arguments as in the
proof of Theorem 5.1. �
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Lemma 6.3

Ψ1(x
∗, U∗

0 , 0, p) = Ψ2(x
∗, U∗

0 , 0, p) = 0 for all p > 0.

Proof . Using (5.1) we can show that

Ψ1(x
∗, U∗

0 , 0, p) = f ′(x∗)⊤ +
[〈

E0E
⊤
0 U∗E0E

⊤
0 ,Ai

〉]n
i=1

+ h(x∗, 0, p)

= L′
x(x∗, U∗) = 0,

Ψ2(x
∗, U∗

0 , 0, p) = pE⊤
0 (DΦp (A(x)) [U∗])E0 − pE⊤

0 U∗E0

= pE⊤
0 U∗E0 − pE⊤

0 U∗E0 = 0.

for all p > 0. �

As a direct consequence of Lemma 6.3 we obtain

Ψ(x∗, u∗
0, 0, p) = 0 for all p > 0. (6.11)

Next, we investigate the differentiability ofΨ1 andΨ2 and give formulas for partial
derivatives.

Lemma 6.4 LetA andf be twice continuously differentiable. Then the functionsΨ1

andΨ2 defined in (6.7) and (6.8) are twice continuously differentiable and the follow-
ing formulas for the derivatives ofΨ1 andΨ2 hold true:

Ψ′
1,x(x, Û0, T, p) = f ′′(x) +

[〈
E0Û0E

⊤
0 ,A′′

i,j(x)
〉]n

i,j=1
+ h′

x(x, T, p),

Ψ′
2,x(x, Û0, T, p) = p

[ µ(x)∑

j,k,l=1

∆2(λj(x), λk(x), λl(x)) ·

E⊤
0

(
Pj(x)A′

i(x)Pk(x)(p−1T + U∗)Pl(x) +

Pj(x)(p−1T + U∗)Pk(x)A′
i(x)Pl(x)

)
E0

]n
i=1

= p
[
E⊤

0 D2Φp(A(x))[p−1T + U∗;A′
i(x)]E0

]n
i=1

,

Ψ′
1,bU0

(x, Û0, T, p) =
[
E⊤

0 A′
i(x)E0

]n
i=1

,

Ψ′
2,bU0

(x, Û0, T, p) = −pE, whereEi,j = 1 for all i, j ∈ {1, . . . , r}.

Proof . The first and third formula follow easily from the linearityof the trace opera-
tor. For the second formula we only note that

∂

∂xi
DΦp (A(x)) [B] = D2Φp (A(x)) [B;A′

i(x)]

for any matrixB ∈ Sm. The last equation can be seen directly. �
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Corollary 6.5

Ψ′
1,x(x∗, U∗

0 , 0, p) = L′′(x∗, U∗) + Hp(x
∗, U∗),

Ψ′
2,x(x∗, U∗

0 , 0, p) = ϕ′′(0)
[
E⊤

0 (AiU
∗ + U∗Ai)E0

]n
i=1

,

Ψ′
1,bU0

(x∗, U∗
0 , 0, p) =

[
E⊤

0 AiE0

]n
i=1

,

Ψ′
2,bU0

(x∗, U∗
0 , 0, p) = −pE, where[E]i,j = 1 for all i, j ∈ {1, . . . , r}.

Proof . The first formula can be seen using Lemma 6.2 b). The second formula fol-
lows from Lemma 6.4 using the same arguments as in the proof ofTheorem 5.1 c). The
remaining formulas can be directly seen from Lemma 6.4. �

In the following Lemma and Corollary we derive the partial derivative of Ψ with re-
spect tox andû0.

Lemma 6.6 Let A and f be twice continuously differentiable. Then the functionΨ
defined in (6.9) is continuously differentiable with respect to x, û0 and t and the fol-
lowing formula holds:

Ψ′
x,û0

(x, û0, t, p) =


 f ′′(x) +

[〈
E0Û0E

⊤
0 ,A′′

i,j(x)
〉]n

i,j=1
+ h′

x(x, T, p)
[

svec
(
E⊤

0 A′
i(x)E0

)]n
i=1

p
([

E⊤
0 D2Φp(A(x)[A′

i(x); p−1T + U∗])E0

])⊤
pIr̃




.

Proof . Lemma 6.6 is a direct consequence of Lemma 6.4 and [76], where formulas
for the derivatives of the functionssvecand smatare presented. �

Corollary 6.7

Ψ′
(p) = Ψ′

x,û0
(x∗, u∗

0, 0, p) =

(
L′′(x∗, U∗) + Hp(x

∗, U∗)
[

svec
(
E⊤

0 AiE0

)]n
i=1([

svec
(
ϕ′′(0)E⊤

0 (AiU
∗ + U∗Ai)E0

)]n
i=1

)⊤
pIr̃

)

.

Proof . Corollary 6.7 follows directly from Lemma 6.6 and Corollary 6.5. �

Along with Ψ′
x,û0

(x∗, u∗
0, 0, p) we define

Ψ′
(0) = lim

p→∞
Ψ′

x,û0
(x∗, u∗

0, 0, p) = (6.12)




L′′(x∗, U∗) + H(x∗, U∗)
[

svec
(
E⊤

0 AiE0

)]n
i=1

([
svec

(
ϕ′′(0)E⊤

0 (AiU
∗+U∗Ai)E0

)]n
i=1

)⊤
0




.

The following Lemma and Corollary provide information about the regularity ofΨ′
(0)

andΨ′
(p).
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Lemma 6.8 Ψ′
(0) is nonsingular.

Proof . For any pair(y, v) ∈ Rn+r̃ with Ψ′
(0)(y, v) = 0 the following equations hold:

(L′′(x∗, U∗) + H(x∗, U∗))y +
[

svec
(
E⊤

0 AiE0

)]n
i=1

v = 0 (6.13)
([

svec
(
ϕ′′(0)E⊤

0 (AiU
∗ + U∗Ai)E0

)]n
i=1

)⊤
y = 0. (6.14)

Now let λ1(U
∗), . . . , λm(U∗) denote the increasingly ordered eigenvalues ofU∗, de-

fine Λ∗
U0

= diag(λm−r+1(U
∗), . . . , λm(U∗)) ∈ Sr

++ and recall thatλ1(U
∗) = . . . =

λm−r(U
∗) = 0 andE0 = (sm−r+1, . . . , sm). Then we conclude

U∗ =

m∑

k=m−r+1

λk(U∗)sks⊤k = E0Λ
∗
U0

E⊤
0

and

(6.14) ⇔
n∑

i=1

yi

(
E⊤

0 Ai

(
E0Λ

∗
U0

E⊤
0

)
E0 + E⊤

0

(
E0Λ

∗
U0

E⊤
0

)
AiE0

)
= 0

⇔
n∑

i=1

yi

(
E⊤

0 AiE0Λ
∗
U0

+ Λ∗
U0

E⊤
0 AiE0

)
= 0

⇔
n∑

i=1

yi

[
s⊤k Aislλl(U

∗) + λk(U∗)s⊤k Aisl

]m
k,l=m−r+1

= 0

⇔
n∑

i=1

yi

[
(λk(U∗) + λl(U

∗))s⊤k Aisl

]m
k,l=m−r+1

= 0

⇔ [λk(U∗) + λl(U
∗)]

m
k,l=m−r+1 •

(
n∑

i=1

yi

[
s⊤k Aisl

]m
k,l=m−r+1

)
= 0

⇔
n∑

i=1

yi

[
s⊤k Aisl

]m
k,l=m−r+1

= 0

⇔ y⊤
[

svec
(
E⊤

0 AiE0

)]n
i=1

= 0. (6.15)

Hence, multiplying (6.13) byy⊤ from left we get

y⊤(L′′(x∗, U∗) + H(x∗, U∗))y = 0.

Now from the second order optimality conditions for(SDP ) follows eithery /∈ C(x∗)
or y = 0. Therefore from (6.15) and Lemma 3.1 we concludey = 0. Finally (6.13)
together with assumption(A3) showv = 0 and thereforeΨ′

(0) is nonsingular. �
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Corollary 6.9 There existp0 > 0 andρ > 0 such that‖Ψ′−1
(p) ‖ < ρ for all p < p0.

FurthermoreΨ′
(p) is nonsingular for allp < p0.

Proof . Lemma 6.8 guarantees that

a) there existsγ0 > 0 such that‖Ψ′−1
(0) ‖ ≤ γ0 and

b) there existsµ0 > 0 such that‖Ψ′
(0)w‖2 > µ0‖w‖2 for all w ∈ Rn+r̃.

From b) and the continuity ofΨ′
(p) with respect top, which can be easily derived from

Theorem 5.1, it follows that we findp0 > 0 such that

‖Ψ′
(p)w‖2 >

µ0

2
‖w‖2 for all w ∈ R

n+r̃ and allp ≤ p0.

Consequently the smallest eigenvalue ofΨ′
(p) is larger thanµ

2 , Ψ′
(p) is nonsingular and

there existsρ > 0 independent ofp such that‖Ψ′−1
(p) ‖ < ρ for all p < p0. �

Now we are able to state the following proposition, which partly proves assertion (G1):

Proposition 6.10 There existδ > 0 and p0 > 0 small enough such that for given
Θ > λm(U∗), any0 < ǫ < λm−r+1(U

∗) and any(U, p) ∈ V(U∗, p0, δ, ǫ, Θ) there
exists a vector̂x = x̂(U, p) such that the equationF ′

x(x̂, U, p) = 0 holds.

Proof . We have shown that we findp0 > 0 such that

• Ψ(x∗, u∗
0, 0, p) = 0,

• Ψ is continuously differentiable with respect tox andû0 and

• Ψ′
(p) is nonsingular

for all 0 < p < p0. Now let p1 < p0 be arbitrary small and define the compact set
K = {O ∈ Rm̃} × [p1, p0]. Then it follows from the implicit function Theorem 6.1
that there existδ > 0 and smooth functionsx(t, p) andû0(t, p) defined uniquely in a
neighborhood

S(K, δ) =
{
(t, p) ∈ R

m̃+1 : ‖t‖ ≤ δ, p ∈ [p1, p0]
}

of the compact setK such that

• Ψ(x(t, p), û0(t, p), t, p) = 0 for all (t, p) ∈ S(K, δ0) and

• x(0, p) = x∗, û0(0, p) = û∗
0 for anyp ∈ [p1, p0].

Recalling thatsmat(t) = T = p(U − U∗) and ‖v‖ = ‖ smat(v)‖ we conclude
svec(p(U − U∗)) ∈ S(K, δ) for any(U, p) ∈ V(U∗, p0, δ, ǫ, Θ). Thus

x̂ = x̂(U, p) = x( svec(p(U − U∗)), p)

and
Û0 = Û0(U, p) = smat(û0( svec(p(U − U∗)), p)).
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exist and the following equations hold true:

f ′(x̂)⊤ +
[〈

E0Û0E
⊤
0 ,A′

i(x̂)
〉]n

i=1
+ h(x̂, p(U − U∗), p) = 0 (6.16)

pE⊤
0 (DΦp (A(x̂)) [U ])E0 − pÛ0 = 0. (6.17)

From the latter equation we see thatÛ0 = E⊤
0 (DΦp (A(x̂)) [U ])E0 and after substi-

tution of Û0 in (6.16) we obtain

0 = f ′(x̂)⊤ + [〈P0 (DΦp (A(x̂)) [U ])P0,A′
i(x̂)〉]ni=1

+
[〈

Û⊥(x̂, p(U − U∗), p),A′
i(x̂)

〉]n
i=1

= f ′(x̂)⊤ +
[
〈DΦp (A(x̂)) [U ],A′

i(x̂)〉
]n

i=1

= f ′(x̂)⊤ +
[
〈U, DΦp (A(x̂)) [A′

i(x̂)]〉
]n

i=1

= F ′
x(x̂, U, p).

This completes the proof of Proposition 6.10. �

Later we will show that̂x = argminx∈RF (x, U, p) and therefore complete the proof of
assertion (G1). Next we will prove assertion (G2). We start with the following Lemma.

Lemma 6.11 There existδ > 0 andp0 > 0 small enough such that for givenΘ >
λm(U∗), any0 < ǫ < λm−r+1(U

∗) and any(U, p) ∈ V(U∗, p0, δ, ǫ, Θ) the estimate

max
{
‖x̂ − x∗‖, ‖E⊤

0 (Û − U∗)E0‖
}
≤ Cp ‖U − U∗‖

holds, whereC is a constant independent ofp.

Proof . We start by rewriting equations (6.16) and (6.17) usingT = smat(t) and
Ũ0(t, p) = smat(û0(t, p)):

f ′(x(t, p))⊤ +
[〈

E0Ũ0(t, p)E⊤
0 ,A′

i(x(t, p))
〉]n

i=1
+ h(x(t, p), T, p) = 0 (6.18)

p svec
(
E⊤

0

(
DΦp (A(x(t, p))) [p−1T + U∗]

)
E0

)
− pû0(t, p) = 0. (6.19)

Now, differentiating identity (6.18) with respect tot we get

f ′′(x(t, p)) · x′
t(t, p) +

[〈
E0Ũ0(t, p)E⊤

0 ,A′′
i,j(x(t, p))

〉]n
i,j=1

· x′
t(t, p) +

[
svec

(
E⊤

0 A′
i(x(t, p))E0

)⊤]n
i=1

· û′
0,t(t, p) + h′

t(x(t, p), T, p) = 0, (6.20)

where

x′
t(t, p) =

∂

∂t
(xj(t, p), j = 1, . . . , n) ∈ R

n,m̃

and

û′
0,t(t, p) =

∂

∂t
(û0,j(t, p), j = 1, . . . , r̃) ∈ R

r̃,m̃.
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Differentiation of (6.19) with respect tot yields:

pû′
0,t(t, p)

= p
∂

∂t
svec

(
E⊤

0

(
DΦpA(x(t, p))

[
p−1T + U∗

])
E0

)

= p
[

svec
(
E⊤

0

(
D2ΦpA(x(t, p))

[
p−1T + U∗,A′

i(x(t, p))
])

E0

)⊤]n
i=1
· x′

t(t, p)

+

([
svec

(
E⊤

0 (DΦpA(x(t, p)) [ smat(ej)])E0

)⊤]m̃
j=1

)⊤

, (6.21)

whereej denotes thej−th unit vector inRm̂. Next we calculateh′
t(x(t, p), T, p):

h′
t(x(t, p), T, p)

=
∂

∂t

([〈
Û⊥(x(t, p), T, p),A′

i(x(t, p))
〉]n

i=1

)

=

[〈
P⊥A′

i(x(t, p))P⊥,
∂

∂tj
DΦpA(x(t, p))[p−1T + U∗]

〉]

(i,j)∈I×J

+

[〈
P0A′

i(x(t, p))P⊥,
∂

∂tj
DΦpA(x(t, p))[p−1T + U∗]

〉]

(i,j)∈I×J

+

[〈
P⊥A′

i(x(t, p))P0,
∂

∂tj
DΦpA(x(t, p))[p−1T + U∗]

〉]

(i,j)∈I×J

+

[〈
Û⊥(x(t, p), T, p),A′′

i,j(x(t, p))
〉]n

i,j=1
· x′

t(t, p), (6.22)

whereI × J = {(i, j) : i = 1, . . . , n andj = 1, . . . , m̂} and

∂

∂tj
DΦpA(x(t, p))[p−1T + U∗]

= smat(
[

svec
(
D2ΦpA(x(t, p))

[
p−1T + U∗,A′

i(x(t, p))
])⊤]n

i=1
· ∂

∂tj
x(t, p)

)
+

1

p
DΦpA(x(t, p)) [ smat(ej)]

for all j = 1, . . . , m̂. UsingBj(t, p) = D2ΦpA(x(t, p))
[
p−1T + U∗,A′

j(x(t, p))
]

for j = 1, . . . , n, recalling that

h′(x(t, p), t, p) =
[〈

P⊥A′
i(x(t, p))P⊥, Bj(t, p)

〉]n
i,j=1

+

[〈
P0A

′
i(x(t, p))P⊥, Bj(t, p)

〉]n
i,j=1

+

[〈
P⊥A′

i(x(t, p))P0, Bj(t, p)
〉]n

i,j=1
+

[〈
Û⊥(x(t, p), T, p),A′′

i,j(x(t, p))
〉]n

i,j=1
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and defining

M(t, p) =
1

p
[〈P⊥A′

i(x(t, p))P⊥, DΦpA(x(t, p)) [ smat(ej)]〉](i,j)∈I×J

+
1

p
[〈P0A

′
i(x(t, p))P⊥, DΦpA(x(t, p)) [ smat(ej)]〉](i,j)∈I×J

+
1

p
[〈P⊥A′

i(x(t, p))P0, DΦpA(x(t, p)) [ smat(ej)]〉](i,j)∈I×J

from (6.22) we obtain

h′
t(x(t, p), t, p) = h′(x(t, p), t, p) · x′

t(t, p) + M(t, p). (6.23)

Now defining

N(t, p) =
[

svec
(
E⊤

0 (DΦpA(x(t, p)) [ smat(ej)])E0

)]m̃
j=1

and combining Lemma 6.6, (6.20), (6.21) and (6.23) we obtainthe system

Ψ′
x,û0

(x(t, p), û0(t, p), t, p)

(
x′

t(t, p)
û′

0,t(t, p)

)
= −

(
M(t, p)
N(t, p)

)
. (6.24)

Next we consider the special caset = 0. From (6.23) and Lemma 6.2 b) we see that

h′
t(x(0, p), 0, p) = Hp(x

∗, U∗) · x′
t(0, p) + M0, (6.25)

whereM0 = M(0, p) with

M0,i,j =
1

p

(
svec

(
DΦp(A(x∗))

[
P0AiP⊥ + P⊥AiP0 + P⊥AiP⊥︸ ︷︷ ︸

=:M1

]))

j

=
1

p
svec

( µ(x∗)∑

k,l=1

∆ϕp(λk, λl)(Pk(x∗)M1Pl(x
∗) + Pl(x

∗)M1Pk(x∗))
)

j

=
1

p
svec

( µ(x∗)−1∑

k,l=1

∆ϕp(λk, λl)Pk(x∗)AiPl(x
∗)

+

µ(x∗)−1∑

k=1

ϕp(λk)

p
(P0AiPk(x∗) + Pk(x∗)AiP0)

)

j
.

Therefore we find the estimate

‖M0‖ ≤
((

2
|Cϕ,−∞|

σ
+ Cϕ′,σ

) n∑

i=1

‖ svec(Ai)‖
) 1

2

=: CM .

Now from (6.20) att = 0 and (6.25) we conclude

(L′
xx(x∗) + Hp(x

∗, U∗))·x′
t(0, p)+

[
svec

(
E⊤

0 AiE0

)⊤]n
i=1
·û′

0,t(0, p) = −M0.

(6.26)
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Evaluating (6.21) att = 0 and using Corollary 6.5 we obtain

ϕ′′(0)
[
E⊤

0 (AiU
∗ + U∗Ai)E0

]
· x′

t(0, p) − pIr̃ · û′
0,t(0, p) = −N0, ,(6.27)

whereN0 = N(0, p) with

N0,i,j = svec
(
E⊤

0 smat(ej)E0

)
i

and thus
‖N0‖ ≤ 1.

Combining (6.26) and (6.27) we obtain the system

Ψ′
(p)

(
x′

t(0, p)
û′

0,t(0, p)

)
= −

(
M0

N0

)

or equivalently (
x′

t(0, p)
û′

0,t(0, p)

)
= −

(
Ψ′

(p)

)−1
(

M0

N0

)
. (6.28)

Taking into account Corollary 6.9 and the estimates for‖M‖ and‖N‖ above, we see
that

max
{
‖x′

t(0, p)‖, ‖û′
0,t(0, p)‖

}
≤ ρ(CM + 1).

Furthermore, forδ0 small enough and any(t, p) ∈
{
(t, p) ∈ R

r̃+1|‖t‖ ≤ δ0, p ≤ p0

}
,

the inequality
∥∥∥∥Ψ

′−1
x,û (x(τt, p), û0(τt, p), τt, p)

(
M(x(τt, p), û0(τt, p))
N(x(τt, p), û0(τt, p))

)∥∥∥∥ ≤ 2ρ(CM + 1) =: C0

holds true for anyτ ∈ [0, 1]. Also we have
(

x(t, p) − x∗

û0(t, p) − u∗
0

)
=

(
x(t, p) − x(0, p)

û0(t, p) − û0(0, p)

)

=

∫ t

0

Ψ′−1
x,û0

(x(ν, p), û0(ν, p), ν, p)

(
M(x(ν, p), û0(ν, p))
N(x(ν, p), û0(ν, p))

)
dν

=

∫ 1

0

Ψ′−1
x,û0

(x(τt, p), û0(τt, p), τt, p)

(
M(x(τt, p), û0(τt, p))
N(x(τt, p), û0(τt, p))

)
tdτ.

From the latter equation we obtain
∥∥∥∥

x(t, p) − x∗

û0(t, p) − u∗
0

∥∥∥∥

≤
∥∥∥∥Ψ

′−1
x,û0

(x(τt, p), û0(τt, p), τt, p)

(
M(x(τt, p), û0(τt, p))
N(x(τt, p), û0(τt, p))

)∥∥∥∥ ‖t‖
∫ 1

0

dτ

≤ C0‖t‖,

and therefore
max {‖x(t, p) − x∗‖, ‖û0(t, p) − û∗‖} ≤ C0‖t‖.
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Consequently forU = p−1 smat(t) + U∗ there existsC1 > 0 independent ofp such
that

max
{
‖x̂(U, p) − x∗‖, ‖E⊤

0

(
Û(U, p) − U∗

)
E0‖

}
≤ pC1‖U − U∗‖ (6.29)

for all (U, p) ∈ V(U∗, p0, δ, ǫ, Θ) and the proof of Lemma 6.11 is complete. �

Lemma 6.11 proves the assertion of (G2) for the primal variable and the component of
the multiplier associated with the “active part” ofA(x∗). Based on these results, we
are going to show the remaining part of estimate (6.1) now. Westart with the following
inequality:

‖Û − U∗‖ ≤ ‖P0

(
Û − U∗

)
P0‖ + 2‖P0

(
Û − U∗

)
P⊥‖ + ‖P⊥

(
Û − U∗

)
P⊥‖.

From (6.29) we conclude

‖P0

(
Û − U∗

)
P0‖ =

√〈
P0

(
Û − U∗

)
P0, P0

(
Û − U∗

)
P0

〉

=

√
tr
(
P0

(
Û − U∗

)
P0

(
Û − U∗

))

=

√
tr
(
E0E⊤

0

(
Û − U∗

)
E0E⊤

0

(
Û − U∗

))

=
∥∥∥E⊤

0

(
Û − U∗

)
E0

∥∥∥ ≤ pC1‖U − U∗‖.

Again from estimate (6.29) we obtain

max
{
‖x̂(U, p) − x∗‖, ‖E⊤

0

(
Û(U, p) − U∗

)
E0‖

}
≤ δC1 (6.30)

for all (U, p) ∈ V(U∗, p0, δ, ǫ, Θ). From equation (6.30) we conclude that for given
ǫ1 > 0 we findδ > 0 small enough, such that

‖x̂(U, p) − x∗‖ ≤ ǫ1, (6.31)

‖Û0(U, p) − U∗
0 ‖ ≤ ǫ1 (6.32)

for all (U, p) ∈ V(U∗, p0, δ, ǫ, Θ). Using these inequalities we are able to prove the
following Lemma:

Lemma 6.12 There existsδ > 0 small enough and a constant0 < C2 < b such that

λi (A(x̂(U, p)))

p
≤ C2

for all i = 1, . . . , m and all (U, p) ∈ V(U∗, p0, δ, ǫ, Θ). Furthermore the constantC2

does not depend onp.

Proof . From estimate (6.32) we see that we findδ > 0 small enough such that

‖Û0(U, p)‖ =
∥∥E⊤

0 (DΦpA(x(U, p))[U ]) E0

∥∥ ≤ ‖U∗
0 ‖ + ǫ1. (6.33)
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SinceÛ0(U, p) � 0 we see from (6.33) that

0 ≤ tr
(
Û0(U, p)

)
≤

√
m (‖U∗

0 ‖ + ǫ1) . (6.34)

Now let

A(x̂(U, p)) = S(A (x̂(U, p)))Λ(A (x̂(U, p)))S(A (x̂(U, p)))⊤

be an eigenvalue decomposition ofA(x̂(U, p)), denote byλk(x̂) = λk(A (x̂(U, p)))
the corresponding eigenvalues and bysk(x̂) = sk(A (x̂(U, p))) the corresponding
eigenvectors. Then we conclude from inequality (6.31, the continuity of A and the
continuity of the eigenvectors that we are able to find for anygiven0 < ǫ2 < 1 aδ > 0
small enough such that the following estimates hold:

∣∣si(x̂)⊤P0sj(x̂)
∣∣ ≤ ǫ2 ∀i, j = 1, . . . , m, i 6= j (6.35)

∣∣si(x̂)⊤P0si(x̂)
∣∣ ≤ ǫ2 ∀i = 1, . . . , m−r (6.36)

∣∣si(x̂)⊤P0si(x̂)
∣∣ ≥ 1 − ǫ2 ∀i = m− r+ 1, . . . , m. (6.37)

Due to(U, p) ∈ V(U∗, p0, δ, ǫ, Θ) we know that

s⊤i Usi ≥ ǫ for all i = m− r+ 1, . . . , m.

Consequently we findδ > 0 small enough such that the following inequalities hold:

si(x̂)⊤Usi(x̂) ≥ 3

4
ǫ for all i = m− r+ 1, . . . , m. (6.38)

Using the abbreviations

Q(x̂) = [∆ϕp(λk(x̂), λl(x̂))]mk,l=1 and S(x̂) = S(A (x̂(U, p)))

we obtain

tr
(
Û0(U, p)

)
= tr

(
E⊤

0 (DΦpA(x̂(U, p))[U ])E0

)
=

tr
(
E⊤

0

(
S(x̂)

[
Q(x̂) •

(
S(x̂)⊤US(x̂)

)]
S(x̂)⊤

)
E0

)

= tr
(
S(x̂)⊤E0E

⊤
0 S(x̂)

[
Q(x̂) •

(
S(x̂)⊤US(x̂)

)])

=
〈(

S(x̂)⊤P0S(x̂)
)
•
(
S(x̂)⊤US(x̂)

)
, Q(x̂)

〉
. (6.39)

Next we defineZ(x̂) =
(
S(x̂)⊤P0S(x̂)

)
•
(
S(x̂)⊤US(x̂)

)
and subdivide the matrices

Z(x̂) andQ(x̂) in the following way:

Z(x̂) =

(
Z1 Z2

Z⊤
2 Z3

)
andQ(x̂) =

(
Q1 Q2

Q⊤
2 Q3

)
,

whereZ1, Q1 ∈ S
m−r, Z2, Q2 ∈ M

m−r,r andZ3, Q3 ∈ S
r. Now from (6.39) we see

that

tr
(
Û0(U, p)

)
= 〈Z1, Q1〉 + 〈Z3, Q3〉 + 2

m∑

j=m−r+1

m−r∑

i=1

(Z2)i,m−r+j(Q2)i,m−r+j .
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From the positive semidefiniteness ofQ(x̂) and Z(x̂) we conclude〈Z1, Q1〉 ≥ 0,
hence from (6.34) we see

〈Z3, Q3〉 + 2

m∑

j=m−r+1

m−r∑

i=1

(Z2)i,j(Q2)i,j ≤
√

m (‖U∗
0 ‖ + ǫ1) . (6.40)

Furthermore from the convexity ofϕ we get0 ≤ (Q)i,j ≤ (Q)j,j for all i ≤ j, j =
m− r+ 1, . . . , m. Now from estimates (6.35) to (6.37) and the fact that

|si(x̂)⊤Usj(x̂)| ≤ ‖U‖ ≤ Θ (6.41)

for all i, j = 1, . . . , m we see that we are able to findδ > 0 small enough such that

|Zi,j| ≤
ǫ

6(j − 1)
for all i < j, j = m− r+ 1, . . . , m

and we conclude
∣∣∣∣∣∣
2

m∑

j=m−r+1

j−1∑

i=1

(Z)i,j(Q)i,j

∣∣∣∣∣∣
≤ ǫ

3

m∑

k=m−r+1

(Q)k,k.

On the other hand from estimates (6.35) to (6.38) we obtain

(Z3)i,i ≥
2

3
ǫ

for δ > 0 small enough and thus

〈Z3, Q3〉 + 2

m∑

j=m−r+1

m−r∑

i=1

(Z2)i,j(Q2)i,j ≥ 2ǫ

3

m∑

k=m−r+1

(Q)k,k − ǫ

3

m∑

k=m−r+1

(Q)k,k

=
ǫ

3

m∑

k=m−r+1

(Q)k,k.

Now we immediately obtain from (6.40)

m∑

k=m−r+1

(Q)k,k ≤ 3
√

m

ǫ
(‖U∗

0 ‖ + ǫ1) ,

consequently

(Q)k,k ≤ 3
√

m

ǫ
(‖U∗

0 ‖ + ǫ1) for all k = m− r+ 1, . . . , m

and finally
λmax

p
≤ (ϕ′)−1

(
3
√

m

ǫ
(‖U∗

0 ‖ + ǫ1)

)
. �
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Remark . If we replace all estimates involving the Frobenius norm bythe spectral
norm in the proof of Lemma 6.12 and if we further chooseǫ close enough toλmin(U∗

0 )
we obtain the estimate

ϕ′
p(λmax) ≤ 2

λmax(U
∗
0 )

λmin(U∗
0 )

.

This observation shows that the constantC2 in Lemma 6.12 is closely related to the
condition number of the matrixU∗

0 .

Next we use Taylor expansion in a neighborhood ofx∗ for the calculation of the terms

‖P0

(
Û − U∗

)
P⊥‖ and‖P⊥

(
Û − U∗

)
P⊥‖. Therefore we introduce the function

Ũ : R
n × S

m
+ × R → S

m
+

(x, U, p) 7→ DΦp (A(x)) [U ] ,

for which the equation
Ũ(x̂(U, p), U, p)) = Û(U, p)

holds. Now letP∗ ∈ {P0, P⊥} and define∆x = x̂(U, p) − x∗. Taylors formula
guaratees the existence ofξ ∈ S(x∗, ǫ1) such that

P∗

(
Ũ(x, U, p) − U∗

)
P⊥ = P∗ (DΦp (A(x)) [U ] − U∗) P⊥

= P∗ (DΦp (A(x∗)) [U ] − U∗)P⊥ + R(ξ)∆x,

whereR(ξ) =
[
P∗D

2ΦpA(ξ)[U, A′
i(ξ)]P⊥

]n
i=1

. The following Lemma provides an
upper bound for the norm of the remainder termR(ξ).

Lemma 6.13 ‖R(ξ)‖ ≤ C3, whereC3 ∈ R is a constant independent ofp.

Proof . Let us denote the increasingly ordered eigenvalues ofA(x) by λi(x), i =
1, . . . , n, the corresponding Frobenius covariance matrices byPi(x), i = 1, . . . , n and
the number of distinct eigenvalues ofA(x) byµ(x).Then we obtain for alli = 1, . . . , n

P∗D
2ΦpA(ξ)[U, A′

i(ξ)]P⊥ =

µ(ξ)∑

k1,k2,k3=1

∆2(λk1 (ξ), λk2(ξ), λk3 (ξ))P∗Pk1(ξ)
[
Mk1,k2,k3(ξ) + M⊤

k1,k2,k3
(ξ)
]
,

where
Mk1,k2,k3(ξ) = P∗Pk1(ξ)UPk2 (ξ)A′

i(ξ)Pk3 (ξ)P⊥

for all k1, k2, k3 = 1, . . . , µ(ξ) and all i = 1, . . . , n. Now we assume without loss
of generality (see equation (6.31)) that the eigenvalues ofA (x) are separated in the
following sense: There exists

0 < σ0 <
1

2
min

i,j=1,...,µ(x∗)
i6=j

|λi(x
∗) − λj(x

∗)|
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such that for allj = 1, . . . , m there exists exactly onei ∈ {1, . . . , µ(x∗)} with

|λj(x) − λi(x
∗)| < σ0.

Next we determine upper bounds for the terms

∆2(λk1(ξ), λk2 (ξ), λk3 (ξ)), k1, k2, k3 = 1, . . . , µ(ξ).

We defineµ1(x) = max {j ∈ {1, . . . , µ(x)} | λj(A(x)) ≤ −σ0}, assume – again
without loss of generality – thatλk1 (ξ) ≤ λk2(ξ) ≤ λk3 (ξ) and distinguish three
cases:

ki ≤ µ1(ξ) for i = 1, 2, 3: From the convexity ofϕ andϕ′ follows that

∆2ϕp(λk1 (ξ), λk2 (ξ), λk3 (ξ)) ≤ ϕ′′
p(λk3 (ξ)) ≤ ϕ′′

p(−σ0) ≤ pCϕ′′,−σ0 . (6.42)

∃i ∈ {1, 2, 3} : ki ≤ µ1(ξ), ∃j ∈ {1, 2, 3} : kj > µ1(ξ): Using the convexity

of ϕ and Lemma 6.12 we obtain

∆2ϕp(λk1 (ξ), λk2 (ξ), λk3 (ξ)) =
∆(λk3 (ξ), λk1 (ξ)) − ∆(λk3 (ξ), λk2 (ξ))

λk3(ξ) − λk1 (ξ)

≤
ϕ′

p(λk3(ξ)) − ϕ′
p(λk1(ξ))

λk3 (ξ) − λk1(ξ)
≤ ϕ′(C2)

σ0
. (6.43)

ki > µ1(ξ) for i = 1, 2, 3: Again from the convexity ofϕ andϕ′ and Lemma 6.12 we

get the estimate

∆2ϕp(λk1(ξ), λk2 (ξ), λk3 (ξ)) ≤ ϕ′′
p(C2) =

1

p
ϕ′′(C2). (6.44)

Now we will show that in the third case whenki > µ1(ξ) for i = 1, 2, 3 the estimate

‖Pki
(ξ)P⊥‖ ≤ pĈ

holds true, wherêC is a constant independent ofp. First we obtain

‖Pki
(ξ)P⊥‖ = tr (Pki

(ξ)P⊥) = tr
(
E⊤

⊥Pki
(ξ)E⊥

)

≤
µ(ξ)∑

k=µ1(ξ)+1

tr
(
E⊤

⊥Pk(ξ)E⊥

)

= tr
(
E⊤

⊥

( µ(ξ)∑

k=µ1(ξ)+1

Pk(ξ)
)
E⊥

)
. (6.45)

Now, according to results presented in [73], the matrixPx∗,0(ξ) =
∑µ(ξ)

k=µ1(ξ)+1 Pk(ξ)
has the following properties:

• Px∗,0(ξ) is analytic in a neighborhood ofx∗,

• Px∗,0(x
∗) = P0,
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• ∂

∂xi
Px∗,0(x) =

µ1(x)∑

k=1

µ(x)∑

l=µ1+1

1

λk(x) − λl(x)

(
Bi,k,l(x) + B⊤

i,k,l(x)
)
,

whereBi,k,l(x) = Pk(x)A′
i (x)Pl(x) for all i = 1, . . . , n.

From the last equation it is easy to see that
∥∥ ∂

∂xPx∗,0(x)
∥∥ is restricted by a constant

C̃ > 0 in a neighborhood ofx∗. Using Taylor expansion again, we obtain:

tr
(
E⊤

⊥Px∗,0(ξ)E⊥

)
= tr

(
E⊤

⊥P0E⊥

)
+

[
tr

(
E⊤

⊥

∂

∂xi
Px∗,0(ξ2)E⊥

)]n ⊤

i=1

(ξ − x∗)

≤ C̃ ‖∆x‖ ≤ pC̃C1 ‖U − U∗‖ ≤ pC̃C1(Θ + ‖U∗‖) (6.46)

for someξ2 ∈ S(x∗, ǫ1). Finally the assertion of Lemma 6.13 follows from the combi-
nation of the estimates (6.42) to (6.46) and the fact that thenorms of

• U ,

• Pk(x) for k = 1, . . . , µ(x) and

• A′
i(x) for i = 1, . . . , n

are restricted in a compact neighborhood ofx∗. �

Now, due to (6.29) and Lemma 6.13, we can find a constantC3 > 0 independent ofp
such that

‖P∗

(
Û − U∗

)
P⊥‖ ≤ ‖P∗ (DΦp (A(x∗)) [U ] − U∗)P⊥‖ + pC3‖U − U∗‖.

(6.47)
Next, usingU∗P⊥ = 0 we see

‖P0 (DΦp (A(x∗)) [U ] − U∗)P⊥‖

=
∥∥∥

µ(x∗)−1∑

k=1

pϕ(λk/p)

λk
P0UPk(x∗)

∥∥∥

≤ p
|Cϕ,−∞|

σ
‖P0UP⊥‖ = p

|Cϕ,−∞|
σ

‖P0(U − U∗)P⊥‖
≤ pC4‖U − U∗‖, (6.48)

whereC4 = m
|Cϕ,−∞|

σ . Analogously we obtain

‖P⊥ (DΦp (A(x∗)) [U ] − U∗)P⊥‖

=
∥∥∥

µ(x∗)−1∑

k,l=1

∆ϕp(λk, λl)Pk(x∗)UPl(x
∗)
∥∥∥

≤ pϕ′(σ/2)‖P⊥UP⊥‖ = pϕ′(σ/2)‖P⊥(U − U∗)P⊥‖
≤ pC5‖U − U∗‖, (6.49)
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whereC5 = mpϕ′(σ/2). Finally estimate (6.1) follows from the combination of es-
timates (6.47) to (6.49) with estimate (6.29). We conclude the proof of assertion (G2)
by the following observation: From Theorem 5.1 we getF ′

x(x̂(U∗, p), U∗, p) = 0 and
due to Corollary 5.5 the functionF (x, U∗, p) is strongly convex in a neighborhood of
x̂(U∗, p). Hence

x̂(U∗, p) = argmin{F (x, U∗, p)|x ∈ R
n} = x∗

and it immediately follows

Û(U∗, p) = DΦp (A(x∗)) [U∗] =

m∑

k=m−r+1

ϕ′
p(0)P0U

∗P0 = U∗.

It remains to verify (G3) and to complete the proof of (G1). Inparticular we have to
show that

• F (x, U, p) is strongly convex in a neighborhood ofx̂(U, p) and

• x̂ = argmin{F (x, U, p)|x ∈ Rn}.

Equations (6.16) and (6.17) show thatx̂ from Proposition 6.10 satisfies the equation
F ′

x(x̂, U, p) = 0. In Corollary 5.5 we have shown thatF (x, U∗, p) is strongly convex
in a neighborhood ofx∗. Therefore we findγ > 0 such that

y⊤F ′′
xx(x∗, U∗, p)y > γ‖y‖2

for all y ∈ Rn. On the other hand, estimate (6.1) shows that for small enough p0 >
0 we havex̂(U, p) near x∗ and Û(U, p) near U∗ uniformly in V(U∗, p0, δ, ǫ, Θ).
Consequently we find small enoughp0 > 0 andδ > 0 such that the inequality

y⊤F ′′
xx(x̂(U, p), U, p)y >

1

2
γ‖y‖2

holds for any(U, p) ∈ V(U∗, p0, δ, ǫ, Θ). HenceF (x, U, p) is strongly convex in a
neighborhood of̂x(U, p) and the proof of assertion (G3) is complete. Now from (G3)
follows thatx̂(U, p) is a local minimum ofF (x, U, p) in a neighborhood of̂x(U, p) and
due to (6.1) also in a neighborhood ofx∗. It remains to show that the neighborhood of
x∗ can be extended toΩp and consequently toRn. We start with the estimate:

F (x̂(U, p), U, p) ≤ F (x∗, U, p) = f(x∗) + 〈U, Φp (A(x∗))〉
= f(x∗) + 〈U, P0Φp (A(x∗)) P0〉 + 〈U, P⊥Φp (A(x∗))P⊥〉
≤ f(x∗) + 〈U, P0Φp (A(x∗)) P0〉 = f(x∗). (6.50)

Now suppose that there exists a constantC > 0 such that for eachp0 > 0 there exists
some(U, p) ∈ V(U∗, p0, δ, ǫ, Θ) and somẽx ∈ Ωp such that

F (x̃, U, p) ≤ F (x̂, U, p) − C.

Then from (6.50) we obtain

F (x̃, U, p) ≤ f(x∗) − C. (6.51)
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Now let Φp(A(x̃)) = S(x̃)Λ(x̃)S(x̃)⊤ and defineΦp(A(x̃))− = S(x̃)Λ−(x̃)S(x̃)⊤,
whereΛ−(x̃) = diag(min(0, λ1(x̃)), . . . , min(0, λm(x̃))). Then from (6.51) we see
that

f(x̃) ≤ f(x∗) −
〈
U, Φp(A(x̃))−

〉
− C.

Consequently from assumption(A5) and‖U‖ < Θ we get

f(x̃) ≤ f(x∗) − C

2

for p0 small enough and allp ≤ p0. On the other hand it is clear that

f(x̃) ≥ min{f(x)|x ∈ Ωp}

and from the continuity off follows that

min{f(x)|x ∈ Ωp} ≥ f(x∗) − C

4

for p0 small enough and thus we obtain

f(x̃) ≥ f(x∗) − C

4
.

This contradiction completes the proof of assertion (G1). Let us summarize our results
in the following theorem:

Theorem 6.14 Let A(x) be twice continuously differentiable and assumptions(A1)
to (A5) hold. Let furtherΘ > λm(U∗) and0 < ǫ < λm−r+1(U

∗). Then there exist
p0 > 0 and small enoughδ > 0 such that for any(U, p) ∈ V(U∗, p0, δ, ǫ, Θ)

a) There exists a vector

x̂ = x̂(U, p) = argmin{F (x, U, p)|x ∈ R
n}

such thatF ′
x(x̂, U, p) = 0.

b) For the pairx̂ andÛ = Û(U, p) = DΦp (A(x̂(U, p))) [U ] the estimate

max
{
‖x̂ − x∗‖, ‖Û − U∗‖

}
≤ Cp ‖U − U∗‖ (6.52)

holds, whereC is a constant independent ofp.

c) x̂(U∗, p) = x∗ andÛ(U∗, p) = U∗.

d) The functionF (x, U, p) is strongly convex with respect tox in a neighborhood
of x̂(U, p).
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Remark . Let us briefly discuss in which way Theorem 6.14 has to be adapted, if
we replace assumption(ϕ4) in Definition 4.1 by the weaker assumption(ϕ′

4). It turns
out that, while assertions a), b) and d) remain unchanged, the estimate in assertion c)
becomes

max
{
‖x̂ − x∗‖, ‖Û − U∗‖

}
≤ Cpϕ(−1/p) ‖U − U∗‖ . (6.53)

Now assumption(ϕ′
4) guarantees that we findp small enough, such that the contractive

character of (6.53) can be maintained.

The following Corollary is a direct consequence of Theorem 6.14 c):

Corollary 6.15 Letǫ, Θ, δ andp0 be given as in Theorem 6.14. Then forp1 < p0 small
enough and(U1, p1) ∈ V(U∗, p0, δ, ǫ, Θ), Algorithm 6.1.1 converges with a linear rate
of convergence. If we choosepk+1 < pk in step (iii) of Algorithm 6.1.1 for allk ≥ 0
and assume thatpk → 0 for k → ∞ the rate of convergence is superlinear.

We conclude this chapter by two remarks.

Remark . Letx+ be a local minimum of problem (SDP) satisfying assumptions (A2)
to (A5) and denote byU+ the corresponding (unique) optimal multiplier. Assume
further that there existsν > 0 such that there is no first order critical pointx̃ 6= x+

satisfying‖x̃ − x∗‖ ≤ ν. Then all statements of Theorem 6.14 remain valid, if we
replace(x∗, U∗) by (x+, U+) and the function̂x(U, p) by

x̂l(U, p) = argmin{F (x, U, p)|x ∈ R
n, ‖x − x+‖ ≤ ν}. (6.54)

Moreover Theorem 6.14 d) guarantees the existence ofη > 0 such thatF (x, U, p)
is strongly convex inS(x+, η) for all (U, p) ∈ V(U+, p0, δ, ǫ, Θ) and appropriately
chosen parametersp0, δ, ǫ andΘ. Consequently any local descent method applied to
the problem

(i′) Findxk+1 such that
∥∥F ′

x(x, Uk, pk
∥∥ = 0 (6.55)

will automatically find a solution, which satisfies the additional constraint‖xk+1 −
x+‖ ≤ ν, if it is started withx1 close enough tox+. Thus, if the first step in Al-
gorithm 6.1.1 is replaced by step(i′) above, the resulting algorithm is guaranteed to
converge to(x+, U+) with at least linear rate of convergence, provided that(U1, p1) ∈
V(U+, p0, δ, ǫ, θ), x1 ∈ S(x+, min{η, ν}) andp1 is small enough.

Remark . Whenever we solve a problem of type Algorithm 6.1.1(i) in practice, we
have to replace the exact minimum by an approximation of certain precision, which
can be determined by a finite procedure. In [70] this problem is analyzed for the so
called nonlinear rescaling method. We have not explored this problem in the context
of nonlinear semidefinite programming so far. Neverthelesswe achieve results of high
precision with a relatively moderate stopping criterion for the unconstrained minimiza-
tion in practice (compare Section 9.3.2).



Chapter 7

Globally Convergent
Algorithms

In the preceding section we have seen that Algorithm 6.1.1 converges provided the
initial iterates are chosen appropriately. Unfortunatelyin many practical situations no
such initial iterates are known and consequently Algorithm6.1.1 is not applicable. A
possible remedy is provided by the following hybrid strategy:

(i) Use a globally convergent algorithm (which is guaranteed to converge to a so-
lution of (SDP) for arbitrary initial iterates) to find(U, p) ∈ V(U∗, p0, δ, ǫ, Θ)
with p < C

2 .

(ii) Apply Algorithm 6.1.1.

In the framework of this section we are going to present two modified versions of Algo-
rithm 6.1.1, which both turn out to be globally convergent under certain assumptions.

7.1 The Shifted Barrier Approach

In our first approach, we use a constant multiplier matrix during all iterations. The ini-
tial multiplier is chosen to be the identity matrix. This leads to the following algorithm,
which we call shifted barrier approach below.

Algorithm 7.1.1 Let x1 ∈ Rn andp1 > 0 be given. Then fork = 1, 2, 3, . . . repeat
till a stopping criterium is reached:

(i) xk+1 = argmin
x∈Rn

F (x, Im, pk)

(ii) Uk+1 = DΦp(A(xk+1))[Im]

(iii) pk+1 < pk.

Remark . Again we are searching for a global minimum of an unconstrained opti-
mization problem in step (i) of Algorithm 7.1.1. From practical point of view such an

48



CHAPTER 7. GLOBALLY CONVERGENT ALGORITHMS 49

algorithm is only recommendable for problems of moderate dimension (where global
optimization techniques can be applied) or if the underlying problem is convex. In con-
trast to the preceding section, where we discussed the localconvergence properties of
Algorithm 6.1.1, the global minimization is essential in the analysis presented in this
section.

Definition 7.1 A class of Shifted Barrier functionsMΦ : Rn × R → R is defined by

MΦ(x, p) =

{
f(x) + 〈Im, Φp (A(x))〉 = FΦ(x, Im, p) for x ∈ Ωp

∞ for x /∈ Ωp.
(7.1)

In order to simplify notation we omit the subscriptΦ in the remainder of this section.
Along with M(x, p) we define

M(x, 0) = lim
p→0

M(x, p) =

{
f(x) for x ∈ Ω
∞ for x /∈ Ω.

(7.2)

The latter limit can be seen from the following Lemma.

Lemma 7.1 If Assumption(A5) holds, then there existsp0 > 0 such that

f(x) ≥ M(x, p) ≥ f(x) − O

(
pϕ

(
−1

p

))

for all x ∈ Ω.

Proof . The first inequality follows fromΦp (A(x)) � 0 for all x ∈ Ω. Assumption
(A5) guarantees the existence ofπ > 0 such that

λk (A(x)) ≥ −π for all x ∈ Ωp and allk = 1, . . . , m.

Now the right inequality follows from the properties ofϕ. �

Next we introduce an additional assumption

(A6) There existsp0 > 0 such thatΩp is a compact set for allp ≤ p0 (7.3)

and formulate the following Proposition.

Proposition 7.2 Let f and A be twice continuously differentiable and assume that
(A1) to (A4) and (A6) hold.

a) Then for anyp ≤ p0 there exists

x(p) = argmin{M(x, p)|x ∈ R
n}

such that
M ′

x(x(p), p) = 0

and lim
p→0

f(x(p)) = lim
p→0

M(x(p), p) = f(x∗).
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b) The pairx(p) andU(p) = DΦp (A(x(p))) [I] converge to(x∗, U∗) asp con-
verges to0.

Proof . a) The existence ofx(p) for all p ≤ p0 follows immediately from assump-
tion (A6). MoreoverM(x, p) is continuous inint(Ωp) and increases infinitely asx
approaches the boundary ofΩp, consequentlyM ′

x(x(p), p) = 0. Now consider a con-
vergent subsequence{x(ps)} ⊂ {x(p)} and letlimps→0 = x̄. Using (7.2) it is easy
to see that̄x ∈ Ω. Now, from Lemma 7.1 we see that for anyǫ > 0 we findps small
enough that

f(x(ps)) − ǫ ≤ f(x̄) ≤ f(x̄) + tr Φps
(A(x̄)) + ǫ ≤ M(x(ps), ps) + 2ǫ

and we obtain:

f(x(ps)) ≤ M(x(ps), ps) + 3ǫ ≤ M(x∗, ps) + 3ǫ ≤ f(x∗) + 3ǫ.

Sinceǫ was chosen arbitrarily, we get

f(x̄) = lim
ps→0

f(x(ps)) ≤ f(x∗) and thusf(x̄) = f(x∗).

Consequently for any convergent subsequence{x(ps)} with ps → 0 we have

lim
ps→0

f(x(ps)) = f(x̄) = f(x∗),

hence
lim
p→0

f(x(p)) = f(x∗) and thereforelim
p→0

M(x(p), p) = f(x∗).

b) Assumptions(A2) to (A4) guarantee that(x∗, U∗) is a unique KKT-pair. Therefore
we conclude from a) thatlimp→0 x(p) = x∗. Next we will show thatlimp→0 U(p) =
U∗. First we rewrite the multiplier update formula making use of the eigenvalue de-
compositionA(x(p)) = S(x(p))diag(λ1(x(p)), . . . , λm(x(p)))S(x(p))⊤ :

U(p) = DΦp (A(x(p))) [I]

= S(x(p))
(
[∆ϕ(λi(x(p)), λj(x(p)))]

m
i,j=1 • S(x(p))⊤ImS(x(p))

)
S(x(p))⊤

= Φ′
p (A(x(p))) ,

where

Φ′
p : S

m → S
m

A(x(p)) 7→ S(x(p))




ϕ′
p (λ1(x(p))) 0 . . . 0

0
...

...
. . . 0

0 . . . 0 ϕ′
p (λm(x(p)))




S(x(p))⊤ .

From the definitions ofx(p) andU(p) and a) we obtain

0 = M ′
x(x(p), p) = f ′(x(p)) +

[〈
Φ′

p (A(x(p))) ,Ai(x(p))
〉]n

i=1
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for all p < p0, consequently

0 = lim
p→0

(
f ′(x(p)) +

[〈
Φ′

p (A(x(p))) ,Ai(x(p))
〉]n

i=1

)

= f ′(x∗) +

[〈
lim
p→0

Φ′
p (A(x(p))) ,Ai

〉]n

i=1

andlimp→0 Φ′
p (A(x(p))) exists. Furthermore

lim
p→0

〈
A(x(p)), Φ′

p (A(x(p)))
〉

= lim
p→0

m∑

i=1

λi(x(p))ϕ′
p(λi(x(p)))

=

m∑

i=1

λi(x
∗) lim

p→0
ϕ′

p(λi(x(p)))

=

m−r∑

i=1

λi(x
∗) lim

p→0
ϕ′

p(λi(x(p)))

︸ ︷︷ ︸
=0

= 0.

Now from the uniqueness of the KKT-pair(x∗, U∗) we concludelim
p→0

U(p) = U∗. �

Next we want to derive upper bounds for the error estimates‖x(p)− x∗‖ and‖U(p)−
U∗‖. Let us therefore define∆x = x(p) − x∗, ∆U = U(p) − U∗ and a function

Ũ : R
n × R+ → S

m
+

(x, p) 7→ DΦp (A(x)) [I] .

Now, using Taylor approximations in local neighborhoods ofx∗ and the notation intro-
duced in Chapter 5 we obtain the following formulas:

A′
i(x) = Ai +

n∑

j=1

Ai,j∆xj + HA
i (∆x), for all i = 1, . . . , m, (7.4)

whereHA
i : Rn → Sm, HA

i (0) = 0 and‖HA
i ‖ = o (‖∆x‖) for all i = 1, . . . , n,

Ũ(x, p) = Ũ(x∗, p) +

n∑

j=1

(
∂

∂xj
Ũ(x∗, p)

)
∆xj + H

eU (∆x) (7.5)

= S diag
(
ϕ′

p(λ1(x
∗)), . . . , ϕ′

p(λm−r(x
∗)), 1, . . . , 1

)
S⊤ +

n∑

j=1

S
([

∆ϕ′
p(λk(x∗), λl(x

∗))
]m
k,l=1

• S⊤AjS
)

S⊤∆xj + H
eU (∆x),

whereH
eU : Rn → Sm, H

eU (0) = 0 and‖H eU‖ = o (‖∆x‖) and finally

f ′(x) = f ′(x∗) + f ′′(x∗)∆x + Hf (∆x), (7.6)

whereHf : Rn → Rn, Hf (0) = 0 and‖Hf‖ = o (‖∆x‖).
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Lemma 7.3

a) P0Ũ(x∗, p)P⊥ = 0.

b) ‖P⊥Ũ(x∗, p)P⊥‖ = O(p).

c) P0Ũ(x∗, p)P0 = P0.

Proof .

a) P⊥Ũ(x∗, p)P0 = SD⊥diag(ϕ′
p(λ1(x

∗)), . . . , ϕ′
p(λm−r(x

∗))
︸ ︷︷ ︸

m−r

, 1, . . . , 1︸ ︷︷ ︸
r

)D0S
⊤= 0.

b)
∥∥∥P⊥Ũ(x∗, p)P⊥

∥∥∥ =

∥∥∥∥∥

m−r∑

k=1

ϕ′
p(λk(x∗))sks⊤k

∥∥∥∥∥ ≤
m−r∑

k=1

ϕ′
p(λk(x∗)) = O(p).

c) P0Ũ(x∗, p)P0 =

m∑

k=m−r+1

ϕ′
p(λk(x∗))sks⊤k = P0. �

Lemma 7.4

a)

∥∥∥∥P⊥
∂

∂xi
Ũ(x∗, p)P⊥

∥∥∥∥ = O(p) for all i = 1, . . . , n.

b) lim
p→0

P0
∂

∂xi
Ũ(x∗, p)P⊥ = −

µ(x∗)−1∑

l=1

(λl)
−1P0AiPl(x

∗) and

lim
p→0

P⊥
∂

∂xi
Ũ(x∗, p)P0 = −

µ(x∗)−1∑

l=1

(λl)
−1Pl(x

∗)AiP0 for all i = 1, . . . , n.

c) P0
∂

∂xi
Ũ(x∗, p)P0 = p−1ϕ′′(0)P0AiP0 for all i = 1, . . . , n.

Proof . For all i = 1, . . . , n we have:

a)

∥∥∥∥P⊥
∂

∂xi
Ũ(x∗, p)P⊥

∥∥∥∥ =
∥∥∥D⊥

([
∆ϕ′

p(λl(x
∗), λk(x∗))

]m
l,k=1

• S⊤AiS
)

D0

∥∥∥

=
∥∥∥
[
∆ϕ′

p(λl(x
∗), λk(x∗))

]m−r

l,k=1
•
[
S⊤AiS

]m−r

l,k=1

∥∥∥ = O(p),

since∆ϕ′
p(λl(x

∗), λk(x∗)) ≤ ϕ′′
p(λm−r(x

∗)) ≤ ϕ′′
p(σ) = O(p).

b) P0
∂

∂xi
Ũ(x∗, p)P⊥ = P0




µ(x∗)∑

k,l=1

ϕ′
p(λl(x

∗), λk(x∗))Pk(x∗)AiPl(x
∗)



P⊥

=

µ(x∗)−1∑

l=1

1 − ϕ′
p(λl(x

∗))

0 − λl(x∗)
P0AiPl(x

∗)
p→0→ −

µ(x∗)−1∑

l=1

(λl)
−1P0AiPl(x

∗).

The second limit follows analogously.
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c) P0
∂

∂xi
Ũ(x∗, p)P0 = P0




µ(x∗)∑

k,l=1

ϕ′
p(λl(x

∗), λk(x∗))Pk(x∗)AiPl(x
∗)



P0

= ϕ′′
p(0)P0AiP0. �

The following proposition provides us with error estimatesfor x(p) and the “active
part” of U(p).

Proposition 7.5 Let f and A be twice continuously differentiable and assume that
(A1) to (A4) and (A6) are satisfied. Then the estimate

max
{
‖x(p) − x∗‖, ‖E⊤

0 U(p)E0 − U∗
0 ‖
}
≤ C6p (7.7)

holds, whereC6 is a constant independent ofp.

Proof . Using the Taylor approximations (7.4) to (7.6), we obtain

0 = M(x(p), p) = f ′(x∗) + f ′′(x∗)∆x + Hf (∆x) +
[〈

P0(∆U + U∗

︸ ︷︷ ︸
=U(p)

)P0,Ai +

n∑

j=1

Ai,j∆xj + HA
i (∆x)

〉]n
i=1

+

[〈
P0U(p)P⊥ + P⊥U(p)P0 + P⊥U(p)P⊥,A′

i(x(p))
〉]n

i=1

= f ′(x∗) +
[〈

P0U
∗P0,Ai

〉]n
i=1

+
(
f ′′(x∗) +

[〈
P0U

∗P0,Ai,j

〉]n
i,j=1

)
∆x +

[〈
P0∆UP0,Ai

〉]n
i=1

+ Hf (∆x) +
[〈

P0

(
∆U + U∗

)
P0, H

A
i (∆x)

〉]n
i=1

+

[〈
P0∆UP0,

n∑

j=1

Ai,j∆xj

〉]n
i=1

+

[〈
P0U(p)P⊥ + P⊥U(p)P0 + P⊥U(p)P⊥,A′

i(x(p)))
〉]n

i=1

=
(
f ′′(x∗) +

[〈
P0U

∗P0,Ai,j

〉]n
i,j=1

)
∆x +

[〈
P0∆UP0,Ai

〉]n
i=1

+

Hf (∆x) +
[〈

∆U + U∗, HA
i (∆x)

〉]n
i=1

+
[〈

∆U,

n∑

j=1

Ai,j∆xj

〉]n
i=1

+

[〈
P0U(p)P⊥ + P⊥U(p)P0 + P⊥U(p)P⊥,Ai

〉]n
i=1

=
(
f ′′(x∗) +

[〈
P0U

∗P0,Ai,j

〉]n
i,j=1

)
∆x +

[〈
P0∆UP0,Ai

〉]n
i=1

+

R1(p) + R2(p), (7.8)
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where

R1(p) =
[〈

P0U(p)P⊥ + P⊥U(p)P0 + P⊥U(p)P⊥,Ai

〉]n
i=1

,

R2(p) = Hf (∆x) +
[〈

∆U + U∗, HA
i (∆x)

〉]n
i=1

+
[〈

∆U,

n∑

j=1

Ai,j∆xj

〉]n
i=1

and‖R2(p)‖ is of ordero(‖∆x‖), which can be seen from the formulas (7.4) to (7.6)
and the fact that

∆U =

n∑

j=1

(
∂

∂xj
Ũ(x∗, p)

)
∆xj + H

eU (∆x).

Further, using Lemma 7.3 and Lemma 7.4 we get

R1(p) =
[〈

P0U(x∗, p)P⊥ + P⊥U(x∗, p)P0,Ai

〉]n
i=1

+ (7.9)

[〈
P⊥U(x∗, p)P⊥,Ai

〉]n
i=1

+

[〈
P⊥

( n∑

j=1

∆xj
∂

∂xj
U(x∗, p)

)
P⊥,Ai

〉]n
i=1

+

[〈
P0

( n∑

j=1

∆xj
∂

∂xj
U(x∗, p)

)
P⊥,Ai

〉]n
i=1

+

[〈
P⊥

( n∑

j=1

∆xj
∂

∂xj
U(x∗, p)

)
P0,Ai

〉]n
i=1

+

[〈
HU (∆x), (P0AiP⊥ + P⊥AiP0 + P⊥AiP⊥

〉]n
i=1

= R3(p) + R4(p) + M(p)∆x, (7.10)

where‖R3(p)‖ is a term of ordero(‖∆x‖), ‖R4(p)‖ is a term of orderO(p) and

M(p) =
[〈

P0
∂

∂xj
U(x∗, p)P⊥ + P⊥

∂

∂xj
U(x∗, p)P0,Ai

〉]n
i,j=1

p→0→
[
− 2

µ(x∗)−1∑

l=1

(
λl

)−1〈
P0AiPl(x

∗),Aj

〉]n
i,j=1

= −2
[〈

P0,Ai

µ(x∗)−1∑

l=1

(
λl

)−1

sls
⊤
l Aj

〉]n
i,j=1

= −2
[〈

P0,AiA†(x∗)Aj

〉]n
i,j=1

. (7.11)
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Combining (7.8), (7.10) and (7.11), defining∆u = svec(∆U) and recalling that
∆x → 0 for p → 0 we obtain the equation

[
L′′

xx(x∗, U∗) + M(p)
]
∆x +

[
svec(P0AiP0)

]n
i=1

∆u = R(p), (7.12)

where the right hand side termR(p) is of orderO(p). On the other hand from the
Taylor approximation for̃U(x, p) we see

E⊤
0 U(p)E0 = E⊤

0 Ũ(x∗, p)E0 +

n∑

j=1

∆xjE
⊤
0

∂

∂xj
Ũ(x∗, p)E0 + E⊤

0 HU (∆x)E0

= Ir +
ϕ′′(0)

p

n∑

j=1

∆xjE
⊤
0 AjE0 + E⊤

0 HU (∆x)E0. (7.13)

Using the abbreviations∆u0 = svec(E⊤
0 ∆UE0) andN =

([
svec

(
E⊤

0 AiE0

)]n
i=1

)⊤

we get from (7.13)

−p∆u0 + ϕ′′(0)N∆x = −pE⊤
0 HU (∆x)E0 + p svec(U∗

0 − Ir)︸ ︷︷ ︸
=Q(p)

,

(7.14)

whereQ(p) is of orderO(p). Finally, combining (7.12) and (7.14) we obtain

D(p)

(
∆x
∆u

)
=

(
L′′

xx(x∗, U∗) + M(p) N
N⊤ −pIr

)(
∆x
∆u

)
=

(
R(p)
Q(p)

)
. (7.15)

Recalling that(M(p))i,j = −2〈P0,AiA†(x∗)Aj〉 and taking into account thatP0 has
the same eigenvectors and the same non-zero structure of eigenvalues asU∗, we can
prove exactly in the same way as it was done in the proof of Lemma 6.8 that there
existsκ0 > 0 such that

∥∥D−1(p)
∥∥ ≤ κ0, for all p < p0.

Now from (7.15) we obtain the estimate

max {‖x(p) − x∗‖, ‖u0(p) − u∗
0‖} ≤ C6p (7.16)

for a constantC6 > 0 independent ofp. �

The following Lemma provides an error estimate for the “inactive” part ofU .

Lemma 7.6

‖P0U(p)P⊥ + P⊥U(p)P0 + P⊥U(p)P0‖ ≤ pC7.

for a constantC7 > 0 independent ofp.



CHAPTER 7. GLOBALLY CONVERGENT ALGORITHMS 56

Proof . We start with the inequality

‖P0U(p)P⊥ + P⊥U(p)P0 + P⊥U(p)P0‖ ≤ 2 ‖P0U(p)P⊥‖ + ‖P⊥U(p)P⊥‖ .

From Lemma 7.3, Lemma 7.4 and (7.6) we know that‖P⊥U(p)P⊥‖ is of orderO(p).
Now letS(p) diag(λ1(p), . . . , λm(p))S(p)⊤ be an eigenvalue decomposition ofA(x(p)),
denote bysl(p) the l-th column ofS(p) and consider a single entry of the matrix
P0U(p)P⊥:

(P0U(p)P⊥)i,j = s⊤i U(p)sj =
m∑

l=1

s⊤i sl(p)ϕ′
p(λl(p))sl(p)⊤sj. (7.17)

Sincei ∈ {m−r+1, . . . , m} andj ∈ {1, . . . , m−r} we find for eachl ∈ {1, . . . , m}
in the sum at the right hand side of equation (7.17) a product of type

s⊤i sl(p), wherel ∈ {1, . . . , m − r}

or
sl(p)⊤sj , wherel ∈ {m − r + 1, . . . , m}.

Now, using the same arguments as in the proof of Lemma 6.13 we obtain
∥∥s⊤i sl(p)

∥∥ = s⊤i sl(p)sl(p)⊤si ≤ tr
(
E⊤

0 Px∗,⊥E0

)
= O(p)

and ∥∥s⊤j sl(p)
∥∥ = s⊤j sl(p)sl(p)⊤sj ≤ tr

(
E⊤

⊥Px∗,0E⊥

)
= O(p).

Taking further into account thatϕ′
p(λl(p)) → λl(U

∗) for p → 0 and alll = 1, . . . , m
we getϕ′

p(λl(p)) ≤ 2λl(U
∗) for all l = 1, . . . , m andp small enough. Finally we con-

clude from (7.17) and the estimates above thatP0U(p)P⊥ = O(p) and the assertion of
Lemma 7.6 follows. �

We conclude this section with the following Theorem, which summarizes the conver-
gence properties of Algorithm 7.1.1:

Theorem 7.7 Let f andA be twice continuously differentiable and suppose that as-
sumption (A6) holds. Then

a) For anyp ≤ p0 there exists

x(p) = argmin{M(x(p), p)|x ∈ R
n}

such that
M ′

x(x̂, p) = 0

and lim
p→0

f(x(p)) = lim
p→0

M(x(p), p) = f(x∗).

If moreover conditions(A3) and(A4) are satisfied, then
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b) the estimate
max {‖x(p) − x∗‖, ‖U(p)− U∗‖} ≤ C8p (7.18)

holds for the pairx(p) andU(p) = DΦp (A(x(p))) [I], whereC8 is a constant
independent ofp.

Proof . a) follows from Proposition 7.2.

b) follows from Proposition 7.5 and Lemma 7.6. �

7.2 The General Approach

Our second globalization approach deals with the general case, where we are faced
with potential non-convexity off and/orA. In this situation we can not expect to
be able to find global minima in step (i) of Algorithm 6.1.1. Thus the unconstrained
minimization process is replaced by the (approximative) search for a first order critical
point of problem (SDP). The result is the following Algorithm:

Algorithm 7.2.1 Let x0 ∈ Rn, U0 ∈ Sm
++, p0 > 0 and ǫ0 > 0 be given. Then for

k = 0, 1, 2, . . . repeat till a stopping criterium is reached:

(i) Find xk+1 such that
∥∥F ′

x(xk+1, Im, pk)
∥∥ ≤ ǫk

(ii) Uk+1 = DΦp (A(x))
[
Uk
]

(iii) pk+1 < pk, ǫk+1 < ǫk.

As a direct consequence of the modifications, which lead to Algorithm 7.2.1, we will
no longer be able to guarantee that the sequence{xk}k∈N generated by Algorithm 7.2.1
converges. Therefore we have to focus on convergent subsequences: Let{xkl}l∈N be
a convergent subsequence of{xk}k∈N. The existence of at least one convergent subse-
quence is guaranteed by assumption (A6), which we assume to be satisfied throughout
this section. Let further̃x = liml→∞ xkl andS̃Λ̃S̃⊤ = A(x̃),where

Λ̃ = Λ̃ (A(x̃)) = diag
(
λ̃1, . . . , λ̃m−r, λ̃m−r+1, . . . , λ̃m

)
,

λ̃i denote the increasingly ordered eigenvalues ofA(x̃) for all i = 1, . . . , m and we
assume without loss of generality that there existsσ < 0 such that

λ̃1 ≤ λ̃2 ≤ . . . ≤ λ̃m−r < σ < 0 ≤ λ̃m−r+1 ≤ . . . ≤ λ̃m.

Further, thei-th column ofS̃ is denoted bỹsi for all i = 1, . . . , m and we define in
analogy to Chapter 5:

P0 = E0E
⊤
0 = S̃D0S̃

⊤ =
m∑

i=m−r+1

s̃ls̃
⊤
l and P⊥ = E⊥E⊤

⊥ = S̃D⊥S̃⊤ =
m−r∑

i=1

s̃ls̃
⊤
l .

Using these definitions, we reformulate assumption(A3) in the following way:
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(A3′) The nondegeneracy constraint qualification holds at the limit point x̃ of the se-
quence{xkl}l∈N.

Moreover we introduce two additional assumptions on problem (SDP):

(A7) The sequence of the Lagrange multiplier estimates generated by Algorithm 7.2.1
stays bounded.

(A8) U1 ∈ Sm
++.

Assumption(A7) is frequently used in the analysis of augmented Lagrangian type
methods (see, for example, [12]). Next we prove that each cluster point of the sequence
(xk, Uk)k∈N generated by Algorithm 7.2.1 converges to a first order critical point of
problem (SDP). The proof is divided into several steps. We start with the following
Proposition, which guarantees that Algorithm 7.2.1 is welldefined:

Proposition 7.8 Suppose that assumption (A6) holds. Let furtherf andA be continu-
ously differentiable. Then there existsp0 > 0 such that for allp < p0 and all U ≻ 0
there exists at least onex ∈ int (Ωp) with F ′

x(x, U, p) = 0.

Proof . The assertion follows immediately from the compactness ofΩp and the fact
thatF increases infinitely asx approaches the boundary ofΩp. �

Next we want to show that the sequence of multipliers{Ukl}l∈N converges. We start
with the following Lemma:

Lemma 7.9 Uk ≻ 0 for all k ≥ 0.

Proof . Assumption(A8) guarantees that we find somek0 ≥ 0 such that

Uk ≻ 0 for all k ≤ k0. (7.19)

Now, using the abbreviationsS(xk) = S
(
A(xk)

)
andλi(x

k) = λi

(
A(xk)

)
for all

i = 1, . . . , m we obtain

Uk = S(xk)
([

∆ϕ(λi(x
k), λj(x

k))
]m
i,j=1

• S(xk)⊤Uk−1S(xk)
)

S(xk)⊤.

The matrixS(xkl)⊤UkS(xkl) is positive definite due to assumption (7.19). The matrix[
∆ϕ(λi(x

kl), λj(x
kl))
]m
i,j=1

is positive semidefinite due to the monotonicity ofΦ.

Now the positive definiteness ofUk+1 follows for example from Theorem 5.3.6 in
[45]. �

Lemma 7.10 Let (Bk)k∈N ∈ (Sm
+ )N be a sequence of positive semidefinite matrices.

Then the following implication holds true:

lim
k→∞

tr(BkP⊥) = 0 ⇒ lim
k→∞

∥∥BkP⊥

∥∥ = 0.
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Proof . LetSBkΛBkS⊤
Bk be an eigenvalue decomposition ofBk and denote byλBk,i

for all i = 1, . . . , m the corresponding eigenvalues. Then we have

tr(BkP⊥) = tr(E⊤
⊥BkE⊥) = tr(E⊤

⊥SBkΛBkS⊤
BkE⊥)

=

m−r∑

i=1

s⊤i SBkΛBkS⊤
Bksi =

m−r∑

i=1

(s⊤i SBk)ΛBk(s⊤i SBk)⊤

=

m−r∑

i=1

m∑

j=1

λBk,j(s
⊤
i sBk,j)

2.

Since all terms are positive we get fromlimk→∞ tr(BkP⊥) = 0 that for each pair
(i, j) ∈ {1, . . . , m − r} × {1, . . . , m}

λBk,j(s
⊤
i sBk,j)

2 → 0 for k → ∞

or equivalently

λBk,j → 0 for k → ∞ ∨ s⊤i sBk,j → 0 for k → ∞. (7.20)

On the other hand we derive:
∥∥BkP⊥

∥∥2
= tr(P⊥(Bk)2P⊥) = tr(E⊤

⊥(Bk)2E⊥) = tr(E⊤
⊥SBkΛ2

BkS⊤
BkE⊥)

=

m−r∑

i=1

s⊤i SBkΛ2
BkS⊤

Bksi =

m−r∑

i=1

(s⊤i SBk)Λ2
Bk(s⊤i SBk)⊤

=

m−r∑

i=1

m∑

j=1

λ2
Bk,j(s

⊤
i sBk,j)

2.

Finally we conclude from (7.20) that
∥∥BkP⊥

∥∥2 → 0 for k → ∞. �

Now we are able to prove the following Proposition.

Proposition 7.11 Ukl

⊥ = P⊥UklP⊥ + P0U
klP⊥ + P⊥UklP0 → Om for l → ∞.

Proof . We consider the definition ofUkl in the following form

Ukl = S(xkl)
([

∆ϕ(λi(x
kl), λj(x

kl)
]m
i,j=1

• S(xkl)⊤Ukl−1S(xkl)
)

S(xkl)⊤.

From assumption (A7) follows immediately that the norm of the matrix

M(xkl) :=
[
∆ϕ(λi(x

kl), λj(x
kl)
]m
i,j=1

• S(xkl)⊤Ukl−1S(xkl)

is bounded from above. Furthermore fori, j ≤ m − r we obtain for l large enough:

∆ϕ(λi(x
kl ), λj(x

kl)) ≤ ϕ′
(σ

2

)
= O(p). (7.21)

Now Ukl can be written in the following abstract from:

Ukl = S(xkl)

(
Z1(x

kl ) Z2(x
kl)

Z2(x
kl)⊤ Z3(x

kl)

)
S(xkl)⊤,
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whereZ1(x
kl) ∈ Sm−r tends to0 for l → ∞ and the norms ofZ2(x

kl) ∈ Mm−r,r

andZ3(x
kl ) ∈ Sr,r are restricted. Due toS(xkl) → S for l → ∞ we get

S⊤S(xkl) → Im andS(xkl)⊤S → Im for l → ∞

and

〈P⊥, Ukl〉 = tr

(
SD⊥S⊤S(xkl)

(
Z1(x

kl) Z2(x
kl )

Z2(x
kl)⊤ Z3(x

kl )

)
S(xkl)⊤SD⊥S⊤

)

→ tr

(
D⊥

(
0 Z2(x

kl)
Z2(x

kl)⊤ Z3(x
kl)

)
D⊥

)
= 0

for l → ∞. Now the assertion of Proposition 7.11 follows from Lemma 7.10. �

The following proposition states convergence of the sequence
{
Ukl
}

l∈N
.

Proposition 7.12 The sequence
{
Ukl

0

}

l∈N

=
{
P0U

klP0

}
l∈N

converges.

Proof . We start with the following formula for the partial derivative ofF with respect
to x:

F ′
x(xkl , Ukl−1, pkl−1) = f ′

(
xkl
)

+
[〈

P0A′
i(x

kl)P0, U
kl
〉]n

i=1
+

[〈
A′

i(x
kl), P⊥UklP0 + P0U

klP⊥ + P⊥UklP⊥

〉]n
i=1

= f ′
(
xkl
)

+
[〈

E⊤
0 A′

i(x
kl )E0, E

⊤
0 UklE0

〉]n
i=1

+ Rkl

= f ′
(
xkl
)

+ Rkl +
(
Dkl

)⊤
svec

(
E⊤

0 UklE0

)
, (7.22)

where
Rkl =

[〈
A′

i(x
kl), P⊥UklP0 + P0U

klP⊥ + P⊥UklP⊥

〉]n
i=1

and
Dkl =

[
svec

(
E⊤

0 A′
i(x

kl )E0

)]n
i=1

.

Using assumption(A3′), we find l0 large enough thatDkl has maximal rank for all
l ≥ l0. Hence we can rewrite equation (7.22) as

svec
(
E⊤

0 UklE0

)
=
[
DklDklT

]−1
Dkl

(
f ′
(
xkl
)

+ Rkl + F ′
x(xkl , Ukl−1, pkl−1)

)
.

Now from Proposition 7.11 and the fact that‖F ′
x(xkl , Ukl−1, pkl−1)‖ ≤ ǫkl andǫkl →

0 for l → ∞ we obtain

svec
(
E⊤

0 UklE0

)
→ −

[
DD⊤

]−1
Df ′ (x̃) for l → ∞,

whereD = liml→∞ Dkl =
[

svec
(
E⊤

0 AiE0

)]n
i=1

and therefore

lim
l→∞

P0U
klP0 = −E0 smat

([
DD⊤

]−1
Df ′(x̃)

)
E⊤

0 .

�

Now we are able to state the following convergence result:
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Theorem 7.13 Suppose that assumptions (A3’), (A4), (A5), (A6’), (A7) and(A8) hold.
Let furtherf andA be twice continuously differentiable and assume thatlimk→∞ pk =
limk→∞ ǫk = 0. Then the limit point of any convergent subsequence of the sequence
(xk, Uk)k∈N generated by Algorithm 7.2.1 is a KKT-point of problem (SDP).

Proof . Let (xkl , Ukl)l∈N be a convergent subsequence of(xk, Uk)k∈N and let

lim
l→∞

(xkl , Ukl) = (x̃, Ũ).

Then the stationarity of(x̃, Ũ) follows directly from step (i) of Algorithm 7.2.1 and the
fact thatǫkl → 0 for l → ∞. The feasibility ofx̃ follows from F (x, Ukl , pkl) = ∞
for all x /∈ Ωpkl andpkl → 0 for l → ∞. It remains to prove that the complementary

slackness condition is satisfied for the pair(x̃, Ũ). Recalling that‖Ukl‖ and
∥∥A(xkl )

∥∥
are bounded and using Proposition 7.11 we obtain

lim
l→∞

〈
A(xkl ), Ukl

〉
= lim

l→∞

〈
P0A(xkl)P0, U

kl
〉

+ lim
l→∞

〈
A(xkl), P⊥UklP0

〉
+

lim
l→∞

〈
A(xkl ), P0U

klP⊥

〉
+ lim

l→∞

〈
A(xkl ), P⊥UklP⊥

〉
= 0.

Consequently(x̃, Ũ) is a KKT-point of problem (SDP) and the proof of Theorem 7.13
is complete. �

Let us conclude this section with the following discussion:Let x+ be a local optimum
of problem (SDP) andU+ the corresponding optimal multiplier. Assume further that
the pair(x+, U+) is a cluster point of the sequence(xk, Uk)k∈N. Then we can stop the
penalty parameter update for somep0 > 0 and Algorithm 7.2.1 switches automatically
to Algorithm 6.1.1. Of course we do not know this valuep0 a priori. Instead we use
the KKT-error defined by

ΥKKT(x, U) = min {λmax (A(x)) , |〈A(x), U〉| , ‖∆xF (x, U, p)‖} , (7.23)

in order to decide if a penalty update should be performed or not. This leads to the
following algorithm

Algorithm 7.2.2 Let x1 ∈ Rn, U1 ∈ Sm
++, p1 > 0 and ǫ0 > 0 be given. Then for

k = 1, 2, . . . repeat till a stopping criterium is reached:

(i) Find xk+1 such that
∥∥F ′

x(xk+1, Uk, pk)
∥∥ ≤ ǫk.

(ii) SetUk+1 = DΦp (A(x))
[
Uk
]
.

(iii) If ΥKKT(xk+1, Uk+1) < ΥKKT(xk, Uk) go to(iv). Otherwise

setpk+1 < pk.

(iv) Setǫk+1 ≤ ǫk.

Note that Algorithm 7.2.2 will be further refined in Chapter 9.



Chapter 8

Complexity Issues and
Consequences

In the first part of this chapter we derive a formula for the computational complexity
of Algorithm 7.2.2. We further observe that the complexity formula is invariant with
respect to sparsity in the problem data. In the second part wedemonstrate how we can
overcome this problem by the choice of a special penalty function.

8.1 Complexity Analysis

In order to guess the computational complexity of Algorithm7.2.2 we have to analyze
the computational complexity of its components – step(i) to step(iii). Obviously
the penalty update, as an operation involving just one real number can be neglected
in this context. Moreover we will see that the calculation ofthe multiplier estimate is
implicitly performed during the solution of the unconstrained minimization problem in
step(i). Consequently we can limit our complexity analysis to the problem

min
x∈Rn

F (x, U, p). (8.1)

As we will see in Chapter 9.1, our method of choice for the approximate solution of
problem (8.1) is a second order method. The computational complexity of this method
is dominated by the operations

(O1) assembling ofF ′
x(x, U, p),

(O2) assembling ofF ′′
xx(x, U, p),

(O3) solution of linear systems of the form

(F ′′
x (x, U, p) + D)∆x = −F ′

x(x, U, p), (8.2)

whereD is a diagonal matrix, whose computation is uncritical with respect to
computational complexity.
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Moreover we assume that

(S1) the number of evaluations of steps (O1) to (O3) is independent of the problem
dimensionsn andm.

Thus the computational complexity of Algorithm 6.1.1 is fully determined by the com-
putational complexities of (O1) to (O3).

Now using the abbreviationQ(x) = [∆ϕ(λk(x), λl(x))]
m
k,l=1 we obtain from The-

orem 2.3

F ′
x(x, U, p) = f ′(x) +

[〈
U, S(x)

(
Q(x) •

[
S(x)⊤A′

i(x)S(x)
])

S(x)⊤
〉]n

i=1

= f ′(x) +
[〈

S(x)
([

S(x)⊤US(x)
]
• Q(x)

)
S(x)⊤,A′

i(x)
〉]n

i=1

= f ′(x) + [〈DΦp(A(x))[U ],A′
i(x)〉]ni=1 ,

where the second equation follows from the properties of thetrace operator and the
third equation can be seen from Corollary 2.4. Note that the second formula has at
least two significant advantages over the first one:

• We have to calculate just one directional derivative instead of n,

• the multiplier update is calculated implicitly.

Now the complexity formula for the computation of the gradient can be constructed
from the steps listed below together with their complexity

• Compute an eigenvalue decomposition ofA(x) −→ O(m3).

• Compute the matrixDΦp(A(x))[U ] −→ O(m3).

• For all i compute the inner products〈DΦp(A(x))[U ],A′
i(x)〉 −→ O(m2n).

Consequently the gradient assembling takesO(m3)+O(m2n) steps. Next we calculate
the complexity of the Hessian assembling. The Hessian of theAugmented Lagrangian
can be written as

F ′′
xx(x, U, p) = f ′′(x) +

[〈
DΦp(A(x))[U ],A′′

i,j(x)
〉]n

i,j=1
+

2
[〈

D2Φp(A(x))[U,A′
j(x)],A′

i(x)
〉]n

i,j=1
. (8.3)

Obviously we needO(m2n2) time to compute the second term in formula (8.3), if we
assume that the matrixDΦp(A(x))[U ] has already been calculated. Using Theorem
6.6.30 in [45] the last term in formula (8.3) can be reformulated as

[
m∑

k=1

sk(x)TA′
i(x)

[
S(x)

(
Qk • [S(x)T US(x)]

)
S(x)T

]
A′

j(x)sk(x)

]n

i,j=1

, (8.4)

whereQk(x) denotes the matrix[∆2ϕ(λr(x), λs(x), λk(x))]mr,s=1 andsk is thek-th
row of the matrixS(x). Essentially, the construction of (8.4) is done in three steps,
shown below together with their complexity:



CHAPTER 8. COMPLEXITY ISSUES AND CONSEQUENCES 64

• For allk compute matricesS(x)
(
Qk • [S(x)T US(x)]

)
S(x)T −→ O(m4).

• For allk, i compute vectorssk(x)TA′
i(x) −→ O(nm3).

• Multiply and sum up expressions above−→ O(m3n + m2n2).

Consequently the Hessian assembling takesO(m4+m3n+m2n2) time. Finally, taking
into account that the complexity of the solution of one linear system of type (8.2) is of
orderO(n3), we are able to state the following Theorem:

Theorem 8.1 Suppose that assumption(S1) holds. Then the computational complex-
ity of Algorithm 7.2.2 is of the orderO(m4 + m2n2 + n3).

Proof . The assertion of the Theorem follows immediately from the complexity for-
mulas above and the fact thatnm3 ≤ m4 for n ≤ m andnm3 ≤ n2m2 for n ≥ m. �

Next we want to discuss the ability of Algorithm 6.1.1 to exploit sparsity in the
problem data. We assume that there are at mostK < m2 non-zero entries in the con-
straint matrixA(x) (and consequently in all partial derivativesA′

i(x)). Unfortunately
the complexity formula we obtain in this case, is just the formula derived in Theorem
8.1 for denseproblem data. This is due to the fact that the matricesQk andS(x) are
generally dense, even if the matrixA(x) is very sparse. The disenchanting conclusion
is that

Algorithm 7.2.2 is generally not able to exploit sparsity inthe problem data.

Fortunately the situation can be improved significantly by aspecial choice of the
penalty functionΦp.

8.2 A Special Penalty Function

The problem that Algorithm 7.2.2 is not able to exploit sparsity in the problem data is
mainly caused by the fact that it is based on eigenvalue decompositions. Subsequently
we will show how we can avoid this drawback by a special choiceof the penalty func-
tion ϕ. In particular, we are interested a function that allows fora “direct” computation
of Φp and its first and second derivatives. The function of our choice is the hyperbolic
penalty functionϕhyp introduced in Chapter 4.2.

Theorem 8.2 LetA : R
n → S

m be a convex operator. Let further beΦhyp
p the primary

matrix function associated withϕhyp. Then for anyx ∈ Rn the following formulas
hold:

Φrec
p (A(x)) = p2Z(x) − pI (8.5)

∂

∂xi
Φrec

p (A(x)) = p2Z(x)A′
i(x)Z(x) (8.6)

∂2

∂xi∂xj
Φrec

p (A(x)) = p2Z(x)(A′
i(x)Z(x)A′

j(x) −A′′
i.j(x)

+ A′
i(x)Z(x)A′

j (x)
)
Z(x) (8.7)
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where
Z(x) = (A(x) − pI)−1 .

Proof . Let Im denote the identity matrix of orderm. SinceZ(x) is differentiable
and nonsingular atx we have

0 =
∂

∂xi
Im =

∂

∂xi

[
Z(x)Z−1(x)

]

=

[
∂

∂xi
Z(x)

]
Z−1(x) + Z(x)

[
∂

∂xi
Z−1(x)

]
, (8.8)

so the formula

∂

∂xi
Z(x) = −Z(x)

[
∂

∂xi
Z−1(x)

]
Z(x) = −Z(x) [A′

i(x)]Z(x) (8.9)

follows directly after multiplication of (8.8) byZ(x) and (8.6) holds. For the proof of
(8.7) we differentiate the right hand side of (8.9)

∂2

∂xi∂xj
Z = − ∂

∂xi

(
Z(x)

[
A′

j(x)
]
Z(x)

)

= −
[

∂

∂xi
Z(x)

]
A′

j(x)Z(x) −Z(x)

[
∂

∂xi

(
A′

j(x)Z(x)
)]

= Z(x)A′
i(x)Z(x)A(x)′jZ(x) −Z(x)A′′

i,j(x)Z(x)

−Z(x)A′
j(x)

[
∂

∂xi
Z(x)

]

= Z(x)A′
i(x)Z(x)A′

j(x)Z(x) −Z(x)A′′
i,j(x)Z(x)

+Z(x)A′
j(x)Z(x)A′

i(x)Z(x)

and (8.7) follows. �

Using Theorem 8.2 we can compute the value ofΦhyp
p and its derivatives directly,

without the need of eigenvalue decomposition ofA(x). The “direct” formulas (8.6)–
(8.7) are particularly simple for an affine operator

A(x) = A0 +

n∑

i=1

xiAi with Ai ∈ S
m, i = 0, 1, . . . , n ,

when
∂A(x)

∂xi
= Ai and

∂2A(x)

∂xi∂xj
= 0. If we replace the general penalty function

by the hyperbolic functionΦhyp
p then, according to Theorem 8.2, the Hessian of the

augmented Lagrangian can be written as

F ′′
xx(x, U, p) = f ′′(x) +

[〈
Z(x)UZ(x),A′′

i,j(x)
〉]n

i,j=1
+

2
[〈
Z(x)UZ(x)A′

j(x)Z(x),A′
i(x)

〉]n
i,j=1

. (8.10)

The assembling of (8.10) can be divided into the following steps:
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• Calculation ofZ(x) −→ O(m3).

• Calculation ofZ(x)UZ(x) −→ O(m3).

• Calculation ofZ(x)UZ(x)A′
i(x)Z(x) for all i −→ O(m3n).

• Assembling the restO(m2n2).

Now it is straightforward to see that an estimate of the complexity of assembling of
(8.10) is given byO(m3n + m2n2). Taking into account that the computational com-
plexity of the calculation ofF ′

x is dominated by the computational complexity of the
Hessian we can formulate the following Theorem.

Theorem 8.3 Suppose that assumption(S1) holds and letΦ = Φhyp. Then the com-
putational complexity of Algorithm 7.2.2 is of the orderO(m3n + m2n2 + n3).

Of course, in the case of dense problem data, the complexity formula in Theorem 8.3 is
not much better than the complexity formula in Theorem 8.1. However we will show
in the following section that in contrast to the general situation the complexity formula
reduces toO(m2 + n3) for certain types of sparsity structures.

8.3 Various Ways of Exploiting Sparsity

Many optimization problems have very sparse data structureand therefore have to be
treated by sparse linear algebra routines. We distinguish three basic types of sparsity.

The block diagonal case The first case under consideration is the block diagonal
case. In particular we want to describe the case, where

(S2) the matrixA(x) consists of many (small) blocks.

In this situation the problem (SDP) can be rewritten as

min
x∈Rn

f(x) (SDP-bl)

s.t. Ai(x) 4 0, i = 1, . . . , d ,

whereAi(x) ∈ Smi for all i = 1, . . . , d. If we definem̄ = max{mi | i = 1, . . . , d}
we can estimate the computational complexity of Algorithm 7.2.2 applied to problem
(SDP-bl) byO(dm̄n2 + m̄2n2 + n3). An interesting subcase of problem (SDP-bl), if

(S3) each of the matrix constraintsAi(x) involves just a few components ofx.

If we denote the maximal number of components involved in anymatrix constraint by
n̄ our complexity formula becomesO(dm̄n̄2 + dm̄2n̄2 + n3). If we further assume
that the numbers̄n andm̄ are small compared ton andd and moreover independent
of the actual problem size, then the complexity estimate canbe further simplified to
O(d + n3). Notice that
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• The latter formula is independent from the choice of the penalty function, but
we should mention that also in this case it is advantageous tomake use of the
penalty functionΦhyp.

• The termO(n3) coming from the solution of the linear system (8.2) is clearly
dominating.

Now we can go even further and assume that

(S4) the Hessian of the objectivef is sparsely populated.

Then it follows from assumption (A10) that also the Hessian of the augmented La-
grangian is sparsely populated. Consequently, if we make use of specialized linear
system solvers designed for sparsely populated matrices (compare Section 9.1.4), the
computational complexity formula can be again improved. Wesummarize our consid-
erations in the following Corollary.

Corollary 8.4 Suppose that assumptions (S1) to (S4) hold for the problem (SDP-bl).
Then the computational complexity of Algorithm 7.2.2 is of order O(d + n2).

A typical example satisfying the assumptions of Corollary 8.4 will be presented in
Section 11.5.2.

The case whenA(x) is dense andA′
i(x) are sparse Let us first mention that for

any index pair(i, j) ∈ {1, . . . , n} × {1, . . . , n} the non-zero structure of the matrix
A′′

i,j(x) is given by (a subset of the) intersection of the non-zero index sets of the
matricesA′

i(x) andA′
j(x). Now we want to find out, how the complexity estimate

given in Theorem 8.3 improves, if we assume that

(S5) there are at mostO(1) non-zero entries inA′
i(x) for all i = 1, . . . , n.

Then the calculation of the term
[〈
Z(x)UZ(x),A′′

i,j(x)
〉]n

i,j=1

can be performed inO(n2) time. In the paper by Fujisawa, Kojima and Nakata on
exploiting sparsity in semidefinite programming [35] several ways are presented how
to calculate a matrix of the form

D1S1D2S2 (8.11)

efficiently, if D1 andD2 are dense andS1 andS2 are sparse matrices. In the case when
assumption (S5) holds, it follows that the calculation of the matrix

[〈
Z(x)UZ(x)A′

j(x)Z(x),A′
i(x)

〉]n
i,j=1

can be performed inO(n2) time. Thus, recalling that for the calculation ofZ(x) we
have to compute the inverse of an(m×m)-matrix, we get the complexity estimate:

Corollary 8.5 Suppose that assumptions (S1) and (S5) hold and letΦ = Φhyp. Then
the computational complexity of Algorithm 7.2.2 is of orderO(m3 + n3).
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Note that in our implementation we follow the ideas presented in [35]. Many linear
SDP problems coming from real world applications have exactly the sparsity struc-
ture discussed in this paragraph. Several of them are collected in the test case library
SDPLIB (compare Section 11.5).

The case whenA(x) is sparse The third situation concerns the case whenA(x) is
a sparse matrix. Also here we can conclude that all partial derivatives ofA(x) of first
and second order are sparse matrices. Therefore it suffices to assume that

(S6) the matrix A(x) has at mostO(1) non-zero entries.

When using the hyperbolic penalty functionΦhyp, we have to compute expressions of
type

(A(x) − pI)−1U(A(x) − pI)−1 and (A(x) − pI)−1.

Note that each of the matrices above can be calculated by maximally two operations
of the type(A − I)−1M , whereM is a symmetric matrix. Now assume that not only
A(x) but also its Cholesky factor is sparse. Then, obviously, theCholesky factor of
(A(x)−pI), denoted byL, will also be sparse. This leads to the following assumption:

(S7) Each column ofL has at mostO(1) non-zero entries.

Now thei-th column ofC := (A(x) − pI)−1M can then be computed as

Ci = (L−1)T L−1M i, i = 1, . . . , n,

and the complexity of computingC by Cholesky factorization isO(n2), compared to
O(n3) when computing the inverse of(A(x) − pI) and its multiplication byU . The
following corollary summarizes our observations:

Corollary 8.6 Suppose that assumptions (S1),(S6) and (S7) hold and letΦ = Φhyp.
Then the computational complexity of Algorithm 7.2.2 is of order O(m2 + n3).



Chapter 9

Algorithmic Details as
Implemented in PENNON

Algorithm 7.2.2 has been implemented in a computer code named PENNON . The
code is written in the C-programming language. PENNON is equipped with several
interfaces, among them are

• SDPA interface (see Section 11.5 for more details),

• MATLAB interface,

• C/C++ -interface,

• Fortran interface.

Special versions of the code, namely PENBMI and PENSDPare integrated in YALMIP

3.0 [59], a comfortable toolbox based on MATLAB , which can be used to formulate
semidefinite programs, subjected to linear, bilinear and inthe newest version also gen-
eral polynomial matrix constraints (compare sections 11.2and 11.3). In the course of
this chapter we present details of our implementation, as for example

• which tool we use for the unconstrained minimization,

• how we perform the multiplier and the penalty update,

• how the algorithm is initialized and when it is stopped.

9.1 The Unconstrained Minimization Problem

Throughout this section we consider the augmented Lagrangian functionF as a func-
tion of x only. Using this, the unconstrained minimization problem in Step (i) of Algo-
rithm 7.2.2 becomes

min
x∈Rn

F (x). (UNC)
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We have implemented two algorithms for the (approximate) solution of the (possi-
bly non-convex) problem (UNC).

9.1.1 Globalized Newton’s Method

The first algorithm is a globalized version of the Newton’s Method. The globalized
Newton’s method is defined as follows:

Algorithm 9.1 Given an initial iteratex, repeat for allk = 1, 2, 3, . . . until a stopping
criterion is reached

1. Compute the gradientg and HessianH of F at x.

2. Try to factorizeH by Cholesky decomposition. IfH is factorizable, set̂H = H
and go to Step 4.

3. Computeβ ∈ [−λmin,−2λmin], whereλmin is the minimal eigenvalue ofH and
set

Ĥ = H + βI.

4. Compute the search direction

d = −Ĥ−1g.

5. Perform line-search in directiond. Denote the step-length bys.

6. Set
xnew = x + sd.

The step-lengths in directiond is calculated by a gradient free line-search that tries
to satisfy an Armijo condition. Obviously, for a convexF , Algorithm 9.1 is just the
damped Newton’s method, which is known to converge under standard assumptions
(see, for example, [60]).

If, in the non-convex case, the Cholesky factorization in Step 2 fails, we calculate
the value ofβ in Step 3 in the following way:

Algorithm 9.2 For a givenβ0 > 0

1. Setβ = β0.

2. Try to factorizeH + βI by the Cholesky method.

3. If the factorization fails due to a negative pivot element, go to step 4, otherwise
go to step 5.

4. If β ≥ β0, setβ = 2β and continue with 2. Otherwise go to step 6.

5. If β ≤ β0, setβ = β
2 and continue with step 2. Otherwise STOP.

6. Setβ = 2β and STOP.
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Obviously, when Algorithm 9.2 terminates we haveβ ∈ [−λmin,−2λmin]. It is well
known from the nonlinear programming literature (see, for example, again [60]) that
under quite mild assumptions any cluster point of the sequence generated by Algorithm
9.1 is a first order critical point of problem (UNC).
Remark . There is one exception, where we use a different strategy for the calcula-
tion of β. The exception is motivated by the observation that the quality of the search
direction gets poor, if we chooseβ too close to−λmin. Therefore, if we encounter bad
quality of the search direction, we use a bisection technique to calculate an approxima-
tion of λmin, denoted byλa

min, and replaceβ by−1.5λa
min.

9.1.2 The Trust Region Method

The second algorithm we apply to the unconstrained minimization problem in step
(i) of Algorithm 7.2.2 is the standard Trust-Region method.In particular we have
implemented a version of Algorithm 6.1.1 from [27], where weuse the Euclidian norm
to define the trust region and the standard second order model

m(x + s) = F (x) + 〈g, s〉 +
1

2
〈a, Hs〉

with g = F ′(x) andH = F ′′(x) to approximateF within the trust region. The step
calculation is performed exactly as described in Algorithm7.3.4 of [27] and the free
parameters in both algorithms are chosen as recommended in [27, p. 781ff]. A conver-
gence result for the trust region algorithm is provided for example by Theorem 6.4.1 in
[27].

9.1.3 Globalized Newton’s Method versus Trust Region Method

Algorithm 9.1 turned out to be quite robust as long as the HessianH of F is not too ill
conditioned. In the ill conditioned case, we are still able to calculate approximations of
KKT-points in many cases, but the precision we achieve is comparably low. The trust
region variant on the other hand turned out to be often slower, but more robust in a
neighborhood of first order points. Therefore we use as an alternative a combination of
both approaches: At the beginning (typically during the first 10 to 15 outer iterations)
of Algorithm 7.2.2 we use the first approach to solve problem (UNC). As soon as a
certain stopping criterion is met or when running into numerical difficulties, the trust
region variant is used instead. In many test cases very few (typically 3 to 5) iterations
are sufficient to improve the precision of the solution.

9.1.4 How to Solve the Linear Systems?

In both algorithms proposed in the preceding sections one has to solve repeatedly linear
systems of the form

(H + D)s = −g, (9.1)

whereD is a diagonal matrix chosen such that the matrixH + D is positive definite.
There are two categories of methods, which can be used to solve problems of type
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(9.1): iterative and exact methods. Let us first concentrateon exact methods. Since
the system matrix in (9.1) is forced to be positive definite, our method of choice is
the Cholesky method. Depending on the sparsity structure ofH , we use two different
realizations:

• If the fill-in of the Hessian is below20% , we use a sparse Cholesky solver which
is based on an ideas of Ng and Peyton [66]. The solver makes useof the fact
that the sparsity structure is the same in each Newton step inall iterations. The
following steps are performed just once at the beginning of the optimization task:

– At the very beginning the sparsity pattern ofH is calculated and stored.

– Then the rows and columns ofH are reordered with the goal to reduce
the fill-in in the Cholesky factor. This is done by the minimumdegree
algorithm described in [37] and [58].

– A symbolic factorization ofH is calculated.

Then, each time the system (9.1) has to be solved, the numericfactorization
is calculated based on the precalculated symbolic factorization. Note that we
added stabilization techniques described in [86] to make the solver more robust
for almost singular system matrices.

• Otherwise, if the Hessian is dense, we use theATLAS implementation of the
LAPACK Cholesky solverDPOTRF, which is (to our best knowledge) the fastest
and most robust solver for dense symmetric positive definitesystems, which is
available free of charge.

Just recently we have started to use iterative methods for the solution of linear systems.
A detailed description of this approach along with first numerical experiments are re-
ported in [53]. For linear semidefinite programming problems, we use the following
hybrid approach, whenever the number of variables (n) is large compared to the size
of the matrix constraint (m): We try to solve the linear systems using the iterative ap-
proach as long as the iterative solver needs a moderate number of iterations. In our
current implementation the maximal number of iterations allowed is 100. Each time
the maximal number of steps is reached, we repeat the solution of the system by an
exact method (as described above). As soon as the iterative solver fails three times in
sequel, we completely switch to the exact method. Note that this strategy can certainly
be improved significantly as we just recently started to use it. On the other hand already
now we were able to improve the run time of several test cases significantly (compare
Section 11.5). The main reason is that, when using the iterative approach, the Hessian
of the Augmented Lagrangian has not to be calculated explicitly (again we refer to [53]
for details).

9.2 Update Strategies

9.2.1 The Multiplier Update

First we would like to motivate the multiplier update formula in Algorithm 7.2.2.



CHAPTER 9. ALGORITHMIC DETAILS AS IMPLEMENTED IN PENNON 73

Proposition 9.1 Let xk+1 be the minimizer of the augmented LagrangianF with re-
spect tox in thek-th iteration. If we chooseUk+1 as in Algorithm 7.2.2 we have

∇xL(xk+1, Uk+1) = 0,

whereL denotes the classical Lagrangian of problem (SDP).

Proof . The gradient ofF with respect tox reads as

F ′
x(x, U, p) = f ′(x) +




〈U, DΦp (A(x))[A′
1(x))〉

...
〈U, DΦp (A′

m(x))〉


 . (9.2)

Now, sinceUk+1 := DΦp

(
A(xk)

)
[Uk], we immediately see that

F ′
x(xk+1, Uk, pk) = L′

x(xk+1, Uk+1)

and we obtainL′
x(xk+1, Uk+1) = 0. �

The following Proposition follows directly from formula 8.6 in Theorem 8.2.

Proposition 9.2 For our special choice of the penalty functionΦhyp
p , the multiplier

update can be written as

Uk+1 = (pk)2Z(xk+1)UkZ(xk+1) ,

whereZ was defined in 8.2.

Next we want to discuss a modification of the multiplier update. The reason for the
modification is twofold: First, numerical studies indicated that big changes in the mul-
tipliers often lead to a large number of Newton steps in the subsequent iteration. Sec-
ond, it may happen that already after a few steps, the multipliers become ill-conditioned
and the algorithm suffers from numerical troubles. To overcome these difficulties, we
do the following:

Algorithm 9.3 GivenUk in thek-th iteration

1. CalculateUk+1 using the update formula in Algorithm 7.2.2.

2. Choose a positiveλk ≤ 1.

3. Update the current multiplier by

Ūk+1 = Uk + λk(Uk+1 − Uk).

There are two different strategies how to chooseλk. In our first strategy we use a fixed
λk during all iterations. Typical values range between0.1 and0.7. Alternatively, we
chooseλk such that the norm

∥∥Ūk+1 − Uk
∥∥ does not violate a certain upper bound.
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Proposition 9.3 Let Uk ∈ V(U∗, p0, δ, ǫ, Θ) and suppose that the parameterλk in
Algorithm 9.3 is bounded away from 0, then there existsp small enough such that the
estimate

‖Ūk+1 − U∗‖ ≤ γ(p)
∥∥Uk − U∗

∥∥ (9.3)

holds withγ(p) < 1

Proof . From Theorem 6.14 follows the existence of a constantC independent ofp
such that the estimate

‖Uk+1 − U∗‖ ≤ Cp
∥∥Uk − U∗

∥∥

holds. Sinceλk is bounded away from 0, there existsλ > 0 such thatλk > λ for all
k = 1, 2, . . . and we conclude

‖Ūk+1 − U∗‖ = ‖λUk+1 + (1 − λ)Uk − U∗‖
≤ λ‖Uk+1 − U∗‖ + (1 − λ)‖Ūk − U∗‖
≤ λCp

∥∥Uk − U∗
∥∥+ (1 − λ)‖Ūk − U∗‖

= (λCp + (1 − λ))‖Ūk − U∗‖.

Now for p small enough the factor(λCp + (1 − λ)) can be driven arbitrarily close to
(1 − λ) < 1. �

Proposition 9.3 shows that at least the convergence result for the local Algorithm 6.1.1
remains true, if we replace the original multiplier update formula by Algorithm 9.3. In
the global situation (Algorithm 7.2.1) a similar result is difficult to achieve, since in
general we can not expect that two subsequent iteratesxk andxk+1 are close to each
other for large enoughk, unless we assume that the sequence of iterates{xk}k∈N gener-
ated by the algorithm converges. On the other hand, if we replace the multiplier update
formula in Algorithm 7.2.1 by Algorithm 9.3 and assume that the sequence{xk}k∈N

generated by the modified algorithm converges, we can prove (under the assumption
that {λk}k∈N is bounded away from 0) that the sequence{xk, Ūk}k∈N converges to
a first order critical point of the problem (SDP). For the proof we can use exactly the
same argumentation as in Section 7.2 with the only difference that the assertions of
Lemma 7.9, Proposition 7.11 and Proposition 7.12 have to be proven for two subse-
quent multiplier iteratesUk andUk+1 this time.

9.2.2 The Penalty Parameter Update

Let λmax(A(xk)) ∈
(
0, pk

)
denote the maximal eigenvalue ofA(xk), κ < 1 be a

constant factor (typically chosen between0.3 and0.6) andxfeas be a feasible point of
problem (SDP). Then our strategy for the penalty parameter update can be described
as follows:

Algorithm 9.4 Given0 < κ < 1 perform the following steps

1. Calculateλmax(A(xk)).
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2. If κpk > λmax(A(xk)), setγ = κ l = 1 and go to 5.

3. If l < 3, setγ =
(
λmax(A(xk)) + pk

)
/2, setl = l + 1 and go to 5.

4. Letγ = κ, findλ ∈ (0, 1) such that

λmax

(
A(λxk+1 + (1 − λ)xfeas)

)
< κpk

and setxk+1 = λxk+1 + (1 − λ)xfeas.

5. Update current penalty parameter bypk+1 = γpk.

The redefinition ofxk+1 in step 5 guarantees that the values of the augmented La-
grangian in the next iteration remain finite. Of course, if nofeasible pointxfeas is
available, step 5 of Algorithm 9.4 is not applicable. In thiscase, the main Algorithm is
restarted using a different choice of initial multipliers (compare Section 9.4 for details).

Note that the penalty parameter update is not necessarily performed in each step of
the main algorithm. In fact, we use two different strategies:

• Permanent strategy: The penalty parameter is updated (using Algorithm 9.4) in
each step of the main algorithm until a certain valuep is reached. Afterwards we
switch to the adaptive strategy in the hope that the penalty parameter can be kept
constant.

• Adaptive strategy: The penalty parameter update is performed only if

Υ(xk+1, Uk+1) > Υ(xk, Uk).

The parameterp is typically chosen as10−6.

9.3 Initialization and Stopping Criteria

9.3.1 Initialization

As we have seen in Chapter 6.2, our algorithm can start with anarbitrary primal vari-
ablex ∈ Rn. Therefore we simply choosex1 = 0. For the description of the multiplier
initialization strategy we rewrite problem (SDP) in the following form:

min
x∈Rn

f(x)

s.t. Ai(x) 4 0, i = 1, . . . , d .

HereAi(x) ∈ Smj are diagonal blocks of the original constrained matrixA(x) and we
haved = 1 if A(x) consists of only one block. Now the initial values of the multipliers
are set to

U1
j = µjImj

, j = 1, . . . , d,
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whereImj
are identity matrices of ordermj and

µj = mj max
1≤ℓ≤n

1 +
∣∣∣∂f(x)

∂xℓ

∣∣∣

1 +
∥∥∥∂A(x)

∂xℓ

∥∥∥
. (9.4)

Given the initial iteratex1, the initial penalty parameterp1 is chosen large enough to
satisfy the inequality

p1I −A(x1) ≻ 0.

9.3.2 Stopping Criteria

Stopping criterion in the sub-problem In the first phase of Algorithm 6.1.1, the
approximate minimization ofF is stopped when‖ ∂

∂xF (x, U, p)‖ ≤ α, whereα = 0.01
is a good choice in most cases. In the second phase, after a certain precision is reached
(compare Section 9.4 for details),α is reduced in each outer iteration by a constant
factor, until a certainα (typically 10−7) is reached.

Stopping criterion for main algorithm We have implemented two different stop-
ping criteria for the main algorithm.

• First alternative:The main algorithm is stopped if both of the following inequal-
ities hold:

|f(xk) − F (xk, Uk, p)|
1 + |f(xk)| < ε1 ,

|f(xk) − f(xk−1)|
1 + |f(xk)| < ε1 ,

whereε1 is typically10−7.

• Second alternative:The second stopping criterion is based on the KKT-conditions.
Here the algorithm is stopped, if

Υ(xk, Uk) ≤ ε2.

Note that, in case the second stopping criterion is chosen, the first stopping criterion
can used to define, when

• the update of the stopping criterion in the sub-problem is started,

• to switch from the globalized Newton’s algorithm (compare Section 9.1.1) to the
Trust Region algorithm (compare Section 9.1.2) as solver for the sub-problem.

Remark . In the case of linear semidefinite programs, we have additionally adopted
the DIMACS criteria [61]. To define these criteria, we rewrite our problem (SDP) as

min
x∈Rn

bT x

subject to

C(x) 4 C0

(9.5)
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whereC(x) − C0 = A(x). Recall thatU is the corresponding Lagrangian multiplier
and letC∗(·) denote the adjoint operator toC(·). The DIMACS error measures are
defined as

err1 =
‖C∗(U) − f‖

1 + ‖f‖

err2 = max

{
0,

−λmin(U)

1 + ‖f‖

}
err4 = max

{
0,

−λmin(C(x) − C0)

1 + ‖C0‖

}

err5 =
〈C0, U〉 − fT x

1 + |〈C0, U〉| + |fT x| err6 =
〈C(x) − C0, U〉

1 + |〈C0, U〉| + |fT x| .

Here, err1 represents the (scaled) norm of the gradient of the Lagrangian, err2 and err4
is the dual and primal infeasibility, respectively, and err5 and err6 measure the duality
gap and the complementarity slackness. Note that, in our code, err2 = 0 by defini-
tion; also err3 that involves the slack variable (not used in our problem formulation) is
automatically zero. If the “DIMACS stopping criterion” is activated we require that

errk ≤ δDIMACS, k ∈ {1, 4, 5, 6} .

9.4 ThePENNON Algorithm

We conclude this chapter with a compact description of the PENNON -Algorithm:

Algorithm 9.4.1 For givenp, κ, α, ς, ε1, ε2, ϑ perform the following steps:

1. Setk = 1, l1 = 1, l2 = 1 and

x1 = (0, . . . , 0)

U1 = diag(µ1, . . . , µ1, . . . , µd, . . . , µd),

p1 = 2λmax

(
A(x1)

)
,

ǫ1 = α.

2. Repeat until‖F ′
x(xk+1, U, p)‖ < ǫk:

2.1 Compute the gradientg and HessianH of F at xk+1.

2.2 Try to factorizeH by Cholesky decomposition. IfH is factorizable, set
Ĥ = H and go to Step 2.4.

2.3 Computeβ ∈ [−λmin,−2λmin] via Algorithm 9.2, whereλmin is the mini-
mal eigenvalue ofH and set

Ĥ = H + βI.

2.4 Compute the search direction

d = −Ĥ−1g.
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2.5 Perform line-search in directiond. Denote the step-length bys.

2.6 Set
xk+1 = xk + sd.

3. 3.1 CalculateUk+1 = (pk)2Z(xk+1)UkZ(xk+1).

3.2 Choose a positiveλk ≤ 1.

3.3 Update the current multiplier by

Uk+1 = Uk + λk(Uk+1 − Uk).

4. If ΥKKT(xk+1, Uk+1) < ε2 −→ STOP.

5. If p > p or ΥKKT(xk+1, Uk+1) > ΥKKT(xk, Uk) do

5.1 Calculateλmax(A(xk)).

5.2 If κpk > λmax(A(xk)), set γ = κ, l1 = 1 and go to 5.5.

5.3 If l1 < 3, setγ =
(
λmax(A(xk)) + pk

)
/2pk, setl1 = l1 + 1 and go to

5.5.

5.4 If xfeas is not yet available, set

xk+1 = x1, Uk+1 = ϑ U1, pk+1 = p1, ǫk+1 = α, l2 = l2 + 1

and go to step 7. Otherwise setγ = κ, findλ ∈ (0, 1) such that

λmax

(
A(λxk+1 + (1 − λ)xfeas)

)
< κpk

and setxk+1 = λxk+1 + (1 − λ)xfeas.

5.5 Set
pk+1 = γpk.

otherwise set
pk+1 = pk.

6. If

max

{ |f(xk) − F (xk, Uk, p)|
1 + |f(xk)| ,

|f(xk) − f(xk−1)|
1 + |f(xk)|

}
< ε1 ,

set
ǫk+1 = ςǫk,

otherwise set
ǫk+1 = ǫk.

7. If l2 > 3 −→ STOP. Otherwise setk = k + 1 and go to step 2.
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Remark . Optionally step 2 can be calculated by the Trust Region method, either
from the very beginning, or after the condition in step 6 is met for the first time.

Remark . If we encounter penalty update problems in step 5.4 and no feasible point
of problem (SDP) is available, the algorithm is restarted with larger initial multipliers.
The idea is to put “more weight” to the constraints with the hope that the algorithm
finds a feasible point in the next trial. If the algorithm is restarted several times without
finding a feasible point it has no sense to go on and we give up (compare step 7).



Chapter 10

Applications

10.1 Structural Optimization

Structural optimization deals with engineering design problems with the aim of finding
an optimal structure (as specified by a given cost function) that satisfies a number of
given constraints. Typically, the designer is faced to the problem of finding optimal de-
sign parameters such that the resulting structure is light and/or stiff. A simple example
is the problem of finding the stiffest structure with respectto a set of given loads under
the constraint that the weight of the structure is restricted. In the following sections
two types of structural optimization problems will be shortly introduced, namely the
truss topology design and the material optimization problems. In both cases (linear)
semidefinite problem formulations will be presented. In thethird section two ways of
including stability control to these problem formulationswill be considered.

10.1.1 Material Optimization

In material optimization (MO) one tries to find a distribution of a given amount of a
given elastic material in a given region, so that the resulting structure is optimal (in
certain sense) with respect to given loads. The material caneven vanish in certain
areas, thus one often speaks of topology optimization. The single-load MO problem in
the simplest form can be written as follows:

max
ρ∈L∞(Ω):

ρ≥0,
R
Ω

ρ dx≤V
0≤ρ≤ρ

min
u∈U

1

2

∫

Ω

ρ(x)〈E(x)e(u(x)), e(u(x))〉dx−
∫

Γ2

f(x) ·u(x)dx , (10.1)

whereΩ is a bounded domain with Lipschitz boundaryΓ = Γ1∪Γ2, E is the elasticity
tensor of the given material,ρ is the design variable,u(x) denotes the displacements
in each point of the body,e(u) is the small-strain tensor,ρ is an upper bound onρ
andf is an external force acting onΓ2. Further,V is an upper bound on resources
andU ⊆ H1(Ω) is a set defining boundary conditions and possible unilateral contact
conditions. The design variableρ can be interpreted as thickness in 2D problems or as

80
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a sort of density in 3D problems; see [9] for a detailed discussion. A categorization of
resulting problems for different choices ofE anddim is given in [52]. Here only two
cases are considered:

•
E = I

•
E . . . elasticity matrix of an isotropic material

We will concentrate on the first case, connected with the so-called Free Material Opti-
mization (FMO) [88, 8, 84] at the moment. The second case, which is called variable
thickness sheet (VTS) problem [8, 67] in the two-dimensional case, and can be con-
sidered as a sub-case of SIMP [8] in the three-dimensional situation will be further
referred in Section 10.1.3. Free material optimization is abranch of structural opti-
mization; its goal is to find the ultimately best structure able to carry given loads. The
design variables are the material properties that can vary from point to point. The opti-
mal structure/material can be interpreted by fiber-reinforced composites. A description
of the single-load case, together with numerical techniques, is given, for example, in
[88], where the single-load free material optimization problem is formulated as

min
E∈L∞(Ω):

E�0,
R
Ω

tr(E) dx≤V
0≤tr(E)≤ρ

max
u∈U

∫

Γ2

f(x) ·u(x)dx− 1

2

∫

Ω

〈E(x)e(u(x)), e(u(x))〉dx . (10.2)

The tensorE is written as a matrix in this formulation and we only requirethat it is
physically attainable; i.e.,E is symmetric and positive semidefinite at each point ofΩ.
At the first glance, problem (10.2) is much more difficult thanthe MO problem (10.1)
due to the matrix variableE. However, it can be shown that after analytical reformu-
lation E can be eliminated, and we indeed get a special case of problem(10.1) with
E = I. In order to solve this (infinite-dimensional) problem numerically, discretized
versions of material optimization problems have been derived. The discretization is
done by the finite element method. More precisely,Ω is partitioned intom elements
Ωi, i = 1, . . . , m, E is approximated by a function which is constant on each element
Ωi and the displacement vectoru is approximated by a piece-wise polynomial func-
tion. If we stay with the notation of the original problem, the discretized version can
be stated as follows:

max
ρ∈R

m:
mP

i=1

ρi≤V ,0≤ρi≤ρ

min
u∈U⊂Rn

1

2

m∑

i=1

ρiu
⊤Aiu − f⊤u . (10.3)

The matricesAi are positive semidefinite matrices (more details will be given below),
m is the number of finite elements andn the number of degrees of freedom of the
(discretized) displacement vector. One can see that the matrix E was analytically re-
duced to a scalar variableρ having the meaning of trace ofE; the full matrixE can
be, however, recovered from the optimal solution(ρ, u) of problem (10.3). There exist
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several equivalent formulations to problem 10.3. For example, one can rewrite problem
(10.3) as linear SDP or as the following large-scale convex quadratically constrained
NLP problem

min
α∈R,u∈Rn

{
α − f⊤u |α ≥ u⊤Aiu for i = 1, . . . , m

}
. (10.4)

The latter formulation is preferred in practice, due to its significantly lower computa-
tional complexity.

For illustration, we consider a three-dimensional single-load example. The results
presented below were computed by MOPED, a software package for material optimiza-
tion, which uses a special version of PENNON as optimization engine. The goal in this
example was the design of a rear fuselage of a cargo airplane.Due to the large opening
for the door, the fuselage was very weak with respect to bending. At the same time,
there were huge bending forces at the very rear part, coming from the tail. The goal of
the designer was to carry these forces to the closed part of the fuselage. We solved this
problem using several discretizations ranging from 5000 to50000 finite elements. One
of these discretizations is depicted in Figure 10.1, at the left-hand side. The right-hand
side of the same figure shows the density distributionρ(x), x ∈ Ω of this problem, as
computed by MOPED .

Figure 10.1: Cargo airplane; discretization and density plot

Next we consider the so called worst-case multiple-load problem. Here the optimal
structure should be able to withstand a whole collection ofL independent loads, acting
at different times. Generalization of formula (10.2) leadsto the following formulation
of the multiple-load case:

min
E∈L∞(Ω):

E�0R
Ω

tr dx≤V
0≤tr≤ρ

max
l=1,...,L

max
u∈Ul

∫

Γ2

f l(x) ·u(x)dx− 1

2

∫

Ω

〈E(x)e(u(x)), e(u(x))〉dx (10.5)

The situation in the multiple-load case is much more complicated than in the single-
load case and was analyzed in detail in [3]. Since it is not thegoal of this thesis to repeat
this theory here, we restrict ourselves to the presentationof the discretized version of
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problem (10.5):

min
E={Ei}

m
i=1:

Ei≥0Pm
i=1 ωitr(Ei)≤V
0≤tr(Ei)≤ρ

max
l=1,...,L

max
ul∈Ul

1

2
(f l)⊤u −

m∑

i=1

ωitr
(
Eiζi(u

l)ζi(u
l)⊤
)

, (10.6)

whereζi(u), i = 1, . . . , m are matrix valued functions calculated from the discretized
strain tensor and positive weights coming from the Gauss integration formula (see [3]
for further details). Again in [3] it was shown that under certain assumptions the follow-
ing semidefinite program is the Lagrange dual to problem (10.6) and that the problems
are equivalent in the sense that there is no duality gap:

max
u1,...,ul,ν,γ

= −αν + 2

L∑

l=1

(f l)⊤ul − ρ

m∑

i=1

γm

subject to



(ν + γm)Id ζm(u1) ζi(u
2) . . . ζi(u

L)
ζm(u1) λ1Is

ζm(u2) λ2Is

...
. . .

ζm(uL) λLIs




� 0, i = 1, . . . , m,

γi ≥ 0, i = 1, . . . , m,

ν ≥ 0,

L∑

i=1

λi = 1

(10.7)

Herebyα is a constant,d and s are integers defining the dimension ofζi(u), i =
1, . . . , m, whileν andγ are additional variables introduced for the penalization of con-
straints in the primal formulation. Unlike in the single load case, from computational
point of view, no formulation superior to problem (10.7) is known. Due to the rela-
tively large number of matrix inequalities problem (10.6) has a strong block structure.
In Section 11.5.2 we will demonstrate that the code PENNON is able to exploit this fact.
A typical multiple-load example solved by FMO can be seen in Figure 10.2. Here the
goal is to design a frame of a racing bicycle by means of fiber composites. Figure 10.2
top-left shows the design regionΩ together with the loads—we consider two load-cases
here. The top-right figure presents the strength of the optimal material—the variableρ.
Here the dense areas indicate stiff material, while the brighter areas stand for a weaker
and weaker material. The final two figures show the optimal directions of the fibers in
the composite material; one figure for each load case.

10.1.2 Truss Topology Design

In Truss Topology Optimization (TTO) we consider the problem of finding an opti-
mal (stiffest, lightest) truss (pin-jointed framework) with respect to given loads. The
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1
1

2

2

Figure 10.2: FMO design of a bicycle frame.

problem is studied in the so called ground-structure framework (see [31]). Here the
truss is modelled byN nodal points inRdim, dim ∈ {2; 3} and each pair of nodes
can be connected by a bar. The design variables are the bar volumes denoted by
ti ≥ 0, i = 1, . . . , m andu ∈ R

n denotes a vector of nodal displacements, where
n is dependant onN . Further we can calculate for each bar a symmetric positive semi-
definite matrixAi, i = 1, . . . , m, called (in analogy to MO) the local stiffness matrix.
Exact formulas are given, for example, in [4]. Under the assumption of linear elastic
behavior, the single-load truss topology design problem can be written as

max
t∈R

m:
mP

i=1

ti≤V ,0≤ti≤t

min
u∈U⊂Rn

1

2

m∑

i=1

tiu
⊤Aiu − f⊤u . (10.8)

The multiple-load truss topology design problem is then formulated as

max
t∈R

m:
mP

i=1
ti≤V ,0≤ti≤t

min
l=1,...,L

min
ul∈Ul⊂Rn

1

2

m∑

i=1

ti(u
l)⊤Aiu

l − (f l)⊤(ul) . (10.9)

Note the strong analogy to the discretized versions of the material optimization prob-
lems introduced in the previous section. As in material optimization there exist various
reformulations of the problems above, among them a convex nonlinear version of prob-
lem (10.8) and a linear semidefinite formulation of problem (10.9). For details refer,
for example, [5] and [8].
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10.1.3 Structural Optimization with Vibration and Stabili ty
Constraints

Arguably, the most serious limitation of the models presented in the preceding sections
is that they do not count with possible instability of the optimal structure. Indeed, elas-
tic instability is often the decisive point when designing a“real-world” structure, like
a bridge or an aircraft. Experience showed that such structures may fail in some cases
not on account of high stresses but owing to insufficient elastic stability ([78]). In this
thesis we consider two ways of including stability control in the problem formulation.
The first one is based on the so-calledlinear buckling model. This model is based on
an assumption that leads to simplification of the nonlinear structural analysis and that
is naturally satisfied for many real-world structures. The second one is based on the
control of the minimal eigenfrequency of the structure. Both models lead to control of
the minimal eigenvalue of a generalized eigenvalue problem

A(ρ)w = λQ(ρ)w . (10.10)

In the first case (linear buckling),Q is the so-called geometry stiffness matrix that de-
pends in a nonlinear way on the design variableρ. In the second case (self-vibrations),
Q is the mass matrix of the structure and the dependence is linear. Several problem
formulations are possible now (see [52]), from which we choose the following:

min W (ρ)

subject to

C(ρ) ≤ Ĉ

λ(ρ) ≥ λ̂

equilibrium equation

i.e., we minimize the weight of a structure under the constraints that

• the compliance of the structure is restricted,

• the structure is in equilibrium between internal and external forces,

• the minimal positive eigenvalue of problem (10.10) is bounded from below.

The primary goal is to solve problems with stability constraints based on the linear
buckling phenomenon. As mentioned above, this approach leads to a non-convex ma-
trix inequality constraint, involving the geometry stiffness matrix. It should be recalled
here that it was exactly this problem which motivated the author to develop an al-
gorithm and a computer program for the solution of nonlinearsemidefinite programs.
Later we will see that due to extremely high computational complexity of this problem,
we can only solve model problems of relatively low dimensionat the moment. Hence,
as a viable alternative, we offer the control of self-vibrations of the optimal structure.
This results in a formulation with linear matrix inequalityconstraints (involving the
mass matrix) for which the complexity is much lower.
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In the following we will try to explain these ideas in the framework of material
optimization. As already mentioned in Section 10.1.1 we will use the assumption

E is an elasticity matrix of an isotropic material. (10.11)

We briefly sketch the discretization for this problem: Letm denote the number of
finite elements andn the number of nodes (vertices of the elements). We approximate
ρ(x) by a function that is constant on each element, i.e., characterized by a vector
ρ = (ρ1, . . . , ρm) of its element values. Further assume that the displacementvector
u(x) is approximated by a continuous function that is bi- or tri-linear (linear in each
coordinate) on every element. Such a function can be writtenasu(x) =

∑n
i=1 uiϑi(x)

whereui is the value ofu at i-th node andϑi is the basis function associated with
i-th node (for details, see [24]). Recall that, at each node, the displacement hasdim
components, sou ∈ Rdim·n. Further, element stiffness matricesAi are defined by

Ai =

nig∑

k=1

B⊤
i,kEi,kBi,k ,

wherenig is the number of Gauss integration points and the matricesBi,k ∈ Md,dim·n

are composed from derivatives of the functionsϑi, i = 1, . . .m. Now the (global)
stiffness matrixA is defined as a linear combination of the element stiffness matrices
as follows

A(ρ) =

m∑

i=1

ρiAi

and the discretized version of problem (10.1) with assumption (10.11) becomes

inf
ρ≥0

mP
i=1

ρi≤1

sup
u∈Rdim·n

−1

2

m∑

i=1

ρi〈Aiu, u〉 + 〈f, u〉 .

It is well-known that the above problem can be formulated as aminimum weight
problem as follows (see again [52] and the references therein):

min
u,ρ

m∑

i=1

ρi

subject to

ρi ≥ 0, i = 1, . . . , m

f⊤u ≤ c

A(ρ)u = f .

(10.12)

The stability constraint, in the sense of critical bucklingforce, requires that all
eigenvalues of problem (10.10) are either smaller than zeroor bigger than one. The
matrix Q in problem (10.10) is replaced by the so-called geometry stiffness matrix
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defined by

G(u, ρ) = P⊤

(
m∑

i=1

Gi

)
P, Gi =

nig∑

k=1

Q⊤
i,k Si,k Qi,k ,

whereP is a permutation matrix, the matricesQi,k are again composed from deriv-
atives of the functionsϑi, i = 1, . . . , m, and the non-zero entries of the matrices
Si,k ∈ Sdim are items of the element “stress vector”

σi,k = (σ1 σ2 σ3 σ4 σ5 σ6 )⊤i,k = ρi Ei,k Bi,k u

which can be written as

σi,k = ρi Ei,k Bi,k A(ρ)−1f . (10.13)

In the last formula we clearly see a nonlinear dependence onρ. It has been proven that
condition (10.10) is equivalent to the following matrix inequality (see, e.g., [51]):

A(ρ) + Q � 0 ,

so that we are able to combine the optimization problem (10.12) with the constraint

A(ρ) + G(u, ρ) � 0 , (10.14)

to get the minimum weight material optimization problem with stability constraint. Be-
fore writing down the full problem formulation, we rewrite,using the Schur comple-
ment Theorem, the compliance constraint and the equilibrium equation in one matrix
inequality constraint

Z(ρ) :=

(
c f⊤

f A(ρ)

)
� 0. (10.15)

Using this, problem (10.12) can be written as:

min
ρ

m∑

i=1

ρi

subject to

Z(ρ) � 0

ρi ≥ 0, i = 1, . . . , m .

(10.16)

We further eliminate the variableu from the stability constraint by assuming thatA(ρ)
is nonsingular and setting

G̃(ρ) = G(ρ, A−1(ρ)).

The minimum weight problem with stability constraints reads as

min
ρ

m∑

i=1

ρi

subject to

Z(ρ) � 0

A(ρ) + G̃(ρ) � 0

ρi ≥ 0, i = 1, . . . , m .

(10.17)
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A critical issue of this approach is the computational complexity. For details we
refer again to [52].

Therefore as a viable alternative we use vibration constraints instead of stabil-
ity constraints. More precisely this means that we want to find the optimal struc-
ture/material such that the lowest eigenfrequency of the structure is bigger than or equal
to a prescribed valueλ. Using similar arguments as above the vibration constraintcan
be formulated as a linear matrix inequality of the type

A(ρ) − λM(ρ) � 0,

whereM is the mass matrix andλ a given threshold vibration. Hence the optimiza-
tion problem with vibration constraints can be than formulated as a linear semidefinite
programming problem

min
ρ

m∑

i=1

ρi

subject to

Z(ρ) � 0

A(ρ) − λM(ρ) � 0

ρi ≥ 0, i = 1, . . . , m .

(10.18)

Due to the linearity and a different sparsity structure, thecomplexity of this linear SDP
is much lower than the complexity of the nonlinear one presented in (10.17). A related
problem is the following:

max
ρ,λ

λ

subject to

A(ρ) − λM(ρ) � 0

ρi ≥ 0, i = 1, . . . , m ,

(10.19)

where we try to maximize the minimal eigenfrequency of a given structure. Since no
external forces are taken into consideration here, there isno compliance constraint. Of
course, problem 10.19 makes only sense, ifM is of the form

M0 +

m∑

i=1

ρiMi,

whereM0 is a predefined constant mass in the structure. The main advantage of this
formulation is in the bilinear structure of the non-convex matrix constraint, which is
often easier to solve. Let us conclude this section with the following remark.

Remark . Similar formulations for minimum weight design problems with stabil-
ity and vibration constraints in the area of truss topology design have been developed
already several years before stability constraints were considered in the context of ma-
terial optimization (see e.g. [4] or [74]). Again there is a strong analogy between these
formulations and the discretized problems presented above. Consequently, instead of
repeating the problem formulations, we restrict ourselvesto the presentation of numer-
ical results in Section 11.1.
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10.2 Nonlinear SDPs arising in Control Theory

Many interesting problems in linear and nonlinear systems control cannot be solved
easily and efficiently with currently available software. Even though several relevant
control problems boil down to solving convex linear matrix inequalities (LMI) - see
[20] for a long list - there are still fundamental problems for which no convex LMI
formulation has been found.

BMI formulation of the control problems was made popular in the mid 1990s [39];
there were, however, no computational methods for solving non-convex BMIs, in con-
trast with convex LMIs for which powerful interior-point algorithms were available
[65]. Almost one decade later, this unsatisfactory state ofthe art in BMI solvers is
almost unchanged, whereas LMI and semidefinite programmingsolvers now abound.
There were, however, several attempts to solve BMI problemsnumerically, and the
following list is far from being exhaustive:

• Global optimization algorithms based on branch-and-boundschemes [38] or the
generalized Benders decomposition [11] were the first historically to be devel-
oped. More recently, concave minimization algorithms weredescribed [2] but no
software has been developed, and apparently no further research has been carried
out in this direction;

• Various heuristics based on iteratively solving LMI subproblems were proposed,
the most efficient of which seems to be the cone complementarity linearization
algorithm [32]. Inefficiency of these methods in solving very basic BMI prob-
lems has been shown e.g. in [41], but because of their simplicity, these methods
remain widely used in the control community;

• More recently, several researchers have been trying to apply non-convex pro-
gramming techniques to BMI problems, with moderate successso far. Interior-
point constrained trust region methods are proposed in [57]in the special case
of static output feedback and low-order controller design BMIs. The method
is a sequential minimization method of a logarithmic barrier function subject
to a nonlinear matrix constraint. A similar approach, also based on logarith-
mic barrier function and using a sophisticated method to theminimization of
the unconstrained sub-problems was proposed in [46]. Sequential semidefinite
programming, as an extension of quadratic programming, is used in [34] to solve
LMI problems with additional nonlinear matrix equality constraints. No publicly
available software came out of these attempts to the best of our knowledge.

10.2.1 The Static Output Feedback Problem

A notorious example is the static output feedback control problem which admits a de-
ceptively simple formulation, but for which no systematic polynomial-time algorithm
has been designed so far. It is even unclear whether the static output feedback control
problem belongs to the category of NP-hard problems.

Two basic static output feedback (SOF) control design problems, namely the SOF–
H2 and SOF–H∞ problem can be described like follows: We consider a LTI control
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system of the form

ẋ(t) = Ax(t) + B1w(t) + Bu(t),
z(t) = C1x(t) + D11w(t) + D12u(t),
y(t) = Cx(t) + D21w(t),

(10.20)

wherex ∈ Rnx , u ∈ Rnu , y ∈ Rny , z ∈ Rnz , w ∈ Rnw denote the state, control input,
measured output, regulated output, and noise input, respectively. The goal of the SOF
problem for a system of type (10.20) is to determine a matrixF ∈ Rnu×ny of the SOF
control lawu(t) = Fy(t) such that the closed loop system

ẋ(t) = A(F )x(t) + B(F )w(t),
z(t) = C(F )x(t) + D(F )w(t),

(10.21)

fulfills some specific control design requirements, whereA(F ) = A+BFC, B(F ) =
B1 +BFD21, C(F ) = C1 +D12FC, D(F ) = D11 +D12FD21. Now assuming that
D11 = 0 andD21 = 0, the SOF–H2 problem reads as follows:

Find a SOF gainF such thatA(F ) is Hurwitz and theH2–norm of (10.21) is minimal.

An equivalentH2–BMI formulation is provided by the following Theorem:

Theorem 10.1 The SOF–H2 problem can be rewritten to the followingH2–BMI prob-
lem formulation:

min Tr(X) s. t. Q ≻ 0,

(A + BFC)Q + Q(A + BFC)⊤ + B1B
⊤
1 � 0,

[
X (C1 + D12FC)Q

Q(C1 + D12FC)⊤ Q

]
� 0,

(10.22)

whereQ ∈ Rnx×nx , X ∈ Rnz×nz .

Note that (10.22) is bilinear inF andQ. For a proof see e. g. [55].

H∞ synthesis is an attractive model–based control design tooland it allows incorpora-
tion of model uncertainties in the control design. The optimal SOF–H∞ problem can
be formally stated in the following term:

Find a SOF matrixF such thatA(F ) is Hurwitz and theH∞–norm of (10.21) is
minimal.

We consider the following well knownH∞–BMI version:

Theorem 10.2 The SOF–H∞ problem can be equivalently stated as:

min γ s. t. X ≻ 0, γ > 0,


A(F )⊤X + XA(F ) XB(F ) C(F )⊤

B(F )⊤X −γ Inw
D(F )⊤

C(F ) D(F ) −γ Inz



 ≺ 0,
(10.23)

whereγ ∈ R, X ∈ Rnx×nx .

Due to the bilinearity of the free matrix variablesF andX , the BMI–formulation of the
SOF–H∞ is non–convex and nonlinearly constrained. Again, for a proof see e. g. [55].
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10.2.2 Simultaneous Stabilization BMIs

Another example is the problem of simultaneously stabilizing a family of single-input
single-output linear systems by one fixed controller of given order. This problem arises
for instance when trying to preserve stability of a control system under the failure of
sensors, actuators, or processors. Simultaneous stabilization of three or more systems
was extensively studied in [15]. Later on, the problem was shown to belong to the
wide range of robust control problems that are NP-hard, i.e.that are very unlikely to
be solved in polynomial time [16].

In [44] a BMI formulation of the simultaneous stabilizationproblem was obtained
in the framework of the polynomial, or algebraic approach tosystems control [54].
This formulation is briefly summarized in this section:

Let the real rational functions

Pi(s) =
ni(s)

di(s)
, i = 1, 2, . . . , N

be coprime polynomial fraction descriptions forN linear plants. We seek a controller

C(s) =
xn(s)

xd(s)

of fixed order simultaneously stabilizing plantsPi(s) when placed in a standard neg-
ative feedback configuration. In other words, given polynomials ni(s), di(s) of de-
greenp the simultaneous stabilization problem amounts to finding polynomialsxn(s),
xd(s) of given degreenx such that all the characteristic polynomials

pi(s) = ni(s)xn(s) + di(s)xd(s), i = 1, 2, . . . , N (10.24)

of degreen = np + nx have their roots in some specified stability regionD.
The location of the roots of a polynomial in regionD is captured by the follow-

ing well-known Hermite stability criterion, which is the symmetric counterpart of the
standard Routh-Hurwitz or Schur-Cohn stability criteria.

Lemma 10.3 The roots of a polynomialp(s) = p0 +p1s+ · · ·+pnsn belong to region
D if and only if the matrix

H(p) =
n∑

j=0

n∑

k=0

pjpkHjk

is positive definite, where the Hermitian matricesHjk depend on regionD only.

For more details the interested reader is referred to [43]. Applying Lemma 10.3 to
characteristic polynomials (10.24), we derive easily the following BMI formulation of
the simultaneous stabilization problem.
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Theorem 10.4 The simultaneous stabilization problem forN plants of ordernp is
solved with a controller of ordernx if and only if the2nx +1 controller coefficientsxk

satisfy theN following BMIs of sizen = np + nx

H(pi) =

n∑

j=0

n∑

k=0

xjxkHi,jk ≻ 0, i = 1, 2, . . . , N

where Hermitian matricesHi,jk depend only on the stability region and open-loop
plant coefficients.

For explicit expressions for the matricesHi,jk and other details, the interested
reader is referred to [44].

In other words our goal is to check, whether a system of BMIs isfeasible. In a more
general setting this problem can be reformulated by the following procedure: Assume
we want to find a feasible point of the following system of BMIs

Ai
0 +

n∑

k=1

xkAi
k +

n∑

k=1

n∑

ℓ=1

xkxℓK
i
kℓ ≺ 0, i = 1, . . . , N (10.25)

with symmetric matricesAi
k, Ki

kℓ ∈ R
di×di , k, ℓ = 1, . . . , n, i = 1, . . . , N , andx ∈

Rn. Then we can check the feasibility of (10.25) by solving the following optimization
problem

min
x∈Rn,λ∈R

λ (10.26)

s.t. Ai
0 +

n∑

k=1

xkAi
k +

n∑

k=1

n∑

ℓ=1

xkxℓK
i
kℓ 4 λIn, i = 1, . . . , N . (10.27)

Problem (10.26) is a global optimization problem: we know that if its global minimum
λ is non-negative then the original problem (10.25) is infeasible. On the other hand
our algorithm can only find local optima (more precisely, critical points). Thus, when
solving (10.26) by our algorithm, the only conclusion we canmake is the following:

whenλ < 0, the system is strictly feasible;
whenλ = 0, the system is marginally feasible;
whenλ > 0 the system may be infeasible.

During numerical experiments it turned out that the feasible region of (10.25) is
often unbounded. We used two strategies to avoid numerical difficulties in this case:
First we introduced large enough artificial boundsxbound. Second, we modify the
objective function by adding the square of the 2-norm of the vectorx multiplied by a
weighting parameterw. After these modifications problem (10.26) reads as follows:

min
x∈Rn,λ∈R

λ + w‖x‖2
2 (10.28)

s.t. − xbound ≤ xk ≤ xbound, k = 1, . . . , n

Ai
0 +

n∑

k=1

xkAi
k +

n∑

k=1

n∑

ℓ=1

xkxℓK
i
kℓ 4 λIn×n, i = 1, . . . , N .
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This is exactly the problem formulation we used in our numerical experiments (com-
pare Section 11.3).



Chapter 11

Benchmarks and Numerical
Experiments

11.1 Numerical Experiments in Structural Optimiza-
tion

11.1.1 Global Stability and Self Vibration

Throughout this section we present results of several numerical studies on (partly non-
linear) semidefinite optimization problems arising from structural optimization, when
global stability is taken into account (compare Section 10.1.3). Our studies will involve
both – truss topology optimization problems (TTO) (comparesection 10.1.2) and free
material optimization problems (FMO) (compare section 10.1.1). In each of the test
scenarios described below, we try to solve a structural optimization problem in the so
called minimum weight formulation using different numbersof nodes in the ground
structure (TTO case) respectively different levels of discretizations (FMO case) and
different types of constraints. In particular we tried to solve the following problems for
each ground structure/level of discretization:

• Problem (10.16): no stability is taken into account.

• Problem (10.18): stability is “approximated” by constraints on the self vibration
of the system.

• Problem (10.17): stability is considered in the sense of a critical buckling force.

Note that the first two problems are linear semidefinite programs, whereas the third
problem is highly nonlinear. Apart from the nonlinearity there is a second difficulty
arising, when solving problems of type (10.17), namely the computational complex-
ity of the Hessian assembling of the augmented Lagrangian. This is the reason, why
we used for some of the larger FMO problems an iterative method to solve step2.1
of Algorithm 9.4.1 (compare also Section 9.1.4), which doesnot require the explicit

94
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Figure 11.1: ScenarioTower; ground structure

calculation of the Hessian. Note that these results (markedby an asterisk in the tables
below) where computed with reduced accuracy. Note further that the same approach
could not be successfully applied to (large) TTO problems sofar. For this reason we
are not able to present results for the stability problems ofthe largest TTO instances
below.

ScenarioTower In our first test scenario we consider a truss, which is fixed atthe
bottom nodes and subject to a single vertical force at the top-middle node (compare
Figure 11.1). The result of standard TTO (with no stability constraint) is just a single
vertical bar (as depicted in Figure 11.2) —an extremely unstable structure. Adding a
constraint on the self vibration we obtain the truss shown inFigure 11.3. Finally using
a constraint on the global stability, we obtain a truss presented in Figure 11.4. The
latter two trusses are obviously stable.

Table 11.1: ScenarioTower; problem dimensions

#Nodes #Vars Matsize – compliance Matsize – stability #linear
constraint constraint constraints

3x3x3 315 55 54 316
3x3x4 594 82 81 595
3x3x5 954 109 108 955
3x3x11 4825 271 270 4826
3x3x16 10260 406 405 10261

Table 11.1 shows the problem dimensions for increasing number of nodes in the
ground structure. In Table 11.2 we present the corresponding computational results,
which are in particular: number of outer/inner iterations and run time in seconds. Note
that single-load problems are usually solved much more efficiently using a different
formulation (compare section 10.1). However, we have chosen the linear SDP formu-
lation for comparison purposes.
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Figure 11.2: ScenarioTower; single-load result

Figure 11.3: ScenarioTower; vibration constraint added

Figure 11.4: ScenarioTower; stability constraint added
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Figure 11.5: ScenarioCantilever; ground structure

Figure 11.6: ScenarioCantilever; single-load result

Table 11.2: Numerical results for sample caseTower

#Nodes Sl-Iter Sl-time Vib-Iter Vib-time Buck-iter Buck-time

3x3x3 10/105 2 10//99 4 10//96 135
3x3x4 11/115 11 11/103 18 11//95 1041
3x3x5 12/121 36 12/118 58 12/116 10056
3x3x11 14/161 4268 14/183 6075 – –
3x3x16 16/187 43594 15/225 58649 – –

ScenarioCantilever In our second example we try to find an optimal truss, which is
fixed at the upper and lower left nodes. Furthermore the trussis subject to a vertical
force at the inner right node (compare Figure 11.5). The result of standard TTO, pre-
sented in Figure 11.6 is just a two-dimensional construction. It is easy to understand
that such a construction must be unstable against forces having a non-zero component,
lying not in the plane described by the single-load-truss. The stability can be signifi-
cantly improved by adding a vibration constraint (see Figure 11.7) or a global stability
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Figure 11.7: ScenarioCantilever; vibration constraint added

Figure 11.8: ScenarioCantilever; stability constraint added

constraint (see Figure 11.8).

Table 11.3: ScenarioCantilever; problem dimensions

#Nodes #Vars Matsize – compliance Matsize – stability #linear
constraint constraint constraints

3x2x2 261 55 54 262
5x3x2 420 73 72 421
5x3x3 954 109 108 955
6x3x6 5625 271 270 5626
7x3x7 10521 379 378 10522

Table 11.3 shows the problem dimensions for all ground structures we have used
for Test ScenarioCantilever.
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Figure 11.9: ScenarioBridge; ground structure

The computational results for this test case can be seen in Table 11.4.

Table 11.4: ScenarioCantilever; numerical results

#Nodes Sl-Iter Sl-time Vib-Iter Vib-time Buck-iter Buck-time

3x2x2 9/101 2 9//99 4 9/103 79
5x3x2 9/115 6 9/126 12 9/111 386
5x3x3 9/110 36 10/137 71 10/137 12120
6x3x6 11/189 7779 11/227 11286 – –
7x3x7 12/223 54844 12/240 65897 – –

ScenarioBridge In the third and last TTO example we consider a truss, fixed at the
left-most and right-most bottom nodes. Moreover the truss is subject to vertical forces
at all inner bottom nodes (compare Figure 11.9). As in the preceding example all bars in
the standard TTO result, depicted in Figure 11.10, lie in a hyperplane parallel spanned
by the initial forces. Thus the truss is again unstable. As before we can achieve “better”
constructions by adding a constraint on the self vibration (compare Figure 11.11) or a
global stability constraint (see Figure 11.12).

Table 11.5: ScenarioBridge

#Nodes #Vars Matsize – compliance Matsize – stability #linear
constraint constraint constraints

3x2x2 261 55 54 262
5x3x2 420 73 72 421
5x3x3 975 118 117 976
6x3x6 5763 307 306 5764
7x3x7 10716 424 423 10717

Tables 11.5 and 11.6 show the problem sizes and the computational results for this
scenario presented in the same style as above.
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Figure 11.10: ScenarioBridge; single-load result

Figure 11.11: ScenarioBridge; vibration constraint added

Table 11.6: ScenarioBridge; numerical results

#Nodes Sl-Iter Sl-time Vib-Iter Vib-time Buck-iter Buck-time

3x2x2 9//82 1 10/101 3 10//92 71
5x3x2 9/80 4 10//87 8 10//98 334
5x3x3 10/96 31 11/104 50 11/103 10170
6x3x6 12/135 5954 13/194 10281 – –
7x3x7 13/161 41496 13/222 65670 – –
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Figure 11.12: ScenarioBridge; stability constraint added

?

Figure 11.13: ScenarioPlate– Geometry, boundary conditions & forces (left) and
single-load result (right)

ScenarioPlate The next scenario deals with a two-dimensional FMO problem.Con-
sider a plate (depicted in Figure 11.13, left side) fixed on the left-hand side and sub-
jected to a horizontal load concentrated on a small part of the right-hand side. The right
part of Figure 11.13 shows a result of the minimum weight problem (10.12) (with no
stability/vibration constraint) for a zero-Poisson-ration material. The optimal structure
only consists of horizontal fibers and is, as such, extremelyunstable to other than the
given load. Figure 11.14 presents the results of problems (10.18) and (10.17) for the
same material; the structures are obviously much more stable.

Table 11.7: ScenarioPlate; problem dimensions

#Elements Matsize – compliance Matsize – stability #linear
(=#Vars) constraint constraint constraints

10 x 20 = 200 440 441 401
14 x 30 = 420 900 901 841
20 x 40 = 800 1680 1681 1601
30 x 60 = 1800 3720 3721 3601

Table 11.7 shows the problem dimensions for four discretizations with increasing
number of elements. In Table 11.7 we present the corresponding computational results,
which are again: number of outer/inner iterations and run time in seconds.
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Figure 11.14: ScenarioPlate– vibration result (left) and stability result (right)

Table 11.8: ScenarioPlate; numerical results

#Elements Sl-Iter Sl-time Vib-Iter Vib-time Buck-iter Buck-time

10 x 20 = 200 14/96 52 14/99 119 14/188 5709
14 x 30 = 420 19/119 515 15/100 923 18/208 57108
20 x 40 = 800 22/141 2968 16/108 4721 20/180 27732(∗)

30 x 60 = 1800 23/142 22334 18/127 30705 13/137115810(∗)

ScenarioPlate-Narrow ScenarioPlate-Narrowis very similar to scenarioPlate. The
only difference is in the geometry of the design space (compare Figure 11.15, left side).
Again the pure single-load result, depicted in Figure 11.15is unstable. Just as before
we get much more stable results, when solving problems (10.18) and (10.17) for the
same material (see Figure 11.16).

Table 11.9: ScenarioPlate-Narrow; problem dimensions

#Elements Matsize – compliance Matsize – stability #linear
(=#Vars) constraint constraint constraints

4 x 32 = 128 320 321 257
8 x 64 = 512 1152 1153 1025
12 x 96 = 1152 2496 2497 2305
16 x 128 = 2048 4352 4353 4097

Table 11.9 shows the problem dimensions for four discretizations with increasing
number of elements, whereas the corresponding computational results are given in Ta-
ble 11.10.
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?

Figure 11.15: ScenarioPlate-Narrow– Geometry, boundary conditions & forces (top),
single-load result (bottom)

Figure 11.16: ScenarioPlate-Narrow– vibration result (top) and stability result (bot-
tom)

Table 11.10: ScenarioPlate-Narrow; numerical results

#Elements Sl-Iter Sl-time Vib-Iter Vib-time Buck-iter Buck-time

4 x 32 = 128 13/76 16 13/84 50 16/96 936
8 x 64 = 512 20/135 976 16/104 1587 17/101 51743
12 x 96 = 1152 35/190 8640 18/137 13265 12/98 47450(∗)

16 x 128 = 2048 35/199 30616 19/171 57125 8/72 75600(∗)
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?

Figure 11.17: ScenarioTwo-Forces– Geometry, boundary conditions & forces (left),
single-load result (right)

ScenarioTwo-Forces As in the preceding FMO scenarios, we consider a plate. Again
the plate is fixed on the left-hand side, but this time there are two horizontal loads
concentrated on two small areas of the right-hand side (see Figure 11.17, left side).
The right part of Figure 11.17 shows a result of the minimum weight problem (10.12)
(with no stability/vibration constraint). We can clearly see that the structure consists of
two horizontal fibers, one at the bottom and another one at thetop of the design space.
Both fibres are not connected and thus the structure is again unstable. In Figure 11.18
we present results of problems (10.18) and (10.17) for the same material. In both cases
we can see that most of the material is distributed again at the bottom and the top of the
design space, but this time the fibers at the bottom and the topare connected. Therefore
the results are more stable with respect to loading scenarios other than the given one.

Table 11.11: ScenarioTwo-Forces; problem dimensions

#Elements Matsize – compliance Matsize – stability #linear
(=#Vars) constraint constraint constraints

7 x 28 = 196 406 407 393
10 x 40 = 400 880 881 841
14 x 56 = 784 1680 1681 1601
20 x 80 = 1600 3360 3361 3601

Table 11.11 and Table 11.12 show problem dimensions and numerical results for
this test scenario.

Table 11.12: ScenarioTwo-Forces; numerical results

#Elements Sl-Iter Sl-time Vib-Iter Vib-time Buck-iter Buck-time

7 x 28 = 196 13/81 43 13/76 111 13/92 2723
10 x 40 = 400 14/93 367 14/89 717 14/104 25930
14 x 56 = 784 15/110 2198 17/110 4363 15/110 21934(∗)

20 x 80 = 1600 16/120 11874 16/125 20696 14/10553187(∗)
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Figure 11.18: ScenarioTwo-Forces– vibration result (left) and stability result (right)

?

Figure 11.19: Maximizing Vibration Mode – Geometry and boundary conditions (left),
Optimal Material (Density Plot) (right)

11.1.2 Maximizing the Minimal Eigenfrequency

We want to conclude this section by presenting a numerical study on material problems
of type (10.19). In our model example we consider a plate, which is fixed on the left
hand side. Furthermore there is a prescribed mass on the right hand side of the design
space (compare Figure 11.19, left side). Now we are interested in finding a material,
which supports the prescribed mass and the minimal eigenfrequency of which is as
large as possible. Note that the resulting semidefinite problem is bi-linear and quasi-
convex. Moreover the problem inherent structure is more favorable as in the nonlinear
semidefinite programming problems investigated in the preceding section. Table 11.13
shows results for five different levels of discretizations.Next to computational times
and numbers of iterations we list problem dimensions and thedensity of the constraint
matrix. At the right hand side of Figure 11.19 we can see a density plot of the optimal
material in the above sense for the finest level of discretization.

Table 11.13: Maximizing Vibration Mode; numerical results

#Elements #Vars #Constr Matsize #Iterations #Nwtstps TimeDensity

16 17 33 44 15 81 1 1.0
200 201 401 440 20 94 28 .100
420 421 841 900 21 102 152 .0622
800 801 1601 1680 23 109 654 .0415
1800 1801 3601 3720 24 115 8922 .0213
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Remark . If we look at the tables presented in this section, we observe that for
almost all test scenarios the number of Newton steps required by PENNON in order to
achieve a prescribed precision is growing with increasing size of the test problems. Let
us just mention that this is not a general behavior of PENNON (compare, for example,
Table 11.13 or Section 11.4), but rather due to the fact that the problems presented
throughout this section become more and more ill-conditioned with increasing dimen-
sion.
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11.2 Numerical Experiments withCOMPleib -SOF Prob-
lems

Below we present results of a numerical benchmark with PENBMI , a specialized BMI-
version of PENNON , for the static output feedback problems inCOMPleib (COnstrained
Matrix–optimizationProblemlibrary), a benchmark collection for a very wide variety
of algorithms solving matrix optimization problems. The heart of COMPleib is the
MATLAB function file COMPleib.mwhich is available over the internet. This func-
tion returns the data matricesA, B1, B, C1, C, D11, D12 andD21 of the system (10.20)
of each individualCOMPleib example. For a detailed description of the library we refer
to [56].

All tests were performed on a 2.5 GHz Pentium 4 processor machine with 1 GB
RDRAM under the operating system Linux. YALMIP 3.0 was used to build theH2-
andH∞-models and to transform them to PENBMI standard input. The tests where
performed in the following way: We started to run all cases using default options.
For many cases the algorithm was restarted few times and the initial multipliers where
adapted automatically. In a second run the test cases where re-run using the automat-
ically ”optimized” initial multipliers. The results of these reruns are presented in the
tables below. Of course apart from CPU-time the results of the first and second runs
are identical.

Tables 11.14 and 11.15 show the results of PENBMI on H2-BMI and H∞-BMI
problems. The results can be divided into seven groups:

• The first group consists of all test cases solved without any difficulties.

• The second and third group contain all cases, for which we hadto relax our
stopping criterion. These examples are marked by ”a” in the tables below, if the
achieved precision is still close to our predefined stoppingcriterion, and by ”A”,
if the deviation is significant.

• Then there are examples, for which we could calculate almostfeasible solutions,
but which failed to satisfy the Hurwitz-criterion, namely AC5 and NN10.

• The fourth group consists of medium and small scale cases forwhich the code
failed due to ill conditioning. In theH2-setting these cases are AC7, AC9, AC13,
AC18, JE1, JE2, JE3, REA4, DIS5, WEC1, WEC2, WEC3, UWV, PAS, NN1,
NN3, NN5, NN6, NN7, NN9, NN12 and NN17, in theH∞-setting JE1, JE2,
JE3, REA4, DIS5, UWV, PAS, TF3, NN1, NN3, NN5, NN6, NN7 and NN13.

• The cases in the sixth group are large scale, ill conditionedproblems, where
PENBMI ran out of time (AC10, AC14, CSE2, EB5).

• Finally, for very large test cases our method ran of memory (HS1, BDT2, EB6,
TL, CDP, NN18).

Only the cases of the first three groups are listed in the tables below.
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Table 11.14: Results of PENBMI onH2-BMI problems

Ex. CPU n m nx / ny / nu / λr
maxA(F ) H2-perf prec

(sec) nw / nz

AC1 0.79 27 17 5 / 3 / 3 / 3 / 2 -2.65e-01 1.007e-03
AC2 1.60 39 20 5 / 3 / 3 / 3 / 5 -2.01e-07 5.041e-02
AC3 0.72 38 20 5 / 4 / 2 / 5 / 5 -4.53e-01 4.570e+00
AC4 0.79 15 14 4 / 2 / 1 / 2 / 2 -5.00e-02 1.103e+01
AC6 3.22 64 28 7 / 4 / 2 / 7 / 7 -8.72e-01 3.798e+00
AC8 8.14 53 29 9 / 5 / 1 / 10 / 2 -3.14e-01 1.194e+00
AC11 3.56 38 20 5 / 4 / 2 / 5 / 5 -3.23e-01 3.942e+00
AC12 1.28 23 13 4 / 4 / 3 / 3 / 1 -4.41e-01 2.424e-04 a
AC15 0.53 37 18 4 / 3 / 2 / 4 / 6 -3.46e-01 1.261e+01
AC16 2.66 39 18 4 / 4 / 2 / 4 / 6 -3.19e-01 1.230e+01
AC17 0.35 22 16 4 / 2 / 1 / 4 / 4 -7.19e-01 4.111e+00
HE1 0.22 15 14 4 / 1 / 2 / 2 / 2 -1.21e-01 9.546e-02
HE2 0.76 24 16 4 / 2 / 2 / 4 / 4 -3.17e-01 3.434e+00
HE3 1.96 115 34 8 / 6 / 4 / 1 / 10 -1.43e-01 8.118e-01
HE4 21.72 138 36 8 / 6 / 4 / 8 / 12 -9.28e-02 2.082e+01
HE5 8.66 54 28 8 / 2 / 4 / 3 / 4 -9.83e-03 5.438e+00
HE6 1101 370 76 20 / 6 / 4 / 6 / 16 -5.00e-03 6.317e+01 a
HE7 5135 370 76 20 / 6 / 4 / 9 / 16 -5.00e-03 6.372e+01 A
REA1 0.95 26 16 4 / 3 / 2 / 4 / 4 -1.68e+00 1.820e+00
REA2 0.55 24 16 4 / 2 / 2 / 4 / 4 -1.22e+00 1.862e+00
REA3 26.29 159 48 12 / 3 / 1 / 12 / 12 -2.06e-02 1.209e+01
DIS1 6.45 88 32 8 / 4 / 4 / 1 / 8 -4.33e-01 2.660e+00 a
DIS2 0.23 16 12 3 / 2 / 2 / 3 / 3 -7.58e-01 1.416e+00
DIS3 2.47 58 24 6 / 4 / 4 / 6 / 6 -1.40e+00 1.839e+00
DIS4 3.73 66 24 6 / 6 / 4 / 6 / 6 -1.01e+00 1.692e+00
TG1 107 114 40 10 / 2 / 2 / 10 / 10 -3.39e-01 2.231e+01 a
AGS 167 160 48 12 / 2 / 2 / 12 / 12 -2.03e-01 6.995e+00
BDT1 3.56 96 39 11 / 3 / 3 / 1 / 6 -1.88e-03 1.745e-02
MFP 0.59 26 16 4 / 2 / 3 / 4 / 4 -3.20e-02 9.162e+00
IH 376 407 74 21 / 10 / 11 / 21 / 11 -4.79e-01 8.260e-04
CSE1 50.96 308 72 20 / 10 / 2 / 1 / 12 -5.29e-02 1.208e-02
EB1 20.72 59 32 10 / 1 / 1 / 2 / 2 -5.52e-02 1.700e+00
EB2 26.91 59 32 10 / 1 / 1 / 2 / 2 -8.68e-02 7.736e-01
EB3 8.92 59 32 10 / 1 / 1 / 2 / 2 -4.70e-02 8.345e-01
EB4 499 214 62 20 / 1 / 1 / 2 / 2 -1.71e-05 5.043e+02 A
TF1 1.65 46 25 7 / 4 / 2 / 1 / 4 -6.88e-02 1.826e-01
TF2 37.69 44 25 7 / 3 / 2 / 1 / 4 -1.00e-05 1.449e-01 A
TF3 2.61 44 25 7 / 3 / 2 / 1 / 4 -3.20e-03 2.781e-01
PSM 2.57 49 26 7 / 3 / 2 / 2 / 5 -7.84e-01 1.504e+00
NN2 0.28 7 8 2 / 1 / 1 / 2 / 2 -4.08e-01 1.565e+00
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Results of PENBMI onH2-BMI problems(cont.)

Ex. CPU n m nx / ny / nu / λr
maxA(F ) H2-perf prec

(sec) nw / nz

NN4 0.38 26 16 4 / 3 / 2 / 4 / 4 -5.87e-01 1.875e+00
NN8 0.34 16 12 3 / 2 / 2 / 3 / 3 -4.64e-01 2.280e+00
NN11 285 157 51 16 / 5 / 3 / 3 / 3 -3.45e-01 1.198e+02 A
NN13 3.00 31 21 6 / 2 / 2 / 3 / 3 -2.37e+00 2.622e+01
NN14 3.48 31 21 6 / 2 / 2 / 3 / 3 -1.83e+00 3.536e+01
NN15 0.35 20 13 3 / 2 / 2 / 1 / 4 -1.17e-01 4.903e-02
NN16 46.57 62 28 8 / 4 / 4 / 8 / 4 -8.06e-06 3.073e-01 A

Table 11.15: Results of PENBMI onH∞-BMI problems

Ex. CPU n m nx / ny / nu / λr
maxA(F ) Hinf -perf prec

(sec) nw / nz

AC1 0.37 25 16 5 / 3 / 3 / 3 / 2 -2.03e-01 2.505e-06
AC2 0.57 25 19 5 / 3 / 3 / 3 / 5 -2.26e-07 1.115e-01
AC3 4.96 24 21 5 / 4 / 2 / 5 / 5 -4.12e-01 3.402e+00
AC4 0.82 13 13 4 / 2 / 1 / 2 / 2 -5.00e-02 9.355e-01
AC6 1.28 37 29 7 / 4 / 2 / 7 / 7 -7.64e-01 4.114e+00
AC7 6.08 48 24 9 / 2 / 1 / 4 / 1 -1.80e-02 2.097e+00 a
AC8 6.63 51 31 9 / 5 / 1 / 10 / 2 -3.55e-01 2.367e+00 a
AC9 42.42 76 33 10 / 5 / 4 / 10 / 2 -1.62e-01 1.039e+00
AC11 8.00 24 21 5 / 4 / 2 / 5 / 5 -4.33e+00 2.820e+00
AC12 1.59 23 13 4 / 4 / 3 / 3 / 1 -1.13e-01 3.978e-01 a
AC13 6270 419 113 28 / 4 / 3 / 28 /28 -2.13e-02 9.438e+02 A
AC15 0.19 17 19 4 / 3 / 2 / 4 / 6 -4.51e-01 1.517e+01
AC16 1.08 19 19 4 / 4 / 2 / 4 / 6 -9.15e-01 1.486e+01
AC17 0.13 13 17 4 / 2 / 1 / 4 / 4 -7.26e-01 6.612e+00
AC18 56.77 60 29 10 / 2 / 2 / 3 / 5 1.33e+04 4.410e+02 A
HE1 0.63 13 13 4 / 1 / 2 / 2 / 2 -1.29e-01 1.538e-01 a
HE2 0.16 15 17 4 / 2 / 2 / 4 / 4 -4.03e-01 4.249e+00
HE3 4.32 61 28 8 / 6 / 4 / 1 / 10 -2.22e-01 9.500e-01
HE4 18.48 61 37 8 / 6 / 4 / 8 /12 -6.76e-02 2.284e+01
HE5 4.91 45 24 8 / 2 / 4 / 3 / 4 -1.26e-01 8.895e+00
HE6 1066 235 63 20 / 6 / 4 / 6 /16 -5.00e-03 9.712e+02 A
HE7 1096 235 66 20 / 6 / 4 / 9 /16 -5.00e-03 1.357e+03 A
REA1 0.98 17 17 4 / 3 / 2 / 4 / 4 -2.03e+00 8.657e-01
REA2 3.00 15 17 4 / 2 / 2 / 4 / 4 -2.63e+00 1.149e+00
REA3 2.85 82 49 12 / 3 / 1 / 12 /12 -2.07e-02 7.425e+01 a
DIS1 10.23 53 26 8 / 4 / 4 / 1 / 8 -7.15e-01 4.161e+00
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Results of PENBMI onH∞-BMI problems(cont.)

Ex. CPU n m nx / ny / nu / λr
maxA(F ) Hinf -perf prec

(sec) nw / nz

DIS2 0.30 11 13 3 / 2 / 2 / 3 / 3 -9.95e-01 1.055e+00
DIS3 12.03 38 25 6 / 4 / 4 / 6 / 6 -1.31e+00 1.065e+00
DIS4 2.83 46 25 6 / 6 / 4 / 6 / 6 -1.45e+00 7.318e-01
TG1 3.84 60 41 10 / 2 / 2 / 10 /10 -3.28e-01 1.285e+01 a
AGS 4.18 83 49 12 / 2 / 2 / 12 /12 -2.07e-01 8.173e+00
WEC1 10.30 68 41 10 / 4 / 3 / 10 /10 -8.08e-01 4.050e+00 a
WEC2 33.93 68 41 10 / 4 / 3 / 10 /10 -1.19e+00 4.245e+00 a
WEC3 10.91 68 41 10 / 4 / 3 / 10 /10 -1.14e+00 4.450e+00 a
BDT1 5.31 76 30 11 / 3 / 3 / 1 / 6 -3.31e-03 2.662e-01
MFP 0.54 17 17 4 / 2 / 3 / 4 / 4 -3.64e-02 3.159e+01 a
IH 326 342 75 21 / 10 /11 / 21 /11 -2.15e-01 4.187e-02
CSE1 36.05 231 54 20 / 10 / 2 / 1 /12 -9.22e-02 1.988e-02
EB1 1.83 57 25 10 / 1 / 1 / 2 / 2 -5.61e-02 3.123e+00
EB2 2.29 57 25 10 / 1 / 1 / 2 / 2 -7.83e-02 2.020e+00
EB3 1.89 57 25 10 / 1 / 1 / 2 / 2 -3.95e-02 2.058e+00
EB4 74.81 212 45 20 / 1 / 1 / 2 / 2 -2.01e-07 2.056e+00
TF1 5.03 37 20 7 / 4 / 2 / 1 / 4 -6.57e-02 4.042e-01 A
TF2 7.77 35 20 7 / 3 / 2 / 1 / 4 -1.00e-05 2.556e-01
PSM 0.74 35 22 7 / 3 / 2 / 2 / 5 -1.00e+00 9.202e-01
NN2 0.08 5 9 2 / 1 / 1 / 2 / 2 -6.36e-01 2.222e+00
NN4 0.90 17 17 4 / 3 / 2 / 4 / 4 -9.42e-01 1.359e+00
NN8 1.85 11 13 3 / 2 / 2 / 3 / 3 -1.39e+00 2.885e+00
NN9 8.56 22 17 5 / 2 / 3 / 2 / 4 -3.50e-01 2.500e+01 A
NN11 268 152 39 16 / 5 / 3 / 3 / 3 -5.43e-01 1.359e-01 A
NN12 5.75 26 25 6 / 2 / 2 / 6 / 6 -1.69e-01 1.629e+01
NN14 1.41 26 19 6 / 2 / 2 / 3 / 3 -2.30e+00 1.748e+01 a
NN15 0.35 11 12 3 / 2 / 2 / 1 / 4 -9.20e-01 9.809e-02
NN16 1.64 53 29 8 / 4 / 4 / 8 / 4 -7.80e-05 9.556e-01
NN17 0.36 9 10 3 / 1 / 2 / 1 / 2 -4.36e-01 1.122e+01

11.3 Numerical Experiments with Simultaneous Stabi-
lization BMIs

We collected a suite of simultaneous stabilization problems selected from the recent
literature. Table 11.16 gives basic characteristics of these problems.
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Table 11.16: Collection of simultaneous stab. problems

system contr. nb. of known
problem order order vertices feas. point ref.

discrete 3 2 1 [200 100 50] [83]
f4e 3 0 4 -0.8692 [1]
helicopter 3 2 4 [1.865 2.061 1.992 4.335 10.50] [42]
interval10 3 0 16 0.0380 [13]
interval11 3 1 16 [66.16 52.01 38.18] [13]
interval20 2 0 8 226.5 [13]
interval21 2 1 8 [397.4 214.4 -135.8] [13]
massspring 1 4 2 [0.2887 1.6761 -2.1434 3.0755 2.7278][85]
obliquewing 4 0 64 0.381 [3]
parametric 2 0 3 24.1489 [23]
servomotor 2 1 4 [1.300, 26.88, 5.439, 0] [14]
toy1 3 1 1 [0.5647 1.6138 1.5873] [44]
toy2 3 1 1 [-2.9633 -2.2693 1.2783] [44]

These problems were formulated as feasibility BMIs (10.28)and solved again by
PENBMI on a 2.5 GHz Pentium 4 processor machine with 1 GB RDRAM under Linux.
All test cases were solved for various initial points. The initial points were generated
by a strategy described in [42]. Note that the solution of most problems is obtained in
fractions of seconds by PENBMI . Thus many initial points cause not a real problem.

Another important issue was the choice of the weighting parameterw in (10.28).
After performing many experiments, we obtained the best results withw = 0.0001.

Table 11.17 presents the results. For each problem, we show the number of initial
points, the minimum and maximum number of internal PENBMI iterations (Hessian
evaluations) and the number of successful and unsuccessfulruns. By a successful
run we mean the case when a feasible point was found (Recall that all problems are
feasible). We also show the number of successful runs when the feasible point was at
the upper or lower bound; in this case the point may not be a stabilizer and has to be
checked a-posteriori. Unsuccessful run means that the optimal value in (10.28) was
greater than or equal to zero. Note that inall cases PENBMI converged to a critical
point.

Table 11.17: Results of PENBMI on simultaneous stab. problems

no. of min. max. succ. bound unsucc.
problem init. pts iter iter cases reached cases

discrete 4 17 86 4 2 0
f4e 5 63 78 4 0 1
helicopter 5 85 107 3 0 2
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Results of PENBMI on simultaneous stab. problems(cont.)

no. of min. max. succ. bound unsucc.
problem init. pts iter iter cases reached cases

interval10 17 56 67 17 0 0
interval11 17 66 104 16 0 1
interval20 9 53 63 6 6 3
interval21 9 63 131 4 4 5
massspring 2 348 397 2 0 0
obliquewing 65 65 90 64 0 1
parametric 4 62 73 3 3 0
servomotor 5 84 179 5 5 0
toy1 4 16 17 4 0 0
toy2 4 66 243 4 3 0

A detailed analysis of these results is given again in [42].

11.4 A Benchmark with a Collection of Random BMI
Problems

In the preceding sections we have investigated the behaviorof PENNON for a special
class of nonlinear SDP problems, namely BMI problems. In Section 10.2 we mainly
presented numerical results for small to medium scale examples of this category. The
reason for this choice was twofold: First, many of the large scale examples presented in
literature (compare, for example, large scale cases inCOMPleib ), were simply to huge
and therefore PENNON was not applicable. Second, the existing large scale examples
were often very ill conditioned and we were not able to achieve reasonable results. In
order to demonstrate that PENNON is generally able to copy with large scale nonlinear
semidefinite cases, we created a library of random BMI problems of the following
form:

min
x∈Rn,λ∈R

λ s.t. (11.1)

− |cℓ| ≤ xℓ ≤ |cℓ|, ℓ = 1, . . . , n ,

B(x) = A0 +
n∑

k=1

xkAk +
d∑

i=1

d∑

j=1

xixjKi,j 4 λIm ,

whereAk ∈ Sm, k = 0, . . . , n, Ki,j ∈ Sm, i, j = 1, . . . , d and0 < d ≤ n. The bounds
cℓ, ℓ = 1, . . . , n were generated by the MATLAB functionrandn , a random generator,
which produces arrays of random numbers whose elements are normally distributed
with mean 0, variance 1 and standard deviation 1. The matricesAk, k = 0, . . . , n and
Ki,j, i, j = 1, . . . , d were generated by the MATLAB functionsprandn : sprandn
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generates a sparse random matrix with approximatelyrm2 normally distributed non-
zero entries, wherer is a real value between 0 and 1. We symmetrized the matrices by
copying the upper triangular part to the lower one after creation.

The test cases we created can be classified by the parameter set (n; m; d; r). For each
combination of parameters we created at least 20 instances of problem (11.1). There
are two major groups of test cases, which we used to demonstrate the capabilities of
the code:

1. Category I: In the first group we collected cases wheren is significantly larger
thanm, d is chosen so that the inequalityd2 > n holds and the densityr of the
data matrices is not too small. This is a quite typical setting for problems arising
for instance in control theory. The main difficulty with these problems is that
they are highly nonlinear; this is a consequence of the comparably large number
of nonlinear terms in the bilinear constraint.

2. Category II: The second group of examples is characterized by the equation
n = m, d ≈ 100 and a parameterr, which guarantees that the matricesAk,
k = 1, . . . , n andKi,j , i, j = 1, . . . , d have very few (typically 4) non-zero
entries. Sinced and the number of non-zero entries is independent ofn, the
matrix B(x) gets sparser and sparser with growingn. This group of test cases
is used to demonstrate the ability of the code to solve large scale examples by
exploiting sparsity in the data.

Table 11.18: Random Problems – Category I; numerical results

#Vars Matsize #Nwtsteps #Iterations Time
min/avg/max min/avg/max min/avg/max

300 50 79/110/240 10/11/11 6/8/18
600 100 67/96/301 11/11/12 16/25/72
1200 200 104/113/126 18/20/23 420/463/539
2400 400 97/159/238 20/23/24 1157/1973/3011

Table 11.18 and Table 11.19 show results for problems of category I and category
II, respectively. Along with problem dimensions we show number of iterations, number
of Newton steps and CPU time. For each problem size we give worst, average and best
values. Note that for all but one problems we were able to reach 6 digits of precision
in all KKT criteria. When comparing the two tables, we can seethat the problems of
category I seem to be more difficult to solve.
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Table 11.19: Random Problems – Category I; numerical results

#Vars avg. Density #Nwtsteps #Iterations Time
(= Matsize) NLMI min/avg/max min/avg/max min/avg/max

250 0.26 61/82/265 13/15/19 4/7/15
500 0.15 68/90/134 14/17/19 33/40/57
1000 0.040 66/96/119 15/19/20 225/327/396
2000 0.027 72/100/285 16/18/21 249/372/1307
4000 0.024 76/93/103 17/21/23 1730/2150/2370
8000 0.021 83/94/105 18/20/22 17645/19638/22057

11.5 A Benchmark with Linear SDP Solvers

The linear SDP version of PENNON , called PENSDPis designed for the solution of the
problem

min
x∈Rn

bT x

subject to

A(x) 4 0

(11.2)

whereA(x) = A0 +
∑n

i=1 xiAi andAi ∈ Sm for all i = 0, . . . , n. The code was
tested using two different sets of problems: the SDPLIB collection of linear SDPs by
Borchers [19] and a set of various large-scale problems collected by Hans Mittelmann
and called here HM-collection.

We describe the results of our testing of PENSDP and four other general purpose
(linear) SDP codes available on the NEOS server, namely CSDP-4.9 by Borchers [18],
SDPA-6.00 by Fujisawaet all [36], SDPT3-3.1 by Toh, Todd and Tütüncü [81], and
DSDP-5.6 by Benson and Ye [10]. We have chosen these codes as they were, at the
moment of writing this thesis, the fastest ones in the independent tests performed by
Mittelmann [62]. All codes were used with standard setting;CSDP and PENSDPwere
linked with ATLAS-BLAS library, SDPT3 (with HKM direction)ran under MATLAB .
All tests presented in this section where performed on a Pentium IV PC (3.2 GHz) with
2 GB RDRAM running Linux-2.4.19 and MATLAB 6.5 .

We will present the results of our numerical experiments in the following way:
For each test set we will offer two tables. In the first table wewill list the CPU time
and the average DIMACS error: (compare Section 9.3.2) for each test case and each
code. In a second table we will present accumulated CPU timesand DIMACS errors
(sum of CPU times, arithmetic mean of DIMACS errors) for certain subsets of each
test case collection. We will further use the notation-testcase1,-testcase2 ,
where the namestestcase * stand for the names of particular problems from the
test set, to express that results for all problems, but the ones listed with minus signs
are accumulated in the corresponding line of the table. Furthermore we will use the
abbreviations
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• fail , if some code failed to converge for a certain test case,

• m, if some code ran out of memory for a certain test case and

• n.a. , if some accumulation operation is not applicable to the results produced
by a certain code, since the code failed on at least one test case of the corre-
sponding test set.

Note that the results presented in the following sections are partly taken from the web
pageftp://plato.la.asu.edu/pub/sdplib.txt with a kind permission of
the author.

11.5.1 SDPLIB

SDPLIB is a library of linear semidefinite test cases collected from various applica-
tions. The library is maintained and provided by Brian Borchers. The full library can
be downloaded from the internet. Instead of presenting herethe full SDPLIB results we
selected just several representative problems. Table 11.20 lists these problems, along
with their dimensions; the results for CSDP, DSDP, SDPA, SDPT3, and PENSDPare
presented in Table 11.21

Table 11.20: Selected SDPLIB problems.

no. of size of
problem var. matrix

arch8 174 335
control7 136 45
control10 1326 150
control11 1596 165
equalG11 801 801
equalG51 1001 1001
gpp250-4 250 250
gpp500-4 501 500
hinf15 91 37
maxG11 800 800
maxG32 2000 2000
maxG51 1001 1001
mcp250-1 250 250
mcp500-1 500 500
qap9 748 82
qap10 1021 101
qpG11 800 1600
qpG51 1000 2000
ss30 132 426
theta3 1106 150
theta4 1949 200
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Selected SDPLIB problems. (cont.)

no. of size of
problem var. matrix

theta5 3028 250
theta6 4375 300
thetaG11 2401 801
thetaG51 6910 1001
truss7 86 301
truss8 496 628
mcp500-1 500 500

We observe from Table 11.21 that PENSDP is for only very few of the SDPLIB
problems the fastest code. This is, basically, due to the number of (inner) iterations used
by the particular algorithms. Since the complexity of Hessian/Schur complement ma-
trix assembling is approximately the same for most of the codes, and the data sparsity
is handled in a similar way, the main time difference is givenby the number of Newton
steps. While, for instance, CSDP needs, on average, 15–30 steps, PENSDPneeds often
2–3 times more steps (compare, for example,control -set orthetaG51 ). On the
other hand, apart from thecontrol -set the casethetaG51 PENSDP is seems to be
competitive in terms of CPU time. Moreover PENSDPis, behind CSDP, the most robust
code concerning the quality of the solution in terms of the DIMACS error measures.

Table 11.21: Computational results for SDPLIB problems – CPU times
and average DIMACS errors

problem CSDP DSDP SDPA SDPT3 PENSDP

arch8 3 2 3 5 13
1,0E-09 1,7E-07 1,3E-07 2,0E-08 4,4E-08

control7 33 18 40 91 70
9,6E-09 2,9E-06 1,7E-07 1,4E-07 3,9E-08

control10 151 84 199 104 680
4,4e-08 6,2e-06 1,4e-06 1,8e-06 6,8e-06

control11 242 131 316 151 1041
4,5e-08 6,4e-06 1,6e-06 2,2e-06 4,3e-08

equalG11 80 60 63 84 76
9,7e-09 3,8e-08 7,5e-05 3,2e-07 4,5e-09

equalG51 207 112 127 157 208
1,9e-09 1,9e-08 9,1e-06 2,4e-07 2,5e-08
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Computational results for SDPLIB problems – CPU times and average
DIMACS errors (cont.)

problem CSDP DSDP SDPA SDPT3 PENSDP

gpp250-4 6 2 2 7 3
8,0e-09 8,0e-08 9,2e-06 3,0e-07 2,1e-08

gpp500-4 34 10 18 27 16
6,8e-09 5,0e-07 2,1e-05 2,9e-09 1,8e-07

maxG11 42 10 88 33 19
6,1e-10 1,6e-08 4,1e-09 1,7e-09 1,4e-08

maxG32 391 119 1378 428 195
1,7e-10 2,4e-08 3,3e-09 1,2e-09 5,4e-09

maxG51 105 34 83 70 92
7,7e-10 3,9e-08 7,0e-09 1,3e-10 2,7e-09

mcp250-1 3 1 2 3 1
3,3e-10 3,1e-08 1,0e-08 3,4e-10 2,1e-07

mcp500-1 11 4 13 11 5
3,3e-07 3,6e-08 2,6e-09 1,9e-10 3,8e-08

qap9 2 8 2 3 3
3,3e-07 1,2e-07 1,3e-04 7,1e-05 2,2e-07

qap10 4 15 5 5 7
6,9e-07 1,6e-06 5,3e-05 9,8e-05 6,1e-07

qpG11 314 50 332 214 73
2,4e-09 6,9e-08 5,7e-09 1,1e-10 1,9e-08

qpG51 459 204 693 428 186
9,4e-10 1,1e-07 6,2e-09 1,7e-09 3,1e-08

ss30 12 7 33 11 17
4,2e-10 1,3e-07 9,7e-08 1,8e-07 1,6e-08

theta3 4 6 5 6 7
1,3e-10 4,7e-09 2,6e-09 4,5e-10 6,2e-08

theta4 18 25 22 19 25
7,1e-10 1,8e-09 3,7e-09 4,7e-10 8,3e-08

theta5 57 73 68 51 40
1,6e-10 1,0e-08 4,0e-09 6,7e-10 3,5e-08

theta6 152 147 180 136 151
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Computational results for SDPLIB problems – CPU times and average
DIMACS errors (cont.)

problem CSDP DSDP SDPA SDPT3 PENSDP

2,0e-09 1,5e-08 4,1e-09 1,0e-09 5,3e-08

thetaG11 100 232 129 95 217
2,0e-09 1,5e-08 4,1e-09 1,0e-09 5,3e-08

thetaG51 1614 2553 1455 1681 6131
6,4e-10 3,1e-07 1,6e-07 1,9e-07 5,6e-07

truss7 1 1 1 2 1
8,1e-09 7,2e-08 2,4e-07 7,2e-08 8,9e-07

truss8 3 9 17 8 10
3,1e-10 1,6e-08 1,3e-07 6,2e-10 5,2e-07

To see a kind of average behavior, in Tab. 11.22 we show the sumof CPU times and
the average DIMACS errors for two subsets of problems, as well as for all problems
from Tab. 11.20.

Table 11.22: Sum of CPU times and average DIMACS error for certain
subsets of SDPLIB problems and for all problems from Tab. 11.21.

problem CSDP DSDP SDPA SDPT3 PENSDP

ALL 4048 3917 5274 3830 9287
5,7E-08 7,3E-07 1,2E-05 6,7E-06 4,2E-07

-thetaG51 2434 1364 3819 2149 3156
6,2E-08 7,7E-07 1,3E-05 7,3E-06 4,3E-07

-control*, 2041 1149 3304 1894 1435
-thetaG51 6,3E-08 1,4E-07 1,4E-05 7,7E-06 1,6E-07

11.5.2 HM Collection

Table 11.23 lists a selection of large-scale problems from the HM collection, together
with their dimensions and number of non-zeros in the data matricesAi, i = 1, . . . , n.
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Table 11.23: HM collection.

no. of size of no. of
problem var. matrix nzs.

buck-3 544 1,185 7,831
buck-4 1,200 2,545 17,509
buck-5 3,280 6,801 48,385
mater-3 1,439 3,587 45,189
mater-4 4,807 12,497 157,779
mater-5 10,143 26,819 338,757
mater-6 20,463 56,310 690,149
shmup3 420 2,641 21,600
shmup4 800 4,961 36,477
shmup5 1,800 11,041 82,317
trto-3 544 865 3,902
trto-4 1,200 1,873 8,734
trto-5 3,280 5,041 24,158
vibra-3 544 1,185 7,831
vibra-4 1,200 2,545 17,509
vibra-5 3,280 6,801 48,385

G40mb 2,000 2,000 2,003,000
G40mc 2,000 2,000 2,000
G48mc 3,000 3,000 3,000
G55mc 5,000 5,000 5,000
G59mc 5,000 5,000 5,000

butcher 22,843 6,434 206,992
cnhil8 1,716 120 7,260
cnhil10 5,005 220 24,310
cphil10 5,005 220 24,310
cphil12 12,376 363 66,429
neu1 3,003 254 31,880
neu1g 3,002 252 31,877
neu2 3,003 254 31,880
neu2g 3,002 252 31,877
neu2c 3,002 1,255 158,098
neu3 7,364 420 87,573
neu3g 8,007 462 106,952
rabmo 5,004 6,826 60,287
reimer5 6,187 102,606 719,806
rose13 2,379 105 5,564
rose15 3,860 137 9,182
taha1a 3,002 1,680 177,420
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HM collection problems. (cont.)

no. of size of no. of
problem var. matrix nzs.

taha1b 8,007 1,609 107,373

cancer 10,470 570 10,569
checker 3,971 3,970 3,970
foot 2,209 2,208 2,440,944
hand 1,297 1,296 841,752
ice 2.0 8,113 8,113 8,113
p auss2 9.115 9,115 9,115

BH2.r14 1,743 2,166 142,919
CH2 1.r14 1,743 2,166 142,919
CH2 3.r14 1,743 2,166 142,919
H2O+.r14 1,743 2,166 142,919
H20 .r14 1,743 2,166 142,919
NH2.r14 1,743 2,166 142,919
H30 .r16 2,964 3,162 279,048
NH3.r16 2,964 3,162 279,048

inc 600 3,114 2,515 190,356
inc 1200 6,374 5,175 741,296
neosfbr20 362 7,201 309,624
r1 600 0 600 601 180,900
yalsdp 300 5,051 1,005,250

The HM collection consists of test cases arising from various areas of applications.
As a consequence, the structures of the corresponding SDP problems are substantially
different. In order to make the results of our experiments more transparent to the reader
we decided to split the collection in certain subgroups, which are listed below:

1. STRUCTOPT

2. GRAPH

3. SOSTOOLS & GLOPTYPOLY

4. IMAGE

5. CHEMICAL

6. MIXED
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In Table 11.23 these subgroups are separated by horizontal lines and show up in the
same order as in the list above. In the sequel we will give brief descriptions for each of
the test groups and present the results of our computationalexperiments.

The STRUCTOPT set The STRUCTOPT set itself consists of three classes of prob-
lems. The first class (mater ) consists of multiple-load case free material optimization
problems as formulated in (10.5). All examples solve the same problem (geometry,
loads, boundary conditions) and differ only in the finite element discretization. The
linear matrix operatorA(x) =

∑
Aixi has the following structure:Ai are block di-

agonal matrices with many (∼5 000) small (11 × 11–20× 20) blocks. Moreover, only
few (6–12) of these blocks are non-zero in anyAi, as schematically shown in the figure
below.

2
x  + x  + ...

1

As a result, the Hessian of the augmented Lagrangian associated with this problem is a
large and sparse matrix. The second class (smhup) consists of free material optimiza-
tion problems subjected to vibration constraints (compareproblem (10.18)). Again
all examples differ only in the finite element discretization. The third class includes
problems from truss topology design:

• trto are problems from single-load truss topology design. Normally formu-
lated as LPs, here reformulated as SDPs for testing purposes.

• vibra are single load truss topology problems with a vibration constraint. The
constraint guarantees that the minimal self-vibration frequency of the optimal
structure is bigger than a given value.

• buck are single load truss topology problems with linearized global buckling
constraint. Originally a nonlinear matrix inequality, theconstraint should guar-
antee that the optimal structure is mechanically stable (does not buckle).

The problemssmhup, trto , vibra andbuck are characterized by sparsity of
the linear matrix operatorA.

Table 11.24: Computational results for STRUCTOPT problems– CPU
times and average DIMACS errors

problem CSDP DSDP SDPA SDPT3 PENSDP

buck-3 89 32 24 30 31
3,1e-07 7,9e-06 5,0e-06 3,0e-05 2,9e-07
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Computational results for STRUCTOPT problems – CPU times and av-
erage DIMACS errors (cont.)

problem CSDP DSDP SDPA SDPT3 PENSDP

buck-4 536 223 248 130 219
1,0e-07 2,0e-06 4,6e-07 6,1e-06 4,4e-08

buck-5 5005 3964 4960 1350 2173
1,8e-06 5,4e-06 3,0e-06 4,0e-05 1,9e-07

mater-3 12 16 1044 26 5
1,3e-09 3,5e-08 7,9e-09 5,7e-10 7,9e-08

mater-4 290 102 138452 129 27
3,0e-09 4,1e-07 4,3e-09 3,2e-10 1,5e-07

mater-5 3647 412 m 291 74
8,2e-10 2,1e-07 m 4,0e-10 5,8e-07

mater-6 m 1765 m 919 205
m 4,9e-07 m 9,7e-10 2,7e-07

shmup3 1498 232 419 247 233
1,4e-09 8,8e-07 2,4e-06 6,1e-07 3,1e-07

shmup4 3774 1643 1988 1148 1283
7,6e-08 1,0e-06 1,5e-06 5,3e-07 2,6e-07

shmup5 52295 16812 m 8740 9154
1,5e-06 4,7e-06 m 2,1e-06 1,6e-06

trto-3 19 9 12 15 17
2,3e-08 1,5e-05 9,2e-07 8,2e-05 1,0e-06

trto-4 238 86 125 64 81
1,1e-06 2,7e-05 3,8e-06 6,2e-04 7,1e-06

trto-5 2671 1194 1963 694 914
,6e-06 1,2e-04 3,9e-05 1,5e-04 3,5e-06

vibra-3 69 36 28 32 30
3,0e-07 5,7e-06 9,5e-06 4,3e-05 1,7e-07

vibra-4 774 303 269 150 169
2,5e-07 2,0e-05 1,5e-06 5,5e-05 5,6e-07

vibra-5 5984 4396 4740 2269 2050
2,2e-06 9,5e-05 4,9e-06 5,7e-04 5,6e-07
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As one can see from Table 11.24, PENSDP is particularly efficient for the group of
mater problems. The following table with accumulated results shows that PENSDPis
not only the fastest, but also the most robust code for the STRUCTOPT set.

Table 11.25: Sum of CPU times and average DIMACS error for certain
subsets of STRUCTOPT problems and for all problems from Tab.11.24.

problem CSDP DSDP SDPA SDPT3 PENSDP

ALL n. a. 31225 n. a. 16234 16665
n. a. 1,9E-05 5,8E-06 1,0E-04 1,0E-06

-mater6 76901 29460 n. a. 15315 16460
8,2E-07 2,0E-05 n. a. 1,1E-04 1,1E-06

-shmup5, 20657 12118 14776 6129 7200
-mater* 9,8E-07 2,7E-05 6,5E-06 1,5E-04 1,3E-06

The GRAPH set The GRAPH set includes problems arising from SDP relaxations
of max-cut problems collected in the graph library Gset, developed and maintained by
Yinyu Ye. The interested reader is referred to

http://www.stanford.edu/ yyye/yyye/Gset/

for further information. The test cases in the GRAPH set are characterized by very
sparse data matricesAi, i = 0, . . . , n, the equationn = m + 1, wheren andm are the
dimensions in problem (11.2), and in all but one case a sparsematrix operatorA.

Table 11.26: Computational results for GRAPH problems – CPUtimes
and average DIMACS errors

problem CSDP DSDP SDPA SDPT3 PENSDP

G40mb 1896 451 1074 937 1070
2,5E-09 1,4E-05 9,5E-05 2,1E-06 2,3E-08

G40mc 532 285 686 413 680
1,1E-09 3,7E-08 2,0E-09 1,4E-10 3,9E-08

G48mc 1137 312 2077 580 479
1,4E-08 1,3E-07 1,4E-08 1,3E-09 3,9E-08

G55mc 7199 2721 m m 6862
1,3E-09 1,7E-07 m m 4,9E-08

G59mc 9211 3985 m m 11902
3,4E-09 1,1E-07 m m 1,8E-08
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Tables 11.26 and 11.27 show that only three codes where able to solve all cases.
Among them DSDP is the fastest code. On the other hand the results calculated by
PENSDP and CSDP are more precise. On the smaller set of problems, solved by all
codes, PENSDPis one of the faster codes behind DSDP and SDPT3.

Table 11.27: Sum of CPU times and average DIMACS error for certain
subsets of GRAPH problems and for all problems from Tab. 11.26.

problem CSDP DSDP SDPA SDPT3 PENSDP

ALL 19975 7754 n. a. n. a. 20993
4,5E-09 2,9E-06 n. a. n. a. 3,4E-08

-G5* 3565 1048 3837 1930 2229
5,9E-09 4,7E-06 3,2E-05 7,0E-07 3,4E-08

The SOSTOOLS & GLOPTYPOLY set All test cases in this set are created by one
of the tools

• GloptiPoly – a Matlab add-on to build and solve convex linear matrix inequality
(LMI) relaxations of the (generally non-convex) global optimization problem of
minimizing a multivariable polynomial function subject topolynomial inequal-
ity, equality or integer constraints. More information, references, downloads etc.
can by found at

http://www.laas.fr/ henrion/software/gloptipoly/ .

• Sostools– a sum of squares optimization toolbox for MATLAB. Detailedinfor-
mation is provided at

http://www.cds.caltech.edu/sostools/ .

Most problems are characterized by the inequalityn >> m, moderately sparse data
matricesAi, i = 0, . . . , n and a dense matrix operatorA. For an exact description of
the particular test cases we refer to

ftp://plato.asu.edu/pub/sdp/README .

Table 11.28: Computational results for SOSTOOLS & GLOPTYPOLY
problems – CPU times and average DIMACS errors

problem CSDP DSDP SDPA SDPT3 PENSDP

butcher 4032 3223 23864 1475 8600
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Computational results for SOSTOOLS & GLOPTYPOLY problems –
CPU times and average DIMACS errors (cont.)

problem CSDP DSDP SDPA SDPT3 PENSDP

6,5E-09 4,0E-03 6,5E-02 1,6E-02 4,2E-07

cnhil8 22 25 31 7 91
6,6E-09 3,8E-06 1,4E-04 2,0E-06 7,4E-08

cnhil10 398 387 505 54 1375
8,3E-09 3,9E-06 1,1E-04 3,0E-05 7,8E-08

cphil10 93 405 337 31 22
1,1E-10 3,6E-07 1,4E-08 2,0E-09 3,3E-07

cphil12 1078 4511 3825 m 130
1,2E-10 4,9E-07 2,6E-08 m 2,4E-08

neu1 581 632 341 fail 1090
2,1E-04 1,6E-02 2,9E-02 fail 1,2E-06

neu1g 835 684 279 290 708
4,8E-08 6,5E-04 1,1E-04 2,2E-04 9,9E-07

neu2 852 fail fail fail 1004
1,4E-02 fail fail fail 9,3E-08

neu2g 516 652 fail 601 1565
3,4E-05 7,0E-04 fail 8,8E-04 1,8E-06

neu2c 2531 1335 1082 1532 3484
1,8E-08 2,5E-04 5,1E-04 1,3E-05 4,7E-04

neu3 5807 15922 13938 m 8634
1,8E-04 1,9E-03 4,8E-07 m 6,0E-04

neu3g 10366 20236 7070 fail 8147
3,6E-09 1,5E-03 5,6E-07 fail 4,7E-04

rabmo 615 fail 7199 365 2305
1,8E-09 fail 6,0E-06 2,0E-04 9,7E-08

reimer5 14436 fail m 3373 17502
3,8E-09 fail m 2,7E-06 6,4E-06

rose13 104 192 72 85 283
2,2E-08 4,9E-03 1,6E-06 5,1E-08 5,0E-08

rose15 634 fail 293 271 1028
6,4E-04 fail 9,7E-05 4,4E-04 2,0E-06
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Computational results for SOSTOOLS & GLOPTYPOLY problems –
CPU times and average DIMACS errors (cont.)

problem CSDP DSDP SDPA SDPT3 PENSDP

taha1a 1440 fail fail 832 2334
1,8E-09 fail fail 2,2E-02 1,2E-07

taha1b 3297 4782 10886 2849 9440
1,4E-09 6,9E-04 1,1E-08 1,5E-09 6,2E-08

Table 11.28 shows that many of the test cases in this class arevery hard to solve.
This is mainly due to ill conditioning of the linear systems that have to be solved by
the codes. In fact only two codes, namely CSDP and PENSDPwhere able to solve all
instances of this class – but also for these two codes the average precision achieved
is considerably low. In Table 11.29 show again average results for certain subsets of
problems. In particular we summarized the computational results for the largest subset
of test cases, which could be successfully solved by each of the codes CSDP, DSDP,
SDPA and SDPT3. The names of the subsets in Table 11.29 below are constructed
from the name of the corresponding codes. Moreover we separated the results for the
groupneu* from the other cases, since this group seems to be particularly difficult to
solve. It is interesting to observe that the average precision of PENSDPon the resulting
(reduced) test set is almost seven digits.

Table 11.29: Sum of CPU times and average DIMACS error for certain
subsets of SOSTOOLS & GLOPTYPOLY problems and for all problems
from Tab. 11.28.

problem CSDP DSDP SDPA SDPT3 PENSDP

ALL 47637 n. a. n. a. n. a. 67742
8,4E-04 n. a. n. a. n. a. 8,6E-05

-neu* 26149 n. a. n. a. n. a. 43110
5,8E-05 n. a. n. a. n. a. 8,8E-07

neu* 21488 n. a. n. a. n. a. 24632
2,1E-03 n. a. n. a. n. a. 2,2E-04

DSDP-set 29660 52986 n. a. n. a. 43569
3,3E-05 2,4E-03 n. a. n. a. 1,2E-04

SDPA-set 30393 n. a. 69722 n. a. 45337
7,4E-05 n. a. 6,8E-03 n. a. 1,1E-04

SDPT3-set 28953 n. a. n. a. 11765 48737
5,2E-05 n. a. n. a. 3,1E-03 3,7E-05
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The IMAGE set The IMAGE set consists of test cases arising from binary image par-
titioning, perceptual grouping and restoration. The interested reader is referred to [50],
[49] and the references atftp://plato.asu.edu/pub/sdp/README . The data
matricesAi, i = 0, . . . , n of the cases in this class are extremely sparse. Moreover for
all but one cases we haven = m and a sparse matrix operatorA. In the exceptional
casecancer , the operatorA is dense.

Table 11.30: Computational results for IMAGE problems – CPUtimes
and average DIMACS errors

problem CSDP DSDP SDPA SDPT3 PENSDP

cancer 2539 1568 1686 m 7261
6,9E-08 8,8E-02 3,8E-05 m 2,5E-07

checker 9915 1940 m 2371 1408
3,2E-09 1,1E-01 m 2,9E-10 2,3E-08

foot 4019 622 2156 1758 1870
2,3E-05 4,9E-07 8,9E-06 2,4E-05 1,7E-08

hand 452 138 253 271 313
1,5E-08 9,4E-07 9,6E-06 8,9E-06 2,5E-07

ice 2.0 m 14979 m m 13122
m 7,0E-08 m m 1,6E-08

p auss2 m 15758 m m 14110
m 1,4E-07 m m 6,2E-09

Only DSDP and PENSDPwhere able to solve all cases of the IMAGE set. All other
codes ran out of memory in at least two cases. Table 11.31 shows that (apart from
cancer ) PENSDP is one of the fastest codes for this group of test cases. One should
mention that for the test casecancer a low precision result, which is still more precise
as the DSDP result can be achieved by PENSDPin about 1000 seconds.

Table 11.31: Sum of CPU times and average DIMACS error for certain
subsets of IMAGE problems and for all problems from Tab. 11.24.

problem CSDP DSDP SDPA SDPT3 PENSDP

ALL n. a. 35005 n. a. n. a. 38084
n. a. 3,3E-02 n. a. n. a. 9,4E-08

CSDP set 16925 4268 n. a. n. a. 10852
5,8E-06 5,0E-02 n. a. n. a. 1,4E-07



CHAPTER 11. BENCHMARKS AND NUMERICAL EXPERIMENTS 128

Sum of CPU times and average DIMACS error for certain subsetsof
IMAGE problems and for all problems from Tab. 11.30 (cont.)

problem CSDP DSDP SDPA SDPT3 PENSDP

SDPA set 7010 2328 4095 n. a. 9444
7,7E-06 2,9E-02 1,9E-05 n. a. 1,7E-07

SDPT3 set 14386 2700 n. a. 4400 3591
7,7E-06 3,7E-02 n. a. 1,1E-05 9,7E-08

From Table 11.32 we see that all codes were able to solve all test cases successfully.
Taking into consideration both, the CPU time and the precision of the solutions, CSDP
seems to be the best code for this group of test cases. Faster results were produced by
the codes SDPT3 and SDPA. PENSDPis comparably fast as CSDP, but less precise.

The CHEMICAL set The test cases in the set CHEMICAL are extracted from a
larger set of test cases. The full library collects SDP benchmark problems from elec-
tronic structure calculations and can be downloaded from

www://cims.nyu.edu/ m̃ithuro/software.html .

All test cases are characterized by the inequalitym ≥ n, moderately sparse data ma-
tricesAi, i = 1, . . . , n and a dense matrix operatorA.

Table 11.32: Computational results for CHEMICAL problems –CPU
times and average DIMACS errors

problem CSDP DSDP SDPA SDPT3 PENSDP

BH2.r14 1995 4770 1495 729 2445
8,3E-10 4,5E-08 3,7E-04 3,7E-10 9,6E-08

C. 1.r14 1861 4684 1393 1633 2593
1,0E-09 4,9E-08 2,2E-03 1,3E-02 5,6E-08

C. 3.r14 1958 4362 1592 717 2206
8,7E-10 6,1E-08 1,6E-03 5,9E-10 4,6E-08

H2O+.r14 1807 4445 1591 1690 2261
1,1E-09 6,1E-08 6,1E-04 4,8E-03 6,4E-08

H20 .r14 1599 4378 1492 1583 1980
1,0E-09 6,0E-08 5,9E-04 1,3E-09 7,8E-08

NH2.r14 1747 4593 1496 1514 2184
1,4E-09 3,7E-08 9,8E-04 2,3E-08 7,1E-08
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Computational results for CHEMICAL problems – CPU times andaver-
age DIMACS errors (cont.)

problem CSDP DSDP SDPA SDPT3 PENSDP

H30 .r16 16087 23123 15189 14154 16664
9,2E-10 2,8E-08 4,3E-08 3,5E-10 4,7E-08

NH3.r16 16917 22120 15190 5268 15962
3,9E-10 3,7E-08 4,0E-08 2,6E-03 1,8E-07

From Table 11.33 we see that SDPT3 was the fastest code for this group of test
cases. On the other hand the average precision of the resultsproduced by SDPT3 is
much lower as for the codes CSDP, DSDP and PENSDP . Taking into account CPU
time and precision, one could come to the conclusion that CSDP is the best code for
this group of examples followed by PENSDP.

Table 11.33: Sum of CPU times and average DIMACS error for certain
subsets of CHEMICAL problems and for all problems from Tab. 11.32.

problem CSDP DSDP SDPA SDPT3 PENSDP

ALL 43971 72475 39438 27288 46295
9,4E-10 4,7E-08 7,9E-04 2,6E-03 8,0E-08

The MIXED set We collected all remaining test cases from the HM collectionin a
test set called MIXED. Again we refer to

ftp://plato.asu.edu/pub/sdp/README .

for detailed information on the particular test cases. The structure of the problems can
be seen from Table 11.23.

Table 11.34: Computational results for MIXED problems – CPUtimes
and average DIMACS errors

problem CSDP DSDP SDPA SDPT3 PENSDP

inc 600 549 fail 604 fail 1377
4,4E-04 fail 6,7E-03 fail 2,5E-05

inc 1200 2937 fail fail fail 7550
6,4E-04 fail fail fail 5,2E-04

neosfbr20 1650 1914 1663 1941 2045
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Computational results for MIXED problems – CPU times and average
DIMACS errors (cont.)

problem CSDP DSDP SDPA SDPT3 PENSDP

1,9E-09 2,8E-09 7,1E-09 1,5E-10 6,4E-08

r1 6 0 63 18 30 49 36
1,2E-08 1,3E-07 3,1E-05 9,9E-07 1,5E-08

yalsdp 1154 1311 1108 737 739
3,8E-10 5,2E-07 7,3E-09 2,8E-08 3,9E-09

Tables 11.34 and 11.35 show the results of our experiments. While for theinc * -
cases only CSDP and PENSDPwere able to find approximate solutions, all codes be-
haved similar on the other cases contained in the MIXED set. This is the reason, why
we give summarized results for all cases on the one hand and for all but theinc * -cases
on the other hand in Table 11.35.

Table 11.35: Sum of CPU times and average DIMACS error for certain
subsets of MIXED problems and for all problems from Tab. 11.34.

problem CSDP DSDP SDPA SDPT3 PENSDP

ALL 6353 n. a. n. a. n. a. 11747
2,2E-04 n. a. n. a. n. a. 1,1E-04

-inc* 2867 3243 2801 2727 2820
1,4E-08 6,5E-07 3,1E-05 1,0E-06 8,3E-08

At the end of this section, we want to determine an average behavior of all codes we
have used in our experiments for the full HM collection. As wehave seen throughout
this section almost all codes failed for certain subsets of test cases. Consequently
we decided to compare PENSDP to each code separately. The comparison is done
on the maximal subset of problems, which could be successfully solved by CSDP,
DSDP, SDPA and SDPT3, respectively. The corresponding subsets are named CSDP
set, DSDP set, SDPA set and SDPT3 set. Moreover we present accumulated results for
certain sub-groups of these sets. This is in order to avoid that the overall impression is
completely dominated by very few disadvantageous results.
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Table 11.36: Sum of CPU times and average DIMACS error for certain
subsets of HM collection problems and for all problems from Tab. 11.23.

problem CSDP DSDP SDPA SDPT3 PENSDP

CSDP set 211762 174089
2.9E-04 3.8E-05

-mater, 155518 164829
-smhup5 3.2E-04 4.1E-05

-neu*, -inc*, 186154 139502
-rose15* 7.9E-07 5.7E-07

DSDP set 202688 168426
4.5E-03 3.1E-05

-SOS,-cancer, 146194 116188
-checker 9.5E-06 5.0E-07

SDPA set 135273 114702
2.4E-03 3.5E-05

-SOS,-inc*, 130574 103881
2.9E-04 1.6E-06

SDPT3 set 64344 120337
6.7E-04 5.4E-07

-SOS,-inc* 47311 55638
5.5E-05 5.8E-07

We want to conclude this section by a few remarks:

Remark .

• From Table 11.36 we can see that PENSDP is a reliable code for a wide class of
linear SDP problems. Moreover PENSDPis on the average one of the best codes
in terms of CPU time and the quality of the computed approximate solution with
respect to the DIMACS criteria.

• It should be mentioned that the code CSDP achieved (sometimes by far) the best
precision for many of the test cases of the HM collection.

• We considered a test run of a code to be failed, whenever the (average) DIMACS
precision achieved was below 1.0E-01. Note that a differentchoice could signif-
icantly influence the avaraged information presented in thetables above.

• We did not use all test collected by H. Mittelmann for our experiments. A few
test cases have been excluded for different reasons.



Chapter 12

Outlook

In the final chapter of this thesis we would like to give a shortoutlook. The following
topics may be of interest in our future research:

• In Chapter 3 we have imposed the nondegeneracy constraint qualification as-
sumption. Unfortunately this condition can be very strong,because it forces
n ≥ r(r + 1)/2, wherer = dim(KerA(x∗)). Of course, we can assume the
nondegenaracy condition to hold for each matrix block separately, if the matrix
constraint is block structured. Nevertheless from the inequality above follows
that the nondegeneracy condition cannot hold in many of the large scale test
cases we have presented in Section 11. On the other hand, the algorithm con-
verged to an optimal solution in many of those cases. Therefore it would be
interesting to find a convergence proof for the method proposed in this thesis,
which does not require the nondegeneracy constraint qualification.

• The second point addresses a problem we have already mentioned briefly in Sec-
tion 6. There is still a gap between the “theoretical” Algorithm 6.1.1, where we
assume that each subproblem is solved exactly, and Algorithm 9.4.1, where we
work with approximate solutions of the subproblems. R. Polyak has closed this
gap in the nonlinear programming case; see [69] for further details. Of course it
would be interesting to establish a similar result in the context of our method.

• A few years ago R. Polyak has invented the primal-dual nonlinear rescaling
method for the solution of nonlinear programming problems of the form (NLP)
(see [70]). The method is in certain respect based on the the modified barrier
function method. Just recently, Polyak has shown asymptotic quadratic conver-
gence for this method. A similar approach would be also interesting in the con-
text of our method mainly for two reasons: the first reason is of course the faster
convergence in the local neighborhood of the optimum; the second advantage
could be a smaller number of inner iterations due to more frequent multiplier
updates.

• Another possible extension concerns the effective handling of equality constraints.
There are several interesting applications, where linear or nonlinear matrix con-
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straints occur in combination with nonlinear equalities. So far, we handle such a
situation by replacing the equality constraints by two inequalities. Sometimes the
results produced by this approach are rather unsatisfactory. In order to improve
the situation one could think of a “direct” handling of the equality constraints as
it is usually done in primal-dual interior point approaches.

• A more practical issue is the implementation of an interfacefor optimization
problems subjected to polynomial matrix inequalities of higher order. We have
already started to realize such an approach in cooperation with J. Löfberg, the
developer of YALMIP 3.0 (see [59]).
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[51] M. Kočvara. On the modelling and solving of the truss design problem with global
stability constraints.Struct. Multidisc. Optimization, 23(3):189–203, 2002.
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[74] R. Sommer.Stabilitätsfragen beim optimalen Entwurf von Stabwerken. PhD the-
sis, Friedrich-Alexander-Universität Erlangen—Institut für Angewandte Mathe-
matik 2, 2000.

[75] M. Stingl. Konvexe Semidefinite Programmierung. Diplomarbeit, Institute Of
Applied Mathematics, Friedrich-Alexander University of Erlangen-Nuremberg,
1999.

[76] D. Sun and J. Sun. Semismooth matrix-valued functions.Math. Oper. Res.,
27:150–169, 2002.

[77] C. M. Theobald. An inequality for the trace of the product of two symmetric
matrices. Mathematical Proceedings of the Cambridge Philosophical Society,
pages 77–265, 1975.

[78] S. P. Timoshenko and J. M. Gere.Theory of Elastic Stability. McGraw-Hill, New
York, 1961.

[79] M. J. Todd. Semidefinite optimization.Acta Numerica, 10:515–560, 2001.

[80] P. Tseng and D. P. Bertsekas. On the convergence of the exponential multiplier
method for convex programming.Math. Programming, 60:1–19, 1993.
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