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Structural Topology Optimization with Eigenvalues

Wolfgang Achtziget and Michal KoCvar&

Abstract

The paper considers different problem formulations of togy optimization of discrete or dis-
cretized structures with eigenvalues as constraints obgetive functions. We study multiple
load case formulations of minimum weight, minimum compti@mproblems and of the problem
of maximizing the minimal eigenvalue of the structure imlthg the effect of non-structural mass.
The paper discusses interrelations of the problems andriicplar, shows how solutions of one
problem can be derived from solutions of the other ones. Mg we present equivalent refor-
mulations as semidefinite programming problems with th@gnty that, for the minimum weight
and minimum compliance problem, each local optimizer os¢hproblems is also a global one.
This allows for the calculation of guaranteed global optiens of the original problems by the use
of modern solution technigues of semidefinite programmiray.the problem of maximization of
the minimum eigenvalue we show how to verify the global oplitg and present an algorithm
for finding a tight approximation of a globally optimal sabri. Numerical examples are provided
for truss structures. Examples of both academic and laigerilfustrate the theoretical results
achieved and demonstrate the practical use of this appra&fehconclude with an extension on
multiple non-structural mass conditions.

1 Introduction

The subject of this paper is topology optimization of diser@nd discretized structures with con-
sideration of free vibrations of the optimal structure. Nftaization of the fundamental eigenvalue
of a structure is a classic problem of structural engingerirhe (generalized) eigenvalue problem
typically reads as

K(z)w =AM (x) + My)w

whereK (z) and M (z) are symmetric and positive semidefinite matrices that nantisly (often
linearly) depend on the parameter The main difficulty brings the nonsmooth dependence of
eigenvalues on this parameter. The problem has been tiedteglengineering literature since the
beginning of 70s; see the paper [16] and the overview [15]nsarizing the early development.
See also the recent book [17] for up-to-date bibliographythis subject. The general problem
of eigenvalue optimization belongs also to classic probleflinear algebra. When the matrix
M (zx) + M, is positive definite for alkz, then one can resort to the theory developed for the
standard eigenvalue problem; see [11] for an excellentvaaxr Not many papers studying the
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dependence of the eigenvalues on a parameter are avadalhe fgeneral case whéed (z) + M,
is only positive semidefinite; see, e.g. [4, 18, 20].

We present three different formulations of the structuesign problem. In the first one we
minimize the volume of the structure subject to equilibricomditions and compliance constraints.
Additionally, we require that the fundamental natural freqcy of the optimal structure is bigger
than or equal to a certain threshold value. The second fatioualis analogous, we just switch the
volume and the compliance. In the third formulation we maxarhe fundamental frequency, i.e.,
the minimum eigenvalue of certain generalized eigenvaloblpm, subject to equilibrium con-
ditions and constraints on the volume and the compliancéngtbe semidefinite programming
(SDP) framework, we formulate all three problems in a unifi&y; while the first two problems
lead to linear SDP formulations that were already studielieed[14, 6]), the third problem leads
to an SDP with a bilinear matrix inequality (BMI) constraifithis formulation, however straight-
forward, has never been used for the numerical solutioneoptbblem, up to our knowledge. The
reason for this was the lack of available SDP-BMI solvers. 3twe the problem by a recently
developed code PENBMI [7].

We further analyze the mutual relation of our three problevils show that the problems are
in certain sense equivalent. More precisely, taking a itegpecific solution from the solution
set of one problem, we get a solution of another problem wighsame data. We also show that
this equivalence does not hold for an arbitrary solutionhef problem; this is also illustrated by
several numerical examples.

An important property of the SDP reformulations of the minimvolume and minimum com-
pliance problem is that each local minimum of any of thesélgms is also a global minimum.
This is not readily seen from the original problem formwas and brings an important informa-
tion to the designer. For the problem of maximization of tieimum eigenvalue we show how to
verify the global optimality and present an algorithm fordiimy ans-approximation of a globally
optimal solution.

Numerical examples conclude the paper. They illustratedhieus formulations and theorems
developed in the paper and also demonstrate the solvatiiibhe SDP formulations and thus their
practical usefulness.

All formulations and theorems in the presentation are apead problems using the discrete
structural models, the trusses. This is to keep the notdiked and simple. The theory also
applies to discretized structures, for instance, to theakibe thickness sheet or the free material
optimization problems [3].

We use standard notation; in particular the notatidn=* 0" means that the symmetric matrix
A is positive semidefinite, and4" > 0” means that it is positive definite. For two symmetric
matricesA, B the notation 4 > B”" (*A = B") means thatd — B is positive semidefinite
(positive definite). Thé x & identity matrix is denoted by« ; ker(A) andrange(A) denote the
null space and the range space of a matrjxespectively.

2 Problem definitions, relations

2.1 Basic notations, generalized eigenvalues

We consider a general mechanical structure, discrete oretizged by the finite element method.
The number of members or finite elements is denoteghbthe total number of “free” degrees of
freedom (i.e., not fixed by Dirichlet boundary conditiong)h For a given set ofi, (independent)
load vectors

féeRn7 fz#()’ 6:]‘7"'71?/[7 (1)



the structure should satisfy linear equilibrium equations
K(.%')Ug = fg, {= 1,...,77,@. (2)

Here K (x) is the stiffness matrix of the structure, depending on agtesariablez. We will
assume linear dependencefofon x,

m

=1

with z; K; being the element stiffness matrices. Note that the stiffmeatrix of element (member)
e; is typically defined as R
v K; = 2; PP (4)

where P, P! is a projection fromR" to the space of element (member) degrees of freedom. In
other words K; is a matrix localized on the particular element, whilte lives in the full space
R™. Further,

€;

where the rectangular matrig; contains derivatives of shape functions of the respectggeabs
of freedom andE; is a symmetric matrix containing information about matepi@perties. To
exclude pathological situations, we assume that

fe € range( Zm:KZ> forall/=1,...,np (5)
i=1

which means that there exists a material distributior 0 that can carry all loadg, (i.e., there
exist corresponding, . . ., u, satisfying (2)).

Similarly to the definition ofK (x), the mass matrix\/(x) of the structure is assumed to be
given as

m
M(x) =) i, M;=PMP} (6)
=1
with element mass matrices
e;

hereN; contains the shape functions of the degrees of freedomiagstevith thei™" element.
The design variables € R™ represent, for instance, the thickness, cross-sectioeal @
material properties of the element. We will assume that

z; > 0, 1=1,....,m.

Notice that the matrice®;, M; have the propertied; = 0, M; = 0, and thusK (z) = 0,
M(z) = 0for all z > 0. From a practical point of view, it is worth noticing that teeement
matricesK; and M; are very sparse with only nonzero elements correspondirdegoees of
freedom of the' element. That means, for eagtihe matrices<; and M, have the same nonzero
structure. The matrice& (x), M (x), however, may be dense, in general.

We assume that the discretized structure is connected angotimdary conditions are such
that K(e) = 0 and M (e) = 0, wheree is the vector of all ones. The latter condition simply
excludes rigid body movement for amy> 0.



In the sequel, we will sometimes collect the displacementorsu, ..., u,, for all the load
cases in one vector

u= (ur{,...,uge)T e R™™,

for simplification of the notation.

In this paper we do not rely on any other properties of stffnend mass matrices than those
outlined above. Therefore, the problem formulations aed:tinclusions apply to a broad class of
problems, e.g., to the variable thickness sheet problerheofrée material optimization problem
[3]. For the sake of transparency, however, we concentrai garticular class of discrete struc-
tures, namely trusses. A truss is an assemblage of pirefbumiiform straight bars. The bars are
subjected to only axial tension and compression when tiss teloaded at the joints. With a given
load and a given set of joints at which the truss is fixed, thed gbthe designer is to find a truss
that is as light as possible and satisfies the equilibriunditions. In the simplest, yet meaningful,
approach, the number of the joints (nodes) and their positie kept fixed. The design variables
are the bar volumes and the only constraints are the eduitibequation and an upper bound
on the weighted sum of the displacements of loaded nodesalkm compliance Recently, this
model (or its equivalent reformulations) has been extehgignalyzed in the mathematical and
engineering literature (see, e.g., [2, 3] and the referetioerein).

In this article, we will additionally consider free vibratis of the optimal structure. The free
vibrations are the eigenvalues of the generalized eigeevaioblem

K(z)w = AM(z) + Mp)w. (8)

The matrixM, € R™*™ is assumed to be symmetric and positive semidefinite. Ittésribe mass
matrix of a given non-structural mass (“dead load”). For sh&e of completeness, the choice
My = 0 is possible and will be treated in more detail below.

In the sequel we use the notation

X ={zeR"|z>0, z#0}.
As a consequence of the constructionfofz) and M (z) we obtain our first result.
Lemma 2.1. For eachz € X it holds that
ker(M (z) + My) € ker(K(z)) .
Proof. Letu € R™ be inker(M (z) + Mp). Thenu®? (M (z) + Mo)u = 0, i.e. (cf. (6)),
m - m -
0=u’ ( Z x; P,M; PF + Mo)u = Z zi(PTu)” M; (P u) + v Mou .
i=1 i=1
Because@ >~ 0 for all 7, and becaus@/, = 0, we conclude that
PTyw=0  forallisuch that:; > 0.

2

Hence, by the definition ok (z) and by (4),

m m
K(z)u = Z v Kiu = Z :cZPZI?ZPZTu = Z :cZPZI?ZPZTu =0,
i=1 i=1 1: ;70

and the proof is complete. O



We now want to define a functioky,;, as the smallest eigenvalueof problem (8) for a given
structure represented hy € X. Before doing that, we mention the following dilemma in the
generalized eigenvalue problem (8).zife X is fixed and(\, w) € R x R™ is a solution of (8)
with w # 0 butw € ker(M(z) + My) then Lemma 2.1 shows that alg6(x)w = 0. Hence
(1, w) is also a solution of (8) for arbitrary € R. In this situation we say that this eigenvalue is
undefined otherwise it iswell-defined Because undefined eigenvalues are meaningless from the
engineering point of view, we want to exclude them from ounsiderations. This leads to the
following definition.

Definition 2.1. For anyx € X, let Ay, (z) denote the smallest well-defined eigenvalue of (8),
i.e.,

Amin(z) = min{\ | 3w € R™ : Eq. (8) holds for\, w) andw ¢ ker(M (x) + My)};
This defines a function i, : X — R U {+oc}.
The next proposition collects basic properties\gf, (-).
Proposition 2.2.  (a) Amin(-) is finite and non-negative ol .

(b) Forallz € X,

ul K (z)u
Amin(2) = inf .
(z) u: (M(a:)l—Ii—lMo)u;aéO UT(M(.T) + Mp)u

(c) Forallz € X,

Auin(@) = sup{A | K () — M(M(x) + Mo) = 0}.

(d) Amin(+) is upper semicontinuous oX.
(e) Lete > 0 be fixed. Thed i, (+) is continuous onX, := {z € R™ | z > ¢ > 0}.
(f) —Amin(+) is quasiconvex oKX .

Proof. For the proof of (a) and (b) let € X be fixed, and leK := K (x) andM := M (x)+ My,
for simplicity. Becausel/ is symmetric, there exists an orthonormal b&sis, ..., v, } € R”
of range(M) wherer = rank(M). Consider the matrif’ := (vy---v,) € R™*" consisting
column-wise of the vectors;. We state the generalized eigenvalue problem

PTKPz =\ PTMP: (9)

with z € R™,

First we show thaP” M P is positive definite. To see this, let£ 0 be arbitrary, and assume
thatz” PT M Pz = 0. Becausé\/ is positive semidefinite, this implieBz = 0. But the columns
of P are linearly independent, and hence we arrive at 0, a contradiction. This shows that all
eigenvalues of (9) are well-defined, and (as often seen)grof9) can be equivalently written as
an ordinary eigenvalue problem

Kz=\z (10)
with K := (PTMP)~12PT K P(PT M P)~1/2,

Next we prove thad is a well-defined eigenvalue of problem (8) if and only if itais eigen-

value of problem (9) (and thus also an eigenvalueiofn (10)). First, let(\, w) be a solu-
tion of (8) with w ¢ ker(M). The latter property shows that there exist € ker(M) and

5



wy € range(M), we # 0, such thatw = wy + we. Insertingw = w; + wy into (8) gives
Kwi + Kwy = )\(Mwl + ng), i.e.,

KU)Q = )\ng (11)

due to Lemma 2.1. Notice thats # 0, and thus(\, w») is also a solution of (8). Because
wy € range(M), there existg € R” such thatv, = Pz. Hence, (11) becomes

KPz=)MMPz,

and multiplication byP?' from the left shows that), 2) is a solution of (9).

Vice versa, let )\, z) be a solution of (9) withx # 0. Considenw := Pz. Because the columns
of P form a basis ofrange(M), itis w # 0 andw € range(M). Through the general identity
range(M)+ = ker(MT) = ker(M) we see thatv ¢ ker(M). Moreover, ag is a solution of (9),
PTKw = APT Mw which we may multiply byP from the left to end up with

PPTKw = APP"Muw. (12)

Now, Lemma 2.1 shows thatnge(K) € range(M), i.e., Kw € range(M). By construction,
PPT is a projection matrix onteange(M ), and thus (12) becomdsw = A\Mw. (Alternatively,
notice thatP” P = I,.,.. Hence, for eacli = Pz € range(M), PPTw = PPTPz = Pz = w.)
Asw ¢ ker(M) this proves thah is a well-defined eigenvalue of problem (8). Beca#Se- 0,
each eigenvalua in (10) is nonnegative, and we are done with the proof of (a).

To finish the proof of (b), we use formulation (10) and the Rayh quotient to see that

.
. 2 Kz
Amin() = ;1% 2Tz

Inserting the definition of<, and using the substitutiorts:= (PTMP)~12z andw := P2, we
conclude

ZL(PTMP)V2PTKP(PTMP)~1/22

Amin(z) = i% T (13)
. TpPTKP:
= inf ——
540 2T PT M Pz
T
K
- inf waw (14)

wéerange(M): w#0 wl' Mw’

Now, for eachi with M@ # 0 there existy € ker(M) andw € ker(M)* = range(M) such that
@ = ¥ + w. Hence, by Lemma 2.1,

' Ku  w'Kw

a’Ma  oTMw

Thus we can continue (13) to (14) with

Amin () = inf LTKU) = in LTKU
o N werange(M): w#0 wIMw — w Mu#0 ul' Mu’
which proves (b).
(c): Let us first show the” part. Take an arbitrary satisfyingK (z) — A\(M (z) + My) > 0,
i.e.,
ul K (x)u — Ml (M(x) + Mo)u >0 VYu #0.
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Consideru with (M (x) + My)u # 0; then we have

uT K (z)u
> A
ul' (M (x) + My)u —
Because\ andu were arbitrary, we can write “inf” in front of the fraction drisup” in front of A

and the inequality remains valid.
The proof of the K” part is similar: Let

~ ) uT K (x)u
A= inf 7 .
w: (M (z)+Mo)u#0 U (M(x) + Mo)u
Then
Ao W K@ Vu : (M(z) + Mo)u # 0
— ul'(M(x) + Mp)u ) 0
= u'Ku— T (M(z) + My)u >0 Vu: (M(z) + Mo)u #0
= u' Ku— T (M(z) + My)u >0 Vu € R" (see Lemma 2)1

— K(z) — N(M(x) 4+ M) = 0
= X <sup{\ | K(z) — A(M(x) + M) = 0}.

(d): Letz € R™, z > 0, and let{z*}, be an arbitrary sequence such th&t— z. We want
to show thatim sup Amin () < Amin(Z). Take a subsequen({ezf}j of {2*};, such that

r—x

lim )\min(xf) =\ := lim sup Apin(z) .
J—00 r—T
By definition,

K (%) = Amin (@) (M (2}) + My) = 0 Vj

and, passing with to the infinity, we get
K(z) — M(M(z) + My) = 0,

using the continuous dependencefofx) and M (z) on z and closedness of the cone of positive
semidefinite matrices. Hence

A <sup{A | K(Z — A(M(Z) + Mp) = 0} = Ain(7)

and we are done.

(e): By constructionM (z) > 0 for x € X.. Then the penci(K (z), M (z) + My) is def-
inite and we can apply general theory saying that the eidessaf (8) depend continuously on
parameter: ([4, 20]).

u K (x)u
ul' (M (x) + Mp)u
fractional function in(K (x), (M (z) + M), hence a quasilinear function in variables
(K(x),(M(x) + My)) (see [5]), and thus in. Using point (b), we conclude that i, (x) is
quasiconvex ine, because it is the supremum of a family of quasilinear (and tiuasiconvex)
functions (here we use the fact thainf g(x) = sup —g(z)). O

(f): For eachu : (M (z) + Mp)u # 0, the functionu — is a linear-




Remark 2.3. The projectionP P defined in the above proof takes, in fact, a particularly sim-
ple structure. Assume that € X is given and thaker(M (x)) C ker(Mj). Denote by &
{1,...,n} the degrees of freedom associated only with elemgrdach thatz; = 0 and by
A its complement. Witht := |.A| we assume without restriction that = {1,... %}, and
B={k+1,...,n}. ThenK(x) andM (x) + M, can be partitioned as follows:
Kaa KAB> (MAA MAB>
K(x) = , M(x)+ My = .
(@) (KBA Kpp (@) 0 Mpa Mpg
Clearly, K 44 > 0; further (see Appendix AM 44 = 0, and, by Lemma 2.1K 45 = K}, =
Myp = ML?A = 0andKpp = M = 0 (as, e.g..Kgz = ZmizoxiKi). By this, each
eigenvalue\ 4 of the problem
Kaaw =AM gaw
is a well-defined eigenvalue of problem (8). %

For a generak: € X we cannot obtain more than upper semicontinuity\gf, (-) (cf. Prop.

2.2(d)). The following example shows th&t,;,(-) may be discontinuous at the boundaryof
when certain components ofare equal to zero.

Example 2.4. Consider the truss depicted in Figure 1. Let the truss be stnomw.r.t. its hor-
izontal axis, so consider only two design variables,andx,. The corresponding stiffness and

Figure 1: Example showing possible discontinuity\gf,,,

mass matrix have the following form (where rounded valuesdisplayed for better illustration)

-2 0 0 0
_ 0 x1-2 0 0
K@= 0 22-128 0
0 0 0 29 - 0.32
x1-2.83 0 0 0
_ 0 x1-2.83 0 0
M(z) 0 0 w9447 0
0 0 0 Xo - 4.47
The corresponding (unordered) eigenvalues are
2 x1
2831
2z
2.83 x1
A= Las
4.47 xo
0.32 o
4.47 xo

(o]



The function\,;, has then the following values

0.32
)\min(CC) = 4—47 ~ 0.07 for zo >0
2
)\min(CC) = 2—83 ~ 0.71 for To = 0

and is thus discontinuous a} = 0. The reason for the discontinuity lies in the fact that, when
z9 = 0 the eigenvaluéi%i—g becomes undefined ang,;,, “jumps” to what was before the second
smallest eigenvalue. O

Remark 2.5. Example 4.5 will indicate thak,,;, (-) may not even be Lipschitz continuous near
the boundary ofX. O

2.2 The original formulations

We first give three formulations of the truss design probleat &re well-known in the engineering
literature. These formulations are obtained by just “wgtdown” the primal requirements and
natural constraints.

The minimum volume problem In the traditional formulation of the truss topology prafle
one minimizes the weight of the truss subject to equilibricomditions and constraints on the
smallest eigenfrequency.

m
min E T; P
Q?ER"L UERn'nZ 3 ( VOl)
’ i=1

subject to

m
<inKi>u€:fZ7 €:17"'7n£
i=1

férUgSW, L=1,....ny
wiZO, ’i=1,...,m
)\min(x)zx-

Here¥ is a given upper bound on the compliance of the optimal siracand\ > 0 is a given
threshold eigenvalue. Objective function of this problenthie function(x,u) — > x;. Notice
that the eigenvalue constraint is discontinuous (see Ebathg); this (and not only this) makes
the problem rather difficult.

The minimum compliance problem In this formulation one minimizes the worst-case compli-
ance (maximizes the stiffness) of the truss subject to ibguim conditions and constraints on the



minimum eigenfrequency.

. T
min max U P
ZERM R e 1gzgn£fz ¢ (Peompi)
subject to

m

(inKZ)’u,g:fg, €=1,...,ng
i=1

m

i=1

z; >0, 1=1,....m
)\min(-r) ZX

HereV > 0 is an upper bound on the volume of the optimal structure agdina\ > 0 is a
given threshold eigenvalue. For this problem, the objectinction is the nonsmooth function
(z,u) —  max ngW. Again, notice that the eigenvalue constraint is not coratirs.

SESNy

The problem of maximizing the minimal eigenvalue Here we want to maximize the smallest
eigenvalue of (8) subject to equilibrium conditions and stawints on the compliance and vol-
ume. Maximization of the smallest eigenfrequency is of pemant importance in many industrial
application, e.g., in civil engineering.
xeRrrﬁli};ER" )\mm(x) (Pelg)
subject to

m
<inKi>u€:fZ7 6217"'7”‘@
=1

fgu€§7> le)"'vnf

m
i=1

z; >0, 21=1,...,m.

Here the objective function isr,u) — Anin(z), Which is a possibly discontinuous function.
This discontinuity is the reason that a standard pertwbatpproach widely used by practitioners
for the solution of P;;) may fail. If, with some smalk > 0, the nonnegativity constraints are
replaced by the constrainis > ¢ for all 7, and ifz} denotes a solution of this perturbed problem
(together with soma), thenz? may not converge to some solutioh of the unperturbed problem
(cf. Ex. 2.4 above).

We mention that each of the above three problems has alrestydonsidered in the literature
with more or less small modifications, and that all problems fialuable interest in practical
applications (cf. [15, 17, 11]). To the knowledge of the aush however, a rigorous treatment of
these problems in the situation of positive semidefinitericed X' and M (i.e., permittingx; = 0
for somei, as needed in topology optimization) has not been congidstefar.

2.3 Interrelations of original formulations for M, =0

In this section we study relations of the three probleRs,), (Pcompl), and Peig) wheny = 0.
These relations are directly given by rescaling argumeutsvill also appear as special cases of

10



problems with arbitraryl{, treated in the next section. Note that in the following tleeos we
do not discuss thexistencef solutions. Instead, we discuss their interrelationsmwardstence is
guaranteed. We start with an auxiliary result.

Lemma 2.6. Let (z,u) € R™ x R™™, z > 0, satisfy the equilibrium condition

K(z)ue = fo (15)
T < .
for some load vectof,. Thenf; u, > 0 andeZ > 0.
i=1

Proof. Because each of the matricé§ is symmetric and positive semidefinite, it is clear that
flue = ul K(z)u, > 0. Assume thay/ v, = 0. Thenu] K (z)u, = 0, and simple linear algebra
shows that

K(x)uy = Ogn . (16)

Eqgn. (16), however, is a contradiction to the assumptiob} &hd (1). Ifz z; = 0thenz = 0,
=1
and the contradiction to (15) and (1) is obvious. O

Next we observe that the functioky;, (. ) is independent of scaling of the structure, pro-
vided M, = 0. Recall that\,,;i,(z) is a well-defined non-negative number for anye X (see
Prop. 2.2(a)).

Lemma 2.7. Let My = 0 andx > 0 be any vector. Then
Amin (42) = Amin () for all u > 0.

Proof. BecauseX (- ) andM ( -) are linear functions, the eigenvalue equation
K(pzx)v = XA M (pz)v is equivalent tak (z)v = A M (z)v for all > 0. O

We first show that each solution dP{,;) immediately leads to a solution aP {,mp1).
Theorem 2.8. Let M = 0 and (z*, u*) be a solution of(P).

a) Then Fus =7.
(@) \max foup =7

(b) PutV := 3" ¥ in problem(P.omp1) and copy the value of from problem(P,,;). Then
i=1
(x*,u*) is optimal for (P .omp1) With optimal objective function valug
Proof. For the proof of (a), denote

* T x*
‘= max Up.
0 1S, WA,

We must show that* = 7. Due to Lemma 2.6 we have

*

Y>>0 and V' :i=) 1 >0

Consider the couple

11



by the definition ofy* we obtain
flag= LTy < Lar=5  forallt=1,...,n, (17)

and, obviously,

m — m
S @K | ap =20 (Y aiK | up=f  forallt=1,...,n.
=1 7Y =1

This, together with Lemma 2.7, shows that', @*) is feasible for P,;). Hence optimality of
(x*,u*) in (Pyo1) yields

—V*.

S
IA
NE
&
I
2=
NE
&H*
I
2=

Becausd’* > 0, this means
<A
Egn. (17), however, shows that < 7. All in all, we arrive aty* = 7, as stated in (a).

Now we prove (b). Due to the choice of it is clear that(z*, u*) is feasible for problem
(Peompl). Moreover, (a) shows that the corresponding objectivetion value isy. Let (z,u)
be an arbitrary feasible point oP(,,,1). Lemma 2.6 shows that the valge:=  max férUZ is

SESNy

positive, and hence the couple

is well-defined. As in (a), we conclude th@t, u) is feasible for Py,;). Optimality of (z*, *) in

(onl) gives
=1 =1 =1

Now, >" x¥ = V by the definition ofl/, and we have>_ x; < V by the feasibility of(z,u) for
=1 i=1

=22

(Peompl). Hence (18) becomes < %V which in turn means thaf < ~. Thus we have shown
(use (a)) that
T * T
<
12224 Jiu < 12224 Je we,

i.e., optimality of(x*, u*) for problem @ comp1). O

The first assertion of the theorem shows that, whén = 0, the compliance constraint in
(Po1) is always active for at least one load case. Later we will alestrate this theorem by means
of a numerical example (see Ex. 4.1).

A completely analogous theorem to Thm. 2.8 can be stated ptadatems P,1) and ®compi)
are interchanged. The proof uses the same arguments ang igrfitted.

Theorem 2.9. Let M = 0 and let(z*, v*) be a solution of(Pomp1)-

(@ Then> af =V.
=1

(b) Puty := max Lus in problem(P.;) and copy from (Peomp1). Then(z*, u*) is optimal
SEsny

for (P,.1) with optimal objective function valug.

12



The interrelations ofK,) (resp., of Pcomp1)) and Peig) are a bit more cumbersome because
the objective functionK.;,) is invariant with respect to scaling, as shown in Lemma &<a first
and simple result, we obtain the following proposition (wéaell sums run over=1,...,m).

Proposition 2.10. Let M, = 0, and let(z*, u*) be a solution of problen(P.).

(@) Then for each

va e - | (19)
1<t<n, "t 7t

pe |

the couple(ix*, pu*) is also a solution of(P.g).

(b) In particular,

(V . Zw;*u*>

x 7
PEA 4
is also a solution ofP.;,) where the volume constraint is attained as an equality.

(c) Analogously to (b),

1<l<ny * 2 *
— x™, 7 U
*
v max f; u;

1<0<n,

is also a solution o P.;;) where the compliance constraint is attained as an equadityf
least one load casé

Proof. First, feasibility of(z*,v*) in (P.iz) and Lemma 2.6 yield

0<

va e L ord

22, e
and hence the interval in (19) is well-defined and non-emptgreover, it is straightforward to
see that

1 _
Yoai<V  and  fluj<y foralle=1,....n
7

hold if and only if . satisfies (19). Thus for eaghfrom (19), the point(ix*,uu*) is feasible in
problem P.;). Hence Lemma 2.7 shows that it is even an optimal solutiosseftions (b) and
(c) are straightforward consequences of (a). O

This proposition relies on the fact that, fdfy = 0, Ayin(+) IS invariant with respect to scaling
of the structure. Hence, if either the volume constraintherdaompliance constraints are inactive
at the optimum, the optimal structure can be scaled withbahging the value of the objective
function Apin (-). This shows that (fon/, = 0) problem P.i,) rather looks for an optimal “shape”
of the structure independently of the appropriate scalirajer in Section 4 will see a numerical
example illustrating Prop. 2.10 (see Ex. 4.3).

2.4 Interrelations of original formulations for arbitrary M,

In this section, we do not make any restrictionsidgnapart from the general requirements already
mentioned, i.e., thad/, is symmetric and positive semidefinite. In the following,emhrelating
two different optimization problems, the mattix, is considered to be the same in both problems.

We start with a general result on the relation of optimizatwoblems where the objective
function of one problem acts as a constraint of the other odevace versa. Through this result
we will then be able to state all interrelationships of thenfalations Po1), (Pcompl), and Peig).

13



Theorem 2.11.LetY C R* be non-empty, and let the functiofig f : Y — R be given. For
f1, f2 € R define the two optimization problems

min{ fi(y) | f2(y) < fa} (P1[f5))
and _ _
min{ fo(y) | i(y) < J1}- (Pa[f1])

Let f, be fixed and the séf* of solutions to problenP;[f,]) be non-empty. The optimal function
value is denoted by

1= fily") forall y* € Y.
Put
f3 =mf{ fo(y") | y" € Y1 }, (20)
and let the infimum be attained at sojiec Y;*. Consider problenfPs[f,]) with £, := f.

Theng* is optimal for problem(P2[f;]) with optimal objective function valug.

Proof. Optimality, and hence feasibility, gf* for (P1[f,]) shows that this point is also feasible
for (P2[f;]) due to the definition off; := f;. By the choice ofy*, the value of the objective
function of 7* in (P2[f,]) is f5. Now, lety be an arbitrary feasible point aP¢[f,]) with

fa(y) < f5. (21)

We must prove thafa(y) > f5.
First, the choice of* shows that

f3 = f2(§") < fo

Hence, using (21), we see that

f2(y) < fa.

Thus, due to feasibility of; in (P2[f,]), it is clear that(z, u) is also feasible for¥,[f,]). The
definition of f, and the optimality ofj* for (P1[f,]) show that

fi=rf=hHG < fiy). (22)

The feasibility of(x, u) for (P2[f,]), however, shows that

fily) < fi

which together with (22) and with the definitigh := f; proves

fily) = f1-

We conclude thay is optimal for P1[f,]), i.e.,y € Y;*. Hence, by the definition of;,

fo(y) = f2,

and the proof is complete. O

14



Now we collect certain tools which are needed to show thairtfum in (20) is attained in
all situations. For this, we define the function

c: {zeR™ x>0} — RU{+o0},

m
T sup sup {2féTug—u£T(inKi)uz}.
1<<n, up€Rn i=1

Obviously, the function: denotes the maximum (over all load cases) of the negativémim
potential energies of the structure

Proposition 2.12(Properties of the function).

(@) Letz > 0. Thenc(x) < +oc if and only if there exist “displacement vectorsi, . .., u,, €
R"™ such that
K(x)ug = fi forall £ =1,...,n,. (23)

(b) Letx > 0. If ¢(x) < 400 then

T
c(z) = max i e

for all uy, ..., u,, which satisfy (23).

(c) The functiorc(-) is finite and continuous on the st € R™ | =z > 0} and lower semi-
continuous (l.s.c.) oz | x > 0}, i.e.,
liminf ¢(z) > ¢(z),

T—T

x>0

I
vV
(@}

Proof. All assertions were proved in [1]. Assertions (a) and (byyéeer, are easily deduced from
the necessary and sufficient conditions of the inner suplenas overu, and from the fact that
a convex quadratic function is unbounded if and only if it slo®t possess a stationary point.
Concerning (c), we mention that the finiteness:@hn {z | x > 0} is based on assumption (5),
and thatc possesses much stronger continuity properties than jusg bs.c. on{z | x > 0} (see
[1]). O

For simplification of notation, we define

vol(z) := Zm: X
i=1

for x € R™, x > 0. Moreover, we define

o Siompls Sig © (% € R™ | 2> 0 x R™

vol» ©compl>s

as the solution sets of the problenis.{), (Pcomp1), and Peig), respectively. Notice that these sets
may well be empty.

Our first result based on Thm. 2.11 relates probléhy,) with the problems ®.,mp1) and
(Peig), respectively.

Theorem 2.13. Let S}, be non-empty. Denote the optimal function value of prol(Bmy;) by
V*, i.e.,

vol*

m
V= fo for all (z*,u*) *
i=1

15



Put
* - T, * * 0k *
Y= lnf{ lgfgﬁbe fé Uy ‘ (CC U ) € Svol}’ (24)

and
A* = sup { Amin (") ‘ (x*,u*) e Sjol}. (25)

Then the following assertions hold:

(@) The infimum in (24) is attained at sorfg", u*) € S;,. Moreover, withV := V*, and
with X copied from problentP,;), the point(z*,%*) is optimal for problem(P .omp1) with
optimal objective function valug*.

(b) The supremum in (25) is attained at sof#é, @*) € S*.. Moreover, withV := V*, and
with ¥ copied from problerm(P,,), the point(z*,@*) is optimal for problem(P.,) with

optimal objective function valug®.

Proof. Consider the set
Ao = {2" | (2", u") € Sy}

vol -
Using Prop. 2.12(a) and (b) it is easy to see that
: {x >0 ‘ vol(z) =V*, e(x) <7, Amin(z) > X}. (26)

vol —

Becauser > 0 andvol(z) = V* for all z € X7, the setX | is bounded. Moreover, because
vol(+) is continuous \ iy (+) is u.s.c. (see Prop. 2.2(d)), an@) is |.s.c. (see Prop. 2.12(c)), the set
X is closed. Allin all, X, is a compact set.

We first prove (a). Proposition 2.12(a) and (b) shows that
’7* = lnf{ C(.%') ’ (S X\;kol }7 (27)

and that the infimum in (24) is attained if and only if the infimun (27) is attained. The latter,
however, is straightforward becaugg) is a |.s.c. function, and’’ | is a compact set (each |.s.c.
function attains its infimum on a compact set; see, e.g.,Th8). 2.13.1]). The rest of the assertion
follows directly from Thm. 2.11 with the settings

Y = {(z,u) e R" xR"™| K(zx)ug = fs, €=1,...,ny,
1‘1‘20, i=1,...,m,
)\min(x) > X }a
filz,u) = vol(x),
folx,u) = c(x),
f2 = 77
fl = V*

The proof of (b) is analogous. We have to show that the supmemu
A* = sup{ A\min(z) | z € X }

is attained at somg*. This is the case becausg,,(-) is u.s.c. (see Prop. 2.2(d)) ai{; , is
compact (see above). Notice th&f*) < 7 < +oo (see (26)), and hence corresponding vectors
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ay, ..., Uy, exist by Prop. 2.12(a) and (b) such thiat, a*) is feasible (and optimal) for.1)).
The rest of assertion (b) follows directly from Thm. 2.11mihe settings

Y = {(z,u) e R" xR"™| K(zx)ug = fs, €=1,...,ny,
wiZO, i=1,...,m,
f}jufgﬁ le,...,ng }a
filz,u) = vol(x),
fQ(wv = _)\min(x)7
fa = =X
fl = V*

O

Theorem 2.13(a) reflects the fact that at some solutionu*) of (P,,) none of the com-
pliance constraints may be satisfied with equality, and &dhe “post-optimization” in (24) is
needed to select a proper solution Bf{) to obtain a solution ofK..m1). Theorem 2.13(a) also
shows that—with the appropriate settingsidéfand \—there is always a structure* which is
optimal for both problems at the same time (provided there exists a solutiall)a Analogous
comments, of course, can be made for Thm. 2.13(b) concesahgions of P.i,). A numerical
example illustrating Thm. 2.13 is given in Section 4 (Ex.)4.4

Theorem 2.13 substantially simplifies in the following spésituation.

Corollary 2.14. Let the setX;| = {z* | (z*,u*) € S}, } be a singleton. Then the following
assertions hold:

(@) PutV := vol(z*) in problem(Peomp1) and copy the value from problem(P,,;). Then
(x*,u*) is optimal for problem(P,mp1) with optimal objective function valule&ix [l

ne

(b) PutV := vol(z*) in problem(P.;) and copy the valug from problem(P,,;). Then(z*, u*)
is optimal for problem(P.;;) with optimal objective function valug,;,(z*).

Proof. If X7, = {z*} then the infimum in (24) is attained at afy", v*) € S, because for each
u*, w* with K (2*)u; = K(«*)u;, = f, for all £ the compliance values

T ~ T ~xT T ~
frwp =g K(x g = ag” fo=fiag,  £=1...,n

are constant. Becausg, is the singleton:*, and because,,;,(-) does not depend ow, it is
trivial to see that the supremum in (25) is attained at dachu*) € S |. Now apply Thm. 2.13.
|

Remark 2.15. Theorem 2.13(a) generalizes Thm. 2.8(b) of the previougtehalf M, = 0 in
Thm. 2.13(a) then Thm. 2.8(a) shows that

T, * = * ok *
max u, = forall (z*,u*) € S§* ..
1<t<n, fé 14 Y ( 9 ) vol

Hencey* = 7, and the infimum in (24) is attained at each solut{ari, u*) e Similar
comment cannot be made for Thm. 2.13(b). The setfiig = 0 does not guarantee that for
each solution(z*, u*) of (P1) the eigenvalue constraint is attained as an equality. Whisilso
be demonstrated by Example 4.4 below. The background liegeiinvariance o\, (-) W.r.t.

scaling of the structure; see Lemma 2.7. O
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Analogously to Thm. 2.13, we may derive solutions of prodei,,) and P.i,), respec-
tively, from solutions of problemHKcomp1)-

Theorem 2.16.LetS* be non-empty. Denote the optimal function value of prol{lBgg,,,,1)

compl
by~*, i.e.,
o= 122}};( fZ uf for all (‘T ) € compl
Put .
= inf { Zx jompl}, (28)
=1
and
A= sup { Amin () ‘ (x*,u*) € Sjompl} (29)

Then the following assertions hold:

(@) The infimum in (28) is attained at sori&*, 4*) € compl- Moreover, withy := ~*, and
with \ copied from problentP .omp1), the point(z*, 4*) is optimal for problem(P,,) with
optimal objective function valug*.

(b) The supremum in (29) is attained at so(@é, u*) € Seompl- Moreover, withy := ~*, and

with V' copied from problenfP .,mp1), the point(z*, 4*) is optimal for problem(P;s) with
optimal objective function valug*.

Proof. We modify the proof of Thm. 2.13. Consider the set

c*ompl = {.%'* ‘ (x*,u ) € Scompl}
In view of Prop. 2.12(a) and (b) it is easy to see that
compl = {:c >0 ‘ vol(z) <V, c(z) =7, Amin(z) > A } (30)

Becausey* is the optimal objective function value, there is m0> 0 such thatvol(z) < V,
c(z) < v*, and Ay () > A, Hence the set’;, ., remains unchanged if we change the equality
sign in “c(x) = +*” to an inequality sign:

ol = {:c >0 ‘ vol(z) <V, c(x) <~*, Amin(7) > X } (31)

compl —

Becauser > 0 andvol(z) < V forall z € Xompr the setX . is bounded. Moreover, each
of the functionsvol(-), —Amin(+), @andc(-) is I.s.c. (see Props. 2.2(d) and 2.12(c)). Hence the
description (31) shows thalfg‘omp1 is a closed set, and thla?csc*ompl is compact (notice that tHevel

line of al.s.c. functionf(-) for some valuey, i.e., the set{y | f(y) = a}, needs not be closed, but

thelevel set{y | f(y) < a} is always closed).

First we prove (a). Obviously, the infimum in (28) is attairestauset . is a compact set

Comp
andvol(-) is continuous. Now apply Thm. 2.11 with the settings
Y = {(z,u) e R" xR"™| K(x)ug=fo, £=1,...,n4
x; 2 0, 1=1,...,m,
Amin () > A I
filz,u) = max [,
fo(z,u) = vol(x),
f2 = V)
fi =~
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The proof of (b) is analogous to that of Thm. 2.13(b). O

The following corollary parallels Cor. 2.14. Its proof iseewsimpler because neithesl(-)
nor Anin(+) in (28) and (29), respectively, depend @h

Corollary 2.17. Letthe sett’
assertions hold:

={z*| (z*,u*) €S } be a singleton. Then the following

compl compl

(@) Puty .= 12%:; 7 ug in problem(P,,;) and copy the valug from problem(P .mp1). Then
(z*,u*) is optimal for problem(P,,,) with optimal objective function valuel(x*).

(b) Puty := n}ax 7 ug in problem(P;,) and copy the valu& from problem(Pomp1). Then

(x*,u*) is optimal for problem(P;,) with optimal objective function valugy,;, (z*).

Remark 2.18. Similarly as in Remark 2.15, Thm. 2.16(a) generalizes Th8(l of the previous
section. IfMy = 0in Thm. 2.16(a) then Thm. 2.9(a) shows that

vol(z*) =V  forall (z*,u*) € S*

compl”
HenceV* = V, and the infimum in (28) is attained at each solutieh, u*) € jompl. O
Finally, we may derive solutions of problemB,(,;) and P omp1) from solutions of Pe;g).

Theorem 2.19.LetS};, be non-empty. Denote the optimal function value of prol{lem) by A,

eig
ie.,
A= Apin(27) for all (z*,u*) € Saig-
Put .
v mf{ S ar| (@ u) € S;;g} (32)
i=1
and
* . - T * *
v = mf{ | max. fi uy ‘ (x*,u*) € Selg} (33)

Then the following assertions hold:

(@) The infimum in (32) is attained at somﬁ
7~ copied from problentP.;.), the point(z*
objective function valu&™.

a*) € S}, Moreover, with\ := \*, and with
,u*) is optimal for problem(P,,,) with optimal

(b) The infimum in (33) is attained at sor@*, a*) € Sgig- Moreover, withh := \*, and
with V' copied from problenP.i), the point(z*, 7*) is optimal for problem(P .omp1) with

optimal objective function valug*.

Proof. The proof of this Theorem is analogous to that of Thm. 2.18 Wit role of the functions
vol(-) andA\pin(+) interchanged. O

For illustration of this theorem, we refer to Example 4.3eThmoof of the following corollary
is analogous to that of Cor. 2.14.

Corollary 2.20. Let the sett, = {z* | (z",u") € &;,} be a singleton. Then the following
assertions hold:

(@) Put\ := Apin(z*) in problem(P,.) and copy the valug from problem(P.). Then
(z*,u*) is optimal for problem(P,,,) with optimal objective function valuel(x*).
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(b) PUtX := Apin(z*) in problem(P.omp1) and copy the valu@” from problem(P.;;). Then
(x*,u*) is optimal for problem(P,mp1) with optimal objective function valule&ix [l
SESNy

To conclude this theoretical study of relations of the thwaginal problem formulations we
would like to give a few comments on their practical use. @bsly, a direct implementation of
one of the Theorems 2.13, 2.16, and 2.19 for numerical pespissdifficult because one would
need to know the set @ll solutions to one of the problems, or one should be able teedbl
inf- or sup-problems on the optimal set. There are ways tchin as has been recently shown
in [8]. However, as we will see in Section 3, there is no neepdraxeed from a solution of one
(nonlinear!) problem to the solution of some other probléecause global solutions of some of
the original problems can be calculated through equivdlgurisi)convex problem formulations.

2.5 Brief discussion on the variation of)M,,

In this section we want to briefly prove what is widely knownarg practicioners: what happens
when the non-structural mass is changed or even removedxBorple, if volume minimization
is considered then a bigger non-structural mass will gdlgeérecrease the optimal volume. Sim-
ilarly, if maximization of the minimal eigenvalue is consiéd, the removal of the non-structural
mass will generally lead to a smaller minimal eigenvaluendédg in this section, we briefly con-
sider the variation ofi/; and use the extended notation (see Prop. 2.2(c))

Auin(, Mo) = sup{\ | K () — M(M(z) + Mo) = 0}. (34)

Lemma 2.21. Letz > 0, and IetMO,MO € R™" be symmetric witHT/fo = My = 0. Then
)\min(vaO) < )\min(vaO)'

Proof. PUtA := Amin(z, My). Then

(z) — MM (z) + M) = K(z) — AM(z) — AMj
(M (z) + My).

O
|
P
=
—_
2
|
p
=
=
—
2
p

Hence, _
A <sup{\ | K(z) — A(M(z) + Mp) = 0} = Amin(x, Mp).

O

As a simple conclusion concerning the optimal objectivecfiom values of our three problems
we obtain

Proposition 2.22. Consider two problems of the tyf,;) (or (Pcomp1) Or (Peig)), with the same
constraint bound and A )\ (resp. V and \, resp.V and®) but with different non-structural mass
matricesMy, My whereM, = M. Let both problems possess a solution, and denote the dptlma
objective function values by™, v* (resp.~v*, 7%, resp.\*, A*). ThenV* > v* (resp.v* > 7%,
resp.\* < )\*).

Proof. Consider the pair of minimum volume problems. Notice thahef@asible poinfz, u) of
problem @..;) with non-structural masBAéfo is also feasible for the problem with non-structural
massM, due to Lemma 2.21(a). Hencg* < V*.

The proof for the pair of min-max compliance problems is agals. For the pair of max-
min eigenvalue problems it is even simpler, because thef $easible points is the same for both
problems, and Lemma 2.21(a) applies directly on the objedtinction values. (Notice that for
this type of problems, we amaxmizing, and thus we have<” in the assertion.) O
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More detailed results than in the above proposition canlyhdré obtained, apart from the
effect of simple joint scalings of the bountls 7, A and M. Because the total mass matrix in the
problem is(M (z) + M), a pure change of only/, always has nonlinear impact in the problem,
and hence, is difficult to describe. As a consequence, thmaltopology changes as well with a
change of\/,. Such a numerical example is presented Section 4 (see Bx. 4.6

3 SDP reformulations

All the original formulations are nonconvex, some evenalginuous. Furthermore, all of them
implicitly include the computation of the smallest eigeinesof (8). Below we give reformulations
of the problems®q1), (Pcomp1), (Peig) to problems that are much easier to analyze and to solve
numerically. All these reformulations have been known. Triel one, however, has never been
used for the numerical treatment, up to our knowledge. Wefwiher use a unified approach to
these reformulation that offers a clear look at their mutakdtions.

We start with an auxiliary result.

Proposition 3.1. Letz € R™, z > 0, andy € R be fixed, and fix an indeke {1,...,n,}. Then
there exists,, € R" satisfying

K(x)ue = [ and  flu <~

<—er ]?{5)) =0

Proof. Note thatK (x) may be singular in our case, so that we cannot directly us&ther
complement theorem. We first write the matrix inequalityiegjently as

if and only if

oy —2aff v+ 0T K(z)v >0 VaeR,VoeR". (35)

“=" As K(x) = 0, we know that:, minimizes the quadratic functional— v* K (z)v —2f] v
with the minimal value- fu,. Thus

UTK(x)v—QféTv > —féTué > —y YveR".
Using the substitutiom = ow, o € R, we can write this as
(ow)' K (2)(ow) — 2fF (ow) > —y Vo € R,Vw € R",

hence
T 1 T 1 n
w' K(v)w — =2fj w > ——vy Vo € R\ {0},Vw € R
o o

which is just (35) witho = L.
“<” Puta = 1i; then we get from (35)

1
“y+ ol (K(z)v—f) >0 YveR"

4
and so
K(Z’)’U = fg .
Inserting this into (35) withw = 1, we havey + o7 (f; — 2f,) > 0, thatis,y > f/v, and we are
done. O

With this proposition, we immediately get the following eefulations of our three original
problems.
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The minimum volume problem  In this problemz and\ are given, and we minimize the upper
boundV on the volume.

: PSDP
zellgln{%eRV ( vol )
subject to

7 1 > .
0, /=1,...,n
<—fz K(x)) = ’

i=1
1‘1‘20, ’i=1,...,m
K(z) — MM (z) + Mg) = 0.

We mention that this problem has first been formulated ardiesiuin [14].

The minimum compliance problem HereV and) are given, and we minimize the upper bound
~ on the compliance.

SDP )

min 7y (P compl

zeR™ ~eR
subject to

v —f7 _
<_f£ K(£)>to, (C=1,...,ng

m
i=1
z; >0, 2=1,....m

K(x) — XM(z) + Mg) = 0.

The problem of maximizing the minimal eigenvalue Now 7 andV are given, and\ is the
variable. For the sake of a common problem structure in edetfiormulations, weninimizeand
put a minus in front of the objective function.

: )\ PS_DP
. (Pag)
subject to

oI _
<—fg Ké)zo, (=1,...,n

m
i=1

1‘1‘20, ’i=1,...,m
K(z) — M(M(z) + M) = 0.

The proof of the following proposition is immediate, andshs skipped.

Proposition 3.2.  (a) If (z*,u*) is a global minimizer of(P,,;) then(z*, V*) is a global mini-
mizer of(Pﬁ(E{P) whereV* := "z}, and the optimal values of both problems coincide.
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(b) If (z*,V*) is a global minimizer of PSDP) then there exists* such that(z*, u*) is a global
minimizer of(P,;), and the optimal values of both problems coincide.
Analogous statements hold for the pairs of problegmp1)-(PShn;;) and (Peig)-(PSET),

respectively, where in the latter case, the optimal fumctialues coincide up to a sign.

Note that problemsK;1") and PEDT ) are linear SDPs, whilePGL") is an SDP problem
with a bilinear matrix inequality (BMI) constraint, i.et is generally nonconvex. We should
emphasize that, due to the SDP reformulation, the origimidicontinuous problems became con-

tinuous; a fact of big practical value.

Theorem 3.3. Each local minimizer of probler(PﬁElP) is also a global minimizer. Analogous
statement holds for proble@SPP ).

compl

Proof. Problems PSPP) and PSPP ) are linear SDPs, i.e., convex problems, and the assertions

vol compl

follow. O

Needless to say that this theorem is of paramount interest fine practical point of view.

Clearly, a statement similar to Thm. 3.3 does not hold fopttadlem Pfi[g’P); see Example 2.4
where the function\,i,(+) is constant for:, > 0 and has thus infinitely many local minima which
are, however, greater than the global minimum attaineg at 0.

We remark, however, that problerﬁ’g(gp) hides aquastonvex structure. To see this, use

Def. 2.1 to write problemKZP") in the form
min{ —A\pin(z) |z € F } (36)

with the feasible set

._ m . v _fT _ .m . 17
J—"._{xeR ‘sz(_fz K(;)>>_-O,€—1,...,ng,;%gV}.

Then Prop. 2.2(f) and the fact that the cone of positive sefimie matrices is convex show that
we minimize here a quasiconvex function over a convex féasietF. This fact might be useful,
e.g., for the application of cutting plane algorithms frofalgl optimization. Unfortunately, the
function —\,in (+) lacks to be strictly quasiconvex as already explained imipta 2.4.
Formulation (36) of problenﬂﬁfép) immediately clarifies the existence of solutions:
Theorem 3.4. Problem(PSigP) (or, equivalently, problenfP.;;)) possesses a solution if and only
if it possesses feasible points.
Proof. Consider problemRSigP) in the form (36). Since the cone of positive semidefiniterinas
is closed, the seF is compact. Moreovef) ¢ F due to assumption (1), and hengcel i) is
l.s.c. onF by Prop. 2.2(d). Each I.s.c. function attains its infimum amoa-empty compact set
(see, e.g., [13, Thm. 2.13.1]). O

Instead of using methods from global optimization for thiewlkation of a global minimizer of
problem PSEY), we may use the close relation to the convex probleRi§{) and PE0F ). In
the following we propose a practical framework for finding tilobal solution of](’Si[g)P) based on
the solutions of a sequence of problems which are of the lﬁﬁgp(). Analogous considerations
can be done with problems of the tygef)! ).
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For fixed A > 0 and fixedd > 0 consider the following linear SDP:
el enV P A9
subject to

¥ -1 _
(_fé K(é))to, (=1,...,n

m
=1

V<V
z; >0, 2=1,...,m
K(z) — (A +0)(M(x) + My) = 0.

Notice that this problem is just probleri?f(offp) with the choicel := X\ + ¢, and with the sup-
plementary linear constraiff < V. In the following, the feasible set of this problem is deiwbote
by

F(N9),

for simplicity. Notice that P%P()\, 9)) is a linear SDP, i.e., a convex optimization problem for

which a global minimizer can be calculated, providég\, §) # &. Moreover, sinceP(%P()\, J))
is a convex SDP, modern solution procedures are able tomemwhetheF (), §) = &
The following proposition gives a tool for the estimationtbé (globally) optimal objective

function value of problemKZ2").

Proposition 3.5. Let (z, \) be feasible for(Pgi[g)P), and let(—X\**) denote the (globally) opti-

mal function value of probler(Pfi[g’P). Moreover, lets > 0 be arbitrary, and consider problem

(PSDP(), §)) with the parametersy and V' copied from(PS"). Then the following assertions
hold:

(@) If F(\,8) # @ then for each(z, V) € F(),6) the point(z, A + 6) is feasible for(PSDF),

ie., o
A< (A4 0) < —A (37)
(b) If F(\,6) = @ then
—(A+68) < =A< A, (38)

Proof. For the proof of (a), le{z,V) € F(\,0) be arbitrary. It is straightforward to see that
(x, A+ 0) is feasible for PSDP) and hence its objective function val(ie (A + ¢)) satisfies (37).
To prove (b), first notlce that the second inequality in (38xisimple consequence (@f, \)
being feasible forl{’SDP) The first inequality in (38) is now proved by contradictioAssume
that —(\ + 9) > )\** i.e., there exists € R” such thatxz, A + 0) is feasible for PSDP) Put
V := vol(x), and consider probIerrP%P (X, 9)). Becausdz, A + 9) is feasible for PSDP) we
see that the pointr, V) satisfies the LMIs, the two volume constraiffs= Y z; < V, and the
non-negativity constraints iP{>¥ (X, 4)). Moreover, feasibility of(z, A + 4) for (P52") also
yields thatK (z) — (A + &) (M (z) + My) = 0. Allin all, we obtain that(x, V') € F(\, 5) which
contradicts the assumption. O

As an immediate consequence of Prop. 3.5 we get the folloadisgrtion.
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Corollary 3.6. Let(z, \) be feasible fo(PE>"). Then(z, A) is a global minimizer of PED") if
and only if F(\,0) = @ forall 6 > 0.

The practical value of Prop. 3.5 lies in the possibility tgimve upper and lower bounds for
A** which can be numerically calculated through solutions (ully deasible points) of convex
linear SDPs. As a pre-processing step, we first calculatialifower and upper boundsy, Ay on

A**. For this, first calculate a feasible poift, A) of (Pgi[g’P) and choose arbitrary > 0. Then

find the smallest € N such thatF()\, 2¥6) = @ by solving (P%P()\, 2+5)) repeatedly. Set
MNo=24215  and  AJ = A +255.

Then Prop. 3.5 shows that
0< A <A™ <)\ (39)

With these bounds it is easy to construct a bisection typeritfign which in each step reduces the
gap(A\] — AF) by a factor of (at least}.

Algorithm 3.1. Choose an accuragy > 0, a feasible pointz, \) for (PSEP). Put (o, Ao) =
(#,A), 6 == LAY — \§), andk := 0. Go to Step 2.

1. Calculate a feasible point [or even a local minimizer], Ay ) of (Pg’fgp) with the additional
constraint A > AL,

2. If Ay > A} then update\l by A} := \y.
3. If AV — AL <y then EXIT with the resulfz*, \*) := (zj, Ax).

4. Putdy, := 5(A\/ — Af), and consider problenP{PF (A, 61.)).
If F(Ak, k) # @ then:

4A. PUtAf, | := A\f + 0, k := k+ 1, and go to Step 1.
Otherwise, ifF(\, 2%6) = @, then:
4B PutA\ , := A — &, k:=k+1,and go to Step 1.

Proposition 3.7. Let (PSP") possess a solutiofw**, A**) (cf. Thm. 3.4). Then the following
assertions hold.

(&) Algorithm 3.1 is well-defined, and after each iteratioe have

Mo<am <Al and A - aE<27FO0F - A,

(b) Algorithm 3.1 terminates after a finite numh&rof iterations, and

In(AY — M) —In(n)
s [P

At termination, the resultz*, \*) is feasible for(P50") with

)\**—)\*SW
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The proof of this proposition is a straightforward exercise

Notice that the additional constraink > )\ﬁ” in Step 1 does not cause any trouble but guar-
antees that\;)x is monotonically increasing. Moreover, the calculatiorglabal minimizers (in
Step 4A), resp. local minimizers (in Step 1), instead of fesisible points should significantly
speed up the algorithm. In this case the updatatoin Step 4B, resp. okf in Step 2, may lead
to a much bigger reduction of the gaff — A\{'. Obviously, Step 1 must be carried out in each
iteration. Notice also, thaxﬁ is increased in Step 4A, while it remains untouched in Stdhs 4
Denote byK’ the number of iterations in which Steps 4A have been perfdrnidoreover, if
Steps 4A has been performed in iteratior- 1, let (zx, A;) in Step 1 be a local optimizer. Then,
consequently,

)

K' < H A (z, \) is a local optimizer of](’fi[g’P)}

i.e. K’ is limited by the number of levels of the objective functiohiah are attained at a local
optimizer. We believe that this cardinality is very smalbipplications. As an illustration consider
Ex. 2.4 wherek’ = 2.

For the numerical treatment of the SDP probledg}}"), (PET ), (PSDF) one must resort
to methods of semidefinite programming. Such methods, amdsmonding codes, are nowadays
available for linear SDPs. The limiting factor of these codg however, the problem size which,
compared to general nonlinear programs, is restricteddbl@ms of medium size. The problem
(PS0T) even requires a method which can deal with bilinear matqualities. We will use such
a method to solve examples in the next section. It should bednbowever, that algorithms and
codes for SDPs with bilinear matrix inequalities are on ttgesof current research and are not

yet standard.

4 Numerical Examples

In this chapter we present numerical examples which, ontleehand, will illustrate some of the
theoretical results above and, on the other hand, demén#tipractical use of the SDP problem
formulations.

The code we have used for the treatment of the SDP formutaisofENBMI, version 2.0 [10].
This code implements the generalized Augmented Lagrang&thod, as described in [9, 19]. In
particular, ENBMI can treat bilinear matrix inequalities as is necessary ffoblem (Pgi[g’P) [7].

The examples were solved on a Pentium 111-M 1GHz PC runningddfivs 2000. All problems
were formulated and solved in MLAB using the ALMIP parser [12] to BNBMI.

Example 4.1. This example illustrates Thms. 2.8, 2.9, and 2.19 wiifh = 0. Consider a 3-by-

3 truss with all nodes connected by potential bars. The nodebe left-hand side are fixed in
both directions, a horizontal forge-1,0) is applied at the right-middle node; see Figure 2-left.
No nonstructural mass is considered, iy = 0. We consider the minimum volume problem
(PSDPy with ¥ = 1 andX = 5.0 - 10~2. PENBMI calculated the (global) optimal solutign*, V*)

of this convex problem: the optimal desigfi is shown in Figure 2-right, whil& ™ = 1.20229.
Prop. 3.2(b) shows that there existssuch thatz*, «*) is optimal for problemP,).

Now consider the minimum compliance probleREPY ) with V' = 1.20229 andX = 5.0 -
10~2. As expected by Prop. 3.2(b) and Thm. 2.9, we obtain theisaldt*, v*) with the same
structurex™ as before (Fig. 2-right), and with* = 1.

Finally, when solving the problem of maximizing the minimuarigenvalue R52°) with V =
1.20229 and¥ = 1, we again obtain:* from before, and\* = 5.0 - 1072. This shows that the
valueV* in (32) and the value* in (33) are attained faor™ because otherwise this would yield a
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Figure 2: Three-by-three truss (Ex. 4.1): initial layoutaptimal topology

contradiction to Thm. 2.19. The authors believe that in $imsple example the solution structure
x* is the unique solution, and thus Cor. 2.20 may be applied. O

Example 4.2. In this example, as in Ex. 4.1 above, we again obtain the satimal structure
for all three problem formulations. Here, howevér, =# 0, and thus these coincidences are
somewhat unexpected.

We consider the same ground structure, boundary conditiorsexternal load as in the pre-
vious example. In addition, we assign a nonstructural mésize 10 at the loaded node, i.e.,
My # 0; see Figure 3-left. Consider the minimum weight problel?ﬁﬁp) with ¥ = 1 and
A = 5.0-102. Figure 3-right shows the optimal desigh. The corresponding optimal weight is
V* =7.10157.

Now consider the minimum compliance proble®fP! ) with V' = 7.1015 and X = 5.0 -
10~2. We obtain the solutiofiz*, v*) with the same structure* as before (Fig. 3-right), and with
v =1.

f

Figure 3: Three-by-three truss with nonstructural mass 4EX): initial layout and optimal topol-
ogy

Finally, when solving the problem of maximizing the minimeigenvalue R52°) with V =
7.1015 and¥ = 1, we again obtain:* from above, and\* = 5.0 - 10~2. Again, we believe that
the solutionz* is unique in each of the three problems. If this is the cas the equivalence of
the results holds by Corollaries 2.14, 2.17, and 2.20. O

Example 4.3. This academic example illustrates the possible nonunigsef solution to the

problem eg’gP). Consider & x 3 ground-structure with boundary conditions and load asadegi
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Table 1: Results of Example 4.3 for different data
My V o A*
0O 1 1 -0.70711
0 10 0.1 -o0.70711
10 1 1 -—0.08761
10 10 0.1 -0.41421

in Figure 4-left. PutMy = 0,5 = 10, andV = 10. The computed optimal structure is
presented in Figure 4-right; the optimal objective functi@lue of nggp) is —\* = —0.70711,
i.e., Amin(z*) = 0.70711. While the volume constraint is active at, the compliance constraint
is inactive (more precisely, after calculating soufecorresponding ta*, we havey* := fTu* =
0.1 < 7% = 10). Proposition 2.10 suggests that if we scale the solutibby a certain factoy,
we will still get a solution to our problem. For instance, i€wolve the same problem but with
V = 1.0, then we will obtain a solution with the samé and withy* = 1.0, i.e., still within the¥
limits. Table 1 summarizes these numbers. It also preskatesults for the case whéidy = 10

(and then Prop. 2.10 does not apply). In this case, the optiohation is no longer scalable. ¢

Figure 4: Example demonstrating possible nonuniquenessluafion of the Pg}gp) problem

Example 4.4. Here we demonstrate the possible nonuniqueness of sautiothe minimum
volume problem P.,) (or (PSPF)), and illustrate Thm. 2.13(b) in more detail. Consider the

vol

same ground-structure and boundary conditions as in ExT#éd load vector consists of a single
vertical force(0, 1) applied at the bottom-right node. Let furtter= 0.5, and consider the single
load min-volume problem without vibration constraint

m
i ; 40
xE]RgLI,IEE]R" ; i (40)
subject to
K(z)u=f,
ffu <y,
wiZO, ’i=1,...,m.
This problem can be formulated as a linear program [2] ans ttie setxzo) of solution structures

of (40) is given by the set of all convex combinations of thestrdeft and most-right structure in
Figure 6, i.e., by the set

Xy ={(1 = )z + pa® | p e [0,1]}
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wherez'* denotes the most-left an¢t* the most-right structure in Fig. 6. We havel(z*) = 18
andc(z*) = 1 for all z* € X(10)- Figure 5 shows the dependence of the minimum vibration
eigenvalue on the parameteof this convex combination, i.e., a plot of the function

1= Amin((1 = )z + pa*)

over the interval0, 1]. The points 1-5 in the plot correspond to the structures gurei 6, left
to right. We observe thak,,;, is maximized af; ~ 0.0536, i.e., at structure number 3. Let us
now add the vibration constraint to problem (40); thus wevarat problem P..;). For example,
put A := 0.037 which is the value of\,;, for structure number 2 in Figure 6. Then it is clear
that any structure between truss number 2 and number 5 isiiosoto problem P.;), and the
vibration constraint will be inactive for the structurescdty in between. Moreover, truss number
3 is the structure:* where the supremum in egn. (25) in Thm. 2.13 is attained,tiess number
3 is optimal for problemF.;;) with the settingd/ := 18 and¥ := 1 (according to Thm. 2.13(b)).
O

0.06

0.05F

0.04F

0.02-

0.01r

0.2 0.4 0.6 0.8 1

Figure 5: Example 4.4—qgraph af,,;,, on interval between two structures of the same volume and
compliance

AN\

Figure 6: Example 4.4—structures corresponding to poirsdh the graph in Figure 5

Example 4.5. This example shows that not only can the minimum eigenvalnetfon be discon-
tinuous (see Ex. 2.4) but it may also behave in a non-Lipsakity. This is slightly unexpected,
given the well-known fact that the eigenvalues of stendardsymmetric eigenvalue problem are
Lipschitz.

Consider again thg x 3 ground-structure from Ex. 4.1 with all nodes connected. AZomtal
force is applied at the central node. Figure 7 shows the liehaf/the objective functiom\ i, ()
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of the problem P5DT) with 2 > ¢ > 0; denote the solution of this problem by. The left-hand
figure shows the plot of the functiohy,;, (z.) for 1.5 - 10~7 < ¢ < 2- 1073; the function looks

all but Lipschitz (for smaller values af we were unable to compute the function value due to
round-off errors). To see its behavior more clearly, we pidhe right-hand figure the derivative
(computed by finite differences) in the intenjal5 - 10=7,1.6 - 10~°]; this figure confirms the
non-Lipschitz behavior. When we solve the minimum eigemwgbroblem Pgigp) with z > 0,

we obtain the optimum valug* = —0.7071068. Obviously, the picture is not a proof of a non-
Lipschitz behavior, but it is very indicative. The optimaligses for= = 2 - 1072 and for the
problem withz > 0 are shown in Figure 8 (left and right, respectively). In thstftase, only bars
that are not equal to the lower bound are presented. In bgscthe compliance constraint was

inactive. O

0.7 T T T T 6000

065 5000

0.6
4000

0.55r
3000
0.5r
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0.4 1000

0.35
0

x10°

Figure 7: Example 4.5 demonstrating apparent non-Lipstt@havior of the minimum eigenvalue
function close to the boundary of the feasible region. Thaplgrof the function (left) and its
derivative (right) are shown.

Figure 8: Example 4.5—optimal structures fqr> 2 - 10~3 (left) andz; > 0 (right).

Example 4.6. This example demonstrates that the changd/inmay lead to a change of the
topology of the optimal structure as has been suggesteceidiitussion after Prop. 2.22. We
take the same ground-structure, boundary conditions aklas in Example 4.2. Consider the
minimum volume problemKSDF) with three different values afZy, namely,0, 10 and100. The
bounds on compliance and minimum eigenvalue®re 20 and X = 1.0 - 1073, The optimal

30



values of/* are, respectively, 0.05012, 0.07284, and 0.63386. In ther lease {/,=100), the
compliance constraint was inactive. The respective optatnactures are presented in Figuré 9.

— > >

Figure 9: Example 4.6 demonstrating the dependence of ttimalpstructure on nonstructural
mass changes; optimal results fdy = 0, 10, 100 are depicted left-to-right.

Example 4.7. With practical applications in mind, we also present an gXanof larger ground
structure with multiple loads. Considerrax 3 nodal grid with the ground-structure, boundary
conditions and loads as depicted in Figure 10 top-left. Exdhe load arrows indicates an in-
dependent load case. The result of the standard minimunmeohaultiple-load problem (with
no vibration constraints) witfy = 10 is shown in Figure 10 top-right—obviously resulting in
two independent horizontal bars, one for each load. Thenvelof this structure i3* = 5.0.
Figure 10 bottom-left shows the result for the multiple Igadblem with a bound = 1.0 - 1073
on the minimum eigenvalue with the optimal volurié = 7.8309. For a comparison, we also
show a result of the single load problem (both forces comsitias a single load) withi = 20 and

A = 1.0 - 1073; the optimal structure with’* = 7.6166 is presented in Figure 10 bottom-right.
All solutions were obtained byeEBMI in less than 10 seconds. O

VWW

Q

Figure 10: A medium size multiple-load example (Ex. 4.7]tiahlayout (top-left); optimal topol-
ogy without (top-right) and with (bottom-left) vibrationonstraints; single-load optimal result
with vibration constraints (bottom-left)

Example 4.8. We consider the same problem scenario as in Example 4.2 latantx7 full
ground-structure with 1176 potential bars; see Figuresftl-Again we solve the minimum weight
problem PS PYwith ¥ = 1 and\ = 5.0 - 1072 (and a nonstructural mass of size 10 at the
loaded node) Figure 11-right shows the calculated optuleaignz*. The optimal weight is

V* = 3.59874, i.e., just one half of the optimal weight of the 3x3 groundisture from before in

Ex. 4.2. To solve the minimum volume problem bgNBMI, we needed 5 min 16 sec. To solve the
other two formulations, ¥5PF ) and PSPF), the code needed 11 min 41 sec and 20 min 15 sec,

compl eig

respectively. As expected, formulatioﬁg(gp) is computationally the most demanding one due to
the presence of bilinear matrix inequalities. %
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Figure 11: Example 4.8—a medium-size problem, initial latyand optimal topology

Example 4.9. Here we consider a medium-size example with &rx 5 ground-structure, having
100 degrees of freedom and 1485 potential bars. The bounctsnopliance and on the eigenvalue
werey = 20 and\ = 5.0 - 104, A horizontal force(—10, 0) is applied at the right-middle node;
see Figure 12-left. No nonstructural mass is considerede mmimum volume problem was
solved by ENBNI in 33 min 37 sec, and resulted in the optimal structure showigure 12-right
with V* = 1542.65. According to Thm. 2.8 this structure is also optimal for thim-compliance
problem Pcomp1) With V := 1542.65 and X as above. O

Figure 12: Example 4.9—a medium-size problem, initial latyand optimal topology

5 An Extension: the multiple-mass problem

Here we propose an extension to each of the three originblgaroformulations. Assume that we
haven, matricesMO(k), k =1,...,n, corresponding tay, different nonstructural masses that
can be applied independently. The corresponding eigeenvadustraint extending the constraint
“Amin(2) > A" in problem (P,;) or in problem Pcomp1) Would then be stated as

Amin(@, M) > X forallk=1,...,ny

where we have used the notation (34) from Sec. 2.5 for differ@nstructural mass matrices.
Similarly, the objective function\;,(-) in problem P.;,) becomes

. k
T — min )\min(x,MO( ))
1<k<ny

(which is to be maximized). Generalizing the SDP problerosfEec. 3 we arrive at the following
formulations possessing the same problem structure.
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The minimum volume multiple-mass problem

min V (41)
z€R™ VER
subject to
v fr > .
0, £=1,....,n
(fz K(z)) — ‘
m
> v
i=1
z; >0, 1=1,....m

K(z) =AM )+ M)y =0, k=1,... n.

The minimum compliance multiple-mass problem

i 42
reRm R | (42)
subject to

gl ng>>

0, £=1,....,n

(fz K(z)) — ‘

m

>wsv

i=1

z; >0, 1=1,....m

K(z) =AM )+ MYy =0, k=1,... n.

The maximum lambda multiple-mass problem

min —A\ (43)
zER™ AR
subject to
YOI Yoo -1
= 0, =1,...,n

(fe K(w)) - ’

m

Son<v

i=1

z; >0, 1=1,....m

K(x) = AMM(z)+ MP) =0, k=1,... ny.

Because the mathematical structure of these formulat®tigeisame as that of the problems
(PERD), (PEDE ), and PERT), we may use again the code&msmi to numerically solve these

problems. Let us look at a numerical example.

Example 5.1. Consider a 3-by-3 truss with all nodes connected by potdmtis. The nodes on
the left-hand side are fixed in both directions, two ballsngtouctural masses) are placed in the
corners on the right-hand side; see Figure 13-left. Fig@reniddle shows the optimal design for
formulation (Pfi[g’P) when both masses are considered a “single” nonstructusasmFigure 13-
right presents the result of the multiple-mass formulaf4s), where the two nonstructural masses
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are considered being independent from each other. The eohound in both problems was
V := 1, and the resulting optimal eigenvalues wate= 4.758 - 10~ in the single-mass case and
\* = 7.365 - 1073 in the multiple-mass case. ¢

Figure 13: A multiple-mass problem (Ex. 5.1: initial laydqléft), a “single-mass” result (middle)
and a multiple-mass optimal structure (right)
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A Appendix

Letx € X be given and, for simplicity of notation, assume th#& = 0 (in general, we would
assume thater(M (x)) C ker(Mp)). We want to show that/(x) can be partitioned into

_ (Mya O
M(x) = ( 0 0>
whereM 44 = 0.

Lemma A.l. LetZ; € R™", Z; = 0, andP; € R¥*" k < n,fori = 1,...,u. Then, for any

z #0,

H H
Y PzZP2=0 = Y PP'z=0.
=1 =1
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“w
Proof. From the assumption we know thif 7 P,Z, P!z = 0 andz? P, Z; P> > 0 for eachi
=1
(@asP,Z;P! = 0). Thusz" P, Z;PI» = 0 for all i and thereford| Z'/2 P z||2 = 0. As Z'/2 - 0,
this immediately give?! » = 0 Vi, and the lemma follows. O

Now let Z includes the indices of all nonzero component®f 2. Without loss of generality,
let us assume that the nonzero components afe equal to one, i.ex; = 1 for¢ € Z. Hence

m o~ P
M =Y x;PM;PT =" P;M;PT. Define the projection
=1 i€

S = LInsn — H(Inxn - RRT) 5
i€T

clearly, S projects a vector € R™ to a subspace generated by Euclidean unit vectors asgbciate
with all degrees of freedom belonging to elementsZ, i.e., to the spacepan { P,Ple, i € T},
wheree € R" is the vector of all ones. From this definition, and from thastauction ofM, we
immediately have thal/ = SM.S. Without loss of generality, assume ttats of the form

_(Ipxk O
s= (" )
wherek is the rank ofS. HencelM also has the form
M= M 0
0 0
with M € RF*k,

LemmaA.2. M is positive definite.

Proof. Assume thatV/z = 0 for somez # 0. We need to show that/z = 0 only for Z = 0,
wherez includes the firsk components of. By definition,

Mz=Y PMPlz=0.
1€

From the above lemma, we have that

Z PPlz=0.
1€

Now, the matrix>" P, P! is of the same form a§ and M, and its upper-left block consists of a

i€T
(full) positive diagonal. Hencé = 0. O
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