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April 26, 2006

Abstract

The paper considers a classic formulation of the topology optimization problem of discrete
or discretized structures. The objective function to be maximized is the smallest natural
frequency of the structure. The model of the problem takes into account multiple load con-
ditions, equilibrium of forces, constraints on compliance and volume, and the effect of pos-
sible non-structural mass. After the statement of the mathematical model we discuss serious
obstacles for a successful numerical treatment of this formulation such as non-Lipschitzean
behavior and even discontinuity of the objective function. As a cure we present an equiv-
alent reformulation as a bilinear semidefinite programming problem without the pitfalls of
the original problem. An algorithm is presented for finding an approximation of a globally
optimal solution up to a user-defined accuracy. The key ingredient of this algorithm is the
treatment of a sequence of linear SDPs. Numerical examples are provided for truss struc-
tures. Examples of both academic and larger size illustrate the theoretical results achieved
and demonstrate the practical use of this approach. We conclude with an extension on
multiple non-structural mass conditions.

Keywords: Topology optimization, Vibration of structures, Optimization of Eigenvalues, Nonlinear
semidefinite programming
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1 Introduction

The subject of this paper is topology optimization of discrete and discretized structures with
consideration of free vibrations of the optimal structure. Maximization of the fundamental
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eigenvalue of a structure is a classic problem of structural engineering. The (generalized) eigen-
value problem typically reads as

K(x)w = λ(M(x) + M0)w

where K(x) and M(x) are symmetric and positive semidefinite matrices that continuously (of-
ten linearly) depend on the parameter x. The main difficulty brings the nonsmooth dependence
of eigenvalues on this parameter. In fact, we shall see below that the dependence of the smallest
eigenvalue on x may even be discontinuous in topology optimization problems.

The problem has been treated in the engineering literature since the beginning of 70s; see the
paper [18] and the overview [17] summarizing the early development. See also the recent book
[19] for up-to-date bibliography on this subject. The general problem of eigenvalue optimiza-
tion belongs also to classic problems of linear algebra. When the matrix M(x) +M0 is positive
definite for all x, then one can resort to the theory developed for the standard eigenvalue prob-
lem; see [13] for an excellent overview. Not many papers studying the dependence of the
eigenvalues on a parameter are available for the general case when M(x) + M0 is only positive
semidefinite; see, e.g. [6, 20, 22].

The paper is organized as follows. In Section 2 we present a formulation of the structural design
problem where we maximize the fundamental frequency, i.e., the smallest eigenvalue of certain
generalized eigenvalue problem, subject to equilibrium conditions and constraints on the vol-
ume and the compliance. We illustrate several severe theoretical difficulties of this formulation
as non-Lipschitzean behavior and even discontinuity of the involved functions. In Section 3 we
formulate this problem as a semidefinite program (SDP) with a bilinear matrix inequality (BMI)
constraint. This formulation, however straightforward, has never been used for the numerical
solution of the problem, up to our knowledge. The reason for this was the lack of available
SDP-BMI solvers. We solve the problem by a recently developed code PENBMI [10]. Due to
the BMI, the reformulated problem is nonconvex. By consideration of a related convex SDP,
however, it is possible to improve lower and upper bounds for the globally optimal function
value of the original problem. This, finally, leads to an algorithm for finding an approxima-
tion of a globally optimal solution of the original problem up to a given acurracy. Section 5
presents some numerical examples of different size. These examples illustrate the formulations
and theoretical results developed in the paper and also demonstrate the solvability of the SDP
formulations and thus their practical usefulness. In Section 6 the paper closes with an extension
to problems with several independent non-structural masses applied at different time points.

All formulations and theorems in the presentation are developed for problems using discrete or
discretized structural models satisfying certain properties. All numerical examples show trusses
to keep the notation and visualization fixed and simple. The theory, however, also applies to dis-
cretized structures, for instance, to the variable thickness sheet or the free material optimization
problems (see, e.g., [4]).

This paper is based on a mathematically oriented paper of the authors (see [2]). Here we want
to present material and new examples relevant for practicioners.

We use standard notation. In particular, the k×k identity matrix is denoted by Ik×k, and ker(A)
and range(A) denote the null space and the range space of a matrix A, respectively. The notation
“A � 0” means that the symmetric matrix A is positive semidefinite and “A � 0” means that it
is positive definite. For two symmetric matrices A, B the notation “A � B” (“A � B”) means
that A − B is positive semidefinite (positive definite). Finally, x �= 0 means that at least one
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component of a vector x is not equal to zero and x > 0 says that all components of x are greater
than zero.

2 Problem definition

2.1 Basic notations, generalized eigenvalues

We consider a general mechanical structure, discrete or discretized by the finite element method.
The number of members or finite elements is denoted by m, the total number of “free” degrees
of freedom (i.e., not fixed by Dirichlet boundary conditions) by n. For a given set of L (inde-
pendent) load vectors

f� ∈ R
n, f� �= 0, � = 1, . . . , L, (1)

the structure should satisfy linear equilibrium equations

K(x)u� = f�, � = 1, . . . , L. (2)

Here K(x) is the stiffness matrix of the structure, depending on a design variable x. We will
assume linear dependence of K on x,

K(x) =
m∑

i=1

xiKi (3)

with xiKi being the element stiffness matrices. Note that the stiffness matrix of element (mem-
ber) ei is typically defined as

xiKi = xiPiK̂iP
T
i (4)

where PiP
T
i is a projection from R

n to the space of element (member) degrees of freedom. In
other words, K̂i is a matrix localized on the particular element, while Ki lives in the full space
R

n. Further,

xiK̂i =

∫
ei

xiB
T
i EiBi dV

where the rectangular matrix Bi contains derivatives of shape functions of the respective degrees
of freedom and Ei is a symmetric matrix containing information about material properties. To
exclude pathological situations, we assume that

f� ∈ range
( m∑

i=1

Ki

)
for all � = 1, . . . , L (5)

which means that there exists a material distribution x ≥ 0 that can carry all loads f�, i.e., there
exist corresponding u1, . . . , u� satisfying (2).

Similarly to the definition of K(x), the mass matrix M(x) of the structure is assumed to be
given as

M(x) =
m∑

i=1

xiMi, Mi = PiM̂iP
T
i (6)

with element mass matrices

xiM̂i =

∫
ei

xiN
T
i Ni dV . (7)
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Here Ni contains the shape functions of the degrees of freedom associated with the ith element.

The design variables x ∈ R
m, x ≥ 0, represent, for instance, the thickness, cross-sectional area

or material properties of the element. We will assume that

xi ≥ 0, i = 1, . . . , m .

Notice that the matrices K̂i, M̂i have the properties K̂i � 0, M̂i � 0, and thus K(x) � 0,
M(x) � 0 for all x ≥ 0. From a practical point of view, it is worth noticing that the element
matrices Ki and Mi are very sparse with only nonzero elements corresponding to degrees of
freedom of the ith element. That means, for each i, the matrices Ki and Mi have the same
nonzero structure (see also Lemma 1 below). The matrices K(x), M(x), however, may be
dense, in general.

In the sequel, we will sometimes collect the displacement vectors u1, . . . , uL for all the load
cases in one vector

u = (uT
1 , . . . , uT

L)T ∈ R
L·n,

for simplification of the notation.

In this paper we do not rely on any other properties of stiffness and mass matrices than those
outlined above. Therefore, the problem formulations and the conclusions apply to a broad
class of problems, e.g., to the variable thickness sheet problem or the free material optimization
problem (see, e.g., [4]). For the sake of transparency, however, in the examples we concentrate
on a particular class of discrete structures, namely trusses.

In this article, we will additionally consider free vibrations of the optimal structure. The free
vibrations are the eigenvalues of the generalized eigenvalue problem

K(x)w = λ(M(x) + M0)w . (8)

The matrix M0 ∈ R
n×n is assumed to be symmetric and positive semidefinite. It denotes the

mass matrix of a given non-structural mass (“dead load”). The choice M0 = 0 is of course
included in our development.

In the sequel we use the notation

X := {x ∈ R
m | x ≥ 0, x �= 0}

for the set of all design variables referring to non-zero structures.

As a consequence of the construction of K(x) and M(x) we state a first fact which is widely
known among practicioners. However, a strictly mathematical proof, although very simple, is
difficult to find in the literature.

Lemma 1 For each x ∈ X it holds that

ker(M(x) + M0) � ker(K(x)) .

Proof: Let u ∈ R
n be in ker(M(x) + M0). Then uT (M(x) + M0)u = 0, i.e. (see (6)),

0 = uT
( m∑

i=1

xiPiM̂iP
T
i + M0

)
u =

m∑
i=1

xi(P
T
i u)TM̂i(P

T
i u) + uTM0u .
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Because M̂i � 0 for all i, and because M0 � 0, we conclude that

P T
i u = 0 for all i such that xi > 0.

Hence, by the definition of K(x) and by (4),

K(x)u =

m∑
i=1

xiKiu =

m∑
i=1

xiPiK̂iP
T
i u =

∑
i: xi �=0

xiPiK̂iP
T
i u = 0,

and the proof is complete. �
We now want to define a function λmin(·) that assigns a given structure represented by vector
x ∈ X the smallest eigenvalue λ of problem (8). Before doing that, we mention the fol-
lowing dilemma hidden in the generalized eigenvalue problem (8). If x ∈ X is fixed and
(λ, w) ∈ R × R

n is a solution of (8) with w �= 0 but with w ∈ ker(M(x) + M0) then Lemma 1
shows that also K(x)w = 0. Hence (μ, w) is also a solution of (8) for arbitrary μ ∈ R. In
this situation we say that this eigenvalue is undefined; otherwise it is well-defined. Because
undefined eigenvalues are meaningless from the engineering point of view, we want to exclude
them from our considerations. This leads to the following notation.

Notation 2 For any x ∈ X , let λmin(x) denote the smallest well-defined eigenvalue of (8), i.e.,

λmin(x) = min{λ | ∃w ∈ R
n : K(x)w = λ(M(x) + M0)w,

w /∈ ker(M(x) + M0) }.
By standard linear algebra and by Lemma 1 it is seen that λmin(x) can be written in the form of
a Rayleigh quotient,

λmin(x) = inf
u: (M(x)+M0)u �=0

uT K(x)u

uT (M(x) + M0)u
(9)

for all x ∈ X (see, e.g., [2] or [9]). This shows that the function λmin(·) is finite and non-
negative on X .

2.2 Problem definition, difficulties

Maximization of the smallest eigenvalue of a mechanical structure is of paramount importance
in many industrial applications; see, e.g., [17]. In this article we define it as the problem of
maximizing the smallest (well-defined) eigenvalue of (8) subject to equilibrium conditions and
constraints on the compliance and on the volume:

max
x∈Rm,u∈RL·n

λmin(x) (P)

subject to(
m∑

i=1

xiKi

)
u� = f�, � = 1, . . . , L

fT
� u� ≤ γ, � = 1, . . . , L
m∑

i=1

xi ≤ V

xi ≥ 0, i = 1, . . . , m .

5



This problem, or its minor modifications, has already been considered at several places in the
literature. It finds valuable interest in practical applications (see [17, 19, 13]). To the knowledge
of the authors, however, a rigorous treatment of this problem with positive semidefinite matrices
K and M (i.e., permitting xi = 0 for some i, as needed in topology optimization) has not been
considered, so far.

Remark 3 We mention that problem (P) is closely related to the following minimum volume
problem with an eigenvalue constraint:

min
x∈Rm,u∈RL·n

m∑
i=1

xi (10)

subject to(
m∑

i=1

xiKi

)
u� = f�, � = 1, . . . , L

fT
� u� ≤ γ, � = 1, . . . , L

λmin(x) ≥ λ

xi ≥ 0, i = 1, . . . , m .

Here λ > 0 is a given lower bound for the minimal eigenvalue, and γ plays the same role as in
problem (P). Among practicioners, this problem is sometimes treated instead of (P). It should
be noted, however, that the solutions of both problems are generally not the same, even after a
suitable scaling. An example is discussed below in Ex. 16.

Similarly, (P) is closely related to the problem with the roles of λmin(·) and the function
(x, u) 
→ max

1≤�≤L
fT

� u� interchanged (the worst-case minimum compliance problem). Theoret-

ical investigations on the interrelations between (P), (10), and the latter problem can be found
in [2]. ♦

We now discuss several difficulties related to formulation (P) in the light of its numerical treat-
ment.

Difficulty 1: Nondifferentiability It is well-known that λmin(·) generally is a non-differentiable
function. At least if x > 0 it is easy to see that problem (8) is equivalent to

(M(x) + M0)
− 1

2 K(x)(M(x) + M0)
− 1

2 w = λw .

Then λmin(·) is differentiable if the multiplicity of the minimal eigenvalue of the above problem
is one (see, e.g., [13]). In numerical procedures, some practicioners circumvent nonsmoothness
by small perturbations in the variable x to achieve differentiability. It should be noted, however,
that the use of algorithms of nonlinear (i.e., smooth) optimization in such a methodology may
lead to wrong results.

Difficulty 2: Non-Lipschitzean behavior The natural cure to Difficulty 1 is the use of meth-
ods of Nonsmooth Optimization. These methods use generalized gradient information instead
of gradient information, i.e., take non-smoothness into account. From the viewpoint of the au-
thors the most general framework with yet numerically tractable problems is provided by the
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Figure 1: Example 4—initial design.

calculus of Clarke (see, e.g., [7]). This calculus works with functions that are locally Lipschitz-
continuous (“l.l.c.” in short). A function f : X̃ −→ R is defined to be l.l.c. if for each x̄ ∈ X̃
there exists some neighborhood U(x̄) of x̄ and a constant L = L(x̄) such that

|f(x) − f(x̄)|
‖x − x̄‖ ≤ L for all x ∈ (X̃ ∩ U(x̄)) (11)

(where ‖ · ‖ denotes, e.g., the euclidean norm). Note that any l.l.c. function is continuous.
Property (11) shows that (maybe several distinct) limits of the quotient on the left hand side
exist for x −→ x̄. These limits then mimic the “slopes” of the non-smooth function f at x̄
when approaching x̄ from different directions, say. These data can be used also in a numerical
approach, e.g., building a piece-wise linear model near x̄. There exist a few algorithms and
codes for calculating a local optimizer of a l.l.c. function f .

Hence, if λmin(·) was l.l.c., then the nonsmooth calculus of Clarke could be used and known
numerical procedures could tackle problem (P). The following numerical example, however,
indicates that λmin(·) lacks to be l.l.c. near the boundary of X . This is slightly unexpected,
given the well-known fact that the eigenvalues of the standard symmetric eigenvalue problem
are l.l.c. functions (see, e.g., [5]).

Example 4 Consider a 3 × 3 ground-structure on a square 1 × 1 area in 2D with all nodes
connected and with a horizontal force (−1, 0) applied at the central node (L = 1); see Fig. 1.
We use the (scaled) Young’s modulus 1.0, for simplicity, in all bars. Now consider problem (P)
where we have replaced the zero lower bound on the design variables by a parameter ε ≥ 0.

max
x∈Rm,u∈RL

λmin(x) (Pε)

subject to(
m∑

i=1

xiKi

)
u� = f�, � = 1, . . . , L

fT
� u� ≤ γ, � = 1, . . . , L
m∑

i=1

xi ≤ V

xi ≥ ε, i = 1, . . . , m .

Let (x∗
ε, u

∗
ε) denote a solution of this problem. We have numerically calculated (x∗

ε, u
∗
ε) for

1.5 · 10−7 ≤ ε ≤ 2 · 10−3 (We will show later on how this can be done). Figure 2 shows the
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Figure 2: Example 4 demonstrating apparent non-Lipschitz behavior of the minimum eigen-
value function close to the boundary of the feasible region. The graph of the function (left) and
its derivative (right) are shown.

Figure 3: Example 4—optimal structures for xi ≥ 2 · 10−3 (left) and xi ≥ 0 (right).

behavior of the objective function λmin(·) at the optimizers x∗
ε when ε is varied. The function

λmin(·) looks all but Lipschitz (for smaller values of ε we were unable to compute the function
value due to round-off errors). To see its behavior more clearly, we plot in the right-hand figure
the derivative (computed by finite differences) in the interval [1.5 · 10−7, 1.6 · 10−5]; this figure
confirms the non-Lipschitz behavior. When we solve the minimum eigenvalue problem (P)
with x ≥ 0, we obtain the optimum value λ∗ = 0.7071068. Obviously, the picture is not a proof
of a non-Lipschitz behavior but it is very indicative. The optimal trusses for ε = 2 · 10−3 and
for the problem with x ≥ 0 are shown in Figure 3 (left and right, respectively). In the first case,
only bars that are not equal to the lower bound ε are presented. In both cases, the compliance
constraint was inactive. ♦

The use of positive lower bounds is also addressed below.

Difficulty 3: Discontinuity As already indicated in the previous example, problem (P) inher-
ently contains an even more serious difficulty which is not seen at a first glance. First, it can be
proved that λmin(·) is upper semicontinuous (“u.s.c.” in short) on X , i.e., that for each sequence
(xi)i∈N ⊂ X of structures converging to some structure x̄ ∈ X we have the inequality

lim sup
i→∞

λmin(x
i) ≤ λmin(x̄) (12)

(for the proof, see [2]). Unfortunately, lower semicontinuity, i.e.,

lim inf
i→∞

λmin(x
i) ≥ λmin(x̄),
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x1

x1
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x2

Figure 4: Example showing possible discontinuity of λmin

does not necessarily hold for structures x̄ on the boundary of X . As a consequence, λmin(·)
lacks to be continuous at such points. This unpleasant fact is related to the situation that some
eigenvalues may become undefined when K(x̄) becomes singular. The following example of
academic size illustrates this behavior.

Example 5 Consider the planar truss depicted in Figure 4 with the four nodal points (0, 0),
(0, 1), (1

2
, 1

2
), and (1, 1

2
). Let the truss be symmetric w.r.t. its horizontal axis, so consider only

two design variables, x1 and x2, denoting bar volumes. Again, the Young’s modulus is 1.0 in all
bars, for simplicity. Then the corresponding stiffness and mass matrix have the following form.

K(x) =

⎛⎜⎜⎝
x1 · 2 0 0 0

0 x1 · 2 0 0
0 0 x2 · 32

25
0

0 0 0 x2 · 8
25

⎞⎟⎟⎠

M(x) =

⎛⎜⎜⎝
x1 · 2

√
2 0 0 0

0 x1 · 2
√

2 0 0

0 0 x2 · 2
√

5 0

0 0 0 x2 · 2
√

5

⎞⎟⎟⎠
Hence, if x1 > 0 and x2 > 0 then, due to the special situation that here K and M are diagonal,
we can easily calculate the four structural eigenvalues by taking the quotients of corresponding
entries in the diagonals of K and M ,

2
2
√

2
x1

x1
= 1√

2
≈ 0.71, 2

2
√

2
x1

x1
= 1√

2
≈ 0.71,

32
25·2√5

x2

x2
≈ 0.29, 8

25·2√5
x2

x2
≈ 0.07.

Analogously, if x1 > 0 and x2 = 0 then the first two eigenvalues are 2
2
√

2
x1

x1
≈ 0.71 as before,

but the remaining two eigenvalues become undefined. Summarizing, for any design vector
x = (x1, x2) with x1 > 0 we obtain

λmin(x) =

{
8

50
√

5
≈ 0.07 for x2 > 0

1√
2
≈ 0.71 for x2 = 0.

Thus, λmin(·) is discontinuous at all points x with x1 > 0 and x2 = 0. As seen, the reason for
the discontinuity lies in the fact that, when x2 = 0, the eigenvalue 8

50
√

5
x2

x2
becomes undefined
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Figure 5: Example 6 demonstrating possible discontinuity of λmin; initial structure (left) and
graph of the minimal eigenvalue as a function of ε (right).

and λmin(·) “jumps up” to what was before the second smallest eigenvalue. This example also
nicely illustrates the upper semi-continuity of λmin(·) mentioned above; see (12).

♦

Note that the possible discontinuity of λmin(·) prevents the use of the continuation approach al-
ready discussed above, i.e., the use of smaller and smaller positive lower bounds on the design
variables (see problem (Pε)). This continuation approach is widely used in Structural Opti-
mization. To make this transparent, let again (x∗

ε, u
∗
ε) denote a solution of problem (Pε) for

each ε ∈ [0, δ] (where δ > 0 is some given number). Assume that the solution structure x∗
ε is

unique for all ε ∈ [0, δ], and that there exists x̄ with x∗
ε −→ x̄ for ε ↘ 0. Then, due to possible

discontinuity, it might happen that

lim
ε↘0

λmin(x
∗
ε) < λmin(x̄) < λmin(x

∗
0),

i.e., the limiting structure x̄ is different from the solution structure of the problem (Pε) for ε = 0,
the unperturbed problem (P).

The following example shows that λmin(x
∗
ε) for ε ↘ 0 may converge to a value that is far below

the true optimal value λmin(x
∗) of (P) (although here x∗

ε → x∗
0).

Example 6 Consider the 2D ground-structure shown in Figure 5, together with boundary con-
dition and the force applied at the central node. Figure 5-right shows the behavior of the objec-
tive function λmin(x

∗
ε) of the problem (Pε), where ε lies in the interval [2 ·10−5, 3 ·10−3]. We can

observe linear behavior of the minimal eigenvalue; this (multiple) eigenvalue is associated with
vibrations of the right-hand corners that are only connected to the structure by the ε−thick bars
(see Figure 6-left). Hence, when ε reaches zero, those bars disappear, the corresponding entries
in the stiffness and mass matrices become zero and the eigenvalue becomes undefined. Using
the continuation approach, we would then use a limit of the sequence of solutions for ε → 0,
i.e., we arrive at a value around 0.113924 for λmin(x

∗) (which is λmin(x
∗
ε) for ε = 2 · 10−5).

However, solving problem (P), i.e., (Pε) with ε = 0 (see below how to do this. . . ) then we
obtain the true solution x∗ of (P) with λmin(x

∗) = 0.707107; the optimal structure is depicted
in Figure 6-right. Here we clearly see the discontinuity of λmin on the boundary of the feasible
domain. ♦
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Figure 6: Example 6—optimal structures for xi ≥ 2 · 10−5 (left) and xi ≥ 0 (right).

Difficulties 4 to 6 There are three other (though minor) difficulties in the numerical approach
dealing with (P). First, problem (P) is nonconvex and thus we cannot expect more than local
optimality of a solution obtained by a suitable numerical approach, whether is this approach
based on descent concepts or on optimality conditions (due to the large number of variables,
application of methods from global optimization are not applicable in practical situations). Sec-
ond, the numerical calculation of λmin(x) at given points x is expensive and delicate. Although
there are well-established numerical procedures in program libraries to solve this problem, it is
still a challenge to calculate λmin(x) in reasonable time and with sufficient precision. The same
is true for the calculation of a corresponding eigenvector which is needed for the calculation of
the gradient of λmin at x (provided λmin is differentiable at x). There are three other troubles
connected to this point. First, only the minimal eigenvalue should be calculated. Due to the size
of the matrix, it is not desirable to calculate all eigenvalues and select the minimal one. Second,
accuracy is a problem, in particular for the decision whether an eigenvalue is the minimal one,
whether its multiplicity is one or bigger, and whether it is well-defined at all. This corresponds
to the third trouble, ill-conditioning: if K(x) is (nearly) singular (and this is often the case in
topology optimization), most of the solution procedures will break down.

As a consequence of all these difficulties, we conclude that formulation (P) is not useful for our
purpose, i.e., numerical solution of the topology optimization problem. From the authors’ point
of view, the most crucial obstacles are the non-Lipschitzean behavior and the discontinuity of
the objective function because they are of theoretical nature and exclude the use of standard
numerical procedures. Notice that in meaningful topology optimization problems many or even
most of the design variables xi will become zero at the optimum and thus the treatment of
singular stiffness matrices and the related non-Lipschitzean behavior or discontinuity of λmin(·)
is a must.

In the following section we present an equivalent formulation of the problem which largely
overcomes all the difficulties explained above.

3 Reformulation as semidefinite program

Recall that problem (P) is nonconvex and discontinuous. Furthermore, it implicitly includes
the computation of the smallest eigenvalue λmin(x

k) of (8) at each iteration point xk of a cer-
tain solution procedure. In this section we give a reformulation of (P) which is much easier to
analyze and to solve numerically. Although this reformulation seems to be known in the com-
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munity of Mathematical Programming, it has never been used for the numerical solution, up to
our knowledge.

We start with an auxiliary result expressing the compliance constraints as so-called linear matrix
equalities based on the ordering cone of positive semidefinite matrices. Recall the notation “�”
explained at the end of the Introduction.

Proposition 7 Let x ∈ R
m, x ≥ 0, and γ ∈ R be fixed, and fix an index � ∈ {1, . . . , L}. Then

there exists u� ∈ R
n satisfying

K(x)u� = f� and fT
� u� ≤ γ

if and only if (
γ −fT

�

−f� K(x)

)
� 0 .

Proof: Note that K(x) may be singular in our case, so that we cannot directly use the Schur
complement theorem (see, e.g., [3]). We first write the matrix inequality equivalently as

α2γ − 2αfT
� v + vT K(x)v ≥ 0 ∀α ∈ R, ∀v ∈ R

n . (13)

“⇒” As K(x) � 0, we know that u� minimizes the quadratic functional (v 
→ vTK(x)v −
2fT

� v) with the minimal value −f T
� u�. Thus

vT K(x)v − 2fT
� v ≥ −fT

� u� ≥ −γ ∀v ∈ R
n .

Using the substitution v = σw, σ ∈ R, we can write this as

(σw)TK(x)(σw) − 2fT
� (σw) ≥ −γ ∀σ ∈ R, ∀w ∈ R

n ,

hence
wTK(x)w − 1

σ
2fT

� w ≥ − 1
σ2 γ ∀σ ∈ R \ {0}, ∀w ∈ R

n

which is just (13) with α = 1
σ
.

“⇐” Put α = 1. Then we get from (13) that

γ − 2fT
� v + vT K(x)v ≥ 0 ∀v ∈ R

n,

and so the convex quadratic function

q : v 
→ −2fT
� v + vT K(x)v

is bounded from below. By this, standard linear algebra shows that q(·) possesses a global
minimizer u� ∈ R

n, i.e., the gradient of q vanishes at u�, proving

K(x)u� = f� .

Inserting this into (13) with α = 1, we have

γ − 2fT
� u� + uT

� f� ≥ 0,

that is, γ ≥ fT
� u�, and we are done. �

As a second step we use a different representation of λmin(·), based again on matrix inequalities.
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Proposition 8 For all x ∈ X ,

λmin(x) = sup{λ | K(x) − λ(M(x) + M0) � 0} .

Proof: Let x ∈ X be given and recall representation (9) of λmin(x).

Let us first show the “≥” part. Take an arbitrary λ satisfying K(x) − λ(M(x) + M0) � 0, i.e.,

uT K(x)u − λuT (M(x) + M0)u ≥ 0 ∀u �= 0 .

Consider u with (M(x) + M0)u �= 0; then we have

uTK(x)u

uT (M(x) + M0)u
≥ λ .

Because λ and u were arbitrary, we can write “inf” in front of the fraction and “sup” in front of
λ and the inequality remains valid. Now insert (9).

The proof of the “≤” part is similar: Let

λ̃ := inf
u: (M(x)+M0)u �=0

uTK(x)u

uT (M(x) + M0)u
.

Then

λ̃ ≤ uT K(x)u

uT (M(x) + M0)u

for all u with (M(x) + M0)u �= 0 which in turn means that

uTKu − λ̃uT (M(x) + M0)u ≥ 0 ∀u : (M(x) + M0)u �= 0.

If (M(x) + M0)u = 0 then u ∈ ker(K(x)) by Lemma 1, and thus the above inequality holds
as well. All in all, K(x) − λ̃(M(x) + M0) � 0, i.e.,

λ̃ ≤ sup{λ | K(x) − λ(M(x) + M0) � 0} .

�
Proposition 7 shows that the displacement vectors u� may be eliminated and that the compliance
constraints may be treated by matrix inequalities which linearly depend on the design variable
x. Similarly, Prop. 8 shows that λmin(·) may be expressed through a variable λ ∈ R subject to
matrix inequality as constraints. We arrive at the following problem formulation:

max
x∈Rm,λ∈R

λ (S)

subject to(
γ −fT

�

−f� K(x)

)
� 0, � = 1, . . . , L

m∑
i=1

xi ≤ V

xi ≥ 0, i = 1, . . . , m

K(x) − λ(M(x) + M0) � 0 .

13



Here the constants γ and V are given as in the original problem formulation (P). Notice that
the variables are now x (as before) and λ ∈ R (new). The state variables u�, � = 1, . . . , L, have
been eliminated and are implicitly hidden in the first group of matrix inequalities.

Due to the matrix inequalities among the constraints, problem (S) belons to the class of so-called
semidefinite programming problems (SDP). During the past decade this problem class has been
extensively studied by many researchers of the mathematical programming community. For
introduction to SDPs we refer to the monographies [3] and [8].

The above problem reformulation results in the following theorem. It directly follows from
Propositions 7 and 8.

Theorem 9 (a) If (x∗, u∗) is a global maximizer of (P) then (x∗, λ∗) is a global maximizer
of (S) and λ∗ := λmin(x

∗). Moreover, the optimal values of both problems coincide.

(b) If (x∗, λ∗) is a global maximizer of (S) then there exists u∗ such that (x∗, u∗) is a global
maximizer of (P). Moreover, the optimal values of both problems coincide, i.e., λ∗ =
λmin(x

∗).

We emphasize that, due to the SDP reformulation, the originally discontinuous problems be-
came continuous; a fact of big practical value. Moreover, the numerically difficult evaluation of
λmin(·) is circumvented, but matrix inequalities must be treated instead. Also note that (S) is an
SDP problem with a bilinear matrix inequality (BMI) constraint, i.e., is generally nonconvex.
We remark, however, that problem (S) hides a quasiconvex structure; see [2].

By using the Propositions 7 and 8, we may also clarify the existence of solutions of our prob-
lems.

Theorem 10 Problem (S) (or, equivalently, problem (P)) possesses a solution if and only if it
possesses feasible points.

Proof: By Prop. 7, problem (S) can be written in the form

max{ λmin(x) | x ∈ F } (14)

with the feasible set

F :=
{

x ∈ R
m
∣∣∣ ( γ −fT

�

−f� K(x)

)
� 0 ∀�; x ≥ 0;

m∑
i=1

xi ≤ V
}
.

Because the cone of positive semidefinite matrices is closed, the set F is compact. Moreover,
0 /∈ F due to assumption (1), i.e., F ⊂ X . Hence, because λmin(·) is upper semi-continuous
(u.s.c.) on X (see, e.g., [2]), it is u.s.c. on F . Now, each u.s.c. function attains its supremum on
a non-empty compact set (see, e.g., [15, Thm. 2.13.1]). �

4 Calculation of global maximizers

Instead of using methods from Global optimization for the calculation of a global maximizer of
problem (S), we may use the close relation of (S) to certain convex SDPs. In the following we
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propose a practical framework for finding the global solution of (S) (or (P); see Thm. 9) based
on the solutions of a sequence of convex SDPs.

For fixed λ ≥ 0 and fixed δ ≥ 0 consider the following linear SDP:

min
x∈Rm,V ∈R

V (Svol[λ, δ])

subject to(
γ −fT

�

−f� K(x)

)
� 0, � = 1, . . . , L

m∑
i=1

xi ≤ V

V ≤ V

xi ≥ 0, i = 1, . . . , m

K(x) − (λ + δ)(M(x) + M0) � 0 .

We mention that an SDP of this type has first been formulated and studied in [16]. It repre-
sents a problem where volume is minimized subject to compliance constraints (see Prop. 7) and
eigenvalue constraints. Note that by Prop. 8 the matrix inequality constraint

K(x) − (λ + δ)(M(x) + M0) � 0

simply means that λmin(x) ≥ λ + δ. Problem (Svol[λ, δ]) is therefore just an extension of the
problem (10) mentioned above in Remark 3.

In the following, the feasible set of problem (Svol[λ, δ]) is denoted by F(λ, δ), for simplicity.
Notice that (Svol[λ, δ]) is a linear SDP, i.e., a convex optimization problem for which a global
maximizer can be calculated, provided F(λ, δ) �= ∅. Moreover, because (Svol[λ, δ]) is a convex
SDP, modern solution procedures are able to recognize (up to numerical acurracy) whether
F(λ, δ) = ∅ or not.

The following proposition gives a tool for the estimation of the (globally) optimal objective
function value of problem (S). Its proof is easy because the constraints in the considered prob-
lems are almost identical.

Proposition 11 Let (x̃, λ) be feasible for (S) and let λ∗∗ denote the (globally) optimal function
value of problem (S). Moreover, let δ > 0 be arbitrary and consider the problem (Svol[λ, δ])
with the parameters γ and V copied from (S). Then the following assertions hold:

(a) If F(λ, δ) �= ∅ then for each (x, V ) ∈ F(λ, δ) the point (x, λ + δ) is feasible for (S), i.e.,

λ < λ + δ ≤ λ∗∗. (15)

(b) If F(λ, δ) = ∅ then
λ ≤ λ∗∗ < λ + δ. (16)

The practical value of this proposition lies in the possibility to improve upper and lower bounds
for λ∗∗ which can be numerically calculated through solutions (or only feasible points) of the
convex linear SDPs of the type (Svol[λ, δ]).
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As a pre-processing step, we first calculate initial lower and upper bounds λL
0 , λU

0 on λ∗∗. For
this, first compute a feasible point (x, λ) of (S) and choose arbitrary δ̄ > 0. Then find the
smallest k ∈ N such that F(λ, 2kδ̄) = ∅ by treating (Svol[λ, 2kδ̄]) repeatedly. Set

λL
0 := λ + 2k−1δ̄ and λU

0 := λ + 2kδ̄ .

Then Prop. 11 shows that
0 ≤ λL

0 ≤ λ∗∗ < λU
0 . (17)

With these bounds it is easy to construct the following bisection type algorithm which in each
step reduces the gap (λU

k − λL
k ) by a factor of (at least) 1

2
.

Algorithm 12 Choose an accuracy η > 0 and a feasible point (x0, λ0) for (S).
Put δ0 := 1

2
(λU

0 − λL
0 ) and k := 0. Go to Step 2.

1. Calculate a feasible point [or even a local maximizer] (xk, λk) of (S) with the additional
constraint “λ ≥ λL

k ”.

2. If λk > λL
k then update λL

k by λL
k := λk.

3. If λU
k − λL

k ≤ η then EXIT with the result (x∗, λ∗) := (xk, λk).

4. Put δk := 1
2
(λU

k − λL
k ) and consider problem (Svol[λk, δk]).

If F(λk, δk) �= ∅ then:

4A. Put λL
k+1 := λL

k + δk, k := k + 1, and go to Step 1.

Otherwise, if F(λk, δk) = ∅, then:

4B. Put λU
k+1 := λU

k − δk, k := k + 1, and go to Step 1.

The proof of the following proposition is a straightforward exercise.

Proposition 13 Let (S) possess a global solution (x∗∗, λ∗∗) (see Thm. 10). Then the following
assertions hold.

(a) Algorithm 12 is well-defined, and after each iteration we have

λL
k ≤ λk ≤ λ∗∗ < λU

k and λU
k − λL

k ≤ 2−k(λU
0 − λL

0 ).

(b) Algorithm 12 terminates after a finite number K of iterations, and

K ≤
⌈

ln(λU
0 − λL

0 ) − ln(η)

ln(2)

⌉
(where �α� = min{N | N ∈ N, α ≤ N}, as usual).
At termination, the result (x∗, λ∗) is feasible for (S) with

λ∗∗ − λ∗ ≤ η .
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Notice that the additional constraint “λ ≥ λL
k ” in Step 1 of Algorithm 12 does not cause any

trouble because it is linear. But it guarantees that the sequence (λk)k is monotonically increas-
ing. Moreover, the calculation of global maximizers (in Step 4A), resp. local maximizers (in
Step 1), instead of just feasible points should significantly speed up the algorithm. In this case
the update of λU

k in Step 4B, resp. of λL
k in Step 2, may lead to a much bigger reduction of the

gap λU
k − λL

k .

For the numerical treatment of the SDP problems (S) and (Svol[λ, δ]) one must resort to methods
of semidefinite programming. Such methods, and corresponding codes, are nowadays available
for linear SDPs. We mention Internet pages plato.la.asu.edu/bench.html which includes the list
of available SDP solvers and also benchmarks of SDP software and neos.mcs.anl.gov/neos/solvers/
which can be used for on-line solution of SDP problems. The limiting factor of these codes
is, however, the problem size which, compared to general nonlinear programs, is restricted to
problems of medium size. The problem (S) even requires a method which can deal with bilinear
matrix inequalities. We will use such a method to solve example problems in the next section. It
should be noted, however, that algorithms and codes for SDPs with bilinear matrix inequalities
are on the edge of current research and are not yet standard.

5 Numerical examples

In this chapter we present numerical examples which will, on the one hand, illustrate some of
the theoretical results and, on the other hand, demonstrate the practical use of the SDP problem
formulation.

The code we have used for the solution of the nonlinear SDP formulations is PENBMI, ver-
sion 2.1 (see [12]). This code implements the generalized Augmented Lagrangian method, as
described in [11, 21]. In particular, PENBMI can treat bilinear matrix inequalities as is necessary
for problem (S) (see [10]).

The examples were solved on a Pentium 4-M 2GHz PC running Windows XP. All problems
were formulated and solved in MATLAB using the YALMIP parser [14] to PENBMI. Apart from
the CPU time needed to solve the examples, we will also give the number of inner iterations of
PENBMI. One inner iterations basically amounts to the solution of a system of linear equations
of dimension m.

Example 14 Consider a 3-by-3 truss with all nodes connected by potential bars. The nodes
on the left-hand side are fixed in both directions, a horizontal force (−1, 0) is applied at the
right-middle node; see Figure 7-left. No nonstructural mass is considered, i.e., M0 = 0. The
Young modulus of all bars in this and all subsequent examples is set to one. When solving
the problem of maximizing the minimum eigenvalue (S) with V = 1.2 and γ = 1, we obtain
λ∗ = 4.9691 · 10−2 and an optimal design x∗ shown in Figure 7-right. The next Figure 8 shows
the influence of the optimal design on V ; we solve the same problem but with different bounds
on the available volume, V = 1.5 and V = 2.0. The corresponding optimal eigenvalues are
λ∗ = 6.9899 · 10−2 and λ∗ = 10.811 · 10−2, respectively. In all three problems, PENBMI needed
about 130 inner iterations to find the optimal solution. The solution time was below one second.

♦

Example 15 This academic example illustrates the possible nonuniqueness of solution to the
problem (S). Consider a 2 × 3 ground-structure with boundary conditions and load (1, 0) as
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Figure 7: Three-by-three truss (Ex. 14): initial layout and optimal topology for V = 1.2

Figure 8: Three-by-three truss (Ex. 14): optimal topology for V = 1.5 and V = 2.0

depicted in Figure 9-left. Put M0 = 0, γ = 10, and V = 10. The computed optimal structure
x∗ is presented in Figure 9-right; the optimal objective function value of (S) is λ∗ = λmin(x

∗) =
0.70711. While the volume constraint is active at x∗, the compliance constraint is inactive (more
precisely, after calculating some u∗ corresponding to x∗, we have γ∗ := fT u∗ = 0.1 < γ = 10).
Proposition 2.10 from [2] suggests that if we scale the solution x∗ by a certain factor μ, we will
still get a solution to problem (S). For instance, if we solve the same problem but with V = 1.0,
then we will obtain a solution with the same λ∗ and with γ∗ = 1.0, i.e., still within the γ limits.
Table 1 summarizes these numbers. It also presents the results for the case when M0 = 10. In
this case, the optimal solution is no longer scalable. ♦

Table 1: Results of Example 15 for different data
M0 V γ∗ λ∗

0 1 1 0.70711

0 10 0.1 0.70711

10 1 1 0.08761

10 10 0.1 0.41421

Example 16 Here we demonstrate the possible nonuniqueness of solutions to the minimum
volume problem (10). The purpose is to show that problems (10) and (S) are indeed not equiv-
alent and one cannot assume to get a solution of the (nonlinear) problem (S) be solving the
(linear) SDP counterpart to problem (10).

Consider the same ground-structure and boundary conditions as in Ex. 14 (see Fig. 7-left). The
load vector, however, has changed to a single vertical force (0, 1) applied at the bottom-right
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Figure 9: Example demonstrating possible nonuniqueness of solution of the (S) problem
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Figure 10: Example 16—graph of λmin on interval between two structures of the same volume
and compliance

node. Let further γ := 0.5 and consider the single load min-volume problem without vibration
constraint

min
x∈Rm, u∈Rn

m∑
i=1

xi (18)

subject to

K(x)u = f,

fTu ≤ γ,

xi ≥ 0, i = 1, . . . , m.

This problem can be formulated as a linear program [1], and thus the set

X ∗
(18) = {x∗ | ∃u∗ : (x∗, u∗) solves (18)}

of solution structures of (18) is given by the set of all convex combinations of the most-left and
most-right structure in Figure 11, i.e., by the set

X ∗
(18) = {(1 − μ)x1∗ + μx2∗ | μ ∈ [0, 1]}

where x1∗ denotes the most-left and x2∗ the most-right structure in Fig. 11. We have
∑

x∗
i = 18

and fT u∗ = 1 for all x∗ ∈ X ∗
(18) and corresponding optimal displacement vectors u∗. Figure 10

shows the dependence of the minimum vibration eigenvalue on the parameter μ of this convex
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Figure 11: Example 16—structures corresponding to points 1–5 on the graph in Figure 10

combination, i.e., a plot of the function

μ 
→ λmin((1 − μ)x1∗ + μx2∗), μ ∈ [0, 1].

The points 1–5 in the plot correspond to the structures in Figure 11, left to right. We observe
that λmin is maximized at μ ≈ 0.0536, i.e., at structure number 3. Let us now add the vibration
constraint to problem (18); thus we arrive at problem (10). For example, put λ := 0.037 which
is the value of λmin for structure number 2 in Figure 11. Then it is clear from the plot in Fig. 10
that any structure between truss number 2 and number 5 is a solution to problem (10), and the
vibration constraint will be inactive for the structures strictly in between. ♦

Example 17 We now present an example with multiple loads. Consider a 7 × 3 nodal grid
with the ground-structure, boundary conditions and loads as depicted in Figure 12(a). Each of
the forces f1 = (−1, 0) and f2 = (0, 1) represent an independent load case. The result of the
standard minimum volume multiple-load problem (no vibration constraints) with γ = 0.01 is
shown in Figure 12(b). When we consider both forces as a single load and solve a problem with
no vibration constraints, we would obviously get a result consisting of a single rod between the
two oposite forces. The volume of this structure is V ∗ = 35.485. Figure 12(c) shows the result
of the multiple load minimum eigenvalue problem (S) with bounds γ = 0.01 and V = 40.0. The
optimal smallest eigenvalue is λ∗ = 6.2216 · 10−3. For a comparison, we also show a result of
the single load problem (both forces considered as a single load) with γ = 0.02 and V = 40.0;
the optimal structure with λ∗ = 8.1674 · 10−3 is presented in Figure 12(d). All solutions were
obtained by PENBMI in less than 10 seconds. ♦

Example 18 We consider the same problem scenario as in Example 14 but with a 7x7 full
ground-structure with 1176 potential bars; see Figure 13-left. In addition, we assign nonstruc-
tural mass of size 10 at the loaded node, i.e., M0 �= 0. We solve the problem (S) with γ = 1
and V = 3.0. Figure 13-right shows the calculated optimal design x∗. The optimal eigenvalue
is λ∗ = 4.2383 · 10−2. To solve the nonlinear SDP problem by PENBMI, we needed 143 inner
iterations and 10 min 5 sec of CPU time. Note that the optimization problem had 1177 variables,
two matrix constraints of sizes 85 × 85 and 84 × 84 (one linear and one bilinear), one linear
inequality constraint and bounds on all variables. ♦

Example 19 Finally, we present a result of a three-dimensional example. The initial configura-
tion is indicated in Figure 14-left: a ground-structure of 5x3x3 nodes, each of them connected
by a potential bar, resulting in 990 potential bars. All nodes on the left-hand side are fixed
and the vertical force (−1, 0, 0) is applied at the central right-hand side node. There is also a
nonstructural mass of size 50 assigned to this node. We solve the problem (S) with γ = 1 and
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(a)

(b)

(c)

(d)

Figure 12: A medium size multiple-load example (Ex. 17): initial layout (a); optimal topol-
ogy without (b) and with (c) vibration constraints; single-load optimal result with vibration
constraints (d)

V = 1.0. Figure 14 shows the optimal structure from different viewpoints. The optimal value
of the smallest eigenvalue is 2.4460 · 10−4 Note that, at the optimum, the value of the compli-
ance is γ = 0.184, so the compliance constraint is inactive. When we decrease the bound on
compliance to γ = 0.05, we get the simple design shown in Figure 15; this time the optimal
eigenvalue is 2.1753 · 10−4.

The optimization problems were again solved by PENBMI; to get a solution, it needed about
200 inner iterations and 10 min of CPU time. ♦

6 An extension: the multiple-mass problem

Here we propose an extension of the original problem formulation (P) and its SDP reformula-
tion (S), respectively. Assume that we have N matrices M

(k)
0 , k = 1, . . . , N , corresponding to

N different nonstructural masses that can be applied independently. For each mass we obtain a
different minimal well-defined eigenvalue which is denoted by

λmin(x, M
(k)
0 ) = min{λ | ∃w ∈ R

n : K(x)w = λ(M(x) + M0)w,

w /∈ ker(M(x) + M
(k)
0 ) } .

Here we simply distinguish with respect to the particularly considered non-structural mass;
compare to Notation 2 in Section 2.

Then the objective function λmin(·) in problem (P) may be generalized to the worst-case mini-
mal eigenvalue, i.e., to the function

x 
→ min
1≤k≤N

λmin(x, M
(k)
0 )
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Figure 13: Example 18—a medium-size problem, initial layout and optimal topology

which is to be maximized. Problem (P) becomes

max
x∈Rm,u∈RL·n

min
1≤k≤N

λmin(x, M
(k)
0 ) (19)

subject to(
m∑

i=1

xiKi

)
u� = f�, � = 1, . . . , L

fT
� u� ≤ γ, � = 1, . . . , L
m∑

i=1

xi ≤ V

xi ≥ 0, i = 1, . . . , m .

By the same steps as above we transform (P) into an equivalent SDP and arrive at the following
generalization of (S), for which theorems analogous to Thm. 9 and Thm. 10 hold.

max
x∈Rm,λ∈R

λ (20)

subject to(
γ fT

�

f� K(x)

)
� 0, � = 1, . . . , L

m∑
i=1

xi ≤ V

xi ≥ 0, i = 1, . . . , m

K(x) − λ(M(x) + M
(k)
0 ) � 0, k = 1, . . . , N .

Because the mathematical structure of this formulation is the same as that of problem (S), we
may use again the code PENBMI to solve this problem numerically; we may also construct an
algorithm analogous to Algorithm 12.
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Figure 14: Example 19—a medium-size 3d problem, initial layout and optimal topology from
different angles of view.

Figure 15: Example 19—a medium-size 3d problem, optimal topology for γ = 0.05.

Example 20 Consider a 3-by-3 truss with all nodes connected by potential bars. The nodes
on the left-hand side are fixed in both directions, two nonstructural masses are placed in the
corners on the right-hand side; see Figure 16-left. An external load is not applied, i.e., L = 0.
Figure 16-middle shows the optimal design for formulation (S) when both masses are consid-
ered a “single” nonstructural mass. Figure 16-right presents the result of the multiple-mass
formulation (20), where the two nonstructural masses are considered being independent from
each other. The volume bound in both problems was V := 1 and the resulting optimal eigenval-
ues were λ∗ = 4.758 · 10−3 in the single-mass case and λ∗ = 7.365 · 10−3 in the multiple-mass
case. ♦
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Figure 16: A multiple-mass problem (Ex. 20: initial layout (left), a “single-mass” result (mid-
dle) and a multiple-mass optimal structure (right)
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