
Mathematical Programming manuscript No.
(will be inserted by the editor)

Michal Kočvara· Michael Stingl

Erratum: On the solution of large-scale SDP problems
by the modified barrier method using iterative solvers

Received: date / Revised version: date

In the article [1] published inMathematical Programming in 2007 we described a
method for the solution of large scale linear semidefinite programming problems. The
algorithm was based on a generalization of the augmented Lagrangian algorithm. The
new element described in the article was the use of preconditioned conjugate gradient
method for the solution of linear systems appearing in the Newton method, used to
solve unconstrained optimization problems in the major iterations of the algorithm. We
provided complexity analysis of the algorithm and performed a series of numerical
tests. The tests showed that the new code was particularly successful for problems with
a large number of variables and a medium size of the matrix constraints.

Since then, several articles and preprints have been published, describing similar
algorithms and comparing their computational efficiency with, among others, the tests
published in [1]; see, e.g., [2–4]. These new algorithms andcodes have shown supe-
rior behavior, in particular, for very large problems. The complexity estimates for these
algorithms are, however, very similar to that published in [1]. Puzzled by this discrep-
ancy between theoretical estimates and real computationaltimes, we have checked the
implementation details of our code. To our surprise, we haverealized that most of the
CPU time when solving large-scale problems (as reported in [1]) was spent in a routine
responsible for internal data management.

In this erratum we present computational results (CPU times) of the code after this
expensive routine was carefully re-implemented. Otherwise, the details of the algorithm
(including the stopping criteria and the accuracy of the results) are exactly the same as
described in [1]. We only present the new results for the mostrelevant examples from
the TOH collection (as it is called in [1])—examples with a large number of variables
and a (relatively) small size of the (single) matrix constraint. The examples arise from
maximum clique problems on randomly generated graphs (theta*) and maximum
clique problems from the Second DIMACS Implementation Challenge. The dimensions
of the problems are shown in Table 1.

The updated results, together with the original ones shown here for comparison, are
collected in Table 2 (originally Table 9 in [1]). We have usedthe same computer in this
table, so that the numbers are directly comparable with those in the original paper. The

Michal Kočvara: School of Mathematics, University of Birmingham, Birmingham, B15 3RU, UK, and Insti-
tute of Information Theory and Automation, Academy of Sciencesof the Czech Republic, Pod vodárenskou
věž́ı 4, 18208 Praha 8, Czech Republic, e-mail:kocvara@maths.bham.ac.uk

Michael Stingl: Institute of Applied Mathematics, University of Erlangen, Martensstr. 3, 91058 Erlangen,
Germany, e-mail:stingl@am.uni-erlangen.de



2 Michal Kočvara, Michael Stingl

Table 1. (Table 7 in the original paper.) Dimensions of selected TOH problems.

problem n m
ham7 5 6 1,793 128
ham9 8 2,305 512
ham8 3 4 16,129 256
ham9 5 6 53,761 512
theta42 5,986 200
theta6 4,375 300
theta62 13,390 300
theta8 7,905 400
theta82 23,872 400
theta83 39,862 400
theta10 12,470 500
theta102 37,467 500
theta103 62,516 500
theta104 87,845 500
theta12 17,979 600
theta123 90,020 600
theta162 127,600 800
keller4 5,101 171
sanr200-0.7 6,033 200

slightly different iteration counts are caused by updated internal parameters in the code
and by different linear algebra libraries.

To have a rough comparison with the new algorithms [2–4], we pick up the largest
exampletheta162. The NCGAL code [4] solves it in 539 seconds using an Intel
Xeon 3.2 GHz computer; the accuracy of the solution is comparable, though the authors
get better primal feasibility. To solve the same example, the boundary point method of
[3] needed 570 seconds on a Pentium 4 2.1GHz laptop.

The upgraded code PENSDP is available from the authors upon request.

References

1. M. Kočvara and M. Stingl. On the solution of large-scale sdp problems by the modified barrier method
using iterative solvers.Mathematical Programming (Series B), 109(2-3):413–444, 2007.

2. J. Malick, J. Povh, F. Rendl, and A. Wiegele. Regularization methods for semidefinite programming.
Optimization online, http://www.optimization-online.org/db html/2007/10/1800.html, 2007.

3. J. Povh, F. Rendl, and A. Wiegele. A boundary point method tosolve semidefinite programs. Technical
report, 2006.

4. X. Zhao, D. Sun, and K. C. Toh. A Newton-CG augmented Lagrangian method for semidefinite program-
ming. Optimization online, http://www.optimization-online.org/dbhtml/2008/03/1930.html, 2008.



Large-scale SDP and iterative solvers 3

Table 2. (Table 9 in the original paper.) Results for selected TOH problems. Comparison of codes PEN-
I-PCG(BFGS) (original paper and updated results) and SDPLR. CPU times in seconds; CPU/it–time per a
Newton iteration; CG/it–average number of CG steps per Newton iteration. AMD Opteron 250/2.4GHz with
4GB RAM; time limit 100 000 sec.

PEN-I-PCG(BFGS) PEN-I-PCG(BFGS) SDPLR
original paper updated results

problem CPU CPU/it CG/it CPU CPU/it CG/it CPU iter
ham7 5 6 1 0.02 2 1 0.02 1 1 101
ham9 8 33 0.77 2 36 0.73 1 13 181
ham8 3 4 30 0.71 1 6 0.1 1 7 168
ham9 5 6 330 7.17 1 39 0.71 1 30 90
theta42 25 0.44 9 8 0.13 8 92 6,720
theta6 24 0.44 7 25 0.33 7 257 9,781
theta62 96 1.88 10 40 0.51 10 344 6,445
theta8 93 1.55 10 51 0.73 7 395 6,946
theta82 457 7.62 14 103 1.30 12 695 6,441
theta83 1820 26.00 21 114 1.37 12 853 6,122
theta10 227 3.07 10 139 1.70 8 712 6,465
theta102 1299 16.44 13 196 2.84 14 1,231 5,857
theta103 2317 37.37 12 167 2.23 10 1,960 7,168
theta104 11953 140.62 25 283 3.37 14 2,105 6,497
theta12 254 4.62 8 299 3.88 13 1,436 7,153
theta123 10538 140.51 23 312 3.90 10 2,819 6,518
theta162 13197 173.64 13 672 8.30 10 6,004 16,845
keller4 19 0.32 9 6 0.09 7 29 2,922
sanr200-0.7 30 0.55 12 14 0.22 14 78 5,547


