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Abstract. When solving large-scale semidefinite programming problems by second-order methods, the stor-
age and factorization of the Newton matrix are the limiting factors. For a particular algorithm based on the
modified barrier method, we propose to use iterative solvers instead of the routinely used direct factoriza-
tion techniques. The preconditioned conjugate gradient method proves to be a viable alternative for problems
with large number of variables and modest size of the constrained matrix. We further propose to approximate
the Newton matrix in the matrix-vector product by a finite-difference formula. This leads to huge savings in
memory requirements and, for certain problems, to further speed-up of the algorithm.

1. Introduction

The currently most efficient and popular methods for solvinggeneral linear semidefinite
programming (SDP) problems

min
x∈Rn

fT x s.t. A(x) 4 0 (A : R
n → S

m)

are the dual-scaling [2] and primal-dual interior-point techniques [1,8,15,21]. These
techniques are essentially second-order algorithms: one solves a sequence of uncon-
strained minimization problems by the Newton method. To compute the search direc-
tion, one has to construct a sort of “Hessian” matrix and solve the Newton equation.
Although one can choose from several forms of this equation,the typical choice is the
so-called Schur complement equation (SCE) with a symmetricand positive definite
Schur complement matrix of ordern× n. In many practical SDP problems, this matrix
is dense, even if the data matrices are sparse.

Recently, an alternative method for SDP problems has been proposed in [10]. It is
based on a generalization of the augmented Lagrangian technique and termed modified
barrier or penalty/barrier method. This again is a second-order method and one has to
form and solve a sequence of Newton systems. Again, the Newton matrix is of order
n × n, symmetric, positive definite and often dense.

The Schur complement or the Newton equations are most often solved by routines
based on the Cholesky factorization. As a result, the applicability of the SDP codes is
restricted by the memory requirements (a need to store a fulln × n matrix) and the
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Electrical Engineering, Technická 2, 166 27 Prague, Czech Republic, e-mail:kocvara@utia.cas.cz

Michael Stingl: Institute of Applied Mathematics, University of Erlangen, Martensstr. 3, 91058 Erlangen,
Germany, e-mail:stingl@am.uni-erlangen.de

kocvara
Research Report 304, Institute of Applied Mathematics, University of Erlangen, 2005
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complexity of the Cholesky algorithm,n3/3. In order to solve large-scale problems
(with n larger than a few thousands), the only option (for interior-point or modified
barrier codes) is to replace the direct factorization method by an iterative solver, like a
Krylov subspace method.

In the context of primal-dual interior point methods, this option has been proposed
by several authors with ambiguous results [6,12,25]. The main difficulty is that, when
approaching the optimal point of the SDP problem, the Newton(or SC) matrix becomes
more and more ill-conditioned. In order to solve the system by an iterative method, it
is necessary to use an efficient preconditioner. However, aswe want to solve a general
SDP problem, the preconditioner should also be general. Andit is well-known that there
is no generaland efficient preconditioner. Consequently, the use of iterative methods
in interior-point codes seems to be limited to solving problems with just (very) low
accuracy.

A new light on this rather pessimistic conclusion has been shed in the recent papers
by Toh and Kojima [23] and later by Toh in [22]. In [22], a symmetric quasi-minimal
residual method is applied to an augmented system equivalent to SCE that is further
transformed to a so-called reduced augmented system. It is shown that if the SDP prob-
lem is primal and dual nondegenerate and strict complementarity holds at the optimal
point, the system matrix of the augmented reduced system hasa bounded condition
number, even close to the optimal point. The use of a diagonalpreconditioner enables
the authors to solve problems with more than 100 000 variables with a relatively high
accuracy.

In this paper, we investigate this approach in the context ofthe modified barrier
method from [10]. Similar to the primal-dual interior-point method from [22], we face
highly ill-conditioned dense matrices of the same size. Also similarly to [22], the use
of iterative solvers (instead of direct ones) brings biggest advantage when solving prob-
lems with very large number of variables (up to one hundred thousand and possibly
more) and medium size of the constrained matrix (up to one thousand). Despite of
these similarities there are few significant differences. First, the SCE has a lot of struc-
ture that is used for its further reformulation and for designing the preconditioners.
Contrary to that, the Newton matrix in the modified barrier method is just the Hessian
of a (generalized) augmented Lagrangian and as such has no intrinsic structure. Further,
the condition number of the Hessian itself is bounded close to the optimal point, pro-
vided the SDP problem is primal and dual nondegenerate and strict complementarity
holds at the optimum. We also propose approximate Hessian calculation, based on the
finite difference formula for a Hessian-vector product. This brings us huge savings in
memory requirements and further significant speed-up for certain classes of problems.
Last but not least, our method can also be applied to nonconvex SDP problems [9,11].

We implemented the iterative solvers in the code PENNON [10]and compare the
new versions of the code with the standard linear SDP versioncalled PENSDP1 working
with Cholesky factorization. Because other parts of the codes are identical, including
stopping criteria, the tests presented here give a clear picture of advantages/disadvantages
of each version of the code.

1 See www.penopt.com.
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The paper is organized as follows. In Section 2 we present thebasic modified barrier
algorithm and some details of its implementation. Section 3gives motivation for the use
of iterative solvers based on complexity estimates. In Section 4 we present examples if
ill-conditioned matrices arising in the algorithm and introduce the preconditioners used
in our testing. The results of extensive tests are presentedin Section 5. We compare the
new codes on four collections of SDP problems with differentbackground. In Section 6
we demonstrate that the use of iterative solvers does not necessary lead to reduced
accuracy of the solution. We conclude our paper in Section 7.

We use standard notation:S
m is the space of real symmetric matrices of dimension

m × m. The inner product onSm is defined by〈A,B〉Sm
:= trace(AB). Notation

A 4 B for A,B ∈ S
m means that the matrixB − A is positive semidefinite.

2. The algorithm

The basic algorithm used in this article is based on the nonlinear rescaling method of
R. Polyak [19] and was described in detail in [10]. Here we briefly recall it and stress
points that will be needed in the rest of the paper.

Our goal is to solve optimization problems with a linear objective function subject
to a linear matrix inequality as a constraint:

min
x∈Rn

fT x

subject to

A(x) 4 0 ;

(1)

heref ∈ R
n andA : R

n → S
m is a linear matrix operatorA(x) := A0 +

∑n
i=1 xiAi,

Ai ∈ S
m, i = 0, 1, . . . , n.

The algorithm is based on a choice of a smooth penalty/barrier functionΦp : S
m →

S
m that satisfies a number of assumptions (see [10]) guaranteeing, in particular, that

A(x) 4 0 ⇐⇒ Φp(A(x)) 4 0 .

Thus for anyp > 0, problem (1) has the same solution as the following “augmented”
problem

min
x∈Rn

fT x

subject to

Φp(A(x)) 4 0 .

(2)

The Lagrangian of (2) can be viewed as a (generalized) augmented Lagrangian
of (1):

F (x,U, p) = fT x + 〈U,Φp (A(x))〉Sm
; (3)

hereU ∈ S
m is a Lagrangian multiplier associated with the inequality constraint.

The algorithm below can be seen as a generalization of the Augmented Lagrangian
method.
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Algorithm 1 Let x1 and U1 be given. Letp1 > 0. For k = 1, 2, . . . repeat until a
stopping criterion is reached:

(i) xk+1 = arg min
x∈Rn

F (x,Uk, pk)

(ii) Uk+1 = DAΦp(A(x);Uk)

(iii) pk+1 < pk .

Imposing standard assumptions on problem (1), it can be proved that any cluster
point of the sequence{(xk, Uk)}k>0 generated by Algorithm 1 is an optimal solution
of problem (1). The proof is based on extensions of results byPolyak [19]; for the full
version we refer to [20]. Let us emphasize a property that is important for the purpose
of this article. Assuming the SDP problem is primal and dual nondegenerate and strict
complementarity holds at the optimal point, there existp such that the minimum eigen-
value of the Hessian of the Lagrangian (3) is bounded away from zero for allp ≤ p and
all (x,U) close enough to the solution(x∗, U∗).

Details of the algorithm were given in [10]. Hence, in the following we just recall
facts needed in the rest of the paper and some new features of the algorithm. The most
important fact is that the unconstrained minimization is Step (i) is performed by the
Newton method with line-search. Therefore, the algorithm is essentially asecond-order
method: at each iteration we have to compute the Hessian of the Lagrangian (3) and
solve a linear system with this Hessian.

2.1. Choice ofΦp

The penalty functionΦp of our choice is defined as follows:

Φp(A(x)) = −p2(A(x) − pI)−1 − pI . (4)

The advantage of this choice is that it gives closed formulasfor the first and second
derivatives ofΦp. Defining

Z(x) = −(A(x) − pI)−1 (5)

we have (see [10]):

∂

∂xi

Φp(A(x)) = p2Z(x)
∂A(x)

∂xi

Z(x) (6)

∂2

∂xi∂xj

Φp(A(x)) = p2Z(x)

(

∂A(x)

∂xi

Z(x)
∂A(x)

∂xj

+
∂2A(x)

∂xi∂xj

+
∂A(x)

∂xj

Z(x)
∂A(x)

∂xi

)

Z(x) . (7)
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2.2. Multiplier and penalty update, stopping criteria

For the penalty functionΦp from (4), the formula for update of the matrix multiplierU
in Step (ii) of Algorithm 1 reduces to

Uk+1 = (pk)2Z(x)UkZ(x) (8)

with Z defined as in (5).
Numerical tests indicate that big changes in the multipliers should be avoided for

the following reasons. Big change ofU means big change of the augmented Lagrangian
that may lead to a large number of Newton steps in the subsequent iteration. It may
also happen that already after few initial steps, the multipliers become ill-conditioned
and the algorithm suffers from numerical difficulties. To overcome these, we do the
following:

1. CalculateUk+1 using the update formula in Algorithm 1.
2. Choose a positiveµA ≤ 1, typically 0.5.

3. ComputeλA = min

(

µA, µA
‖Uk‖

F

‖Uk+1−Uk‖F

)

.

4. Update the current multiplier by

Unew = Uk + λA(Uk+1 − Uk).

Given an initial iteratex1, the initial penalty parameterp1 is chosen large enough
to satisfy the inequality

p1I −A(x1) ≻ 0.

Let λmax(A(xk)) ∈
(

0, pk
)

denote the maximal eigenvalue ofA(xk), π < 1 be a
constant factor, depending on the initial penalty parameter p1 (typically chosen between
0.3 and 0.6) and xfeas be a feasible point. Using this notation, our strategy for the
penalty parameter update can be described as follows:

1. If p < peps, setγ = 1 and go to 6.
2. Calculateλmax(A(xk)).
3. If πpk > λmax(A(xk)), setγ = π and go to 6.
4. If l < 3, setγ =

(

λmax(A(xk)) + pk

)

/2, setl := l + 1 and go to 6.
5. Letγ = π, find λ ∈ (0, 1) such, that

λmax

(

A(λxk+1 + (1 − λ)xfeas)
)

< πpk

and setxk+1 = λxk+1 + (1 − λ)xfeas.
6. Update current penalty parameter bypk+1 = γpk.

The redefinition ofxk+1 guarantees that the values of the augmented Lagrangian in the
next iteration remain finite. The parameterpeps is typically chosen as10−6. In case we
detect problems with convergence of the overall algorithm,peps is decreased and the
penalty parameter is updated again, until the new lower bound is reached.

The unconstrained minimization in Step (i) is not performedexactly but is stopped
when

‖ ∂

∂x
F (x,U, p)‖ ≤ α , (9)
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whereα = 0.01 is a good choice in most cases. Also here,α is decreased if we en-
counter problems with accuracy.

Algorithm 1 is stopped if both of the following inequalitieshold:

|f(xk) − F (xk, Uk, p)|
1 + |f(xk)| < ǫ ,

|f(xk) − f(xk−1)|
1 + |f(xk)| < ǫ , (10)

whereǫ is typically10−7.

2.3. Complexity

As mentioned in the Introduction, every second-order method for SDP problems has
two bottlenecks: evaluation of the Hessian of the augmentedLagrangian (or a similar
matrix of similar size) and the solution of a linear system with this matrix. What are the
complexity estimates in our algorithm?

The complexity of Hessian assembling, when working with thefunctionΦp from
(4) is O(m3n + m2n2) for dense data matrices andO(m2n + K2n2) for sparse data
matrices, whereK is the maximal number of nonzeros inAi, i = 1, . . . , n.

In the standard implementation of the algorithm (code PENSDP), we use Cholesky
decomposition for the solution of the Newton system (as do all other second-order SDP
codes). The complexity of Cholesky algorithm isO(n3) for dense matrices andO(nκ),
1 ≤ κ ≤ 3 for sparse matrices, whereκ depends on the sparsity structure of the matrix,
going from a diagonal to a full matrix.

As vast majority of linear SDP problems lead to dense Hessians (even if the data
matricesAi are sparse), in the rest of the paper we will concentrate on this situation.

3. Iterative solvers

In step (i) of Algorithm 1 we have to approximately solve an unconstrained minimiza-
tion problem. As already mentioned before, we use the Newtonmethod with line-search
to this purpose. That means, in each iteration step of the Newton method we solve a sys-
tem of linear equations

Hd = −g (11)

whereH is the Hessian andg the gradient of the augmented Lagrangian 3. In the vast
majority of SDP software (including PENSDP) this (or similar) system is solved by
a version of the Cholesky method. In the following we will discuss an alternative ap-
proach of solving the linear system by an iterative algorithm.

3.1. Motivation for iterative solvers

Our motivation for the use of iterative solvers is two-fold.First we intend to improve
the complexity of the Cholesky algorithm, at least for certain kind of problems. Second,
we also hope to improve the complexity of Hessian assembling.
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3.1.1. Complexity of Algorithm 1 summarizedThe following table summarizes the
complexity bottlenecks of Algorithm 1 for the case of linearSDP problems. Recall that
K is the maximal number of nonzeros inAi, i = 1, . . . , n.

Hessian computation
dense data matrices O(m3n + m2n2)
sparse data matrices O(m2n + K2n2)

Cholesky method
dense Hessian O(n3)
sparse Hessian O(nκ)

where1 ≤ κ ≤ 3 depends on the sparsity pattern. This shows that for dense problems,
Hessian computation is the critical issue whenm (size ofAi) is large compared ton
(number of variables). On the other hand, Cholesky algorithm takes most time whenn
is (much) larger thanm.

3.1.2. Complexity: Cholesky versus iterative algorithmsAt this moment, we should
be more specific in what we mean by an iterative solver. In the rest of the paper we will
only consider Krylov type methods, in particular, the conjugate gradient (CG) method.

From complexity viewpoint, the only demanding step in the CGmethod is a matrix-
vector product with a matrix of dimensionn (when applied to our system (11)). For a
dense matrix and vector, it needsO(n2) operations. Theoretically, in exact arithmetics
the CG method needsn iterations to find an exact solution of (11), hence it is equally
expensive as the Cholesky algorithm. There are, however, two points that may favor the
CG method.

First, it is well known that in finite arithmetics the actual number of CG iterations,
needed to reach a given precision, depends solely on the spectrum of the matrixH, in
particular, on the condition number and the possible grouping of the eigenvalues; for
details, see, e.g., [18]. In practice it means that if the spectrum is “favorable”, we may
need much smaller number of steps thann, to obtain a reasonably exact solution. This
fact leads to the very useful idea of preconditioning when, instead of (11), we solve a
“preconditioned” system

M−1Hd = −M−1g

with a matrixM chosen in such a way that the new system matrixM−1H has a “good”
spectrum. The choice ofM will be the subject of the next section.

The second, and very important, point is that we actually do not need to have an ex-
act solution of (11). On the contrary, a rough approximationof it will do (we will return
to this in the next section). Hence, in practice, we may need just a few CG iterations
to reach the required accuracy. This is in contrast with the Cholesky method where we
cannot control the accuracy of the solution and always have to compute the exact one
(within the machine precision).

Summarizing these two points: when using the CG algorithm, we may expect to
need justO(n2) operations, at least for well-conditioned (or well-preconditioned) sys-
tems.

Note that we are still talking about dense problems. The use of the CG method is
a bit nonstandard in this context—usually it is preferable for large sparse problems.
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However, due to the fact that we just need a very rough approximation of the solution,
we may favor it to the Cholesky method also for medium-sized dense problems.

3.1.3. Complexity: exact versus approximate HessianOur second goal is to improve
the complexity of Hessian computation. This can be done indirectly. When solving (11)
by the CG method (and any other Krylov type method), the Hessian is only needed in
a matrix-vector product of the typeHv := ∇2F (xk)v. We may use finite difference
formula for the approximation of this product

∇2F (xk)v ≈ ∇F (xk + hv) −∇F (xk)

h
(12)

with h = (1 + ‖xk‖2
√

ε). In our implementation, we useε = 10−6. Hence the com-
plexity of the CG method amounts the number of CG iterations times the complexity of
gradient evaluation. This may be in sharp contrast with the Cholesky method approach
when we have to compute the full Hessianandsolve the system by Cholesky method.
Additional (perhaps the main) advantage of this Hessian-free approach is the fact that
we do not have to store the Hessian in the memory, thus the memory requirements
(often the real bottleneck of SDP codes) are drastically reduced.

Note that this approach may have its dark side. With certain SDP problems it may
happen that the Hessian computation is not much more expensive than the gradient
evaluation. In this case the Hessian-free approach may be rather time-consuming. In-
deed, when the problem is ill-conditioned and we need many CGiterations, we have to
evaluate the gradient many (thousand) times. On the other hand, when using Cholesky
method, we compute the Hessian just once.

3.2. Preconditioned conjugate gradients

We use the very standard preconditioned conjugate gradientmethod. The algorithm
is recalled below. Because our stopping criterium is based on the residuum, one may
think, as an alternative, of the minimum residual method. Another alternative is the
QMR algorithm that can be favorable even for symmetric positive definite systems due
to its robustness.

We solve the systemHd = −g with a symmetric positive definite and, possibly,
ill-conditioned matrixH. To improve the conditioning, and thus the behavior of the
iterative method, we will solve a transformed system(C−1HC−1)(Cd) = −C−1g
with C symmetric positive definite. We define the preconditionerM by M = C2 and
apply to the transformed system the standard conjugate gradient method. The resulting
algorithm is given below.

Algorithm 2 (Preconditioned conjugate gradients) Givend0 andM . Setr0 = Hd0+
g, p0 = g0. SolveMz0 = r0 and setp0 = −z0.
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For k = 0, 1, 2 . . . repeat until convergence:

(i) αk =
rT
k zk

pT
k Hpk

(ii) dk+1 = dk + αkpk

(iii) rk+1 = rk + αkHpk

(iv) solveMzk+1 = rk+1

(v) βk+1 =
rT
k+1zk+1

rT
k zk

(vi) pk+1 = −rk+1 + βk+1pk

From the complexity point of view, the only expensive parts of the algorithm are
the Hessian-vector products in steps (i) and (iii) (note that only one product is needed)
and, of course, the application of the preconditioner in step (iv).

The algorithm is stopped when the scaled residuum is small enough:

‖Hdk + g‖/‖g‖ ≤ ǫ ,

in practice, when
‖rk‖/‖g‖ ≤ ǫ .

In our tests, the choiceǫ = 5 · 10−2 was sufficient.

4. Preconditioning

4.1. Conditioning of the Hessian

It is well known that the biggest trouble with iterative methods in context of penalty or
barrier optimization algorithms is the increasing ill-conditioning of the Hessian when
we approach the optimum of the original problem. Indeed, in certain methods the Hes-
sian may even become singular. The situation is not much better in our case, i.e., when
we use Algorithm 1 for SDP problems. Let us demonstrate it in few examples.

Consider first problemtheta2 from the SDPLIB collection [4]. The dimension of
this problem isn = 498. Figure 1 shows the spectrum of the Hessian at the initial and
the optimal point of Algorithm 1 (note that we use logarithmic scaling in the vertical
axes). The corresponding condition numbers areκini = 394 andκopt = 4.9 · 107,
respectively. Hence we cannot expect the CG method to be veryeffective close to the
optimum. Indeed, Figure 2 presents the behavior of the residuum ‖Hd + g‖/‖g‖ as
a function of the iteration count, again at the initial and the optimal point. While at
the initial point the method converges in few iterations (due to low condition number
and clustered eigenvalues), at the optimal point one observes extremely slow, though
still convergence. The zig-zagging nature of the latter curve is due to the fact that CG
method minimizes the norm of the error, while we plot here thenorm of the residuum.
The QMR method offers a much smoother curve, as shown in Figure 3 (left), but the
speed of convergence remains about the same, i.e., slow. Thesecond picture in Figure 3
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Fig. 1.Exampletheta2 : spectrum of the Hessian at the initial (left) and the optimal(right) point.
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Fig. 2.Exampletheta2 : CG behavior at the initial (left) and the optimal (right) point.

shows the behavior of the QMR method with diagonal preconditioning. We can see
that the convergence speed improves about two-times, whichis still not very promising.
However, we should keep in mind that we want just an approximation of d and typically
stop the iterative method when the residuum is smaller than0.05; in this case it would
be after about 180 iterations.

The second example, problemcontrol3 from SDPLIB with n = 136, shows
even a more dramatic picture. In Figure 4 we see the spectrum of the Hessian, again
at the initial and the optimal point. The condition number ofthese two matrices is
κini = 3.1 · 108 andκopt = 7.3 · 1012, respectively. Obviously, in the second case,
we are close to machine precision and can hardly expect convergence. And, indeed,
Figure 5 shows that while atxini we still get convergence of the CG method, atxopt

the method does not converge anymore. So, in this case, an efficient preconditioner is a
real necessity.

4.2. Conditions on the preconditioner

Once again, we are looking for a preconditioner—a matrixM ∈ S
n
+—such that the

systemM−1Hd = −M−1g can be solved more efficiently than the original system
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Fig. 3. Exampletheta2 : QMR behavior at the optimal (right) point; without (left) and with (right) precon-
ditioning.
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Fig. 5.Examplecontrol3 : CG behavior at the initial (left) and the optimal (right) point.

Hd = −g. Hence

(i) the preconditioner should be efficient
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in the sense that the spectrum ofM−1H is “good” for the CG method. Further,

(ii) the preconditioner should be simple.

When applying the preconditioner, in every iteration of the CG algorithm we have to
solve the system

Mz = p.

Clearly, the application of the “most efficient” preconditionerM = H would return us
to the complexity of the Cholesky method applied to the original system. Consequently
M should be simple enough, so thatMz = p can be solved efficiently.

The above two requirements are general conditions for any preconditioner used
within the CG method. The next condition is typical for our application within opti-
mization algorithms:

(iii) The preconditioner should only use Hessian-vector products.

This is for the case when we want to use the Hessian-free version of the algorithm.
We certainly do not want the preconditioner to destroy the Hessian-free nature of this
version. When we use the CG method with exact (i.e. computed) Hessian, this condition
is not needed.

Finally, and this is perhaps the most critical point,

(iv) the preconditioner should be “general”.

Recall that we intend to solve general SDP problems without any a-priori knowledge
about their background. Hence we cannot rely on special purpose preconditioners, as
known, for instance, from finite-element discretizations of PDEs.

4.3. Diagonal preconditioner

This is a simple and often-used preconditioner with

M = diag (H).

It surely satisfies conditions (ii) and (iv). On the other hand, being simple and general,
it is not considered to be very efficient. Furthermore, it does not really satisfy condition
(iii), because we need to know the diagonal elements of the Hessian. It is certainly
possible to compute approximations of these elements usingformula (12). For that,
however, we would needn gradient evaluations and the approach would become too
costly.

4.4. Symmetric Gauss-Seidel preconditioner

Another classic preconditioner with

M = (D + L)T D−1(D + L) where H = D − L − LT

with D andL being the diagonal and strictly lower triangular matrix, respectively. Con-
sidered more efficient than the diagonal preconditioner, itis also slightly more expen-
sive. It cannot be used in connection with formula (12) as it does not satisfy condition
(iii).
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4.5. L-BFGS preconditioner

Introduced by Morales-Nocedal [17], this preconditioner is intended for application
within the Newton method. The algorithm is based on limited-memory BFGS formula
([18]) applied to successive CG (instead of Newton) iterations.

Assume we have a finite sequence of vectorsxi and gradientsg(xi), i = 1, . . . , k.
We define the correction pairs(ti, yi) as

ti = xi+1 − xi, yi = g(xi+1) − g(xi), i = 1, . . . , k − 1 .

Using a selectionσ of µ pairs from this sequence, such that

1 ≤ σ1 ≤ σ2 ≤ . . . ≤ σµ := k − 1

and an initial approximation

W0 =
(tσµ)T yσµ

(yσµ)T yσµ
I ,

we define the L-BFGS approximationW of the inverse ofH; see, e.g. [18]. To compute
a product ofW with a vector, we use the following algorithm of complexitynµ.

Algorithm 3 (L-BFGS) Given a set of pairs{tσi , yσi}, i = 1, 2, . . . , µ, and a vectord,
we calculate the productr = Wd as

(i) q = d

(ii) for i = µ, µ − 1, . . . , 1, put

αi =
(tσi)T q

(yσi)T tσi
, q = q − αiy

σi

(iii) r = W0q

(iv) for i = 1, 2, . . . , µ, put

β =
(yσi)T r

(yσi)T tσi
, r = r + tσi(αi − β) .

The idea of the preconditioner is the following. Assume we want to solve the un-
constrained minimization problem in Step (i) of Algorithm 1by the Newton method.
At each Newton iteratex(i), we solve the Newton systemH(x(i))d(i) = −g(x(i)).
The first system atx(0) will be solved by the CG method without preconditioning. The
CG iterationsx(0)

κ , g(x
(0)
κ ), κ = 1, . . . ,K0 will be used as correction pairs to build a

preconditioner for the next Newton step. If the number of CG iterationsK0 is higher
than the prescribed number of correction pairsµ, we just select some of them (see the
next paragraph). In the next Newton stepx(1), the correction pairs are used to build an
approximationW (1) of the inverse ofH(x(1)) and this approximation is used as a pre-
conditioner for the CG method. Note that this approximationis not formed explicitly,
rather in the form of matrix-vector productz = W (1)p —just what is needed in the
CG method. Now, the CG iterations in the current Newton step are used to form new
correction pairs that will build the preconditioner for thenext Newton step, and so on.
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The trick is in the assumption that the Hessian at the old Newton step is close enough to
the one at the new Newton step, so that its approximation can serve as a preconditioner
for the new system.

As recommended in the standard L-BFGS method, we used16 − 32 correction
pairs, if they were available. Often the CG method finished inless iterations and in that
case we could only use the available iterations for the correction pairs. If the number
of CG iterations is higher than the required number of correction pairsµ, we may ask
how to select these pairs. We have two options: Either we takethe lastµ pairs or an
“equidistant” distribution over all CG iterations. The second option is slightly more
complicated but we may expect it to deliver better results. The following Algorithm 4
gives a guide to such an equidistant selection.

Algorithm 4 Given an even numberµ, setγ = 1 andP = ∅. For i = 1, 2, . . . do:

Initialization
If i < µ
– insert{ti, yi} in P

Insertion/subtraction
If i can be written asi = (µ

2 + ℓ − 1)2γ for someℓ ∈ {1, 2, . . . , µ
2 } then

– set index of the subtraction pair ask = (2ℓ − 1)2γ−1

– subtract{tk, yk} fromP
– insert{ti, yi} in P
– if ℓ = µ

2 , setγ = γ + 1

The L-BFGS preconditioner has the big advantage that it onlyneeds Hessian-vector
products and can thus be used in the Hessian-free approach. On the other hand, it is more
complex than the above preconditioners; also our results are not conclusive concerning
the efficiency of this approach. For some problems it worked satisfactorily, in others it
even lead to higher number of CG steps than without preconditioner.

4.6. AINV preconditioner

Preconditioners based on incomplete matrix factorizationare known to be very efficient.
Most of them are based on incomplete Cholesky factorization. They are, however, rather
complex, need substantial amount of memory and, in particular, need all elements of
the system matrix (Hessian). Contrary to this, the AINV preconditioner is based on the
H-orthogonalization. It always exists, does not need to knowthe sparsity pattern of the
matrix and only uses matrix-vector products.

Using AINV, we will obtain an approximate factorization of the inverse ofH:

M = ZD−1ZT ≈ H−1

with diagonalD and Z an upper triangular matrix with ones on the diagonal.Z is
actually a sparse approximation ofL−T , whereL is a lower triangular matrix and
H = LDLT . Matrix Z is obtained byH-orthogonalization of the unit matrix by the
following algorithm ([3]):
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Algorithm 5 (AINV) Initialize zi = ei (the unit vector) fori = 1, . . . , n.
For i = 1, 2, . . . , n do:

(i) v = Hzi

(ii) pi = vT zi

(iii) for j = i + 1, . . . , n do

(a) zj = zj − (vT zj/pi)zi

(b) if (vT zj/pi) ≤ εAINV putzj = 0

PutZ = [z1, z2, . . . , zn] andD = diag(p1, p2, . . . , pn).

Clearly, the critical point of this algorithm is choice ofεAINV in step (iii)(b). Unfor-
tunately, in our applications we almost face an ”either-or”situation. EitherZ is full or
Z is empty and we end up with a diagonal preconditioner. Only a narrow range ofεAINV

leads to sparseZ and even then its quality is often not much better than of the simple
diagonal preconditioner (note that, typically,H is dense in our applications). Hence,
after many experiments, we setεAINV = 0.95 which typically leads to a diagonal pre-
conditioner (however, more expensive than the standard one). Just rarely we met the
situation whenZ included few nonzero elements.

5. Tests

For testing purposes we have used the code PENNON, in particular its version for
linear SDP problems called PENSDP. The code implements Algorithm 1; for the so-
lution of the Newton system we use either the LAPACK routine DPOTRF based on
Cholesky decomposition (dense problems) or our implementation of sparse Cholesky
solver (sparse problems). In the test version of the code we replaced the direct solver
by conjugate gradient method with various preconditioners. The resulting codes are
called PEN-PCG(prec), whereprec is the name of the particular preconditioner. We
have further implemented the optional approximate computation of the Hessian based
on formula (12). This version of the code is called PEN-A-PCG(prec). In this case, we
only tested the BFGS preconditioner (and a version with no preconditioning). All other
preconditioners either need elements of the Hessian or are just too costly in this context.

Few words about the accuracy. It was already mentioned that the conditioning of
the Hessian increases as the optimization algorithm gets closer to the optimal point.
Consequently, a Krylov-type iterative method is expected to have more and more diffi-
culties when trying to reach higher accuracy of the solutionof the original optimization
problem. This was indeed observed in practice [23,22]. Thisill-conditioning may be
so severe that it does not allow one to solve the problem within reasonable accuracy at
all. Fortunately, this was not observed in the presented approach. However, to prevent
difficulties, we decreased the default PENSDP stopping criterium in (10) from10−7 to
10−4. This still gives a reasonable accuracy (for most applications) of 4–5 digits in the
objective value. The reduced stopping criterium was actually important mainly in the
A-PCG version of the code, due to the approximate Hessian calculation. At the end of
this section we report on what happens when we try to increasethe accuracy.
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The conjugate gradient algorithm was stopped when

‖Hd + g‖/‖g‖ ≤ ǫ

whereǫ = 5 · 10−2 was sufficient. This relatively very low accuracy does not signif-
icantly influence the behavior of Algorithm 1. On the other hand, it has the effect that
for most problems we need a very low number of CG iterations ateach Newton step;
typically 4–8. Hence, when solving problems with dense Hessians, the complexity of
the Cholesky algorithmO(n3) is replaced byO(κn2) with κ < 10. For problems with
largern we may thus expect great savings.

In the following paragraphs we report on results of our testing for four collections
of linear SDP test problems: the SDPLIB collection of linearSDPs by Borchers [4]; the
set of various large-scale problems collected by Hans Mittelmann and called here HM-
problems [13]; the set of examples from structural optimization called TRUSS collec-
tion2; and a collection of very-large scale problems with relatively small-size matrices
provided by Kim Toh and thus called TOH collection [22].

5.1. SDPLIB

Let us start with a comparison of preconditioners for this set of problems. Figure 6
presents a performance profile ([7]) on all four preconditioners: diagonal, BFGS, ap-
proximate inverse and symmetric Gauss-Seidel. Compared are the CPU times needed
to solve 23 selected problems of the SDPLIB collection. We used the version of the
code with exact Hessian computation. The profile shows that the BFGS preconditioner
has slight edge; in average, it is faster and more robust thatthe other ones, so it will be
our choice for the rest of this paragraph.

Table 5.1 gives a comparison of PENSDP (i.e., code with Cholesky solver), PEN-
PCG(BFGS) (with exact Hessian computation) and PEN-A-PCG(BFGS) (approximate
Hessian computation). Given are not only the CPU times in seconds, but also times
per one Newton iteration and number of CG steps (when applicable) per one Newton
iteration. We have chosen the form of a table (as opposed to a performance profile),
because we think it is important to see the differences between the codes on particular
examples. Indeed, while for most examples is the PEN-PCG(BFGS) about as fast as
PENSDP, in few cases it is significantly faster. These examples (theta* andqap* )
are typical by a high ratio ofn to m. In such situation, the complexity of the solution of
the Newton system dominates the complexity of Hessian computation and PCG version
of the code is expected to be efficient (see Table 5.1 and the text below). In (almost)
all other problems, most time is spent in Hessian computation and thus the solver of
the Newton system does not effect the total CPU time. In few problems (control* ,
truss8 ), PEN-PCG(BFGS) was significantly slower than PENSDP; these are the very
ill-conditioned problems when the PCG method needs many iterations to reach even the
low accuracy required.

Looking at PEN-A-PCG(BFGS) results, we see even stronger effect “the higher the
ration to m, the more efficient code”; in all other examples the code is slower than the
other two.

2 Available at http://www2.am.uni-erlangen.de/∼kocvara/pennon/problems.html
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Fig. 6.Performance profile on preconditioners; SDPLIB problems

Table 5.1 compares the CPU time spent in different parts of the algorithm for differ-
ent types of problems. We have chosen typical representatives of problems withn ≈ m
(equalG11 ) andn/m ≫ 1 (theta4 ). For the three codes PENSDP, PEN-PCG(diag)
and PEN-A-PCG(BFGS) we show the total CPU time spent in the unconstrained min-
imization, cumulative times of function and gradient evaluations; Hessian evaluation;
and solution of the Newton system. We can clearly see that in the theta4 example,
solution of the Newton system is the decisive part, while inequalG11 it is the func-
tion/gradient/Hessian computation.

5.2. HM collection

Table 5.2 lists a selection of large-scale problems from theHM collection, together with
their dimensions and number of nonzeros in the data matrices.

Again we start the testing with a CPU-time performance profile on preconditioners
(Figure 7) and again we see the dominance of the BFGS preconditioner.

The test results are collected in Table 5.2, comparing againPENSDP with PEN-
PCG(BFGS) and PEN-A-PCG(BFGS). Contrary to the SDPLIB collection, we see a
large number of failures of the PCG based codes, due to exceeded time limit of 20000
seconds. This is the case even for problems with largen/m. These problems, all gen-
erated by SOSTOOLS or GLOPTIPOLY, are typical by high ill-conditioning of the
Hessian; while in the first few steps of Algorithm 1 we need just few iterations of the
PCG method, in the later steps this number becomes very high and the PCG algorithm
becomes effectively non-convergent. There are, however, still few problems with large
n/m for which PEN-A-PCG(BFGS) outperforms PEN-PCG(BFGS) and this, in turn,
clearly outperforms PENSDP:cancer 100, cphil*, yalsdp . These problems
are ‘good” in the sense that the PCG algorithm needs, in average, a very low number
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Table 1. Results for selected SDPLIB problems. PENSDP–standard codewith Cholesky algorithm; PEN-
PCG(BFGS)–code with CG algorithm and BFGS preconditioner;PEN-A-PCG(BFGS)–code with CG algo-
rithm, approximate Hessian computations and BFGS preconditioner. CPU times in seconds; CPU/it–time per
a Newton iteration; CG/it–average number of CG steps per one Newton iteration. 3.2Ghz Pentium 4 with
1GB DDR400 running Linux.

dimensions PENSDP PEN-PCG(BFGS) PEN-A-PCG(BFGS)
problem n m CPU CPU/it CPU CPU/it CG/it CPU CPU/it CG/it
arch8 174 335 6 0.06 6 0.08 13 failed
control7 666 105 63 0.79 120 1.71 162 164 2.31 387
control10 1326 150 765 3.38 1807 8.21 433 1961 10.89 723
control11 1596 165 937 5.42 1421 12.69 502 1870 19.68 973
equalG11 801 801 65 3.10 110 1.22 2 223 7.43 7
equalG51 1001 1001 296 3.65 295 6.56 3 438 9.73 3
gpp250-4 250 250 4 0.14 5 0.22 5 8 0.36 6
gpp500-4 501 500 26 0.67 32 1.10 5 51 1.89 5
maxG11 800 800 10 0.43 17 0.54 6 40 1.14 6
maxG32 2000 2000 108 4.70 185 5.97 8 476 14.00 6
maxG51 1000 1000 115 2.45 204 3.82 4 343 6.86 4
mcp250-1 250 250 1 0.03 2 0.06 4 2 0.06 4
mcp500-1 500 500 5 0.16 7 0.18 5 11 0.30 4
qap9 748 82 3 0.09 4 0.07 7 4 0.06 30
qap10 1021 101 8 0.22 11 0.16 7 8 0.10 20
qpG51 1000 2000 172 5.93 241 7.53 3 400 11.76 3
ss30 132 426 10 0.28 13 0.32 4 7 0.18 4
theta3 1106 150 9 0.26 7 0.23 4 4 0.08 4
theta4 1949 200 43 1.02 24 0.85 6 11 0.22 7
theta5 3028 250 93 3.32 43 2.29 5 16 0.39 6
theta6 4375 300 366 9.15 139 4.80 5 41 0.67 8
thetaG11 2401 801 134 2.68 312 2.35 6 939 7.83 51
truss8 496 628 6 0.13 55 0.70 157 11 0.22 7

Table 2.Cumulative CPU time spent in different parts of the codes: in the whole unconstrained minimization
routine (CPU); in function and gradient evaluation (f+g); in Hessian evaluation (hess) ; and in the solution of
the Newton system (chol or CG).

PENSDP PEN-PCG(BFGS) PEN-A-PCG(BFGS)
problem CPU f+g hess chol CPU f+g hess CG CPU f+g CG
theta4 44.2 1.1 11.1 31.8 20.7 2.8 12.7 5.0 10.4 10.0 0.2
equalG11 43.7 28.5 12.5 1.7 98.1 77.2 18.5 2.4 184.3 182.4 0.9

of iterations per one Newton step. In other problems with this property (like theG*
problems),n is proportional tom and the algorithm complexity is dominated by the
Hessian computation.

5.3. TRUSS collection

Unlike the previous two sets of problems collecting examples with different background
and of different type, the problems from the TRUSS collection are all of the same type
and differ just by the dimension. Looking at the CPU-time performance profile on the
preconditioners (Figure 8) we see a different picture than in the previous paragraphs: the
diagonal preconditioner is the winner, closely followed bySGS; BFGS is the poorest
one now.
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Table 3.Dimensions of selected HM-problems.

problem m n nzs blocks
cancer100 570 10 470 10 569 2
checker1.5 3 971 3 971 3,970 2
cnhil10 221 5 005 24 310 2
cnhil8 121 1 716 7 260 2
cphil10 221 5 005 24 310 2
cphil12 364 12 376 66 429 2
foot 2 209 2,209 2 440 944 2
G40 mb 2 001 2 000 2 003 000 2
G40mc 2 001 2 000 2 000 2
G48mc 3 001 3 000 3 000 2
G55mc 5 001 5 000 5 000 2
G59mc 5 001 5 000 5 000 2
hand 1 297 1 297 841 752 2
neosfbr20 363 7 201 309 624 2
neu1 255 3 003 31 880 2
neu1g 253 3 002 31 877 2
neu2c 1 256 3 002 158 098 15
neu2 255 3 003 31 880 2
neu2g 253 3 002 31 877 2
neu3 421 7 364 87 573 3
neu3g 463 8 007 106 952 2
rabmo 6 827 5 004 60 287 2
rose13 106 2 379 5 564 2
rose15 138 3 860 9 182 2
taha1a 1 681 3 002 177 420 15
taha1b 1 610 8 007 107 373 25
yalsdp 301 5 051 1 005 250 4

The results of our testing (see Table 5.3) correspond to our expectations based on
complexity estimates. Because the size of the constrained matricesm is larger than the
number of variablesn, we may expect most CPU time spent in Hessian evaluation.
Indeed, for both PENSDP and PEN-PCG(diag) the CPU time per one Newton step is
about the same in all examples. These problems are ill-conditioned; as a result, with
the exception of one example, PEN-A-PCG(BFGS) never converged to a solution and
therefore it is not included in the table.

5.4. TOH collection

As predicted by complexity results (and as already seen in several examples in the
previous paragraphs), PCG-based codes are expected to be most efficient for problems
with largen and (relatively) smallm. The complexity of the Cholesky algorithmO(n3)
is replaced byO(10n2), we may expect significant speed-up of the resulting algorithm.
This is indeed the case for the examples from this last collection.

The examples arise from maximum clique problems on randomlygenerated graphs
(theta* ) and maximum clique problems from the Second DIMACS Implementation
Challenge [24].

The dimensions of the problems are shown in Table 5.4; the largest example has
almost 130 000 variables. Note that the Hessians of all the examples aredense, so to
solve the problems by PENSDP (or by any other interior-pointalgorithm) would mean
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to store and factorize a full matrix of dimension 130 000 by 130 000. On the other hand,
PEN-A-PCG(BFGS), being effectively a first-order code, hasjust modest memory re-
quirements and allows us to solve these large problems within a very reasonable time.

As always, we first show a CPU-time based performance profile on the precondi-
tioners; see Figure 9. This time, diagonal preconditioner is a clear winner.

We further present a CPU-based performance profile on the different codes, PENSDP,
PEN-PCG(diag), PEN-A-PCG(none) and PEN-A-PCG(BFGS); seeFigure 9. We can
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Table 4. Results for selected HM-problems. PENSDP–standard code with Cholesky algorithm; PEN-
PCG(BFGS)–code with CG algorithm and BFGS preconditioner;PEN-A-PCG(BFGS)–code with CG al-
gorithm, approximate Hessian computations and BFGS preconditioner. CPU times in seconds; CPU/it–time
per a Newton iteration; CG/it–average number of CG steps per one Newton iteration. 3.2Ghz Pentium 4 with
1GB DDR400 running Linux; time limit 20 000 sec.

PENSDP PEN-PCG(BFGS) PEN-A-PCG(BFGS)
problem CPU CPU/it CPU CPU/it CG/it CPU CPU/it CG/it
cancer100 5863 108.57 481 18.50 5 91 3.37 5
checker1.5 1424 20.34 807 23.74 5 2001 57.17 5
cnhil10 failed 1775 13.05 44 timed out
cnhil8 88 1.13 162 1.11 33 272 0.98 113
cphil10 334 18.56 205 9.32 14 15 0.75 16
cphil12 memory 1474 70.19 16 106 2.26 10
foot 1803 38.36 2737 57.02 3 5429 106.45 5
G40 mb 1118 34.94 1787 48.30 5 3296 89.08 5
G40mc 964 26.05 1349 26.98 4 2511 50.22 4
G55mc 8490 217.69 11731 325.86 4 timed out
G59mc 14925 414.58 18008 473.89 5 timed out
hand 355 8.66 501 12.85 5 timed out
neosfbr20 3638 63.82 3552 55.50 91 1270 18.96 135
neu1 1252 10.89 timed out timed out
neu1g 560 10.77 1158 25.73 349 1015 24.17 546
neu2c 2144 27.49 timed out timed out
neu2 1239 10.87 timed out timed out
neu2g 2130 10.76 timed out timed out
neu3 15182 108.44 timed out timed out
neu3g 33814 146.38 timed out timed out
rabmo 1436 18.18 timed out timed out
rose13 140 1.89 2269 5.64 170 360 2.06 209
rose15 13358 7.17 timed out timed out
taha1a 2578 24.79 6343 43.74 434 8948 62.57 499
taha1b 12192 69.67 timed out timed out
yalsdp 1421 38.41 1182 30.31 9 39 1.08 10

see dominance of the codes based on the approximate Hessian calculation. From the
rest, PEN-A-PCG(none) is clearly faster than PENSDP.

Table 5.4 collects the results. As expected, larger problems are not solvable by the
second-order codes PENSDP and PEN-PCG(SGS), due to memory limitations. They
can be, on the other hand, easily solved by PEN-A-PCG(BFGS).Note that the largest
problem from the collection,theta162 , needed just 614 MB of memory. But not only
memory is the limitation of PENSDP. We can see huge speed-up in CPU time going
from PENSDP to PEN-PCG(SGS) and further to PEN-A-PCG(BFGS), in all examples.

As to our knowledge, aside from the code described in [22], the only available
code capable of solving problems of this size is SDPLR by Burer and Monteiro ([5]).
SDPLR formulates the SDP problem as a standard NLP and solvesthis by a first-order
method (Augmented Lagrangian method with subproblems solved by limited memory
BFGS). Table 5.4 thus also contains results obtained by SDPLR; the stopping criterium
of SDPLR was set to get possibly the same accuracy as by the other codes. While the
hamming* problems can be solved very efficiently, SDPLR needs considerably more
time to solve thetheta problems. This is due to a very high number of L-BFGS
iterations needed.



22 Michal Kočvara, Michael Stingl

Table 5. Results for selected TRUSS problems. PENSDP–standard code with Cholesky algorithm; PEN-
PCG(diag)–code with CG algorithm and diagonal preconditioner. CPU times in seconds; CPU/it–time per a
Newton iteration; CG/it–average number of CG steps per one Newton iteration. 3.2Ghz Pentium 4 with 1GB
DDR400 running Linux; time limit 20 000 sec.

PENSDP PEN-PCG(diag)
problem n m CPU CPU/it CPU CPU/it CG/it
buck3 544 1 186 52 0.29 80 0.37 19
buck4 1 200 2 546 219 1.56 477 2.62 66
buck5 3 280 6 802 3445 15.66 6485 20.14 34
trto3 544 866 11 0.16 18 0.19 16
trto4 1 200 1 874 74 0.80 117 0.88 22
trto5 3 280 5 042 1348 8.93 1249 8.92 9
vibra3 544 1 186 34 0.29 67 0.34 11
vibra4 1 200 2 546 169 1.54 289 1.88 10
vibra5 3 280 6 802 2156 15.85 4786 18.77 20
shmup3 420 2 642 236 3.23 317 3.82 4
shmup4 800 4 962 1184 16.22 1910 20.32 5
shmup5 1 800 11 042 9494 85.53 timed out

Table 6.Dimensions of selected TOH problems.

problem n m
ham7 5 6 1 793 128
ham9 8 2 305 512
ham8 3 4 16 129 256
ham9 5 6 53 761 512
theta42 5 986 200
theta6 4 375 300
theta62 13 390 300
theta8 7 905 400
theta82 23 872 400
theta83 39 862 400
theta10 12 470 500
theta102 37 467 500
theta103 62 516 500
theta104 87 845 500
theta12 17 979 600
theta123 90 020 600
theta162 127 600 800
keller4 5 101 171
sanr200-0.7 6 033 200

6. Accuracy

There are two issues of concern when speaking about possiblyhigh accuracy of the
solution:

– increasing ill-conditioning of the Hessian of the Lagrangian when approaching the
solution and thus decreasing efficiency of the CG method;

– limited accuracy of the finite difference formula in the A-PCG algorithm (approxi-
mate Hessian-matrix product computation).

For the purpose of this testing, we have adopted additional stopping rules for our
algorithm. So far (in all tests in the previous sections), Algorithm 1 was terminated
when both inequalities in (10) were satisfied. Whileε = 10−7 in the standard code
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PENSDP, for the tests of the (A-)PCG version of the code, we set ε = 10−4. In order
to be able to exactly examine the effect of required accuracyon the algorithm behavior,
we have additionally adopted the DIMACS criteria [14]. To define these criteria, we
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Table 7. Results for selected TOH problems. PENSDP–standard code with Cholesky algorithm; PEN-
PCG(diag)–code with CG algorithm and diagonal preconditioner; PEN-A-PCG(BFGS)–code with CG al-
gorithm, approximate Hessian computations and BFGS preconditioner. CPU times in seconds; CPU/it–time
per a Newton iteration; CG/it–average number of CG steps per one Newton iteration. Sun UltraSparc IIICu
1200MHz with 4GB RAM; time limit 100 000 sec.

PENSDP PEN-PCG(diag) PEN-A-PCG(BFGS) SDPLR
problem CPU CPU/it CPU CPU/it CG/it CPU CPU/it CG/it CPU iter
ham7 5 6 104 3.2 19 0.7 2 4 0.1 2 1 113
ham9 8 266 9.8 138 5.3 3 210 4.7 2 46 222
ham8 3 4 71264 2036.1 2983 80.1 2 104 2.7 1 21 195
ham9 5 6 memory memory 1984 37.4 1 71 102
theta42 3978 104.6 391 9.3 6 51 1.2 7 393 11548
theta6 1719 42.9 197 5.3 5 108 2.0 6 1221 20781
theta62 51359 1222.8 3779 77.1 6 196 4.3 5 1749 16784
theta8 8994 243.0 783 19.1 6 263 5.3 6 1854 15257
theta82 memory memory 650 14.4 6 4650 20653
theta10 30610 956.5 6571 126.4 6 492 10.7 6 4636 18814
theta102 memory memory 1948 47.5 8 12275 29083
theta103 memory memory 6149 149.9 10 17687 29483
theta104 memory memory 8400 215.3 7 timed out
theta12 timed out 14098 223.7 10 843 16.2 5 8081 21338
theta123 memory memory 11733 266.66 8 timed out
theta162 memory memory 50098 927.74 16 timed out
keller4 3724 66.5 297 6.5 6 52 1.1 9 244 8586
sanr200-0.7 4210 107.9 393 9.1 6 52 1.2 7 405 12139

rewrite our SDP problem (1) as

min
x∈Rn

fT x

subject to

C(x) 4 C0

(13)

whereC(x)−C0 = A(x). Recall thatU is the corresponding Lagrangian multiplier and
let C∗(·) denote the adjoint operator toC(·). The DIMACS error measures are defined
as

err1 =
‖C∗(U) − f‖

1 + ‖f‖

err2 = max

{

0,
−λmin(U)

1 + ‖f‖

}

err4 = max

{

0,
−λmin(C(x) − C0)

1 + ‖C0‖

}

err5 =
〈C0, U〉 − fT x

1 + |〈C0, U〉| + |fT x| err6 =
〈C(x) − C0, U〉

1 + |〈C0, U〉| + |fT x| .

Here, err1 represents the (scaled) norm of the gradient of the Lagrangian, err2 and err4
is the dual and primal infeasibility, respectively, and err5 and err6 measure the duality
gap and the complementarity slackness. Note that, in our code, err2 = 0 by defini-
tion; also err3 that involves the slack variable (not used in our problem formulation) is
automatically zero. In the “DIMACS version” of the code we will require that (10) is
satisfied withε = 10−4 and, at the same time,

errk ≤ δDIMACS, k ∈ {1, 4, 5, 6} .
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In the following we will study the effect ofδDIMACS on the behavior of the algorithm.
We have solved selected examples using the codes PEN-PCG(BFGS) and PEN-A-

PCG(BFGS) with several values ofδDIMACS, namely

δDIMACS = 10−1, 10−3, 10−5 .

We have tested two versions of the code amonotoneand anonmonotoneone.

Nonmonotone strategyThis is the strategy used in the standard version of the code
PENSDP. We setα, the stopping criterium for the unconstrained minimization (9), to a
modest value, say10−2. This value is then automatically recomputed (decreased) when
the algorithm approaches the minimum. Hence, in the first iterations of the algorithm,
the unconstrained minimization problem is solved very approximately; later, it is solved
more and more exactly, in order to reach the required accuracy. The decrease ofα is
based on the required accuracyε andδDIMACS. To make this a bit more transparent, we
set, for the purpose of testing,

α = min{10−2, δDIMACS} .

Monotone strategy In the nonmonotone version of the code, already the first iterations
of the algorithm ran withδDIMACS = 10−1 differ from the run withδDIMACS = 10−2,
due to the different value ofα from the very beginning. Sometimes it is thus difficult
to compare two runs with different accuracy: theoretically, the run with lower accu-
racy may need more time than the run with higher required accuracy. To eliminate this
phenomenon, we performed the tests with the “monotone” strategy, where we always
set

α = 10−5 ,

i.e., to the lowest tested value ofδDIMACS. By this we guarantee that the first iterations of
the runs with different required accuracy will always be thesame. Note that this strategy
is rather inefficient when low accuracy is required: the codespends too much time in the
first iterations to solve the unconstrained minimization problem more exactly than it is
actually needed. However, with this strategy we will bettersee the effect of decreasing
δDIMACS on the behavior of the (A-)PCG code.

Note that forδDIMACS = 10−5 both, the monotone and the nonmonotone version
coincide.

6.1. Testing PEN-PCG(·)

Here we examine the effect of increasing Hessian ill-conditioning (when decreasing
δDIMACS) on the overall behavior of the code. Table 6.1 presents the results for selected
examples. We only have chosen examples for which the PCG version of the code is
significantly more efficient than the Cholesky-based version, i.e., problems with large
factorn/m. The table shows results for both, the monotone and nonmonotone strategy.
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Table 8. Convergence of PEN-PCG(BFGS) on selected problems using themonotone (mon=Y) and non-
monotone (mon=N) strategy. Shown are the cumulated CPU time in seconds, number of Newton steps and
number of CG iterations and the DIMACS error measures. 3.2Ghz Pentium 4 with 1GB DDR400 running
Linux; time limit 20 000 sec.

δDIMACS mon CPU Nwt CG err1 err4 err5 err6 objective
theta4

1.0E-01 Y 33 68 382 2.4E-06 3.3E-03 4.3E-07 6.5E-07 50.32110492
1.0E-03 Y 39 73 573 3.2E-06 4.3E-05 2.9E-06 4.7E-09 50.32122133
1.0E-05 Y 40 74 580 1.7E-06 3.4E-06 3.1E-06 3.1E-11 50.32122195
1.0E-01 N 18 44 113 2.4E-03 5.0E-03 1.6E-03 3.5E-07 50.32130438
1.0E-03 N 24 55 237 2.0E-05 9.4E-05 4.5E-05 1.2E-08 50.32122357
1.0E-05 N 40 74 580 1.7E-06 3.4E-06 3.1E-06 3.1E-11 50.32122195

theta42
1.0e-01 Y 355 65 333 3.2e-06 1.7e-03 2.8e-07 6.8e-07 23.93165748
1.0e-03 Y 450 71 618 1.8e-06 3.4e-05 5.4e-07 3.2e-09 23.93170806
1.0e-05 Y 521 74 864 1.2e-06 4.6e-06 1.0e-08 9.7e-11 23.93170827
1.0e-01 N 196 40 117 3.2e-03 6.8e-03 9.2e-05 5.4e-06 23.93165748
1.0e-03 N 385 66 459 4.7e-04 2.5e-06 3.6e-06 3.8e-09 23.93170839
1.0e-05 N 521 74 864 1.2e-06 4.6e-06 1.0e-08 9.7e-11 23.93170827

theta6
1.0e-01 Y 212 74 374 2.0e-06 2.9e-03 3.1e-06 7.1e-07 63.47694156
1.0e-03 Y 265 81 657 1.7e-06 5.4e-05 2.6e-06 4.7e-09 63.47708631
1.0e-05 Y 280 83 738 8.1e-06 1.0e-05 5.9e-07 6.9e-10 63.47708706
1.0e-01 N 141 53 173 3.1e-03 2.6e-03 7.2e-04 5.4e-07 63.47717987
1.0e-03 N 240 81 459 8.9e-04 6.9e-05 4.2e-05 3.0e-10 63.47708743
1.0e-05 N 280 83 738 8.1e-06 1.0e-05 5.9e-07 6.9e-10 63.47708706

cancer-100
1.0e-01 Y 1165 64 489 1.4e-04 8.5e-03 6.6e-06 7.7e-07 27623.55121
1.0e-03 Y 1269 69 548 6.3e-04 1.1e-05 4.6e-06 4.9e-11 27623.61311
1.0e-05 Y 2354 84 2260 1.9e-04 1.6e-07 5.5e-07 5.7e-11 27623.32523
1.0e-01 N 533 32 136 5.5e-01 4.2e-03 8.2e-04 1.1e-06 27625.63374
1.0e-03 N 903 49 389 2.5e-03 2.3e-05 5.5e-06 4.9e-09 27623.61346
1.0e-05 N 2354 84 2260 1.9e-04 1.6e-07 5.5e-07 5.7e-11 27623.32523

keller4
1.0e-01 Y 283 67 482 9.4e-06 4.2e-04 5.2e-06 1.3e-07 14.01223772
1.0e-03 Y 302 69 546 4.0e-06 3.5e-05 3.3e-06 4.1e-10 14.01224167
1.0e-05 Y 307 70 560 4.2e-06 3.1e-06 2.5e-06 5.6e-10 14.01224167
1.0e-01 N 152 42 151 2.8e-03 6.2e-03 6.0e-05 9.6e-07 14.01229001
1.0e-03 N 302 69 546 4.0e-06 3.5e-05 3.3e-06 4.1e-10 14.01224167
1.0e-05 N 307 70 560 4.2e-06 3.1e-06 2.5e-06 5.6e-10 14.01224167

hamming-9-8
1.0e-01 Y 92 65 329 2.8e-06 2.1e-04 6.6e-06 2.5e-07 223.9998864
1.0e-03 Y 96 67 359 5.3e-07 3.8e-05 1.1e-06 1.0e-08 223.9999954
1.0e-05 Y 99 68 362 8.3e-07 5.9e-06 1.5e-06 5.7e-10 223.9999997
1.0e-01 N 68 47 195 1.5e-03 3.2e-03 2.1e-03 7.4e-06 224.0039475
1.0e-03 N 86 55 410 8.1e-06 2.4e-05 8.1e-06 7.0e-09 224.0000032
1.0e-05 N 99 68 362 8.3e-07 5.9e-06 1.5e-06 5.7e-10 223.9999997

From the table we can conclude two main things: the increasedaccuracy does not
really cause problems (up to exceptions—thecancer-100 problem); and the non-
monotone strategy is clearly advisable in practice. To reach the accuracy of10−5, one
needs about 2–4 times more CG steps than for10−1. Only for thecancer-100 prob-
lem, the highest accuracy causes problems but, still, the code can reach it.
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Note also that the actual accuracy is often 1-2 digits betterthan the one required,
particularly forδDIMACS = 10−1. This is also due to the fact that the primal stopping
criterium (10) withε = 10−4 is still in power.

6.2. Testing PEN-A-PCG(·)

Here not only increasing Hessian ill-conditioning but alsolimited accuracy of the finite
difference formula effect the codes behavior when increasing the accuracy. Table 6.2
summarizes the results for the same examples as in the previous section, this time with
the code PEN-A-PCG(BFGS), i.e., with the approximate Hessian calculation.

Compared to the version with exact Hessian (Table 6.1) we seea much larger num-
ber of CG iterations in all examples buthamming-9-8 . This goes on account of the
reduced accuracy of the approximate formula. Still in all cases the code is able to find
the solution within the required accuracy. Furthermore, the speed-up caused by the use
of approximate Hessian is such that, for given accuracy, thePEN-A-PCG code is always
absolutely faster than PEN-PCG, notwithstanding the higher number of PCG iterations.

7. Conclusion and outlook

In the framework of a modified barrier method for linear SDP problems, we propose to
use iterative solvers form the computation of the search direction, instead of the rou-
tinely used factorization technique. The proposed algorithm proved to be more efficient
than the standard code for certain groups of examples. The examples for which the new
code is expected to be faster can be assigned a priori, based on the complexity estimates
(namely on the ratio of the number of variables and the size ofthe constrained matrix).
Furthermore, replacing the exact Hessian-vector product by a finite difference formula
using just the gradient, we reach huge savings in the memory requirements and, often,
further speed-up of the algorithm.

Inconclusive is the testing of various preconditioners. Itappears that for different
groups of problems different preconditioners are recommendable. While the diagonal
preconditioner (considered poor man’s choice in the computational linear algebra com-
munity) seems to be the most robust one, BFGS preconditioneris the best choice for
many problems but, at the same time, clearly the worst one forthe TRUSS collec-
tion. A new promising direction was shown in a recent articleby Monteiro, O’Neal
and Nemirovski [16] who propose an adaptive preconditionerparticularly suitable for
extremely ill-conditioned problems. The detailed testingof this preconditioner within
PENNON will be performed in a future report. However, preliminary tests were quite
promising and so we conclude our article with their results.

The MON (from Monteiro-O’Neal-Nemirovski) preconditioner is constructed adap-
tively during the CG process. The preconditioning matrix (initialized as identity) is up-
dated by rank-one updates. The number of these updates typically does not exceed the
dimension of the matrix (and can be indirectly controlled bya parameter). The rank-one
updates are computed from Hessian-vector products, so thismethod fits perfectly into
our framework. To test our first Matlab implementation of this method, we saved the
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Table 9.Same as Table 6.1 but for PEN-A-PCG(BFGS)

δDIMACS mon CPU Nwt CG err1 err4 err5 err6 objective
theta4

1.0e-01 Y 32 80 1410 3.8e-06 3.3e-03 2.6e-08 6.4e-07 50.32110500
1.0e-03 Y 47 85 2141 3.3e-06 4.1e-05 1.1e-06 5.0e-09 50.32122130
1.0e-05 Y 48 86 2190 4.2e-06 5.3e-06 2.8e-06 2.5e-10 50.32122193
1.0e-01 N 11 52 380 5.0e-03 9.8e-03 7.3e-04 1.5e-06 50.32152530
1.0e-03 N 18 66 712 6.5e-05 7.1e-05 5.2e-05 4.0e-05 50.32122697
1.0e-05 N 48 86 2190 4.2e-06 5.3e-06 2.8e-06 2.5e-10 50.32122193

theta42
1.0e-01 Y 70 74 1598 1.8e-06 1.7e-03 4.1e-07 6.7e-07 23.93165793
1.0e-03 Y 129 80 3118 1.2e-06 2.2e-05 1.4e-06 3.6e-09 23.93170804
1.0e-05 Y 163 82 3985 6.0e-06 4.5e-06 6.4e-06 3.1e-10 23.93170826
1.0e-01 N 16 41 302 3.6e-03 8.5e-03 6.0e-04 2.7e-06 23.93190516
1.0e-03 N 98 59 2358 3.2e-04 1.6e-06 3.1e-04 2.4e-09 23.93170841
1.0e-05 N 163 82 3985 6.0e-06 4.5e-06 6.4e-06 3.1e-10 23.93170826

theta6
1.0e-01 Y 96 82 1493 5.1e-06 2.9e-03 1.7e-06 7.2e-07 63.47694000
1.0e-03 Y 134 87 2142 9.7e-06 6.0e-05 3.0e-07 5.4e-09 63.47708625
1.0e-05 Y 194 90 3205 7.7e-06 2.3e-06 3.5e-06 2.8e-11 63.47708718
1.0e-01 N 45 80 552 7.8e-03 2.2e-03 3.3e-04 1.3e-07 63.47723926
1.0e-03 N 70 69 1056 3.2e-05 6.6e-05 3.4e-05 2.0e-08 63.47709031
1.0e-05 N 194 90 3205 7.7e-06 2.3e-06 3.5e-06 2.8e-11 63.47708718

cancer-100
1.0e-01 Y 322 66 764 9.3e-05 8.5e-03 5.1e-06 7.6e-07 27623.46835
1.0e-03 Y 350 71 827 9.6e-04 1.2e-05 5.8e-06 1.7e-09 27623.52935
1.0e-05 Y 2123 105 6022 1.7e-04 5.5e-10 5.8e-07 4.5e-11 27623.34520
1.0e-01 N 88 32 149 3.6e-01 1.6e-03 4.3e-04 1.7e-07 27625.66861
1.0e-03 N 204 49 451 5.4e-03 6.1e-07 1.5e-05 9.9e-09 27623.36620
1.0e-05 N 2123 105 6022 1.7e-04 5.5e-10 5.8e-07 4.5e-11 27623.34520

keller4
1.0e-01 Y 70 78 2416 6.2e-06 4.3e-04 1.4e-06 1.3e-07 14.01223768
1.0e-03 Y 80 80 2751 4.1e-06 3.7e-05 2.7e-06 2.3e-09 14.01224161
1.0e-05 Y 84 81 2903 3.4e-06 3.3e-06 6.6e-07 3.1e-10 14.01224167
1.0e-01 N 13 48 366 6.4e-03 6.5e-03 1.3e-04 1.7e-06 14.01239670
1.0e-03 N 39 61 1266 1.5e-05 6.8e-06 1.5e-05 3.1e-08 14.01224257
1.0e-05 N 84 81 2903 3.4e-06 3.3e-06 6.6e-07 3.1e-10 14.01224167

hamming-9-8
1.0e-01 Y 62 55 101 3.2e-06 1.8e-04 2.2e-06 2.5e-07 223.9998839
1.0e-03 Y 63 56 103 1.4e-06 2.5e-05 4.2e-07 7.3e-09 223.9999967
1.0e-05 Y 65 57 109 5.3e-07 8.0e-06 2.0e-07 1.8e-10 223.9999999
1.0e-01 N 47 44 65 1.0e-05 1.3e-03 3.7e-06 6.9e-07 224.0003052
1.0e-03 N 49 45 68 6.2e-06 6.3e-06 1.5e-06 6.6e-08 224.0000295
1.0e-05 N 65 57 109 5.3e-07 8.0e-06 2.0e-07 1.8e-10 223.9999999

Hessians of several problems at the initial point of Algorithm 1 and at the optimal point
(within our optimality criteria). We present comparison ofthe MON preconditioner
with the two general preconditioners, diagonal and SGS and with the plain CG method.
We have chosen the same examples as in Section 4 where we show the spectrum of the
matrices:control3 andtheta2 . The results are presented in Figure 11; we plot the
logarithm of the energetic norm of the error, scaled by the norm of the exact solution.
Looking at thecontrol3 problem at the initial point, we see that the diagonal and
SGS preconditioners are very efficient. The MON method has a “slow start”; these are
the iterations where the preconditioner is being constructed. Once it is ready, the conver-
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Fig. 11. Comparison of MON with standard preconditioners for problemscontrol3 at the initial point
(left) andtheta2 at the optimal point (right)

gence rate becomes very high. However, for the purpose of low-precision computation,
diagonal and SGS are preferable. A completely different picture is seen at thetheta2
problem at the optimal point. The standard preconditioners, although better than the
plain CG method, are not particularly efficient. On the otherhand, the MON precondi-
tioner accelerates the CG method significantly. The (preliminary) conclusion is: if the
standard preconditioners are efficient, one should prefer them to MON—the precondi-
tioning matrix is known a priori and thus the effect is seen from the first iterations. On
the other hand, when the standard methods become inefficient, one should switch to
the MON preconditioner. Within an optimization algorithm (like Algorithm 1), one can
think of a hybrid strategy, starting with SGS and switching to MON when the condition
number of the Hessian becomes too high. Naturally, it remains a question of the true ef-
ficiency of the MON preconditioner, taking into account its actual complexity within an
optimization code (the theoretical complexity may, as usual, be too pessimistic). This
question is to be answered in a future article.

Acknowledgements.This research was supported by the Academy of Sciences of the Czech Republic through
grant No. A1075402. The authors would like to thank Kim Toh for providing them with the collection of
“largen smallm” problems.

References

1. F. Alizadeh, J.-P. A. Haeberly, and M. L. Overton. Primal–dual interior–point methods for semidefi-
nite programming : Convergence rates, stability and numericalresults.SIAM Journal on Optimization,
8:746–768, 1998.

2. S. J. Benson, Y. Ye, and X. Zhang. Solving large-scale sparse semidefinite programs for combinatorial
optimization.SIAM Journal on Optimization, 10:443–462, 2000.

3. M. Benzi, J. K. Cullum, and M. T̊uma. Robust approximate inverse preconditioning for the conjugate
gradient method.SIAM J. Sci. Comput., 22:1318–1332, 2000.

4. B. Borchers. SDPLIB 1.2, a library of semidefinite programming test problems.Optimization Methods
and Software, 11 & 12:683–690, 1999. Available athttp://www.nmt.edu/˜borchers/ .

5. S. Burer and R.D.C. Monteiro. A nonlinear programming algorithm for solving semidefinite programs
via low-rank factorization.Mathematical Programming (series B),, 95(2):329–357, 2003.
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