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Abstract. When solving large-scale semidefinite programming problemsdynskorder methods, the stor-
age and factorization of the Newton matrix are the limitingdas. For a particular algorithm based on the
modified barrier method, we propose to use iterative solvestedd of the routinely used direct factoriza-
tion techniques. The preconditioned conjugate gradienhoagproves to be a viable alternative for problems
with large number of variables and modest size of the constraimatrix. We further propose to approximate
the Newton matrix in the matrix-vector product by a finite-elffnce formula. This leads to huge savings in
memory requirements and, for certain problems, to further sppeaf the algorithm.

1. Introduction

The currently most efficient and popular methods for solgjageral linear semidefinite
programming (SDP) problems

glel]iRr}L ffz st A(z) <0 (A:R" —-8S™)
are the dual-scaling [2] and primal-dual interior-pointtiriques [1,8,15,21]. These
techniques are essentially second-order algorithms: olvesa sequence of uncon-
strained minimization problems by the Newton method. To jpot@a the search direc-
tion, one has to construct a sort of “Hessian” matrix and esohe Newton equation.
Although one can choose from several forms of this equatf@typical choice is the
so-called Schur complement equation (SCE) with a symmatit positive definite
Schur complement matrix of orderx n. In many practical SDP problems, this matrix
is dense, even if the data matrices are sparse.

Recently, an alternative method for SDP problems has besgoped in [10]. It is
based on a generalization of the augmented Lagrangianiteehand termed modified
barrier or penalty/barrier method. This again is a secan@romethod and one has to
form and solve a sequence of Newton systems. Again, the Mewtdrix is of order
n X n, symmetric, positive definite and often dense.

The Schur complement or the Newton equations are most ofteadsby routines
based on the Cholesky factorization. As a result, the agipllity of the SDP codes is
restricted by the memory requirements (a need to store afulln matrix) and the
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complexity of the Cholesky algorithm;?®/3. In order to solve large-scale problems
(with n larger than a few thousands), the only option (for integoint or modified
barrier codes) is to replace the direct factorization methyp an iterative solver, like a
Krylov subspace method.

In the context of primal-dual interior point methods, thgtion has been proposed
by several authors with ambiguous results [6,12,25]. Thiamidficulty is that, when
approaching the optimal point of the SDP problem, the Neooi$C) matrix becomes
more and more ill-conditioned. In order to solve the systgnat iterative method, it
is necessary to use an efficient preconditioner. Howevereasant to solve a general
SDP problem, the preconditioner should also be generalitAaidell-known that there
is no generahnd efficient preconditioner. Consequently, the use of iteeathethods
in interior-point codes seems to be limited to solving peotd with just (very) low
accuracy.

A new light on this rather pessimistic conclusion has been sh the recent papers
by Toh and Kojima [23] and later by Toh in [22]. In [22], a symime quasi-minimal
residual method is applied to an augmented system equiviale®CE that is further
transformed to a so-called reduced augmented system hivvgrsthat if the SDP prob-
lem is primal and dual nondegenerate and strict complerigntenlds at the optimal
point, the system matrix of the augmented reduced systena tiesinded condition
number, even close to the optimal point. The use of a diagumglonditioner enables
the authors to solve problems with more than 100 000 vaablth a relatively high
accuracy.

In this paper, we investigate this approach in the contextthefmodified barrier
method from [10]. Similar to the primal-dual interior-poimethod from [22], we face
highly ill-conditioned dense matrices of the same sizeoAlsnilarly to [22], the use
of iterative solvers (instead of direct ones) brings biggelsantage when solving prob-
lems with very large number of variables (up to one hundredishnd and possibly
more) and medium size of the constrained matrix (up to onastied). Despite of
these similarities there are few significant differencéstthe SCE has a lot of struc-
ture that is used for its further reformulation and for desig the preconditioners.
Contrary to that, the Newton matrix in the modified barriettimog is just the Hessian
of a (generalized) augmented Lagrangian and as such hasingimstructure. Further,
the condition number of the Hessian itself is bounded clogsbé optimal point, pro-
vided the SDP problem is primal and dual nondegenerate aictl @mplementarity
holds at the optimum. We also propose approximate Hesslaualaton, based on the
finite difference formula for a Hessian-vector product.sThiings us huge savings in
memory requirements and further significant speed-up fdaiteclasses of problems.
Last but not least, our method can also be applied to nonsd@®R& problems [9, 11].

We implemented the iterative solvers in the code PENNON §t@] compare the
new versions of the code with the standard linear SDP versitted PENSDPworking
with Cholesky factorization. Because other parts of theesoate identical, including
stopping criteria, the tests presented here give a cletrpiof advantages/disadvantages
of each version of the code.

1 See www.penopt.com.
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The paper is organized as follows. In Section 2 we preseritakie modified barrier
algorithm and some details of its implementation. Sectigiv8s motivation for the use
of iterative solvers based on complexity estimates. IniSe@ we present examples if
ill-conditioned matrices arising in the algorithm and odtuce the preconditioners used
in our testing. The results of extensive tests are presémt®ection 5. We compare the
new codes on four collections of SDP problems with diffefeattkground. In Section 6
we demonstrate that the use of iterative solvers does naseary lead to reduced
accuracy of the solution. We conclude our paper in Section 7.

We use standard notatiof™ is the space of real symmetric matrices of dimension
m x m. The inner product oi$™ is defined by(A, B)s,, := trace(AB). Notation
A < Bfor A, B € S™ means that the matrii8 — A is positive semidefinite.

2. The algorithm

The basic algorithm used in this article is based on the nealirescaling method of
R. Polyak [19] and was described in detail in [10]. Here wefbyirecall it and stress
points that will be needed in the rest of the paper.
Our goal is to solve optimization problems with a linear alijge function subject
to a linear matrix inequality as a constraint:
. T
el
subject to 1)
A(z) < 0;

heref € R™ andA : R™ — S™ is a linear matrix operatad(z) := Ag + Y1, z;4;,
A, €S™i=0,1,...,n.

The algorithm is based on a choice of a smooth penalty/bdmetion®,, : S™ —
S™ that satisfies a number of assumptions (see [10]) guaragteaiparticular, that

A(r) < 0 <= &,(A(r)) < 0.

Thus for anyp > 0, problem (1) has the same solution as the following “augeetht
problem

min f7x
zER™

subject to )
By (A(z)) < 0.
The Lagrangian of (2) can be viewed as a (generalized) augahdragrangian
of (1):
F(z,U,p) = fTa + (U, &, (A(2)))s,, ; ©)
hereU € S™ is a Lagrangian multiplier associated with the inequaldpstraint.

The algorithm below can be seen as a generalization of then&ated Lagrangian
method.
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Algorithm 1 Letz! and U! be given. Lep! > 0. For £ = 1,2,... repeat until a
stopping criterion is reached:

(7) 2* = argmin F(x, U", p¥)
zER™

(ii) UM = D&, (A(z); U")
(iii)  pPtt < p”.

Imposing standard assumptions on problem (1), it can beeprtivat any cluster
point of the sequenc§(xy, Uy)},.~, generated by Algorithm 1 is an optimal solution
of problem (1). The proof is based on extensions of resultB8ddyak [19]; for the full
version we refer to [20]. Let us emphasize a property thahsoirtant for the purpose
of this article. Assuming the SDP problem is primal and dualdegenerate and strict
complementarity holds at the optimal point, there egistich that the minimum eigen-
value of the Hessian of the Lagrangian (3) is bounded away frero for allp < p and
all (,U) close enough to the solutiqm*, U*).

Details of the algorithm were given in [10]. Hence, in thddaling we just recall
facts needed in the rest of the paper and some new features afgorithm. The most
important fact is that the unconstrained minimization isps(i) is performed by the
Newton method with line-search. Therefore, the algorithmsisentially aecond-order
method at each iteration we have to compute the Hessian of the bhggm (3) and
solve a linear system with this Hessian.

2.1. Choice ofp,
The penalty functior®,, of our choice is defined as follows:
@, (A(x)) = —p*(A(z) —pI) ™" = pI. (4)

The advantage of this choice is that it gives closed formfdashe first and second
derivatives ofp,,. Defining

Z(w) = —(A(2) —pI) ™ ()
we have (see [10]):
oy () = 9 2(0) ) 2 ) ©
o ) =200 (5820 50+ S
+ 3“5‘5&@) agtg)) Z(x). )
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2.2. Multiplier and penalty update, stopping criteria

For the penalty functiow, from (4), the formula for update of the matrix multipligr
in Step (ii) of Algorithm 1 reduces to

Ut = ()2 2(2)U* 2(2) (8)

with Z defined as in (5).

Numerical tests indicate that big changes in the multiplghrould be avoided for
the following reasons. Big change Gfmeans big change of the augmented Lagrangian
that may lead to a large number of Newton steps in the subsedfeeation. It may
also happen that already after few initial steps, the nligtip become ill-conditioned

and the algorithm suffers from numerical difficulties. Toeasome these, we do the
following:

1. Calculatd/*+! using the update formula in Algorithm 1.
2. Choose a positives < 1, typically 0.5.

. U*
3. Compute\y = min uA,MAM .

4. Update the current multiplier by
Unew _ Uk + AA(UkJrl _ Uk')

Given an initial iterater!, the initial penalty parameter* is chosen large enough
to satisfy the inequality

p'I — A(zt) = 0.
Let Apax(A(z%)) € (0,p*) denote the maximal eigenvalue @f(z*), 7 < 1 be a
constant factor, depending on the initial penalty parameététypically chosen between

0.3 and 0.6) and x5 be a feasible point. Using this notation, our strategy fa th
penalty parameter update can be described as follows:

If p < peps, S€ty =1 and go to 6.

Calculate) .. (A(zF)).

If 7p*F > Amax(A(2F)), sety = 7 and go to 6.

If I < 3, sety = (Amax(A(z*)) +pi) /2, setl := 1 + 1 and go to 6.
Lety = x, find A € (0,1) such, that

Amax (AN + (1 = N)geas)) < 7py;

and setr" 1 = ArF 1 4+ (1 — \)pens.
6. Update current penalty parameterdy ! = ~p*.

arwDdE

The redefinition of:*+! guarantees that the values of the augmented Lagrangiae in th
next iteration remain finite. The parametey, is typically chosen as0~C. In case we
detect problems with convergence of the overall algorithg, is decreased and the
penalty parameter is updated again, until the new lower tdéaireached.

The unconstrained minimization in Step (i) is not perfornegectly but is stopped
when

0
I (@ Up)ll < a, 9)
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wherea = 0.01 is a good choice in most cases. Also herds decreased if we en-
counter problems with accuracy.
Algorithm 1 is stopped if both of the following inequalities|d:

[f(z*) = F@h U p)l _ |f (@) — fa*)]
L4 [f (%)l ’ 1+ [f(=")]

<e, (20)

wheree is typically 10~7.

2.3. Complexity

As mentioned in the Introduction, every second-order nme¢tioo SDP problems has
two bottlenecks: evaluation of the Hessian of the augmehégplangian (or a similar
matrix of similar size) and the solution of a linear systerthwvthis matrix. What are the
complexity estimates in our algorithm?

The complexity of Hessian assembling, when working with ftirection @, from
(4) is O(m>n + m?n?) for dense data matrices aat{m?n + K?n?) for sparse data
matrices, wherds is the maximal number of nonzerosih, i =1,...,n.

In the standard implementation of the algorithm (code PERBWe use Cholesky
decomposition for the solution of the Newton system (as bathér second-order SDP
codes). The complexity of Cholesky algorithm$n?) for dense matrices ar@d(n"),

1 < k < 3 for sparse matrices, wheredepends on the sparsity structure of the matrix,
going from a diagonal to a full matrix.

As vast majority of linear SDP problems lead to dense Hesdieven if the data
matricesA; are sparse), in the rest of the paper we will concentrateisrsituation.

3. lterative solvers

In step (i) of Algorithm 1 we have to approximately solve arcamstrained minimiza-
tion problem. As already mentioned before, we use the Newmietihod with line-search
to this purpose. That means, in each iteration step of thedtemethod we solve a sys-
tem of linear equations

Hd=—g (11)

whereH is the Hessian angd the gradient of the augmented Lagrangian 3. In the vast
majority of SDP software (including PENSDP) this (or similaystem is solved by

a version of the Cholesky method. In the following we willaliss an alternative ap-
proach of solving the linear system by an iterative algonith

3.1. Motivation for iterative solvers
Our motivation for the use of iterative solvers is two-fokdrst we intend to improve

the complexity of the Cholesky algorithm, at least for ciertand of problems. Second,
we also hope to improve the complexity of Hessian assembling
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3.1.1. Complexity of Algorithm 1 summarized@he following table summarizes the
complexity bottlenecks of Algorithm 1 for the case of lin&P problems. Recall that
K is the maximal number of nonzerosiy, i =1,...,n.

Hessian computation
dense data matrices O(m3n + m?n?)
sparse data matrices O(m?n + K?2n?)

Cholesky method
dense Hessian O(n?)
sparse Hessian O(n")

wherel < k < 3 depends on the sparsity pattern. This shows that for deiafdepns,
Hessian computation is the critical issue wher(size of 4;) is large compared ta
(number of variables). On the other hand, Cholesky algaoriiikes most time when
is (much) larger tham.

3.1.2. Complexity: Cholesky versus iterative algorithn#s this moment, we should
be more specific in what we mean by an iterative solver. Inéseaf the paper we will
only consider Krylov type methods, in particular, the caate gradient (CG) method.

From complexity viewpoint, the only demanding step in thei@&hod is a matrix-
vector product with a matrix of dimension(when applied to our system (11)). For a
dense matrix and vector, it nee@¢n?) operations. Theoretically, in exact arithmetics
the CG method needsiterations to find an exact solution of (11), hence it is elyual
expensive as the Cholesky algorithm. There are, howeverpbints that may favor the
CG method.

First, it is well known that in finite arithmetics the actualmber of CG iterations,
needed to reach a given precision, depends solely on th&smeof the matrix4, in
particular, on the condition humber and the possible grugipif the eigenvalues; for
details, see, e.g., [18]. In practice it means that if theespen is “favorable”, we may
need much smaller number of steps thano obtain a reasonably exact solution. This
fact leads to the very useful idea of preconditioning whastaad of (11), we solve a
“preconditioned” system

M 'Hd=-M"1g

with a matrix/ chosen in such a way that the new system maitfix! H has a “good”
spectrum. The choice aff will be the subject of the next section.

The second, and very important, point is that we actuallyatoneed to have an ex-
act solution of (11). On the contrary, a rough approximatibi will do (we will return
to this in the next section). Hence, in practice, we may nestlg few CG iterations
to reach the required accuracy. This is in contrast with thel€sky method where we
cannot control the accuracy of the solution and always haw®mpute the exact one
(within the machine precision).

Summarizing these two points: when using the CG algorithen,nvay expect to
need justD(n?) operations, at least for well-conditioned (or well-preditioned) sys-
tems.

Note that we are still talking about dense problems. The fiseeoCG method is
a bit nonstandard in this context—usually it is preferablelémge sparse problems.
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However, due to the fact that we just need a very rough apmratkdbn of the solution,
we may favor it to the Cholesky method also for medium-sizexsé problems.

3.1.3. Complexity: exact versus approximate Hessi@ur second goal is to improve
the complexity of Hessian computation. This can be doneéatly. When solving (11)

by the CG method (and any other Krylov type method), the Hesisi only needed in

a matrix-vector product of the typHv := V2F(z)v. We may use finite difference
formula for the approximation of this product

VF(CCk + hv) — VF(J?k)

V2F () ~ .

(12)

with o = (1 + ||z ||2+/€)- In our implementation, we use= 10~5. Hence the com-
plexity of the CG method amounts the number of CG iterationes the complexity of
gradient evaluation. This may be in sharp contrast with thel€sky method approach
when we have to compute the full Hessiamd solve the system by Cholesky method.
Additional (perhaps the main) advantage of this Hessiaa-pproach is the fact that
we do not have to store the Hessian in the memory, thus the myeraquirements
(often the real bottleneck of SDP codes) are drasticallyced.

Note that this approach may have its dark side. With certBiR $roblems it may
happen that the Hessian computation is not much more exgetign the gradient
evaluation. In this case the Hessian-free approach maytberrdme-consuming. In-
deed, when the problem is ill-conditioned and we need manyt&&tions, we have to
evaluate the gradient many (thousand) times. On the otimet, lmehen using Cholesky
method, we compute the Hessian just once.

3.2. Preconditioned conjugate gradients

We use the very standard preconditioned conjugate gradietttod. The algorithm
is recalled below. Because our stopping criterium is basethe residuum, one may
think, as an alternative, of the minimum residual methodothar alternative is the
QMR algorithm that can be favorable even for symmetric pasiefinite systems due
to its robustness.

We solve the systenild = —g with a symmetric positive definite and, possibly,
ill-conditioned matrixH. To improve the conditioning, and thus the behavior of the
iterative method, we will solve a transformed systéfT ! HC~1)(Cd) = —C~1g
with C' symmetric positive definite. We define the preconditioheby M = C? and
apply to the transformed system the standard conjugatéegutadethod. The resulting
algorithm is given below.

Algorithm 2 (Preconditioned conjugate gradients) Givend, andM. Setrq = Hdy+
glpO - go. SOlVeMZO =T and Semo = —2.
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Fork =0,1,2... repeat until convergence:

Tng
P} Hpr

(1)  drp1 = dg + axpr
(#i7) Te+1 = Tk + arHpg

(i)  ap=

(iv) solveM z11 = 111
T
Tja1”Rk+1
(’U) ﬁk+1 = T
T 2k
(vi)  Pra1 = —Tre1 + Br1Dk

From the complexity point of view, the only expensive paiftshe algorithm are
the Hessian-vector products in steps (i) and (iii) (note timdy one product is needed)
and, of course, the application of the preconditioner ip §it8.

The algorithm is stopped when the scaled residuum is smailgin

[Hdx +gll/llgll <€,

in practice, when
Irell/llgll < e.
In our tests, the choice= 5 - 10~2 was sufficient.

4. Preconditioning
4.1. Conditioning of the Hessian

It is well known that the biggest trouble with iterative meds in context of penalty or
barrier optimization algorithms is the increasing ill-ditioning of the Hessian when
we approach the optimum of the original problem. Indeedgitain methods the Hes-
sian may even become singular. The situation is not muckratbur case, i.e., when
we use Algorithm 1 for SDP problems. Let us demonstrate ity éxamples.
Consider first problertheta2 from the SDPLIB collection [4]. The dimension of
this problem isn = 498. Figure 1 shows the spectrum of the Hessian at the initial and
the optimal point of Algorithm 1 (note that we use logaritierstaling in the vertical
axes). The corresponding condition numbersare = 394 andkopt = 4.9 - 107,
respectively. Hence we cannot expect the CG method to beeffagtive close to the
optimum. Indeed, Figure 2 presents the behavior of the wasid| Hd + g||/||g|| as
a function of the iteration count, again at the initial and tptimal point. While at
the initial point the method converges in few iterationsgdo low condition number
and clustered eigenvalues), at the optimal point one obsezxtremely slow, though
still convergence. The zig-zagging nature of the latteveus due to the fact that CG
method minimizes the norm of the error, while we plot herertbiam of the residuum.
The QMR method offers a much smoother curve, as shown in &iguteft), but the
speed of convergence remains about the same, i.e., slowetbead picture in Figure 3
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Fig. 1. Exampletheta2 : spectrum of the Hessian at the initial (left) and the optitnght) point.

L L L . . . . . . L L L L
0 2 4 6 8 10 12 14 16 0 10 200 30 400 500 600 700 800 90 4900

Fig. 2. Exampletheta2 : CG behavior at the initial (left) and the optimal (right) pbi

shows the behavior of the QMR method with diagonal precamditg. We can see
that the convergence speed improves about two-times, wathl not very promising.
However, we should keep in mind that we want just an approténaf d and typically

stop the iterative method when the residuum is smaller ¢h@sy in this case it would
be after about 180 iterations.

The second example, problecontrol3  from SDPLIB withn = 136, shows
even a more dramatic picture. In Figure 4 we see the spectfihediessian, again
at the initial and the optimal point. The condition numbertloése two matrices is
Kini = 3.1 - 10% andkopt = 7.3 - 102, respectively. Obviously, in the second case,
we are close to machine precision and can hardly expect mpewvee. And, indeed,
Figure 5 shows that while at;,; we still get convergence of the CG methodzgf.
the method does not converge anymore. So, in this case, eieefffpbreconditioner is a
real necessity.

4.2. Conditions on the preconditioner

Once again, we are looking for a preconditioner—a matrixc S’} —such that the
systemM ~'Hd = —M~'g can be solved more efficiently than the original system
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Fig. 3. Exampletheta2 : QMR behavior at the optimal (right) point; without (left) dmith (right) precon-
ditioning.

Fig. 4. Examplecontrol3 : spectrum of the Hessian at the initial (left) and the optifnight) point.

Fig. 5. Examplecontrol3 : CG behavior at the initial (left) and the optimal (right) pbi

Hd = —g. Hence

(i) the preconditioner should be efficient
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in the sense that the spectrumidf-! H is “good” for the CG method. Further,
(i) the preconditioner should be simple.

When applying the preconditioner, in every iteration of th@ @gorithm we have to
solve the system
Mz =p.

Clearly, the application of the “most efficient” preconditer M = H would return us
to the complexity of the Cholesky method applied to the oadjsystem. Consequently
M should be simple enough, so thdtz = p can be solved efficiently.

The above two requirements are general conditions for aaggmditioner used
within the CG method. The next condition is typical for ouphgation within opti-
mization algorithms:

(i) The preconditioner should only use Hessian-vectadurcts.

This is for the case when we want to use the Hessian-freeoveddithe algorithm.
We certainly do not want the preconditioner to destroy thedtn-free nature of this
version. When we use the CG method with exact (i.e. computed3iln, this condition
is not needed.

Finally, and this is perhaps the most critical point,

(iv) the preconditioner should be “general”.

Recall that we intend to solve general SDP problems withautaapriori knowledge
about their background. Hence we cannot rely on specialgsarpreconditioners, as
known, for instance, from finite-element discretizatioh®DEs.

4.3. Diagonal preconditioner

This is a simple and often-used preconditioner with

M = diag (H).
It surely satisfies conditions (ii) and (iv). On the other tialbeing simple and general,
it is not considered to be very efficient. Furthermore, itglnet really satisfy condition
(iii), because we need to know the diagonal elements of th&side. It is certainly
possible to compute approximations of these elements deimngula (12). For that,

however, we would need gradient evaluations and the approach would become too
costly.

4.4. Symmetric Gauss-Seidel preconditioner

Another classic preconditioner with
M=(D+L)"'DYD+L) where H=D—-L-L"

with D andL being the diagonal and strictly lower triangular matrixspectively. Con-
sidered more efficient than the diagonal preconditionés, dtiso slightly more expen-
sive. It cannot be used in connection with formula (12) a®égnot satisfy condition

(i
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4.5. L-BFGS preconditioner

Introduced by Morales-Nocedal [17], this preconditioneiiritended for application
within the Newton method. The algorithm is based on limiteelmory BFGS formula
([218]) applied to successive CG (instead of Newton) iterai

Assume we have a finite sequence of vectdrand gradientg(x?),i = 1,... k.
We define the correction paifg’, 3*) as

th =zttt — ot y' = g(z) — g(z), i=1,....,k—1.
Using a selectiow of i pairs from this sequence, such that
1< <o <. <opi=k—1
and an initial approximation
(t7e)Tyow
(yon )Ty
we define the L-BFGS approximatid#i of the inverse of{; see, e.g. [18]. To compute
a product ofi¥ with a vector, we use the following algorithm of complexity.

Algorithm 3 (L-BFGS) Givenasetof pair§t”i,y°i},i = 1,2,..., u, and avectod,
we calculate the produet = Wd as

Wy =

(i) q=d
(i) fori=p,p—1,...,1, put
_ _(t7)7q v
ar—@mﬁﬂﬂ q=q—ay
(i53) = Woq
(iv) fori=1,2,...,pu, put
o TT ‘
f= (;?ii);tm’ T:r+t01(ai_5)-

The idea of the preconditioner is the following. Assume wetta solve the un-
constrained minimization problem in Step (i) of Algorithnb$ the Newton method.
At each Newton iterate"), we solve the Newton systeti (z()d(®) = —g(z®).
The first system at(®) will be solved by the CG method without preconditioning. The
CG iterationsz'”, g(z)), k = 1, ..., K, will be used as correction pairs to build a
preconditioner for the next Newton step. If the number of @BattionsK is higher
than the prescribed number of correction pairsve just select some of them (see the
next paragraph). In the next Newton step, the correction pairs are used to build an
approximationi¥ () of the inverse off (z(!)) and this approximation is used as a pre-
conditioner for the CG method. Note that this approximatgnot formed explicitly,
rather in the form of matrix-vector produet= W (")p —just what is needed in the
CG method. Now, the CG iterations in the current Newton stepuaed to form new
correction pairs that will build the preconditioner for thext Newton step, and so on.
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The trick is in the assumption that the Hessian at the old Newtep is close enough to
the one at the new Newton step, so that its approximation&ae s a preconditioner
for the new system.

As recommended in the standard L-BFGS method, we u$ed 32 correction
pairs, if they were available. Often the CG method finishelé$s iterations and in that
case we could only use the available iterations for the ctoe pairs. If the number
of CG iterations is higher than the required number of cdivaairsy, we may ask
how to select these pairs. We have two options: Either we ttadédast;, pairs or an
“equidistant” distribution over all CG iterations. The sed option is slightly more
complicated but we may expect it to deliver better resulte ollowing Algorithm 4
gives a guide to such an equidistant selection.

Algorithm 4 Given an even number, sety = 1 andP = ). Fori = 1,2,... do:

Initialization

Ifi<p

— insert{t!, 4’} in P

Insertion/subtraction

If i can be written ag = (5§ + ¢ — 1)27 for somef € {1,2,..., 5} then
set index of the subtraction pair ds= (2¢ — 1)27~!
subtract{t*, y*} from P
insert{t’,y'} in P
—ifl=15sety=~+1

The L-BFGS preconditioner has the big advantage that it negds Hessian-vector
products and can thus be used in the Hessian-free approathe©ther hand, itis more
complex than the above preconditioners; also our residta@irconclusive concerning
the efficiency of this approach. For some problems it worlaisfctorily, in others it
even lead to higher number of CG steps than without precdonéit

4.6. AINV preconditioner

Preconditioners based on incomplete matrix factorizati@rknown to be very efficient.
Most of them are based on incomplete Cholesky factorizalibay are, however, rather
complex, need substantial amount of memory and, in pagicaked all elements of
the system matrix (Hessian). Contrary to this, the AINV pratitioner is based on the
H-orthogonalization. It always exists, does not need to ktimnsparsity pattern of the
matrix and only uses matrix-vector products.

Using AINV, we will obtain an approximate factorization ¢fet inverse of:

M=2D'Z" ~ H !

with diagonalD and Z an upper triangular matrix with ones on the diagoralis
actually a sparse approximation 67, where L is a lower triangular matrix and
H = LDL*. Matrix Z is obtained byH-orthogonalization of the unit matrix by the
following algorithm ([3]):
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Algorithm 5 (AINV) Initialize z; = ¢; (the unit vector) for = 1,...,n.
Fori=1,2,...,ndo:

©) v=Hz
(i)  pi=v"z
(vi1) forj=i+1,...,ndo
(@) 2z =2 — (" z/p)z
(0) if (072 /pi) < €amy PULZ; =0

PutZ = [z1,22,...,2,] @and D = diag(p1,p2, - ., Pn)-

Clearly, the critical point of this algorithm is choice of .\ in step (iii)(b). Unfor-
tunately, in our applications we almost face an "eithersittiation. EitherZ is full or
Z is empty and we end up with a diagonal preconditioner. Onlgraow range o 4,
leads to spars€ and even then its quality is often not much better than of imple
diagonal preconditioner (note that, typically, is dense in our applications). Hence,
after many experiments, we set,v = 0.95 which typically leads to a diagonal pre-
conditioner (however, more expensive than the standaryl dost rarely we met the
situation wher? included few nonzero elements.

5. Tests

For testing purposes we have used the code PENNON, in partits version for
linear SDP problems called PENSDP. The code implementsrittgo 1; for the so-
lution of the Newton system we use either the LAPACK routinre@ RF based on
Cholesky decomposition (dense problems) or our implentientaf sparse Cholesky
solver (sparse problems). In the test version of the codeepiaced the direct solver
by conjugate gradient method with various preconditiong&he resulting codes are
called PEN-PCQ{rec), whereprecis the name of the particular preconditioner. We
have further implemented the optional approximate contjutanf the Hessian based
on formula (12). This version of the code is called PEN-A-F@€q). In this case, we
only tested the BFGS preconditioner (and a version with ee@nditioning). All other
preconditioners either need elements of the Hessian oustrtop costly in this context.

Few words about the accuracy. It was already mentioned ligat@nditioning of
the Hessian increases as the optimization algorithm geteclo the optimal point.
Consequently, a Krylov-type iterative method is expecteldave more and more diffi-
culties when trying to reach higher accuracy of the solutibtihe original optimization
problem. This was indeed observed in practice [23,22]. Theonditioning may be
so severe that it does not allow one to solve the problem mwittsonable accuracy at
all. Fortunately, this was not observed in the presentedoagh. However, to prevent
difficulties, we decreased the default PENSDP stoppingrauitn in (10) from10~7 to
10—, This still gives a reasonable accuracy (for most applicasj of 4-5 digits in the
objective value. The reduced stopping criterium was altuportant mainly in the
A-PCG version of the code, due to the approximate Hessiawledion. At the end of
this section we report on what happens when we try to incrésesaccuracy.
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The conjugate gradient algorithm was stopped when
|[Hd+ gll/llgll <€

wheree = 5 - 10~2 was sufficient. This relatively very low accuracy does ngh#i
icantly influence the behavior of Algorithm 1. On the othendiait has the effect that
for most problems we need a very low nhumber of CG iteratiorsaah Newton step;
typically 4-8. Hence, when solving problems with dense kess the complexity of
the Cholesky algorithn®(n?) is replaced byD(xn?) with x < 10. For problems with
largern we may thus expect great savings.

In the following paragraphs we report on results of our tegfor four collections
of linear SDP test problems: the SDPLIB collection of lin€&Ps by Borchers [4]; the
set of various large-scale problems collected by Hans Mitian and called here HM-
problems [13]; the set of examples from structural optirticracalled TRUSS collec-
tion?; and a collection of very-large scale problems with rekglfvsmall-size matrices
provided by Kim Toh and thus called TOH collection [22].

5.1. SDPLIB

Let us start with a comparison of preconditioners for thiscafeproblems. Figure 6

presents a performance profile ([7]) on all four precondgis: diagonal, BFGS, ap-
proximate inverse and symmetric Gauss-Seidel. ComparetharCPU times needed
to solve 23 selected problems of the SDPLIB collection. Weduhe version of the

code with exact Hessian computation. The profile shows teeBFGS preconditioner
has slight edge; in average, it is faster and more robusthkaither ones, so it will be
our choice for the rest of this paragraph.

Table 5.1 gives a comparison of PENSDP (i.e., code with Gkglsolver), PEN-
PCG(BFGS) (with exact Hessian computation) and PEN-A-FBE&S) (approximate
Hessian computation). Given are not only the CPU times iorsgs, but also times
per one Newton iteration and number of CG steps (when afgiz@er one Newton
iteration. We have chosen the form of a table (as opposed trfarmance profile),
because we think it is important to see the differences tetwiee codes on particular
examples. Indeed, while for most examples is the PEN-PCG@®Fabout as fast as
PENSDP, in few cases it is significantly faster. These examftheta* andqap*)
are typical by a high ratio of to m. In such situation, the complexity of the solution of
the Newton system dominates the complexity of Hessian ctattipn and PCG version
of the code is expected to be efficient (see Table 5.1 and xtdédow). In (almost)
all other problems, most time is spent in Hessian computatitd thus the solver of
the Newton system does not effect the total CPU time. In fesblems ¢ontrol*
truss8 ), PEN-PCG(BFGS) was significantly slower than PENSDP dlags the very
ill-conditioned problems when the PCG method needs marstitas to reach even the
low accuracy required.

Looking at PEN-A-PCG(BFGS) results, we see even strondectethe higher the
ration to m, the more efficient code”; in all other examples the codeassst than the
other two.

2 Available at http://www2.am.uni-erlangen.de{ocvara/pennon/problems.html
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Performance profile on various preconditioners

Performance

diagonal
BFGS q

- == adinv
0.2 - = SGS q

0.1F —

Fig. 6. Performance profile on preconditioners; SDPLIB problems

Table 5.1 compares the CPU time spent in different partseo&ltorithm for differ-
ent types of problems. We have chosen typical represeasati/problems withw =~ m
(equalG11 ) andn/m > 1 (theta4 ). Forthe three codes PENSDP, PEN-PCG(diag)
and PEN-A-PCG(BFGS) we show the total CPU time spent in tlenstrained min-
imization, cumulative times of function and gradient ewaions; Hessian evaluation;
and solution of the Newton system. We can clearly see thdtdthietad example,
solution of the Newton system is the decisive part, whilequalG11 it is the func-
tion/gradient/Hessian computation.

5.2. HM collection

Table 5.2 lists a selection of large-scale problems froniHiecollection, together with
their dimensions and number of nonzeros in the data matrices

Again we start the testing with a CPU-time performance pafit preconditioners
(Figure 7) and again we see the dominance of the BFGS preometi

The test results are collected in Table 5.2, comparing ag&NSDP with PEN-
PCG(BFGS) and PEN-A-PCG(BFGS). Contrary to the SDPLIBemtibn, we see a
large number of failures of the PCG based codes, due to eeddade limit of 20000
seconds. This is the case even for problems with large. These problems, all gen-
erated by SOSTOOLS or GLOPTIPOLY, are typical by high ilad@ioning of the
Hessian; while in the first few steps of Algorithm 1 we need fesv iterations of the
PCG method, in the later steps this number becomes very hidjthe PCG algorithm
becomes effectively non-convergent. There are, howetitfesv problems with large
n/m for which PEN-A-PCG(BFGS) outperforms PEN-PCG(BFGS) drig, tin turn,
clearly outperforms PENSDRancer _100, cphil*, yalsdp . These problems
are ‘good” in the sense that the PCG algorithm needs, in geemvery low number
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Table 1. Results for selected SDPLIB problems. PENSDP-standard witiecCholesky algorithm; PEN-
PCG(BFGS)-code with CG algorithm and BFGS preconditioR&f-A-PCG(BFGS)—code with CG algo-
rithm, approximate Hessian computations and BFGS preconditi€PU times in seconds; CPU/it-time per
a Newton iteration; CGlit—average number of CG steps per anetdh iteration. 3.2Ghz Pentium 4 with
1GB DDR400 running Linux.

dimensions PENSDP PEN-PCG(BFGS) PEN-A-PCG(BFGS)
problem n m | CPU CPU/it| CPU CPU/it CGiit| CPU CPUfit CGlit
archs 174 335 6 0.06 6 0.08 13 failed
control7 666 105| 63  0.79| 120 171 162| 164 231 387
control10 | 1326  150| 765  3.38| 1807 8.21 433 1961  10.89 723
control1l | 1596  165| 937 542 | 1421 1269  502| 1870  19.68 973
equalG1l| 801 801| 65  3.10| 110 1.22 2| 223 7.43 7
equalG51 | 1001 1001| 296  3.65| 295 6.56 3| 438 9.73 3
gpp250-4 | 250 250 4 0.14 5 0.22 5 8 0.36 6
gpp500-4 | 501 500 26  067] 32 1.10 5| 51 1.89 5
maxGll | 800 800| 10  043| 17 0.54 6| 40 1.14 6
maxG32 | 2000 2000| 108  4.70| 185 5.97 8| 476  14.00 6
maxG51 | 1000 1000| 115 2.45| 204 3.82 4| 343 6.86 4
mcp250-1| 250 250 1 0.03 2 0.06 4 2 0.06 4
mcp500-1| 500 500 5 0.16 7 0.18 5/ 11 0.30 4
qap9 748 82 3 0.09 4 007 7 4 006 30
qapl0 1021 101 8 022 11 0.16 7 8 0.10 20
gpG51 1000 2000| 172 5.93| 241 7.53 3| 400 11.76 3
530 132  426| 10  0.28| 13 0.32 4 7 0.18 4
theta3 1106 150 9 0.26 7 0.23 4 4 008 4
theta4 1949  200| 43 1.02| 24 085 6| 11 0.22 7
thetas 3028 250| 93 3.32| 43 2.29 5| 16 0.39 6
theta6 4375  300| 366 9.15| 139  4.80 5/ 41 0.67 8
thetaG1l | 2401  801| 134 2.68| 312 2.35 6| 939 7.83 51
trusss 496 628 6 013| 55 070  157| 11 0.22 7

Table 2. Cumulative CPU time spent in different parts of the codes: éwthole unconstrained minimization
routine (CPU); in function and gradient evaluation (f+g)Hessian evaluation (hess) ; and in the solution of
the Newton system (chol or CG).

PENSDP PEN-PCG(BFGS) PEN-A-PCG(BFGS)
problem | CPU f+g hess chol| CPU f+tg hess CG| CPU f+g CG
thetad 44.2 1.1 111 31.8 20.7 28 127 50 104 100 0.2
equalG11l| 43.7 285 125 17 981 772 185 24 1843 1824 0.9

of iterations per one Newton step. In other problems witk fivioperty (like theG*
problems),n is proportional tom and the algorithm complexity is dominated by the
Hessian computation.

5.3. TRUSS collection

Unlike the previous two sets of problems collecting examplih different background
and of different type, the problems from the TRUSS collaectoe all of the same type
and differ just by the dimension. Looking at the CPU-timefpenance profile on the
preconditioners (Figure 8) we see a different picture thahe previous paragraphs: the
diagonal preconditioner is the winner, closely followed®$S; BFGS is the poorest
one now.
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Table 3.Dimensions of selected HM-problems.

problem m n nzs blocks
cancerl00 570 10470 10569 2
checkerl.5 | 3971 3971 3,970 2
cnhill0 221 5005 24310 2
cnhil8 121 1716 7260 2
cphill0 221 5005 24310 2
cphill2 364 12376 66 429 2
foot 2209 2,209 2440944 2
G40.mb 2001 2000 2003000 2
G40mc 2001 2000 2000 2|
G48mc 3001 3000 3000 2
G55mc 5001 5000 5000 2
G59mc 5001 5000 5000 2
hand 1297 1297 841752 2
neosfbr20 363 7201 309624 2
neul 255 3003 31880 2
neulg 253 3002 31877 2
neu2c 1256 3002 158098 15
neu2 255 3003 31880 2
neu2g 253 3002 31877 2
neu3 421 7364 87573 3
neu3g 463 8007 106 952 2
rabmo 6827 5004 60287 2
rosel3 106 2379 5564 2
rosel5 138 3860 9182 2
tahala 1681 3002 177420 g
tahalb 1610 8007 107373 5
yalsdp 301 5051 1005250 4

The results of our testing (see Table 5.3) correspond to xpgatations based on
complexity estimates. Because the size of the constrairmtdamsm is larger than the
number of variables,, we may expect most CPU time spent in Hessian evaluation.
Indeed, for both PENSDP and PEN-PCG(diag) the CPU time pem@awton step is
about the same in all examples. These problems are ill-tiondd; as a result, with
the exception of one example, PEN-A-PCG(BFGS) never cgevkto a solution and
therefore it is not included in the table.

5.4. TOH collection

As predicted by complexity results (and as already seenvaraeexamples in the
previous paragraphs), PCG-based codes are expected tosheffiament for problems
with largen and (relatively) smalh. The complexity of the Cholesky algorith@(n?)
is replaced byD(10n2), we may expect significant speed-up of the resulting algorit
This is indeed the case for the examples from this last didiec

The examples arise from maximum clique problems on randgemhgrated graphs
(theta* ) and maximum clique problems from the Second DIMACS Impletaton
Challenge [24].

The dimensions of the problems are shown in Table 5.4; thesarexample has
almost 130000 variables. Note that the Hessians of all taenples aralense so to
solve the problems by PENSDP (or by any other interior-paigorithm) would mean
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Performance profile on various preconditioners
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to store and factorize a full matrix of dimension 130 000 b@ @80. On the other hand,
PEN-A-PCG(BFGS), being effectively a first-order code, just modest memory re-
qguirements and allows us to solve these large problemsmathiery reasonable time.
As always, we first show a CPU-time based performance prdfilthe precondi-
tioners; see Figure 9. This time, diagonal preconditioser¢lear winner.
We further present a CPU-based performance profile on tfexelift codes, PENSDP,
PEN-PCG(diag), PEN-A-PCG(none) and PEN-A-PCG(BFGS);FRgare 9. We can
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Table 4. Results for selected HM-problems. PENSDP-standard code @litolesky algorithm; PEN-

PCG(BFGS)-code with CG algorithm and BFGS preconditioR&N-A-PCG(BFGS)—-code with CG al-
gorithm, approximate Hessian computations and BFGS predonelit CPU times in seconds; CPU/it—time
per a Newton iteration; CG/it—average number of CG stepsmpeiNewton iteration. 3.2Ghz Pentium 4 with

1GB DDR400 running Linux; time limit 20 000 sec.

PENSDP PEN-PCG(BFGS) PEN-A-PCG(BFGS)
problem CPU CPU/it| CPU CPU/t CGlit| CPU CPU/it CGlit
cancer100 5863 108.57 481 18.50 5 91 3.37 5
checkerl.5 1424 20.34 807 23.74 5| 2001 57.17 5
cnhill0 failed 1775 13.05 44 timed out
cnhil8 88 1.13 162 1.11 33| 272 0.98 113
cphill0 334 18.56 205 9.32 14 15 0.75 16
cphill2 memory 1474 70.19 16| 106 2.26 10
foot 1803 38.36| 2737 57.02 3| 5429 106.45 5
G40.mb 1118 34.94| 1787 48.30 5| 3296 89.08 5
G40mc 964 26.05| 1349 26.98 4| 2511 50.22 4
G55mc 8490 217.69| 11731 325.86 4 timed out
G59mc 14925 414.58| 18008 473.89 5 timed out
hand 355 8.66 501 12.85 5 timed out
neosfbr20 3638 63.82| 3552 55.50 91| 1270 18.96 135
neul 1252 10.89 timed out timed out
neulg 560 10.77| 1158 25.73 349| 1015 24.17 546
neu2c 2144 27.49 timed out timed out
neu2 1239 10.87 timed out timed out
neu2g 2130 10.76 timed out timed out
neu3 15182 108.44 timed out timed out
neu3g 33814 146.38 timed out timed out
rabmo 1436 18.18 timed out timed out
rosel3 140 1.89| 2269 5.64 170| 360 2.06 209
rosel5s 13358 7.17 timed out timed out
tahala 2578 24.79| 6343 43.74 434| 8948 62.57 499
tahalb 12192 69.67 timed out timed out
yalsdp 1421 38.41| 1182 30.31 9 39 1.08 10

see dominance of the codes based on the approximate Hessiatation. From the

rest, PEN-A-PCG(none) is clearly faster than PENSDP.

Table 5.4 collects the results. As expected, larger problara not solvable by the
second-order codes PENSDP and PEN-PCG(SGS), due to meimdgtibns. They
can be, on the other hand, easily solved by PEN-A-PCG(BFS&E that the largest

problem from the collectiorthetal62

, Needed just 614 MB of memory. But not only

memory is the limitation of PENSDP. We can see huge speed-@PU time going
from PENSDP to PEN-PCG(SGS) and further to PEN-A-PCG(BF- B3l examples.

As to our knowledge, aside from the code described in [24, dhly available
code capable of solving problems of this size is SDPLR by Barel Monteiro ([5]).
SDPLR formulates the SDP problem as a standard NLP and gbiiedsy a first-order
method (Augmented Lagrangian method with subproblemseddby limited memory
BFGS). Table 5.4 thus also contains results obtained by FDHRle stopping criterium
of SDPLR was set to get possibly the same accuracy as by tee atkdes. While the
hamming* problems can be solved very efficiently, SDPLR needs coredidie more
time to solve thetheta problems. This is due to a very high number of L-BFGS
iterations needed.
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Table 5. Results for selected TRUSS problems. PENSDP-standard citkleCtwolesky algorithm; PEN-
PCG(diag)—code with CG algorithm and diagonal preconaé@ioCPU times in seconds; CPU/it-time per a
Newton iteration; CG/it-average number of CG steps per owgdieiteration. 3.2Ghz Pentium 4 with 1GB
DDR400 running Linux; time limit 20 000 sec.

PENSDP PEN-PCG(diag)
problem n m | CPU CPU/it| CPU CPU/t CGlit
buck3 544 1186 52 0.29 80 0.37 19
buck4 1200 2546| 219 156 | 477 2.62 66
buck5 3280 6802 | 3445 15.66| 6485 20.14 34
trto3 544 866 11 0.16 18 0.19 16
trto4 1200 1874 74 0.80| 117 0.88 22
trto5 3280 5042 | 1348 8.93| 1249 8.92 9
vibra3 544 1186 34 0.29 67 0.34 11
vibra4 1200 2546| 169 1.54| 289 1.88 10
vibra5 3280 6802| 2156 15.85| 4786 18.77 20
shmup3 420 2642 | 236 3.23| 317 3.82 4
shmup4 800 4962 | 1184 16.22| 1910 20.32 5
shmup5 | 1800 11042| 9494 85.53 timed out

Table 6. Dimensions of selected TOH problems.

problem n m

ham.7.5.6 1793 128
ham9_8 2305 512
ham8_3_4 16129 256
ham9.5_6 53761 512
theta42 5986 200
theta6 4375 300
theta62 13390 300
theta8 7905 400
theta82 23872 400
theta83 39862 400
thetalO 12470 500
thetal02 37467 500
thetal03 62516 500
thetal04 87845 500
thetal2 17979 600
thetal23 90020 600
thetal62 127600 800
keller4 5101 171
sanr200-0.7 6033 200

6. Accuracy

There are two issues of concern when speaking about podsiityaccuracy of the
solution:

— increasing ill-conditioning of the Hessian of the Lagraargivhen approaching the
solution and thus decreasing efficiency of the CG method;

— limited accuracy of the finite difference formula in the A-B@lgorithm (approxi-
mate Hessian-matrix product computation).

For the purpose of this testing, we have adopted additidnapsng rules for our
algorithm. So far (in all tests in the previous sections)gagithm 1 was terminated
when both inequalities in (10) were satisfied. While= 10~7 in the standard code
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Performance profile on various preconditioners
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PENSDP, for the tests of the (A-)PCG version of the code, we se 10~%. In order
to be able to exactly examine the effect of required accuoadye algorithm behavior,
we have additionally adopted the DIMACS criteria [14]. Tdide these criteria, we
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Table 7. Results for selected TOH problems. PENSDP—-standard code @¥iblesky algorithm; PEN-
PCG(diag)—code with CG algorithm and diagonal preconaiip PEN-A-PCG(BFGS)-code with CG al-
gorithm, approximate Hessian computations and BFGS predonelit CPU times in seconds; CPU/it-time
per a Newton iteration; CG/it-average number of CG steps peiNewton iteration. Sun UltraSparc Il1ICu
1200MHz with 4GB RAM; time limit 100 000 sec.

PENSDP PEN-PCG(diag) PEN-A-PCG(BFGS) SDPLR
problem CPU CPU/t| CPU CPU/it CG/it| CPU CPU/it CGlit| CPU iter
ham.7.5.6 104 3.2 19 0.7 2 4 0.1 2 1 113
ham9_8 266 9.8 138 5.3 3 210 4.7 2 46 222
ham834 | 71264 2036.1| 2983 80.1 2 104 2.7 1 21 195
ham9.5.6 memory memory 1984 37.4 1 71 102
theta42 3978 104.6 391 9.3 6 51 1.2 7 393 11548
theta6 1719 42.9 197 5.3 5 108 2.0 6| 1221 20781
theta62 51359 1222.8| 3779 77.1 6 196 43 5| 1749 16784
theta8 8994 243.0 783 19.1 6 263 5.3 6| 1854 15257
theta82 memory memory 650 14.4 6| 4650 20653
thetal0 30610 956.5| 6571 126.4 6 492 10.7 6| 4636 18814
thetal02 memory memory 1948 47.5 8| 12275 29083
thetal03 memory memory 6149 149.9 10| 17687 29483
thetal04 memory memory 8400 215.3 7 timed out
thetal2 timed out 14098 223.7 10 843 16.2 5| 8081 21338
thetal23 memory memory 11733 266.66 8 timed out
thetal62 memory memory 50098 927.74 16 timed out
keller4 3724 66.5 297 6.5 6 52 11 9 244 8586
sanr200-0.7| 4210 107.9 393 9.1 6 52 1.2 7 405 12139

rewrite our SDP problem (1) as
: T
e
subject to 13)

whereC(z) —Cy = A(x). Recall thalU is the corresponding Lagrangian multiplier and

let C*(-) denote the adjoint operator €4-). The DIMACS error measures are defined
as

Ic*(U) = £l

e = ————~———-—

! L+ £l

Amin(U)} { Amin(c(m)co)}

ern, =max 40, ———= err, = max < 0,

’ { L+ |1 ! 1+ [[Col

_fT —

e - {Co) [T €)=y )

L+ [(Co, U)| + [T | L+ [(Co, U)| + |f 7|

Here, erg represents the (scaled) norm of the gradient of the Lagaaners and ery
is the dual and primal infeasibility, respectively, andseand erg measure the duality
gap and the complementarity slackness. Note that, in oue,ced = 0 by defini-
tion; also erg that involves the slack variable (not used in our problemrmigation) is
automatically zero. In the “DIMACS version” of the code wellwequire that (10) is
satisfied withe = 10~* and, at the same time,

err S 5DIMACSa ke {1547576}'
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In the following we will study the effect af,;\4cs ON the behavior of the algorithm.
We have solved selected examples using the codes PEN-PGS(Bthd PEN-A-
PCG(BFGS) with several values &f;,;,cs, hamely

5DIMACS = 10717 10737 1075-

We have tested two versions of the coda@notoneand anonmonoton@ne.

Nonmonotone strategyThis is the strategy used in the standard version of the code
PENSDP. We set, the stopping criterium for the unconstrained minimizatf®), to a
modest value, say0~2. This value is then automatically recomputed (decreasaejw
the algorithm approaches the minimum. Hence, in the firshtilens of the algorithm,

the unconstrained minimization problem is solved very agipnately; later, it is solved
more and more exactly, in order to reach the required acgufde decrease aof is
based on the required accuracgnddnacs- TO Mmake this a bit more transparent, we
set, for the purpose of testing,

a =min{1072, dpinacs} -

Monotone strategy In the nonmonotone version of the code, already the firsttitems
of the algorithm ran withi,acs = 107 differ from the run withdpyacs = 1072,
due to the different value af from the very beginning. Sometimes it is thus difficult
to compare two runs with different accuracy: theoretigalhe run with lower accu-
racy may need more time than the run with higher requiredracguTo eliminate this
phenomenon, we performed the tests with the “monotoneteglyawhere we always
set

a=1077,

i.e., to the lowest tested value &f,;4cs. BY this we guarantee that the first iterations of
the runs with different required accuracy will always beshee. Note that this strategy
is rather inefficient when low accuracy is required: the cggends too much time in the
first iterations to solve the unconstrained minimizatiooljem more exactly than it is
actually needed. However, with this strategy we will besiee the effect of decreasing
dpmiacs ON the behavior of the (A-)PCG code.

Note that fordpmacs = 1072 both, the monotone and the nonmonotone version
coincide.

6.1. Testing PEN-PCGY(

Here we examine the effect of increasing Hessian ill-camwiihg (when decreasing
dpmiacs) ON the overall behavior of the code. Table 6.1 presentsabidts for selected
examples. We only have chosen examples for which the PCGoweo$ the code is
significantly more efficient than the Cholesky-based versi®., problems with large
factorn/m. The table shows results for both, the monotone and nonrapadtrategy.
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Table 8. Convergence of PEN-PCG(BFGS) on selected problems usinmémetone (mon=Y) and non-
monotone (mon=N) strategy. Shown are the cumulated CPU timeconds, number of Newton steps and
number of CG iterations and the DIMACS error measures. 3.2@&mtitm 4 with 1GB DDR400 running

Linux; time limit 20 000 sec.

dpmuacs | mon | CPU  Nwit CG ery erny errs erfg objective
thetad
1.0E-01 Y 33 68 382 2.4E-06 3.3E-03 4.3E-07 6.5E-07 50.32110492
1.0E-03 Y 39 73 573 3.2E-06 4.3E-05 29E-06 4.7E-09 50.32122133
1.0E-05 Y 40 74 580 1.7E-06 3.4E-06 3.1E-06 3.1E-11 50.32122195
1.0E-01 N 18 44 113 2.4E-03 5.0E-03 1.6E-03 3.5E-07 50.32130438
1.0E-03 N 24 55 237 2.0E-05 9.4E-05 4.5E-05 1.2E-08 50.32122357
1.0E-05 N 40 74 580 1.7E-06 3.4E-06 3.1E-06 3.1E-11 50.32122195
theta42
1.0e-01 Y 355 65 333 3.2e-06 1.7e-03 2.8e-07 6.8e-07 23.93165748
1.0e-03 Y 450 71 618 1.8e-06 3.4e-05 5.4e-07 3.2e-09 23.93170806
1.0e-05 Y 521 74 864 1.2e-06 4.6e-06 1.0e-08 9.7e-11  23.93170827
1.0e-01 N 196 40 117 3.2e-03 6.8e-03 9.2e-05 5.4e-06 23.93165748
1.0e-03 N 385 66 459 4.7e-04 2.5e-06 3.6e-06 3.8e-09 23.93170839
1.0e-05 N 521 74 864 1.2e-06 4.6e-06 1.0e-08 9.7e-11  23.93170827
theta6
1.0e-01 Y 212 74 374 2.0e-06 2.9e-03 3.1e-06 7.1e-07 63.47694156
1.0e-03 Y 265 81 657 1.7e-06 5.4e-05 2.6e-06 4.7e-09 63.47708631
1.0e-05 Y 280 83 738 8.1e-06 1.0e-05 5.9e-07 6.9e-10 63.47708706
1.0e-01 N 141 53 173  3.1e-03 2.6e-03 7.2e-04 5.4e-07 63.47717987
1.0e-03 N 240 81 459 89e-04 6.9e-05 4.2e-05 3.0e-10 63.47708743
1.0e-05 N 280 83 738 8.1e-06 1.0e-05 5.9e-07 6.9e-10 63.47708706
cancer-100
1.0e-01 Y | 1165 64 489 1.4e-04 8.5e-03 6.6e-06 7.7e-07 27623.55121
1.0e-03 Y | 1269 69 548 6.3e-04 1.1e-05 4.6e-06 4.9e-11 27623.61311
1.0e-05 Y | 2354 84 2260 1.9e-04 1.6e-07 5.5e-07 5.7e-11 27623.32523
1.0e-01 N 533 32 136 5.5e-01 4.2e-03 8.2e-04 1.1e-06 27625.63374
1.0e-03 N 903 49 389 2.5e-03 2.3e-05 55e-06 4.9e-09 27623.61346
1.0e-05 N | 2354 84 2260 1.9e-04 1.6e-07 5.5e-07 5.7e-11 27623.32523
keller4
1.0e-01 Y 283 67 482 9.4e-06 4.2e-04 5.2e-06 1.3e-07 14.01223772
1.0e-03 Y 302 69 546  4.0e-06 3.5e-05 3.3e-06 4.1e-10 14.01224167
1.0e-05 Y 307 70 560 4.2e-06 3.1e-06 2.5e-06 5.6e-10 14.01224167
1.0e-01 N 152 42 151 2.8e-03 6.2e-03 6.0e-05 9.6e-07 14.01229001
1.0e-03 N 302 69 546  4.0e-06 3.5e-05 3.3e-06 4.1e-10 14.01224167
1.0e-05 N 307 70 560 4.2e-06 3.1e-06 2.5e-06 5.6e-10 14.01224167
hamming-9-8
1.0e-01 Y 92 65 329 2.8e-06 2.1e-04 6.6e-06 2.5e-07 223.9998864
1.0e-03 Y 96 67 359 5.3e-07 3.8e-05 1.1e-06 1.0e-08 223.9999954
1.0e-05 Y 99 68 362 8.3e-07 5.9e-06 15e-06 5.7e-10 223.9999997
1.0e-01 N 68 47 195 1.5e-03 3.2e-03 2.1e-03 7.4e-06 224.0039475
1.0e-03 N 86 55 410 8.1e-06 2.4e-05 8.1e-06 7.0e-09 224.0000032
1.0e-05 N 99 68 362 8.3e-07 5.9e-06 15e-06 5.7e-10 223.9999997

From the table we can conclude two main things: the increasedracy does not
problem); and the non-
monotone strategy is clearly advisable in practice. Tolréhe accuracy of0—>, one
needs about 2—4 times more CG steps thandor . Only for thecancer-100  prob-
lem, the highest accuracy causes problems but, still, tHe can reach it.

really cause problems (up to exceptions—tamcer-100



Large-scale SDP and iterative solvers 27

Note also that the actual accuracy is often 1-2 digits béhi@n the one required,
particularly ford,macs = 1071, This is also due to the fact that the primal stopping
criterium (10) withe = 10~* is still in power.

6.2. Testing PEN-A-PCG(

Here not only increasing Hessian ill-conditioning but dlsdted accuracy of the finite
difference formula effect the codes behavior when increptiie accuracy. Table 6.2
summarizes the results for the same examples as in the pseséation, this time with
the code PEN-A-PCG(BFGS), i.e., with the approximate Hessalculation.
Compared to the version with exact Hessian (Table 6.1) wa saech larger num-
ber of CG iterations in all examples bahmming-9-8 . This goes on account of the
reduced accuracy of the approximate formula. Still in aflesathe code is able to find
the solution within the required accuracy. Furthermore gpeed-up caused by the use
of approximate Hessian is such that, for given accuracypEd-A-PCG code is always
absolutely faster than PEN-PCG, notwithstanding the higbeber of PCG iterations.

7. Conclusion and outlook

In the framework of a modified barrier method for linear SDBigdems, we propose to
use iterative solvers form the computation of the searabction, instead of the rou-
tinely used factorization technique. The proposed algoriproved to be more efficient
than the standard code for certain groups of examples. Tdrages for which the new
code is expected to be faster can be assigned a priori, bagbhd complexity estimates
(namely on the ratio of the number of variables and the sizhetonstrained matrix).
Furthermore, replacing the exact Hessian-vector prodget finite difference formula
using just the gradient, we reach huge savings in the menegyinements and, often,
further speed-up of the algorithm.

Inconclusive is the testing of various preconditionersadpears that for different
groups of problems different preconditioners are recondable. While the diagonal
preconditioner (considered poor man’s choice in the coatpurtal linear algebra com-
munity) seems to be the most robust one, BFGS preconditisrtbe best choice for
many problems but, at the same time, clearly the worst ong¢hi®TRUSS collec-
tion. A new promising direction was shown in a recent artigjeMonteiro, O’Neal
and Nemirovski [16] who propose an adaptive preconditigraeticularly suitable for
extremely ill-conditioned problems. The detailed testidhis preconditioner within
PENNON will be performed in a future report. However, preéfiary tests were quite
promising and so we conclude our article with their results.

The MON (from Monteiro-O’Neal-Nemirovski) preconditionis constructed adap-
tively during the CG process. The preconditioning matmiti@lized as identity) is up-
dated by rank-one updates. The number of these updatesltyploes not exceed the
dimension of the matrix (and can be indirectly controllechlparameter). The rank-one
updates are computed from Hessian-vector products, sontitisod fits perfectly into
our framework. To test our first Matlab implementation ofsthiethod, we saved the
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Table 9. Same as Table 6.1 but for PEN-A-PCG(BFGS)

Spivacs | mon [ CPU Nwt  CG erg erry errs err objective
thetad
1.0e-01 Y 32 80 1410 3.8e-06 3.3e-03 2.6e-08 6.4e-07 50.3211(0500
1.0e-03 Y 47 85 2141 3.3e-06 4.1e-05 1.1e-06 5.0e-09 50.32122130
1.0e-05 Y 48 86 2190 4.2e-06 5.3e-06 2.8e-06 2.5e-10 50.32127193
1.0e-01 N 11 52 380 5.0e-03 9.8e-03 7.3e-04 1.5e-06 50.32152530
1.0e-03 N 18 66 712 6.5e-05 7.1e-05 5.2e-05 4.0e-05 50.32122697
1.0e-05 N 48 86 2190 4.2e-06 5.3e-06 2.8e-06 2.5e-10 50.32122193
thetad42
1.0e-01 Y 70 74 1598 1.8e-06 1.7e-03 4.1e-07 6.7e-07 23.93165793
1.0e-03 Y 129 80 3118 1.2e-06 2.2e-05 1.4e-06 3.6e-09 23.93170804
1.0e-05 Y 163 82 3985 6.0e-06 4.5e-06 6.4e-06 3.1e-10 23.9317(0826
1.0e-01 N 16 41 302 3.6e-03 8.5e-03 6.0e-04 2.7e-06 23.93190516
1.0e-03 N 98 59 2358 3.2e-04 1.6e-06 3.1e-04 24e-09 23.93170841
1.0e-05 N 163 82 3985 6.0e-06 4.5e-06 6.4e-06 3.1e-10 23.93170826
theta6
1.0e-01 Y 96 82 1493 5.1e-06 2.9e-03 1.7e-06 7.2e-07 63.47694000
1.0e-03 Y 134 87 2142 9.7e-06 6.0e-05 3.0e-07 5.4e-09 63.47708625
1.0e-05 Y 194 90 3205 7.7e-06 2.3e-06 3.5e-06 2.8e-11 63.47708718
1.0e-01 N 45 80 552 7.8e-03 2.2e-03 3.3e-04 1.3e-07 63.47723926
1.0e-03 N 70 69 1056 3.2e-05 6.6e-05 3.4e-05 2.0e-08 63.47709031
1.0e-05 N 194 90 3205 7.7e-06 2.3e-06 3.5e-06 2.8e-11 63.47708718
cancer-100
1.0e-01 Y 322 66 764 9.3e-05 8.5e-03 5.1e-06 7.6e-07 27623.46835
1.0e-03 Y 350 71 827 9.6e-04 1.2e-05 5.8e-06 1.7e-09 27623.52935
1.0e-05 Y | 2123 105 6022 1.7e-04 5.5e-10 5.8e-07 4.5e-11 27623.34520
1.0e-01 N 88 32 149 3.6e-01 1.6e-03 4.3e-04 1.7e-07 27625.66861
1.0e-03 N 204 49 451 5.4e-03 6.1e-07 1.5e-05 9.9e-09 27623.36620
1.0e-05 N | 2123 105 6022 1.7e-04 5.5e-10 5.8e-07 4.5e-11 27623.34520
keller4
1.0e-01 Y 70 78 2416 6.2e-06 4.3e-04 14e-06 1.3e-07 14.01223768
1.0e-03 Y 80 80 2751 4.1e-06 3.7e-05 2.7e-06 2.3e-09 14.01224161
1.0e-05 Y 84 81 2903 3.4e-06 3.3e-06 6.6e-07 3.1e-10 14.01224167
1.0e-01 N 13 48 366 6.4e-03 6.5e-03 1.3e-04 1.7e-06 14.01239670
1.0e-03 N 39 61 1266 1.5e-05 6.8e-06 1.5e-05 3.1e-08 14.01224257
1.0e-05 N 84 81 2903 3.4e-06 3.3e-06 6.6e-07 3.1e-10 14.01224167
hamming-9-8
1.0e-01 Y 62 55 101 3.2e-06 1.8e-04 2.2e-06 2.5e-07 223.9998839
1.0e-03 Y 63 56 103 1.4e-06 2.5e-05 4.2e-07 7.3e-09 223.9999967
1.0e-05 Y 65 57 109 5.3e-07 8.0e-06 2.0e-07 1.8e-10 223.9999999
1.0e-01 N 47 44 65 1.0e-05 1.3e-03 3.7e-06 6.9e-07 224.0003052
1.0e-03 N 49 45 68 6.2e-06 6.3e-06 1.5e-06 6.6e-08 224.0000295
1.0e-05 N 65 57 109 5.3e-07 8.0e-06 2.0e-07 1.8e-10 223.9999999

Hessians of several problems at the initial point of Alduritl and at the optimal point
(within our optimality criteria). We present comparisontbé MON preconditioner
with the two general preconditioners, diagonal and SGS atidtiae plain CG method.
We have chosen the same examples as in Section 4 where wetshepectrum of the
matricescontrol3  andtheta? . The results are presented in Figure 11; we plot the
logarithm of the energetic norm of the error, scaled by themof the exact solution.
Looking at thecontrol3  problem at the initial point, we see that the diagonal and
SGS preconditioners are very efficient. The MON method hadaavstart”; these are
the iterations where the preconditioner is being constididdnce it is ready, the conver-
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Theta2, optimal point
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Fig. 11. Comparison of MON with standard preconditioners for proble@mstrol3  at the initial point
(left) andtheta2 at the optimal point (right)

gence rate becomes very high. However, for the purpose eplegision computation,
diagonal and SGS are preferable. A completely differerttipécis seen at théheta2
problem at the optimal point. The standard preconditionglttough better than the
plain CG method, are not particularly efficient. On the otti@nd, the MON precondi-
tioner accelerates the CG method significantly. The (piakny) conclusion is: if the
standard preconditioners are efficient, one should pretantto MON—the precondi-
tioning matrix is known a priori and thus the effect is seemfrthe first iterations. On
the other hand, when the standard methods become inefficieatshould switch to
the MON preconditioner. Within an optimization algorithhik¢ Algorithm 1), one can
think of a hybrid strategy, starting with SGS and switchiodtON when the condition
number of the Hessian becomes too high. Naturally, it regnaigquestion of the true ef-
ficiency of the MON preconditioner, taking into account itstal complexity within an
optimization code (the theoretical complexity may, as Uduatoo pessimistic). This
guestion is to be answered in a future article.
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