FRIEDRICH—ALEXANDE"R—UNIVERSITAT ERLANGEN-NURNBERG
INSTITUT FUR ANGEWANDTE MATHEMATIK

Optimization Problems Aith Equilibrium
Constraints And Their Numerical Solution

by
M. Kocévara € J. Outrata

No. 298 2003

Institut fur Angewandte Mathematik
MartensstraBBe 3
D-91058 Erlangen

Lehrstuhl AM T: Lehrstuhl AM II:
Tel.: ++49/9131/85-27015 Tel.:  ++49/9131/85-27510
Fax: ++49/9131/85-27670 Fax:  ++49/9131/85-28126

internet: http://www.am.uni-erlangen.de

ISSN 1435-5833, 2003, No. 298



Mathematical Programming manuscript No.
(will be inserted by the editor)

Michal Kotvara- Jifi V. Outrata

Optimization problemswith equilibrium constraintsand
their numerical solution

Received: date / Revised version: date

Abstract. We consider a class of optimization problems with a generalized equation among the constraints.
This class covers severa problem types like MPEC (Mathematical Programs with Equilibrium Constraints)
and MPCC (Mathematical Programs with Complementarity Constraints). We briefly review techniques used
for numerical solution of these problems: penalty methods, nonlinear programming (NLP) techniques and
Implicit Programming approach (ImP). We further present anew theoretical framework for the ImP technique
that is particularly useful in case of difficult equilibria. Finally, three numerical examples are presented: an
MPEC that can be solved by ImP but can hardly be formulated as a nonlinear program, an MPCC that cannot
be solved by ImP and finally an MPEC solvable by both, ImP and NLP techniques. In the last example we
compare the efficiency of the two approaches.

1. Introduction

Asearly asin 1934 mathematicians were confronted with an optimization problem, the
feasible set of which was a subset of the minimizers to another, lower-level optimiza-
tion problem. This was the famous Stackelberg game ([55]). Stackelberg games play
now an important role in economy, design of mechanical structures and other appli-
cation areas; see [11]. If the lower-level problem happens to be a convex program, it
can be replaced (under a constraint qualification) by a variational inequality or a gen-
eralized equation (GE) ([47]). But in this way one can also describe equilibria that are
not related to optimization problems. This is, for instance, the noncooperative (Nash)
equilibrium or Wardrop's user equilibrium. The obtained problem isthus called Mathe-
matical Program with Equilibrium Constraints, or MPEC, a terminology introduced in
[22] and nowadays widely used in the literature. In the course of time, the number and
the complexity of equilibrium problems increased. What is more, a new class of prob-
lems appeared with a different meaning of variables (the control variable is not present
as opposed to standard MPECS).

In the next section we propose a simple classification and a partially new terminol-
ogy which takes these phenomenainto account. It is based on the description of equi-
libria via suitable GEs; this description can cover a mgjority of cases considered in the
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literature so far (it does not cover, e.g., bilevel programs with nonconvex optimization
problems on the lower level).

At present, plenty of rather different techniques are available to the numerical solu-
tion of MPECs, many of them tailored to problemswith aspecia structure[3,10, 20, 26,
31]. When aiming to solve a broader class of problems, one can recognize at least three
main approaches ([33,42,11]): (i) penalty approach, where the equilibrium constraint is
either converted to a (smooth) equation or augmented to the objective via a suitable er-
ror bound; (ii) implicit programming approach (ImP), where one treats the equilibrium
constraint via a generalized Implicit Function Theorem; (iii) piecewise programming
approach, based on the combinatorial structure inherent in many equilibria.

All the above techniques can be coupled with various standard optimization meth-
ods, the result of which are concrete methods and algorithms. For instance, the piece-
wise programming approach connected with the standard sequential quadratic program-
ming (SQP) method gives rise to the PSQP method; see [33]. Recently, in case of
equilibria governed by complementarity problems, elaborated SQP codes have been
successfully applied directly to the nonlinear programming (NLP) formulation of the
respective MPEC. And it seems that also other NLP methods could lead, in the same
way, to effective MPEC solvers. So one can speak of an NLP approach. In Section 3
we briefly discuss the penalty approach and pay more attention to the ImP and NLP
approaches.

A combination of ImP with a bundle method of nonsmooth optimization enables us
to handle MPECs with very complex equilibria. The computation of subgradient infor-
mation, required by the bundle method, becomes then a difficult task that is not always
easily tractable by the technique from [42]. Hence, in Section 4 we propose an aterna
tive technique, based on the generalized differential calculus of B. Mordukhovich.

Section 5 contains three examples coming from mechanics. They illustrate the ap-
plication areas and the effectiveness of both, the ImP technigque combined with aclassic
bundle code [54] and the NL P approach, here tested with several SQP and one interior
point code. It seemsthat these two approaches, combined with proper a gorithms, create
an efficient and versatile tool to the numerical solution of abroad class of optimization
problems with equilibrium constraints.

The following notation is used: ' is the ith component of a vector z ¢ IR", IR
is the extended real line and IR’} denotes the nonnegative orthant of IR". E is the
unit matrix. For an [m x n] matrix A and anindex set I C {1,2,...,m}, A; isthe
submatrix of A with rows specified by I. Furthermore, 64 isthe indicatrix of a set A,
epi f isthe epigraph of afunction f and df(x) denotes Clarke's subdifferential of f
a . If f isvector-vaued, 9f(x) denotes Clarke's generalized Jacobian of f at x. For
amultifunction Q[IR™ ~~ IR™], GphQ = {(z,y) € R x R™ | y € Q(x)} and
KerQ={x € R"|0€ Q(x)}.

Finally, we define basic objects from the generalized differential calculusof B. Mor-
dukhovich, used extensively in Section 4. Consider aclosed set IT C IRP.

Definition 1. (i) The Fréchet normal coneto I7 at @, denoted Ny, (@), isgiven by
o~ . (v,a —a)
Np(@) ={v € RP | limsup —*

I _

a—a

}<0.

lla —al
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(i) The limiting normal coneto IT at @, denoted N7 (@), is given by

Npr(a) = limsup Ny (a),

7 _
a—a

where* lim sup” istheupper limit of multifunctionsin the sense of Kuratowski-Painlevé;
see[2].

Definition 2. Let ¢[IRP — IR] be an arbitrary extended real-valued function and a €
dom . The set

9p(a) :={a” € R?|(a”, —1) € Nepiy(a, p(a))}
is called the limiting subdifferential of ¢ at a.

Definition 3. Let ¢[IR? ~~ IR?] be an arbitrary multifunction with a closed graph and
(a,b) € Gph .
(i) The multifunction D*®(a, b) [IR? ~~ IRP] defined by

D*®(a,b) (b*) := {a* € R”|(a*,—b*) € Napna(a,b)}, b* € R
iscalled the regular coderivative of @ at (a, b).
(ii) The multifunction D*®(a, b) [IR? ~ IRP] defined by

D*®(a,b) (b*) := {a” € RP|(a”,—b") € Ngpha(a,b)}, b" € R?

is called the coderivative of ¢ at (a, b).

2. Problem classification

The general optimization problem considered in this paper takes the form
min f(z) (MPGE)
subject to
0€ F(2)+Q(2)
z €2,
where z € IR®, f[IR® — IR]) and F[IR® — IR?] are assumed to be continuously differ-
entiable, Q[IR* ~ IR?| hasaclosed graph, and 2 C IR* comprisesall other constraints
imposed on z. We will call this problem Mathematical Program with a Generalized

Equation Constraint (MPGE).
The constraint given by the generalized equation

0€ F(2) +Q(z), (2)

typically describes some (mechanical, economic) equilibrium and we will often refer to
it asto equilibrium problem.
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MPGE contains two distinct classes with a completely different background. In
the first one, the variable z splits into two vectors, the control or design variable and
the state variable. We want to find a feasible control-state pair that is optima from
a certain point of view. These problems are typical in shape optimization, control of
technol ogical processes, and in certain economic models[33,42,11]. Inthe second case,
we only want to identify a specific solution of the equilibrium problem; there is no
control variable here. We can meet this kind of problems in economic and mechanical
models; see Section 5.2.

These two cases can be formally distinguished by the dimensions s and d.

Casel: s > d, inpaticular, s = n + m and d = m. Here z can be written as
z = (z,y),x € R",y € IR™, where z and y play the roles of control and state
variables. This is the case that is known as Mathematical Program with Equilibrium
Constraints or MPEC; see [33,42]. In the rest of the paper, we will frequently refer to
this problem; let us thus specify it together with its dimensions as follows:

min f(z,y) (MPEC)

z,y
subject to
0€ F(z,y) +Qz,y)
(z,y) € 2
where
xe€R", ye R", F[R" x R™ — IR™], Q[IR" x R™ ~~ IR™].

Casell: s = d. Inthis case we have just one “natural” variable z and try to identify
a specific solution of the generalized equation (1). We will call this problem Square
Mathematical Program with Generalized Equation Constraint, shortly SVIPGE, and z
the decision variable. Again, let us write down this particular form of MPGE together
with its dimensions:

min f(2) (SMPGE)

subject to
0€ F(2)+Q(2)
z €2
where
z € R®, F[IR® — IR°], Q[IR® ~ IR’].

Besides the above two cases, MPGE also covers other problems, for instance, those
in which the range space of F' and @) has a smaller dimension than s, but z cannot be
partitioned into a control-state pair.
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2.1. Special cases

Both problems, MPEC and SMPGE, can be further divided into subclasses, depending
on the specific form of the generalized equation (equilibrium problem). Below we list
some of the most important ones.

2.1.1. Complementarity problem Assumethatin (1)
Q(2) = Nps (21),
where z; € IR? is a subvector of z. The GE (1) then corresponds to a nonlinear com-
plementarity problem (NCP)
F(2) 20, 21 20, (F(2), 21) = 0. )
For MPEC we have z = (z,y) with z; = y and
Q(z,y) = Nga (y).-

The equilibrium problem then corresponds to an NCP in variable y depending on a
control variable x:
F(z,y) 20,y >0, (F(z,y), y) = 0.
In case of SMPGE, we smply have z; = z.
In both cases (MPEC and SMPGE), we call the resulting problem Mathematical
Program with Complementarity Constraints or MPCC. Since many numerical methods
aretailored to its solution, we will pay special attention to this problem in Section 3.

2.1.2. Variational inequality Thiscasewill only be considered for MPECs. Letin (1)
Qly) =9J(y),

where J[IR™ — IR] islower semicontinuous (I.s.c.).
We further distinguish several subcases.

(i) Let J =94 withaclosed convex set A C IR™,i.e,

9J(y) = Na(y) -

In this case the GE (1) corresponds to an z-dependent variational inequality (V1) of

the first kind:
Find y € A such that }

(F(z,y),v—y)>0 foradlveA 3
(ii) Let J = J; + 04 with aconvex continuous J; [IR™ — IR] and a closed convex set
A C IR™. Then one has
9J(y) = 0J1(y) + Na(y) -

Now the GE (1) corresponds to an z-dependent variational inequality of the second
kind:
Find y € A such that }

(F(z,y),v—1y)+ J1(v) — J1(y) >0 fordlve A. “)
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(iii) Assumethat J isgenerally nonconvex. The GE (1) isthen related to an x-dependent
hemivariational inequality (HV1):
Findy € IR™ such that
(F(z,y),v—y)+ > J°(y;v—y) >0 foralve R™ ®)
=1
as introduced by Panagiotopoulos [44] (here J°(a;b) denotes Clarke's directional
derivative of J at a indirection b [9]). The HVI (5) is actually equivalent to the GE

0€ F(x,y)+dJ(y).

2.1.3. Variational inequality with control dependent A Here we again consider only
MPECs. Letin (1)

Q(z,y) = Na@) (y) - (6)
Assume further that, for any = from a certain subset of IR™, A(x) is given by asystem
of equations and inequalities:

A($):{<6Rm | hi(x’é—):o’ 7;:17“';017 97(1.7C) Sovjzla"on}v (7)

with k%, i = 1,...,01, affine in the second variable and twice continuously differ-
entiable and ¢%, i = 1,..., 09, convex in the second variable and twice continuously
differentiable. Suppose that for all admissible x the Slater constraint qualification is sat-
isfied, i.e., thereexistsi € IR™ suchthat % (x,m) = 0,i = 1,...,01,and ¢’ (z,7) < 0,
j=1,...,00. Thenfor eachn € A(x) onehas (see[2])

01

02
Ny (n) = {Zu Vo h'(z,m) + > X'V, g'(x,n) | p€ R, X € R,

i=1 i=1
)\lgl(x,n)zo’ izla"-a02}7

and, with the map

L(x,n, 1, A) == F(z,m) + Y p' Vo hi(z,n) + > X'V, g'(z,m),

i=1 i=1

we can write the GE (1) in the “expanded” form

L(x,y, 1, \) 0
0¢€ H(z,y) + 0 ] (8)
Gley) | | N

with H(n) := [a'(n), ..., h* ()] and G(n) = [¢' (1), .-, g% (m)]"

The GE (8) hasasubstantially simpler multi-valued part in comparison with (6). The
priceis, however, also high: instead of the original state variable , we now have to work
with thetriple (y, 1, A). Nevertheless, sometimes this extension may be advantageous,
asit enables us to work with objectives f that depend also on the “multipliers’ p, A.
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2.1.4. Equilibria given by fixed points, quasivariational inequalities Toillustratethis
complex class of equilibria, consider an MPEC with @ given by a composition

Qy) = »(y) ®dJ(y), 9

where p[IR™ — IR™] isasmooth map, J[IR™ — IR] isagain |.s.c. and convex, and
“e" denotes the Hadamard (componentwise) product of vectors.

Such astructure can be encountered, e.g., in the discretized two-dimensional contact
problemswith Coulomb friction; see[6]. The state of the ith node on the contact part of
the boundary is described by the triple (uf,u, \?), where A\ isthe normal stress and

ul, u? isthe tangential and the normal displacement, respectively. The associated part
of Q attains the form

AL O |
so that the appropriate Cartesian product of Q° has exactly the form (9) with y :=
(ur,uy, A,). The fixed point nature of this equilibrium is reflected by the coupling
in (10): the normal stress \!, arises as a parameter in the term ! d|u? | which isrelated

to the tangential dlip of the ith node. In Section 5.1 we report about numerical solution
of such an MPEC.

3. Solution methods

It is not the purpose of the paper to give an exhaustive overview of solution methods for
MPECs and SMPGEs; we refer the reader to monographs [ 33,42, 11] and the annotated
bibliography [12]. Instead, we summarize three basic approaches to the solution of
MPGEs and point out two methods that, currently, seem to be the most efficient ones.

The first two approaches try to reformulate the original problem in such away that
it (or its approximation) can be solved by standard NL P software. The techniques used
here are typically based on penalization, relaxation, or smoothing of the original prob-
lem or its reformulation. In the following we will speak of penalty approach, whenever
some penalty term will be added to the objective function f. All other techniques are
called NLP reformulations.

The third technique, used for MPECS, is based on a generalized Implicit Function
Theorem. The origina problem is here rewritten as a standard, albeit nonsmooth and
nonconvex, mathematical program.

3.1. Penalty approaches

One possible way how to deal with the equilibrium constraint is to replace the GE (1)
by the equation G(z) = 0, where GG is a suitable “gap” function. For the NCP (2) we
may use, for instance, the so-called NCP functions

G1(z) := min{F(2), 2z} (componentwise)



8 Michal Kotvara, Jifi V. Outrata

or
D(F(2), 21)

Ga(z) == with  &(a,b) := Va2 + b — (a +b);
D(F*(2), 2f)
see, e.g., [32]. Such a gap function can be then added to the objective f in form of a
penalty. Some gap functions lead, under certain conditions, even to exact penalties. This
isrelated to the theory of error boundsin mathematical programming ([34,57,41]). Let

& be the set of (local) solutions to MPGE and 2 € £. Further assume that to a gap
function G there exist aneighbourhood O of Z and apenalty parameter v > 0 such that

diste (2) < 7||G(2)|| fordlze ON Q.

Then we say that G generates a (local) Lipschitzerror bound for the GE (1) near 2 with
respect to 2 ([45]).

Consider the (MPGE) with equilibrium problem given by NCP (2). For z € IR®
define the index sets

L(z):={ie{l,...,d} | zr >0}
Ii(z):={i€{l,...,d} | F'(2) > 0}
In(z) :={1,...,d}\ (L(z) UIi(2)).
It can be shown that the gap function G; generates alocal Lipschitz error bound near
the solution 2 with respect to 2, if there are no nonzero vectors u, v € IR? such that

fori € Lonehasu® =0
fori € I, onehasv! =0
fori € Iy onehaseither u'v* =0 or uw'<0 and o' >0

and

{q(ﬂ — (VF(2)" v € —No(%);

see[40, Thm. 3.1] and [43, Lemma 2.2]. This condition guarantees the Aubin property
(see, e.g., [50]) of the map

r—{ze N |r+Gi(z) =0}
around (0, ) which, in turn, means that we compute # by solving a penalized problem
min f(2) +7]1G1(2)]

subject to
z €82,

whenever we start sufficiently closeto 2 and v > 0 is sufficiently large (but finite).
The exact penalizationin MPECsisaso studied in detail in [51] and [53], wherethe

authors use results from the analysis of piecewise differentiable functions. In this ap-

proach the equilibrium constraint is written in the so-called normal equation form (see
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[49]) and one works with a specia “nonsmooth” Mangasarian—Fromowitz constraint
qualification ([29]). This approach again leads to optimality conditions and a numerical
method.

The Penalty Interior Point Algorithm (PIPA) of Luo, Pang and Ralph [33] is an
SQP like iterative method that aimsto stay strictly feasible with respect to the inequal-
ity congtraints in the NCP (2). At each step, one solves a quadratic program to get
a search direction. A line search in this direction is performed with the goal to stay
strictly feasible and to sufficiently reduce the penalty function (for equilibrium problem
given by NCP (2))

f(2) +2(F(2), z1)

with a penalty parameter ~ that is updated in every iteration. It was shown in [30],
however, that PIPA can converge to a non-stationary point, for certain problems.

3.2. NLP reformulations

Many authors proposed various reformulations of (MPGE) as a smooth nonlinear prob-
lem and tried to solve this problem (or sequence of problems) by NLP methods like
SQP. Since these techniques are mainly connected to MPCC, let us consider only these
problemsin the rest of this section.

Note first that MPCC of the type

wmin /(2) (11)
subject to
hi(z)=0, i=1,...,0
g'(2) <0, i=1,...,00
F(z)>0, z1>0
(F(2), 21) =0
isan NLP as such. (As before, b, i = 1,...,01, and ¢*, i = 1,..., 0y, are assumed

to be twice continuously differentiable.) Unfortunately, as shown in [8], Mangasarian—
Fromowitz constraint qualification (MFCQ) for this problem is violated at all feasible
points, and thus we may expect serious difficulties when trying to solve (11) directly by
standard NLP algorithms.

Several techniques have been proposed to cope with this hurdle. The most obvious
one is to replace the complementarity constraint in (11) by (F'(z), z;) < 7 with some
7 > 0, and solve a sequence of problems with 7 — 0. This approach was analyzed in
[51]; see dlso [16].

Another option isto replace the complementarity constraints by a nonsmooth equa-
tion (as in the previous section) and use a smoothing technique. Facchinei et a. [15]
propose to use a smoothened min-function

Gr(2) = /(Fi(z) — )2 + dr — Fi(z) — 2} =0



10 Michal Kotvara, Jifi V. Outrata

with 7 > 0. Under some assumptions, they prove that the resulting NLPs possess
nonempty and compact solution sets and the respective Karush-Kuhn-Tucker vectors
exist. They further proposed and analysed several algorithms based on different choices
of the sequence of smoothing parameters .. An alternative technique, proposed by Jiang
and Ralph [25], uses the smoothened Fischer-Burmeister function

Gy (=) = /(FI(2)2 + ()2 47— Fi(2) - 24 = 0.

Again, one solves (inexactly) a sequence of NLPs with 7 tending to zero. The authors
further propose to treat 7 as a variable and add an equation e” — 1 = 0 to the NLP in
order to ensure that, at the optimum, 7 = 0.

Finaly, let us introduce a technique that, numerically, seems to be the most effi-
cient one within this class. Consider again the MPCC problem (11) and replace in the
complementarity constraint equality by inequality:

min f(2) (12)
subject to

Ri(z) =0, i=1,...,01

g'(2) <0, i=1,...,0

F(z)>0, 2r>0

Now solve this problem directly by an NLP code. Obviously, the new problem is equiv-
alent to (11) and thus still does not satisfy MFCQ. However, numerical experiments
performed independently by Anitescu [1] and Fletcher and Leyffer [18] showed that
some SQP methods perform very well on many MPCC problems. Fletcher and Leyffer
[18] report on results of three SQP codes, namely their own code FilterSQP, KNITRO
[7] and SNOPT [21], on a collection of 137 MPCC problems. Two of these codes fail
to find a solution only in 5 and 7 cases, respectively. Fletcher et al. [19] analyze under
which conditions SQP methods applied to MPCC converge. The consequence of MFCQ
not being satisfied is the unboundedness of the Lagrangian multipliers. It is shown in
[19] that there exists a so-called basic multiplier vector; the multiplier set isthen aray
whose base is this basic multiplier vector. And SQP methods are shown to converge
quadratically to the basic multiplier, provided all QP subproblems remain consistent.
But another consequence of the failure of MFCQ is the fact that any QP subproblemin
SQP may be inconsistent. Anitescu [1] showed the importance of the elastic mode, im-
plemented in some SQP codes (e.g., in SNOPT). This consistsin modifying the NLP by
relaxing the constraints and adding a penalty term to the objective function. SQP with
elastic mode converges globally for problems (12) [1]. Another way how to cope with
the QP inconsistency isto relax the linearization of the complementarity constraints, as
adopted in FilterMPEC together with the so-called restoration mode [18].

In their paper, Fletcher and Leyffer [18] also report on results of the primal-dual
interior point code LOQO [56]. Compared to the SQP codes, these results are not very
satisfactory as LOQO fails in 20 instances. Benson et a. [5] analyze these failures
and propose remedies. They show that by careful handling of the slack variables, by
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proper initialization of the slacks, and by special treatment of problems with unbounded
multipliers, they can get much better behaviour of LOQO than as reported in [18]. They
further show (as also suggested in [18]) that the failure of LOQO is usually not due to
failure of MFCQ but to other reasons, like unboundedness of the feasible set or rank-
deficiency of the problem.

Let uslist the main advantages and disadvantages of the NLP approach.

+ Theapproachissuitablefor all MPCCs, i.e., also for those belonging to the SMPGE
class. When solving MPEC-MPCC, no uniqueness of the equilibrium problem is
needed (opposite to the ImP technique discussed below).

+ The NLP approach can directly handle state constraints (unlike the ImP technique).

+ There are severa well-developed, robust and sophisticated NLP codes, both aca-
demic and commercia. Also, MPCC problems allow for formulations using tools
like GAMS or AMPL. In thisway, one can easily generate new problems and solve
them using standard codes.

On the other hand,

— The fact that the NLP approach works on Cartesian product of the variables (for
MPEC problems) prevents from using special solvers for the equilibrium problems
(finite element solvers, multigrid, etc.). Both variables, control and state, are treated
inthe sameway and any structurein the problem isignored (in the current methods).

— The NLP approach is limited to MPCC problems and cannot be used for general
MPECs.

In the rest of the paper, we will refer to the latter technique (direct solution of (12)
by NLP software) asto NLP technique or NLP approach.

3.3. Implicit programming approach (ImP)

This approach is naturally connected with the MPEC problem class. Let 2 = w x IR™,
where w is a set of feasible controls. The basic idea is to define a solution map of the
equilibrium problem: amultifunction S[IR™ ~~ IR™] that assigns each control variable
x € w aset S(z) of solutions to the equilibrium problem (viewed as a problem in
variable y with a parameter ). Assume that for each pair (z,7) € (w x IR™) N Gph S
there exist neighborhoodsi/ of z, V of y and afunction o[t/ — IR™| suchthaty = o(7)
and S(z) NV = {o(z)} for dl € U. In such a case, we can write (MPEC) as the
following optimization problem:

mén@(x) = f(z,0(z)) (13)

subject to

rTEW.

Obvioudly, this approach cannot be used for SMPGE problems, asit is based on the
existence of acontrol variable. If y is subjected to an additional constraint

yerCR™,
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we cannot handle it directly by ImP. Instead, this constraint is usually treated via a
penalty term added to the objective ©. Thisisrelated to the so-called calmness property
([50]) of the constraint system

T Ew, o(x) €k

and will not betackled in the sequel. Instead, wewill concentrate on anumerical method
for solving (13) that proved to be rather efficient in a number of MPECs.

In fact, anumber of minimization techniques can be used to solve (13) numerically;
the choice depends mainly on the properties of the composite objective . Each of these
techniquesis connected with some additional assumption on the problemdata(f, S, w).
For instance, the method of Han et al. [46] proposed in [33] to the solution of (13)
requires f to be continuously differentiable and o locally Lipschitz and directionally
differentiable.

The bundle method proposed in [42] requires © to be locally Lipschitz and weakly
semismooth [54], which has to be translated into conditions imposed on f and o.
Additionally, w must be given by affine equalities and inequalities. The weak semi-
smoothness of © is ensured, provided f is continuoudy differentiable and o isa PC!-
mapping [52]. This situation occurred in most problems that were analyzed and numer-
ically solved in [42]. If & does not happen to be PC!, the weak semismoothness of ©
must be verified by analyzing the particular MPEC in question.

A typical bundle code [24] needs at each iterate x;,

— thefunction value O (xy,)
and
— one element (subgradient) of Clarke's subdifferential 00 (x3,).

The computation of the function value is straightforward: for a given control z*, one
solves the equilibrium problem and plugs the solution into f. The critical point of the
approach is the computation of the subgradient and we will discussit thoroughly in the
next section.

As in the NLP case, we list the main advantages and disadvantages of the ImP
approach.

+ Clearly, from the computational viewpoint, the biggest advantage isthat we separate
the control and the state variable. Very often, MPEC modelsarea -world problemin
which the two variables play acompletely different role. They may also differ inthe
dimension: while the dimension of the state variable may be very high (typical for
problems coming from finite element discretization), there may be only few (5-50)
control variables. Computationally the most demanding part is then the solution of
the state (and adjoint) problem for a given control. But since the variables are sepa-
rated, one can use special codes developed for efficient solution of the state problem
(like black-box finite element solvers based on multigrid or domain-decomposition
methods).

+ It turnsout that problem (13) if often very well structured for the use of bundle-type
methods. These methods are particularly efficient for
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o difficult nondifferentiable problems when we can only compute one arbitrary
subgradient. This is our case: the nonsmoothness comes from the nonsmooth
dependence of the solution of the equilibrium problem on the control variable
and it may be extremely time consuming to compute the full subdifferential;

o problems with relatively few variables, say, up to 100. Again, this is often the
case; see the above point.

On the minus side we have the following points:

— Theloca single-valuedness and the Lipschitz continuity of .S is certainly arestric-
tive assumption.

— When the number of control variables becomes high, the existing codes of nondif-
ferentiable optimization may become inefficient. For very difficult problems, the
codes may not be robust enough, even for smaller dimensions.

— TheImP approach cannot handle state constraints directly. Typically, they aretreated
by penalty terms added to the objective function in (13).

— Theapproach is naturally limited to MPEC problems and cannot be used for solving
SMPGEs with no control variables.

— In case of complicated equilibria, the computation of Clarke's subgradients of ©
may be a difficult task. The next section is devoted to this particular problem.

4. Computation of subgradientsfor ImP

So far, in al papers dealing with ImP in connection with bundle methods, the subgradi-
ents needed by the method were computed via generalized Jacobians of the respective
selection o of S. In fact, one exactly follows the definition of the generalized Jacobian
([9])- When dealing with complex equilibria, like the three-dimensional contact prob-
lem with Coulomb friction or a HVI, this technique is not very handy. As a plausible
aternative, one can employ the generalized differential calculus of B. Mordukhovich
which isricher and deeper devel oped than its Clarke counterpart. This fact represents a
significant advantage, particularly in caseswhen @) is not just the normal cone mapping
of asimple set (Paragraphs 2.1.1, 2.1.3) but has a more complicated structure. Using
the Mordukhovich calculus, one can also easily derive conditions ensuring that the com-
puted vectors are indeed Clarke's subgradients (see conditions MF1, MF2 in [42]). In
this section we will briefly explain how this alternative computation of subgradients can
be performed.
Consider first an equilibrium governed by the GE

0¢€ F(x,y) +Q(z,y), (14)

with the dimensions as specified in the Section 2. Recall that F' is continuously differ-
entiable and ) has aclosed graph. Assume that (Z, ) is areference pair, feasible with
respect to (14), and put z := — F (T, 7).

The next statement concerns the properties of the respective solution map required
by ImP.
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Theorem 1. Consider the solution map S[IR"™ ~~ IR™] given by (14) and assume that
it is locally single-valued around (Z,%). Additionally suppose that the qualification
condition

(%) e (VF(@,9)" v+ D" Q,7,7) (v) = {i*:oo (15)

is fulfilled. Then the (unique) selection o of S, passing (z, ), is Lipschitz on a neigh-
borhood of Z.

Proof. Condition (15) implies the Aubin property of .S around (Z,%); see [37, Thm.
4.3]. Since S iseven locally single-valued around (Z, ), the result follows.

As f iscontinuously differentiable then, under assumptions of Theorem 1, one has
00(x) = V. f(7,7) + (90(2))" V, f(.7) (16)

due to the Chain Rule | of [9]. Since D*S(z)(y*) C (9o(z))Ty* for dl y* € R™
([35]), each vector from the set D*S(7)(V, f(Z,7)) leads to avector from 0O (Z).

Theorem 2. (i) Let (z*,7) € IR™ x IR™ be a solution of the GE

[—fo(f, y)} € (VE@.5) v+ E*Q(f; 7, Z) (v). (17)

Then one has
T € D*S(T)(V, f(T,7)).

(i) Lettheassumptionsof Theorem1 be satisfied. Thento eachz* € D*S(z)(V, f(Z,7))
there exists a vector v € IR™ such that

x* — —_\\T * — — —
[—Vyf(f, y)} € (VF(z,9)) v+ D*Q(Z,7,%) (v). (18)
Proof. The GE (14) can be rewritten to the form
x
®(r,y) € GphQ  with d(z,y) = y
so that, by Definition 3,
D*S(@)(y") ={=" € R" | (¢",—y") € No-1(cpn@)(T,9)} -
Since Ng-1(Gph @) (Z,y) = 0(dapn @ (P(z,y))), we have to do with a composition of

aproper |.s.c. function and a smooth map. The statements (i) and (ii) follow now from
[50, Thm. 10.6].
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By comparing (17) and (18), one observes that

D*S(z)(Vyf(z, 7)) ={7" € R" | 3v € IR™ such that (z*,7) solvesthe GE (18)}
(19)
whenever Gph @ isregular a (Z,7, z). The GE (18) is called adjoint generalized equa-
tion (AGE).

In some cases Gph @ is not regular at (Z,y) and the GE (17) is difficult to solve.
Then one can try to enforce the equality in (19) by some finer, problem-dependent
assumption. Nevertheless, for a large class of equilibria a standard bundle method
will deliver an acceptable solution even in the case when it is supplied by vectors
V. f(Z,7y) + * with z* from the right-hand side of (19), Gph @ being regular or not.
Such a solution, however, is not necessarily an approximation of a Clarke stationary
point, but of a point which is stationary in aweaker sense; see [11].

Another hurdleisassociated with the solution of the AGE (18). Our goal isto choose
such a selection of the multifunction D*Q(Z, v, z) that will reduce (18) to an easily
solvable system of equations. By means of aconcrete equilibrium, wewill now illustrate
how this goal can be achieved.

Example 1. Consider the GE (14) with
Q(z,y) = Nry (y — 2(2,9)), (20)

where$[IR" x IR™ — IR™] iscontinuoudly differentiable. This GE describesacontrol-
dependent Implicit Complementarity Problem (ICP). In [42] this GE was converted to
an equivalent “expanded” form

0e E(—x?ﬁgxfyﬂ * [ngm] @1

with an additional state variable A € IR'". This reformulation enables us to apply the
standard approach using generalized Jacobians. The essential requirement, discussed at
the beginning of this section, can then be ensured via Robinson’s strong regularity [42,
Theorem 5.10]. The approach proposed here can be, however, directly applied to the
original (non-expanded) GE.

Let us define the following index sets associated with the reference pair (z,7):

Lemma 1. Assumethat the matrix (—V,®(z,7), E—V,®(Z,y)) hasfull rowrank and
v isa vector from IR™ such that v* = 0 for i € I (z,%). Then, for the multifunction
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(20), one has

D*Q(T,7,%) (v) = {[u _((vvééfxy;))) ] | u' = 0fori € L(7,7),

u' € Rforie I (Z,7)
‘ R ifvt=0
and, for i € Io(%,7),u’ € <IR ifvi<0 3. (22
0 otherwise

Proof. Definethefunction 7[[R™ x IR™ x IR™ — IR™] by
e i p

u

The one has
GphQ = ¥~ (Gph Npr)

and, like in the proof of Theorem 2,
Naph (7,7, 2) = 00— 1(Gph N )(Z,7, %) 23(5Gth,R$ (W(f,?ﬁ)n .

By virtue of [50, Ex. 10.7]

—(V.2(z,79))" 0

- (Vy2(x,9))"
0 E

0 (o Ny (P(T.7,2))) = | B Nooh Ny (7~ (7. 7). %)

due to our surjectivity assumption. Conseguently, by Definition 2,

D Qw50 = { |, Tt | 1o e 0Ny - 2w 20}

Asshownin[43, Lemmaz2.2], the coderivative D* N (y—(, ), Z) (v) isnonempty,
provided v* = 0 for i € I, (,%). Moreover, for such vectors v, one has

D*Niy (7 - 2(3.9),%) (v) = X D*Ng, (7' - #(7.7).7') (v
and
0 forie L(z,y)U{jc l(z,y)]|v >0}
D*Ng, (7' —9'(7,7),7") (v') = ( R forie I.(z,5) U{j € [o(z,7) | v/ = 0}
R_forie {jely(z,y)]|v <0}
The result has been established.

In this example, the AGE (18) reduces to a particularly simple form when we put
u® = 0 fori € Iy(Z,y). It can be solved in the following two steps:
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1. Solvethe linear system

[(VZ/FLUIO (E7 y))T E}; - (qu51+ (fa ?))T} w = _vyf(fv y)
invariablew € R™. (23)
2. Put
o = [(VoFrun(@.9))" ~(Va?r,)@,9)" | w. (29)

The nonsingularity of the matrix on the left-hand side of (23) followsimmediately from
the qualification condition (15). Under this condition, system (23) has aunique solution
and the respective vector z*, computed in the 2nd step, belongs to the set on the right-
hand side of (19).

Formulas (23), (24) coincide with those derived in [42] via generalized Jacobians
under Robinson’s strong regularity condition (see below) imposed on the expanded GE
(21) &t (7,7, )\), A = —Z.

Consider now an equilibrium governed by the GE

0€ F(x,y)+ Qy), (25)

where Q mapsthistime IR™ into subsets of IR™. Again, we suppose that ' is continu-
oudly differentiable, ) hasaclosed graph, (z,7) isareference pair andz = —F (T, 7).
In this case, the situation is slightly easier and most formulas can be significantly sim-
plified.

For GEs of the type (25), the existence of alocally unique Lipschitz selection o of
S, passing thereference point (z, 3), is usually ensured via Robinson’s strong regularity
condition, see [48] and [13].

Definition 4. We say that the GE (25) fulfils the Strong Regularity Condition (SRC) at
(Z, ), provided the multifunction

X(€):={ye R™ | F(z,y) + V,F(Z,7) (y —7) + Qy)}
islocally single-valued and Lipschitz around (0, 7).
The other possibility consists in a suitable modification of Theorem 1.

Theorem 3. Consider the solution map S given by (25) and assume that it is locally
single-valued around (7, ). Additionally, suppose that the qualification condition

0€(VyF(xy) v+ D'Q@.2) (v) = v=0 (26)
is fulfilled. Then the assertion of Theorem 1 remains true.

Proof. The map S can be equivalently written in the form

S(z) = {y e R™ | (_Féfw)) € Gph Q} , 27)

so that [35, Theorem 6.10] can be applied. By virtue of this result, condition (26) en-
suresthat for al y* € IR™

D*S(z,9) (y*) € {(VoF(@.9) v | 0 € y* + (V, F(z,7)) v + D*Q(7,2)(v) } -
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Moreover, again by (26), D*S(z,7) (0) = {0}, which is equivalent to the Aubin prop-
erty of S around (Z,7) ([36]). The statement thus follows from the assumed local
single-valuedness of S around (z, 7).

The relation between the strong regularity and the assumptions of Theorem 3 is
clarified in the next statement.

Theorem 4. Let the GE (25) fulfil (SRC) at (z, 7). Then the assumptions of Theorem 3
are satisfied.

Proof. Thelocal single-valuedness of .S around (Z, ) follows directly from [13]. Thus
it remains to prove only the implication (26). Since X islocally single-valued and Lip-
schitz around (0, ), one has ([36])

D*X(0,7) (0) = {0}
or, equivalently,
Ker D*X~1(g,0) = {0}.
For the coderivative of X!, however, it holds that
D*x71(5,0) (v) = (VyF(7,9) v+ D*Q(7,%) (v)
foral v € IR™ ([35, Cor. 4.4]). The result has been established.

There are equilibria in which the essential assumption for the application of ImP
is ensured by a completely different argumentation. This is, for instance, the case of
discretized contact problems with Coulomb friction; see[6] and Section 5.1. Such equi-
libria amount to fixed-point problems to which, under certain assumptions, the Banach
Fixed-Point Theorem can be applied. In thisway, one can prove the required properties
of S but the qualification condition (26) need not be satisfied, in general.

Theorem 5. Consider the GE (25) around the reference pair (z,7) and assume that
all nonzero solutions to the GE in (26) do not belong to Ker(V, F(7,%))". Let v bea
solution of the GE

0€V,f(@9) +(Vy,F(z.9)" v+ D*Qy.2) (v). (28)
Then, for all y* € IR™, one has
D*S(z,y) (y*) C {(VxF(f,y))TE | 7 isa solution of (28)} . (29)

This inclusion becomes equality, provided either V. F(Z,7) is surjective or Gph Q is
regular at (7,z).

Proof. Asinthe proof of Theorem 3, we rewrite the GE (25) in the form (27) and apply
[35, Theorem 6.10]. From this result, one easily derives the above assumption as well
asrelations (28), (29). It also impliesthe equality in (29) under the regularity of Gph @
at (g, z). To show that the surjectivity of V, F(Z,%) also implies this equality, one can
employ the argumentation used in the proof of Lemma 1.
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Remark 1. Since (28) plays the samerole as (18), we will cal it AGE, too.

The assumptionin Theorem 5istrivially satisfied when either the qualification con-
dition (26) holds true or the matrix V, F(Z, ) is surjective. In this way, we have no
problems with this assumption whenever the required behaviour of .S is ensured viathe
strong regularity or via Theorem 3.

In many situations Q(y) = 4)_(1 Q' (y*). Inthis case, the surjectivity and/or regular-
ity conditions from Theorem 5 (ensuring equality in (29)) can be applied to each Q*
separately and combined together. In such away, one arrives at finer conditions, under
which

V. f(@,7) + (V. F(T,7)0 € 00()

with some solution © of (28).

The last issue concerns the solution of (28). If the GE (25) models equilibria dis-
cussed in [42] and (SRC) isfulfilled, then it is always possible to choose a selection of
D*Q(y,z) in such away that (28) reduces to a uniquely solvable linear system. This

goal can be achieved, however, also in case of more complicated equilibria. Toillustrate
the procedure, consider equilibria governed by the GE (25), where

F(z,y) = A(z)y+L(x) and Q(y) = dJ(y). (30)

Here the maps A[IR" — IR™*™], ([IR" — IR™] are continuously differentiable and
J[IR™ — IR] isaproper convex and |.s.c. function. Furthermore, supposethat (z, ) is
areference pair and A() is positive definite. Then it is easy to show that the respective
GE fulfils (SRC) at (z,y) and hence also condition (26) is satisfied. The computation
of the coderivative of the multi-valued part in (30) is generally rather difficult. Never-
theless, besides the simple case

J(y) = omr (y),

corresponding to control-dependent linear complementarity problems, there are other
classes of functions for which the coderivative of their subdifferential mapping was
computed. In [14] the authors consider the case

J(y) =da(y),

where A is a convex polyhedron. In [38] another situation is investigated: d is a given
natural number and
Z] (ciry) + 1)

wherec; € R™, b € IR and j'[IR — IR] isasum of a piecewise C? function and the
indicatrix of aclosed interval, i = 1,2, ..., d. Assumethat the [m x d] matrix

cT .= [cl e cd]
has full column rank and denote by @ the (unique) vector satisfying the relations
2=0Tu (z=—A@)7 (D)),
' €05 ((ci,y) +b"), i=1,2,....d
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Then, for al v € IR™, one has ([38, Theorem 3.4])

d
D*Q(.%) (v) = € X D*0j' ({ci, ) +b',7") ((ci,v)) - (31)

Example 2. Consider an academic equilibrium given by the GE

2

0€ Bi} + {"”1} +0J(y), (32)

where J(y) = j(y' 4+ 0.5) + j2(y' + y* + 1) with
7€) = 0.25max {e*, e}, j2(6) = 0m_(¢),

around the reference pair 71 = 0.25, 72 = 0.5, 3* = §° = —0.5. The GE (32)
represents the necessary and sufficient optimality conditions of the convex nonsmooth
control-dependent program

1 1 1 1
min 5(@1)2 + 5(92)2 +atyt + 2%y + max {ey 05 ey 0'5}]

subject to
y iyt < -1

One easily verifiesthat al above assumptions are fulfilled and the AGE (28) attains the
form
. vl 11] [¢
0 v, @i+ %]+ o] [f]. &)
with¢ € D*951(0, 0.25) (vt) andn € D*Ng_(0,0) (v!+v?). By Definitions2 and 3,
D*9351(0, 0.25) (0) = D*Ng_(0,0) (0) = IR. One of the solutionsto (33) hasthus a
particularly smpleform: 7 =0 (n = —=V,2 f(2,9), £ = =V,1 f(2,9) — ).

5. Three examples

Here we present three numerical examples that should demonstrate the usability and
efficiency of the NLP and ImP techniques. The first example (shape optimization of an
elastic bodies in unilateral contact under Coulomb friction) represents an MPEC that
is solvable by the ImP technique but its reformulation to an MPCC requires a rather
complicated and nontransparent transformation ([42]).

The second example (unique reformulation of truss topology design problem) isan
SMPGE; that means, we cannot apply ImP here. We will solve it by the NLP technique
and compare various NL P solvers.

The third example (shape optimization of a membrane with a compliant obstacle)
isan MPEC-MPCC with a uniquely solvable equilibrium problem. For its solution, we
can apply both the ImP and the NL P technique.
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5.1. Shape optimization in contact problems with Coulomb friction [ 6]

In Paragraph 2.1.4 we gave a brief introduction to this problem. The full details of the
modeling and finite element analysis can be found in [6]. The respective GE is of the
type discussed in Paragraph 2.1.4 and attains the form

T(x) + Q(uﬂ )
—A

0€ Arr(2)ur + Arp(x)u, — £
- éu(x) v (34)

0=A,(2)u; + A, ()u,
0€u, +$+N1Ri(/\l/)7

with a control variable x € IR™ specifying the shape of the contact boundary I" and
state variables u = (u,,u,) € IR* (the normal and tangential components of the
displacements on the contact boundary) and A, € IRP (the normal component of the
contact stress vector); see Fig. 1. The multivalued part in the first line of (34) is given

by
p .
Qur, A) =X, 0 0j(ur), jlur)=F > |uil.
=1

The contact boundary I" ismodeled by aBezier curve of order n; the design variable
x isavector of its control points. The end points of the Bezier curve are identical with
thefirst and last control point.

The shape optimization problem is defined as follows:

min f(x,u, \,)
U,y

subject to
(u, A,) solvesthe GE (34)

r e w
with
w={recR" | 0<2'<Cy,i=0,1,...,m;

) , C L
|xz+1—x7’\§—1,i:O,l,...,n—l; E ' =Co(n+ 1)},
n 1=0

where Cy, C1, Cs are given positive constants. The equality constraint in the definition
of w hasaphysical meaning of preserving the body volume.

We will solve this MPEC by the ImP technique, whereas the nonsmooth optimiza
tion problem will be solved by the BT code [54]. In every BT iteration we have to solve
the equilibrium problem, i.e., the Signorini problem with Coulomb friction formulated
as afixed-point problem. For that, we use the splitting variant of the fixed-point method
introduced in [23]. This is basically the method of successive approximations where,
at each step, we solve the contact problem with a given friction. The iterative process
then updates the coefficient of the given friction. The problem with the given friction
is solved using the so-called reciprocal variational formulation that leads to a quadratic
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programming problem with simple box constraints. For its solution we use a so-called
splitting technique, a version of the Gauss-Seidel algorithm.

Next, we will present results of a numerical example. The shape of the unloaded
elasticbody O(z), x € w, is defined through a Bezier curve BB, asfollows:

O(z) ={(&1,&) € R | & € (0,a), Bo(z1) < & < b};

see Figure 1. Thisfigure also showsthe distribution of external 1oads P on the boundary
I'p. Further, I, isthe part of the boundary with prescribed Dirichlet condition.

I

Fig. 1. The elastic body and applied loads.

Example 3. We try to identify the contact normal stress distribution with a given func-
tion \,. The shape optimization problem can be written as

min || X, — A, |3
subjectto =z € w.

The example was solved by the ImP technique in connection with the BT code. We
discretized O(z) by aregular 29 x 9 mesh, i.e, we had 261 nodes and 522 unknownsin
the state problem. The dimension of the control vector x, generating the Bezier curve
and defining O(x), was set to 20.

Let us demonstrate the convergence behavior of the BT algorithm when minimiz-
ing the nonsmooth composite objective function ©. Figure 2 shows the decrease of
the function value in the example. We needed 123 BT iterations and 126 function and
subgradient evaluations to reach the prescribed accuracy. This figure also presents the
development of the BT stopping criterium during the iteration process.

5.2. Unique reformulation of truss topology design problem

A trussis an assemblage of pin-jointed uniform straight bars. The bars are subjected to
only axial tension and compression when the truss is loaded at the joints. The trussis
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Fig. 2. Behavior of the BT algorithm in Example 3. Decrease of the cost functional (left) and of the value of
the stopping criterium (right), both in logarithmic scale.

characterized by the set of nodes, bars and nodal forces. Some of the nodes are assumed
to be fixed, that is, some components of the displacement vector are forced to be zero;
let us denote by n the number of free displacement components. The nodal positions,
forces and displacements are assembled in vectors z € IR™, f € IR" and u € IR"™,
respectively. The bar volumes are denoted by ¢;,7 = 1, ..., m, where m is the number
of bars.

Consider first the truss analysis problem, i.e., the problem of finding displacements
for a given truss (a given vector t). Thisis a convex quadratic problem of minimizing
the potential energy subject to possible unilateral contact constraints:

1o T
urgl%ln SU Au—+ ffu (35)

subject to
Cu>0.

Here A = A(t) € IR™*™ isthe (symmetric and positive semidefinite) stiffness matrix of
thetrussand C' € IRP*™ containsthe unilateral contact information. This problem does
not have a unique solution, in general. The stiffness matrix may even have many zero
eigenvalues when ¢ is obtained as a result of topology optimization. Thereis, however,
a unique “physical” solution of problem (35). This solution can be identified as the
minimizer of another quadratic functional u” Gu over all solutions of (35). Here G €
IR™*™ isasymmetric and positive definite matrix; its construction is explained in [27].

Formulating the truss analysis problem (35) as complementarity problem, we can
write the unique truss analysis problem as the SMPGE

ueRIg})r\lgﬂp uTGu (36)
subject to
Au+ f-CTA=0
Cu>0
A>0

MNCu<o0.
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In asimilar way, we can define a unique reformulation of the truss topology design
problem. In the traditional formulation of the problem, one minimizes the so-called
compliance (maximizes the stiffness) of the truss subject to equilibrium conditions:

: T
temrv?glemn Jru (37)

subject to

i=1

i=1
t; >0, i=1,...,m;

here A; € IR"*" are symmetric and positive semidefinite stiffness matrices of single
bars. It is well-known that this (nonconvex) problem is extremely difficult to solve by
standard NLP codes. It was shown by Ben-Tal and Bendsge [4] that (37) can be equiv-
alently formulated as a convex quadratically constrained quadratic program

. T
— 38
ochtm @ Y (38)
subject to
1
guTAiufag(] i=1,....m.

Problems (37), (38) do not have aunique solution, in general. Using the same technique
asfor thetrussanalysis problem, we define a uni que truss design problem as an SMPGE
and use for its solution the NL P approach.

The NLP formulation of the unique truss design problem reads as:

min u'Gu (39)
teR™ ueR",a€R
subject to

=1

i=1
1
afauTAiuzo, i=1,....,m

>0, i=1,...,m

= 1
Zti(a - iuTAiu) S 0.
i=1

To demonstrate the capability of the NLP approach, we generated three examples
of the unique truss analysis problem of increasing dimension and solved them by NLP
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codes available on the NEOS" server. Figure 3 shows one such truss—it is the result of
the truss topology optimization problem and we can see that many bars have zero vol-
ume. Also, there are many nodes lying on straight bars, a source of possible nonunique-
ness. The problems were solved using formulation (36).

Fig. 3. Problem tr21x5. The truss is fixed at the left-hand side nodes and subjected to a vertical load at the
right-lower node.

The following table shows results of the most successful NEOS codes, namely,
LOQO [56], Filter [17], SNOPT [21], MINOS [39], and of the code PENNON [28].
We must remark that “one iteration” has different meaning in different codes, and thus

Table 1. Results for NLP reformulation of the unique truss analysis problem. Given are the numbers of
iterationsfor each code. “F” standsfor failure. “var” and “ constr” are the numbers of variablesand constraints,
respectively.

problem | var constr | LOQO Filter SNOPT MINOS PENNON
tr_11x3 47 34 15 10 63 53 13
tr21x5 103 72 34 9 137 110 23
tr 41x9 569 534 F F F F F

the table basically presents the ability of the code to solve the particular problem.

The unique truss optimization problem (39) resembles problem (37). As(37) wasa
difficult NLP problem, we cannot expect (39) to be any simpler and thisis clearly seen
from our numerical results. It turned out that the examples from previous table are all
too large, so we generated several smaller ones and solved them again by NLP codes
available on the NEOS server. These examplesinclude additional linear inequality con-
straints on the displacement of certain nodes (modeling rigid obstacle€).

The only codes capable to solve at least some of these examples were SNOPT and
MINOS, all the other codes failed. The following table shows the results’. These re-
sultsindicate that SMPGE problemswith difficult equilibria are the more difficult when
solved by the NLP approach.

5.3. Design of membrane with compliant obstacle [42]

We first define the equilibrium problem—a membrane with a compliant obstacle. L et
O(x) be adomain in IR? with a Lipschitz boundary described by a design variable .

1 http://wwe neos. nts. anl . gov/ neos/

2 All problems from this section are available in AMPL format on the author's webpage
http://ww2.am uni - erl angen. de/ ~kocvar a/ npec/ .
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Table 2. Results for NLP reformulation of the unique truss design problem. Given are the numbers of itera-
tions for each code. “F" stands for failure. “var” and “constr” are the numbers of variables and constraints,
respectively.

problem var constr | SNOPT  MINOS
tro_3x3 31 33 259 368
tro_4x4 64 66 593 F
tro_5x5 109 111 1122 F
tro_6x2 46 438 763 F
tro.11x3 | 151 153 F F

Assume for the moment that « is kept fixed. The domain is occupied by a membrane
subjected to aforce ¢. The state variable u represents the respective deflection. Again,
we give directly aformulation of the problem discretized by the finite element method.
Let A(z) and ¢(x) be the stiffness matrix and the force vector in O(x). The loaded
membrane cannot penetrate a compliant obstacle; this condition is expressed by the
inequality
u > G(z,u) := k(A(z)u — l(z)) + x(z),

where x describes the original shape of the obstacle and & is a coefficient of compli-
ance. The equilibrium problem for a membrane with a compliant obstacleisan ICPin
variable u:

Al)u —4(z) >0, u—G(z,u) >0 (40)
(A(z)u — l(x), u — G(z,u)) = 0.

In the optimum design problem, our objective isto minimize the membrane surface
under the state constraint that in a given subset Oy C O(x) of the membrane staysin
contact with the obstacle ([42]). The design variables are the positions of the nodes on
apart of the boundary of O(x). Let Dy be an index set including numbers of the nodes
from Oq. The optimum design problem reads as

min f(x,u) := meas O(x) (41)
subject to
u solves the |CP (40)
(u— G(z,u))" =0 forie Dy
T e w.
The set of admissible design variables w is defined in such a way that the boundary of
O(x) can only move within given bounds.
In ImP, we cannot handle the state constraint in (41) explicitly; instead, we modify

the objective function by an exact penalty with the penalty parameter v (h is a dis-
cretization parameter):

min £, (z,u) := meas O(x) + yh? Z (u— G(z,u))’ (42
1€Dg
subject to
u solves the ICP (40)

T e w.
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Example 4. We chose two example that are included in the MacMPEC® collection, in
order to compare the ImP and NL P techniques. The examples differ by the choice of the
obstacle functions y1 (£1,&2) = —0.04(£2 + (€3 — 0.25)?) and x2(&1,&2) = —0.05¢;.
Theload is constant over the membrane.

We first solved these problems using the ImP technique. The equilibrium problems
were solved by the nonsmooth Newton method applied to the following nonsmooth
equation, equivalent to ICP (40):

min{A(zx)u — £(z),u — G(z,u)} =0 (componentwise).

The nonsymmetric linear systems were solved by the minimum residuum method with-
out preconditioning. There are other alternative methods for solving of thistype of ICP
that may be egually effective. For the computation of subgradients of the composite
function © we used formulas (23), (24) from Example 1.
Fivediscretizationswereusedwith h € {1, L L L 1 1-thevalueof the penalty
parameter was r = 10° in all cases. Table 3 summarizes the results. Here we use the
same problem names as in MacMPEC. The numbers of variables and constraints are
given from the ImP viewpoint. We observe atypical behaviour of abundle algorithmin

Table 3. Results of the ImP approach using BT code. Given are the numbers of BT iterations and CPU time
on Pentium 3 PC (1 GHz) running Windows 2000.

problem var constr | iter  CPU(sec) I

pack-compl-8 9 18 4 0.27 | 0.60000000
pack-comp1-16 17 34 36 0.84 | 0.61695165
pack-comp1-32 33 66 75 8.91 | 0.65297999

pack-compl-64 65 130 93 105.98 | 0.68197856
pack-compl-128 | 129 258 77 2262.30 | 0.69398364

pack-comp2-8 9 18 | 187 0.64 | 0.67311716
pack-comp2-16 17 34 76 1.38 | 0.72713674
pack-comp2-32 33 66 71 8.54 | 0.78260579

pack-comp2-64 65 130 | 164 180.49 | 0.82122227
pack-comp2-128 | 129 258 91 2515.19 | 0.83365644

MPEC: the number of iterationsis virtually independent on the size of the problem.

In Table 4 we present results of the NLP approach for h € {3, 15, 35}, Whereas
the NLP problems are solved by FilterMPEC and LOQO. These results were published
in [18] and [56]. The CPU times were obtained on different computers and should be
taken just asindications of the codes behaviour.
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