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Abstract. We consider a class of optimization problems with a generalized equation among the constraints.
This class covers several problem types like MPEC (Mathematical Programs with Equilibrium Constraints)
and MPCC (Mathematical Programs with Complementarity Constraints). We briefly review techniques used
for numerical solution of these problems: penalty methods, nonlinear programming (NLP) techniques and
Implicit Programming approach (ImP). We further present a new theoretical framework for the ImP technique
that is particularly useful in case of difficult equilibria. Finally, three numerical examples are presented: an
MPEC that can be solved by ImP but can hardly be formulated as a nonlinear program, an MPCC that cannot
be solved by ImP and finally an MPEC solvable by both, ImP and NLP techniques. In the last example we
compare the efficiency of the two approaches.

1. Introduction

As early as in 1934 mathematicians were confronted with an optimization problem, the
feasible set of which was a subset of the minimizers to another, lower-level optimiza-
tion problem. This was the famous Stackelberg game ([55]). Stackelberg games play
now an important role in economy, design of mechanical structures and other appli-
cation areas; see [11]. If the lower-level problem happens to be a convex program, it
can be replaced (under a constraint qualification) by a variational inequality or a gen-
eralized equation (GE) ([47]). But in this way one can also describe equilibria that are
not related to optimization problems. This is, for instance, the noncooperative (Nash)
equilibrium or Wardrop’s user equilibrium. The obtained problem is thus called Mathe-
matical Program with Equilibrium Constraints, or MPEC, a terminology introduced in
[22] and nowadays widely used in the literature. In the course of time, the number and
the complexity of equilibrium problems increased. What is more, a new class of prob-
lems appeared with a different meaning of variables (the control variable is not present
as opposed to standard MPECs).

In the next section we propose a simple classification and a partially new terminol-
ogy which takes these phenomena into account. It is based on the description of equi-
libria via suitable GEs; this description can cover a majority of cases considered in the
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literature so far (it does not cover, e.g., bilevel programs with nonconvex optimization
problems on the lower level).

At present, plenty of rather different techniques are available to the numerical solu-
tion of MPECs, many of them tailored to problems with a special structure [3,10,20,26,
31]. When aiming to solve a broader class of problems, one can recognize at least three
main approaches ([33,42,11]): (i) penalty approach, where the equilibrium constraint is
either converted to a (smooth) equation or augmented to the objective via a suitable er-
ror bound; (ii) implicit programming approach (ImP), where one treats the equilibrium
constraint via a generalized Implicit Function Theorem; (iii) piecewise programming
approach, based on the combinatorial structure inherent in many equilibria.

All the above techniques can be coupled with various standard optimization meth-
ods, the result of which are concrete methods and algorithms. For instance, the piece-
wise programming approach connected with the standard sequential quadratic program-
ming (SQP) method gives rise to the PSQP method; see [33]. Recently, in case of
equilibria governed by complementarity problems, elaborated SQP codes have been
successfully applied directly to the nonlinear programming (NLP) formulation of the
respective MPEC. And it seems that also other NLP methods could lead, in the same
way, to effective MPEC solvers. So one can speak of an NLP approach. In Section 3
we briefly discuss the penalty approach and pay more attention to the ImP and NLP
approaches.

A combination of ImP with a bundle method of nonsmooth optimization enables us
to handle MPECs with very complex equilibria. The computation of subgradient infor-
mation, required by the bundle method, becomes then a difficult task that is not always
easily tractable by the technique from [42]. Hence, in Section 4 we propose an alterna-
tive technique, based on the generalized differential calculus of B. Mordukhovich.

Section 5 contains three examples coming from mechanics. They illustrate the ap-
plication areas and the effectiveness of both, the ImP technique combined with a classic
bundle code [54] and the NLP approach, here tested with several SQP and one interior
point code. It seems that these two approaches, combined with proper algorithms, create
an efficient and versatile tool to the numerical solution of a broad class of optimization
problems with equilibrium constraints.

The following notation is used: xi is the ith component of a vector x ∈ IRn, IR
is the extended real line and IRn

+ denotes the nonnegative orthant of IRn. E is the
unit matrix. For an [m × n] matrix A and an index set I ⊂ {1, 2, . . . ,m}, AI is the
submatrix of A with rows specified by I . Furthermore, δΛ is the indicatrix of a set Λ,
epi f is the epigraph of a function f and ∂f(x) denotes Clarke’s subdifferential of f
at x. If f is vector-valued, ∂f(x) denotes Clarke’s generalized Jacobian of f at x. For
a multifunction Q[IRn � IRm], GphQ = {(x, y) ∈ IRn × IRm | y ∈ Q(x)} and
Ker Q = {x ∈ IRn | 0 ∈ Q(x)}.

Finally, we define basic objects from the generalized differential calculus of B. Mor-
dukhovich, used extensively in Section 4. Consider a closed set Π ⊂ IRp.

Definition 1. (i) The Fréchet normal cone to Π at a, denoted N̂Π(a), is given by

N̂Π(a) = {v ∈ IRp | lim sup
a

Π−→a

〈v, a − a〉
‖a − a‖ } ≤ 0 .
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(ii) The limiting normal cone to Π at a, denoted NΠ(a), is given by

NΠ(a) = lim sup
a

Π−→a

N̂Π(a) ,

where “lim sup” is the upper limit of multifunctions in the sense of Kuratowski-Painlevé;
see [2].

Definition 2. Let ϕ[IRp → IR] be an arbitrary extended real-valued function and a ∈
dom ϕ. The set

∂ϕ(a) := {a∗ ∈ IRp|(a∗,−1) ∈ Nepi ϕ(a, ϕ(a))}
is called the limiting subdifferential of ϕ at a.

Definition 3. Let Φ[IRp � IRq] be an arbitrary multifunction with a closed graph and
(a, b) ∈ GphΦ.
(i) The multifunction D̂∗Φ(a, b) [IRq � IRp] defined by

D̂∗Φ(a, b) (b∗) := {a∗ ∈ IRp|(a∗,−b∗) ∈ N̂Gph Φ(a, b)}, b∗ ∈ IRq

is called the regular coderivative of Φ at (a, b).
(ii) The multifunction D∗Φ(a, b) [IRq � IRp] defined by

D∗Φ(a, b) (b∗) := {a∗ ∈ IRp|(a∗,−b∗) ∈ NGph Φ(a, b)}, b∗ ∈ IRq

is called the coderivative of Φ at (a, b).

2. Problem classification

The general optimization problem considered in this paper takes the form

min
z

f(z) (MPGE)

subject to

0 ∈ F (z) + Q(z)
z ∈ Ω ,

where z ∈ IRs, f [IRs → IR] and F [IRs → IRd] are assumed to be continuously differ-
entiable, Q[IRs � IRd] has a closed graph, and Ω ⊂ IRs comprises all other constraints
imposed on z. We will call this problem Mathematical Program with a Generalized
Equation Constraint (MPGE).

The constraint given by the generalized equation

0 ∈ F (z) + Q(z) , (1)

typically describes some (mechanical, economic) equilibrium and we will often refer to
it as to equilibrium problem.
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MPGE contains two distinct classes with a completely different background. In
the first one, the variable z splits into two vectors, the control or design variable and
the state variable. We want to find a feasible control-state pair that is optimal from
a certain point of view. These problems are typical in shape optimization, control of
technological processes, and in certain economic models [33,42,11]. In the second case,
we only want to identify a specific solution of the equilibrium problem; there is no
control variable here. We can meet this kind of problems in economic and mechanical
models; see Section 5.2.

These two cases can be formally distinguished by the dimensions s and d.

Case I: s > d, in particular, s = n + m and d = m. Here z can be written as
z = (x, y), x ∈ IRn, y ∈ IRm, where x and y play the roles of control and state
variables. This is the case that is known as Mathematical Program with Equilibrium
Constraints or MPEC; see [33,42]. In the rest of the paper, we will frequently refer to
this problem; let us thus specify it together with its dimensions as follows:

min
x,y

f(x, y) (MPEC)

subject to

0 ∈ F (x, y) + Q(x, y)
(x, y) ∈ Ω

where

x ∈ IRn, y ∈ IRm, F [IRn × IRm → IRm], Q[IRn × IRm � IRm] .

Case II: s = d. In this case we have just one “natural” variable z and try to identify
a specific solution of the generalized equation (1). We will call this problem Square
Mathematical Program with Generalized Equation Constraint, shortly SMPGE, and z
the decision variable. Again, let us write down this particular form of MPGE together
with its dimensions:

min
z

f(z) (SMPGE)

subject to

0 ∈ F (z) + Q(z)
z ∈ Ω

where

z ∈ IRs, F [IRs → IRs], Q[IRs � IRs] .

Besides the above two cases, MPGE also covers other problems, for instance, those
in which the range space of F and Q has a smaller dimension than s, but z cannot be
partitioned into a control-state pair.
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2.1. Special cases

Both problems, MPEC and SMPGE, can be further divided into subclasses, depending
on the specific form of the generalized equation (equilibrium problem). Below we list
some of the most important ones.

2.1.1. Complementarity problem Assume that in (1)

Q(z) = NIRd
+
(zI) ,

where zI ∈ IRd is a subvector of z. The GE (1) then corresponds to a nonlinear com-
plementarity problem (NCP)

F (z) ≥ 0, zI ≥ 0, 〈F (z), zI〉 = 0. (2)

For MPEC we have z = (x, y) with zI = y and

Q(x, y) = NIRd
+
(y) .

The equilibrium problem then corresponds to an NCP in variable y depending on a
control variable x:

F (x, y) ≥ 0, y ≥ 0, 〈F (x, y), y〉 = 0.

In case of SMPGE, we simply have zI = z.
In both cases (MPEC and SMPGE), we call the resulting problem Mathematical

Program with Complementarity Constraints or MPCC. Since many numerical methods
are tailored to its solution, we will pay special attention to this problem in Section 3.

2.1.2. Variational inequality This case will only be considered for MPECs. Let in (1)

Q(y) = ∂J(y) ,

where J [IRm → IR] is lower semicontinuous (l.s.c.).
We further distinguish several subcases.

(i) Let J = δΛ with a closed convex set Λ ⊂ IRm, i.e.,

∂J(y) = NΛ(y) .

In this case the GE (1) corresponds to an x-dependent variational inequality (VI) of
the first kind:

Find y ∈ Λ such that
〈F (x, y), v − y〉 ≥ 0 for all v ∈ Λ.

}
(3)

(ii) Let J = J1 + δΛ with a convex continuous J1[IRm → IR] and a closed convex set
Λ ⊂ IRm. Then one has

∂J(y) = ∂J1(y) + NΛ(y) .

Now the GE (1) corresponds to an x-dependent variational inequality of the second
kind:

Find y ∈ Λ such that
〈F (x, y), v − y〉 + J1(v) − J1(y) ≥ 0 for all v ∈ Λ.

}
(4)
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(iii) Assume that J is generally nonconvex. The GE (1) is then related to an x-dependent
hemivariational inequality (HVI):

Find y ∈ IRm such that

〈F (x, y), v − y〉 +
m∑

i=1

Jo(y; v − y) ≥ 0 for all v ∈ IRm

 (5)

as introduced by Panagiotopoulos [44] (here Jo(a; b) denotes Clarke’s directional
derivative of J at a in direction b [9]). The HVI (5) is actually equivalent to the GE

0 ∈ F (x, y) + ∂J(y) .

2.1.3. Variational inequality with control dependent Λ Here we again consider only
MPECs. Let in (1)

Q(x, y) = NΛ(x)(y) . (6)

Assume further that, for any x from a certain subset of IRn, Λ(x) is given by a system
of equations and inequalities:

Λ(x) =
{
ζ ∈ IRm | hi(x, ζ) = 0, i = 1, . . . , o1, gj(x, ζ) ≤ 0, j = 1, . . . , o2

}
, (7)

with hi, i = 1, . . . , o1, affine in the second variable and twice continuously differ-
entiable and gi, i = 1, . . . , o2, convex in the second variable and twice continuously
differentiable. Suppose that for all admissible x the Slater constraint qualification is sat-
isfied, i.e., there exists η ∈ IRm such that hi(x, η) = 0, i = 1, . . . , o1, and gj(x, η) < 0,
j = 1, . . . , o2. Then for each η ∈ Λ(x) one has (see [2])

NΛ(x)(η) =

{
o1∑

i=1

µi ∇η hi(x, η) +
o2∑

i=1

λi ∇η gi(x, η) | µ ∈ IRo1 , λ ∈ IRo2
+ ,

λi gi(x, η) = 0, i = 1, . . . , o2

}
,

and, with the map

L(x, η, µ, λ) := F (x, η) +
o1∑

i=1

µi ∇η hi(x, η) +
o2∑

i=1

λi ∇η gi(x, η) ,

we can write the GE (1) in the “expanded” form

0 ∈
L(x, y, µ, λ)

H(x, y)
−G(x, y)

+

 0
0

NIR
o2
+

(λ)

 (8)

with H(η) := [h1(η), . . . , ho1(η)]T and G(η) := [g1(η), . . . , go2(η)]T .
The GE (8) has a substantially simpler multi-valued part in comparison with (6). The

price is, however, also high: instead of the original state variable y, we now have to work
with the triple (y, µ, λ). Nevertheless, sometimes this extension may be advantageous,
as it enables us to work with objectives f that depend also on the “multipliers” µ, λ.
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2.1.4. Equilibria given by fixed points, quasivariational inequalities To illustrate this
complex class of equilibria, consider an MPEC with Q given by a composition

Q(y) = ϕ(y) • ∂J(y) , (9)

where ϕ[IRm → IRm] is a smooth map, J [IRm → IR] is again l.s.c. and convex, and
“•” denotes the Hadamard (componentwise) product of vectors.

Such a structure can be encountered, e.g., in the discretized two-dimensional contact
problems with Coulomb friction; see [6]. The state of the ith node on the contact part of
the boundary is described by the triple (ui

τ , ui
ν , λi

ν), where λi
ν is the normal stress and

ui
τ , ui

ν is the tangential and the normal displacement, respectively. The associated part
of Q attains the form

Qi(ui
τ , ui

ν , λi
ν) =

 λi
ν∂|ui

τ |
0

NIR+(λi
ν)

 (10)

so that the appropriate Cartesian product of Qi has exactly the form (9) with y :=
(uτ , uν , λν). The fixed point nature of this equilibrium is reflected by the coupling
in (10): the normal stress λi

ν arises as a parameter in the term λi
ν∂|ui

τ | which is related
to the tangential slip of the ith node. In Section 5.1 we report about numerical solution
of such an MPEC.

3. Solution methods

It is not the purpose of the paper to give an exhaustive overview of solution methods for
MPECs and SMPGEs; we refer the reader to monographs [33,42,11] and the annotated
bibliography [12]. Instead, we summarize three basic approaches to the solution of
MPGEs and point out two methods that, currently, seem to be the most efficient ones.

The first two approaches try to reformulate the original problem in such a way that
it (or its approximation) can be solved by standard NLP software. The techniques used
here are typically based on penalization, relaxation, or smoothing of the original prob-
lem or its reformulation. In the following we will speak of penalty approach, whenever
some penalty term will be added to the objective function f . All other techniques are
called NLP reformulations.

The third technique, used for MPECs, is based on a generalized Implicit Function
Theorem. The original problem is here rewritten as a standard, albeit nonsmooth and
nonconvex, mathematical program.

3.1. Penalty approaches

One possible way how to deal with the equilibrium constraint is to replace the GE (1)
by the equation G(z) = 0, where G is a suitable “gap” function. For the NCP (2) we
may use, for instance, the so-called NCP functions

G1(z) := min{F (z), zI} (componentwise)



8 Michal Kočvara, Jiřı́ V. Outrata

or

G2(z) :=

Φ(F 1(z), z1
I )

...
Φ(F k(z), zk

I )

 with Φ(a, b) :=
√

a2 + b2 − (a + b);

see, e.g., [32]. Such a gap function can be then added to the objective f in form of a
penalty. Some gap functions lead, under certain conditions, even to exact penalties. This
is related to the theory of error bounds in mathematical programming ([34,57,41]). Let
E be the set of (local) solutions to MPGE and ẑ ∈ E . Further assume that to a gap
function G there exist a neighbourhood O of ẑ and a penalty parameter γ > 0 such that

distE(z) ≤ γ‖G(z)‖ for all z ∈ O ∩ Ω .

Then we say that G generates a (local) Lipschitz error bound for the GE (1) near ẑ with
respect to Ω ([45]).

Consider the (MPGE) with equilibrium problem given by NCP (2). For z ∈ IRs

define the index sets

L(z) := {i ∈ {1, . . . , d} | zI > 0}
I+(z) :=

{
i ∈ {1, . . . , d} | F i(z) > 0

}
I0(z) := {1, . . . , d} \ (L(z) ∪ I+(z)) .

It can be shown that the gap function G1 generates a local Lipschitz error bound near
the solution ẑ with respect to Ω, if there are no nonzero vectors u, v ∈ IRd such that

for i ∈ L one has ui = 0
for i ∈ I+ one has vi = 0
for i ∈ I0 one has either uivi = 0 or ui < 0 and vi > 0

and [
u
0

]
− (∇F (ẑ))T

v ∈ −NΩ(ẑ) ;

see [40, Thm. 3.1] and [43, Lemma 2.2]. This condition guarantees the Aubin property
(see, e.g., [50]) of the map

r �→ {z ∈ Ω | r + G1(z) = 0}
around (0, ẑ) which, in turn, means that we compute ẑ by solving a penalized problem

min
z

f(z) + γ‖G1(z)‖
subject to

z ∈ Ω ,

whenever we start sufficiently close to ẑ and γ > 0 is sufficiently large (but finite).
The exact penalization in MPECs is also studied in detail in [51] and [53], where the

authors use results from the analysis of piecewise differentiable functions. In this ap-
proach the equilibrium constraint is written in the so-called normal equation form (see
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[49]) and one works with a special “nonsmooth” Mangasarian–Fromowitz constraint
qualification ([29]). This approach again leads to optimality conditions and a numerical
method.

The Penalty Interior Point Algorithm (PIPA) of Luo, Pang and Ralph [33] is an
SQP like iterative method that aims to stay strictly feasible with respect to the inequal-
ity constraints in the NCP (2). At each step, one solves a quadratic program to get
a search direction. A line search in this direction is performed with the goal to stay
strictly feasible and to sufficiently reduce the penalty function (for equilibrium problem
given by NCP (2))

f(z) + γ〈F (z), zI〉
with a penalty parameter γ that is updated in every iteration. It was shown in [30],
however, that PIPA can converge to a non-stationary point, for certain problems.

3.2. NLP reformulations

Many authors proposed various reformulations of (MPGE) as a smooth nonlinear prob-
lem and tried to solve this problem (or sequence of problems) by NLP methods like
SQP. Since these techniques are mainly connected to MPCC, let us consider only these
problems in the rest of this section.

Note first that MPCC of the type

min
z

f(z) (11)

subject to

hi(z) = 0, i = 1, . . . , o1

gi(z) ≤ 0, i = 1, . . . , o2

F (z) ≥ 0, zI ≥ 0
〈F (z) , zI〉 = 0

is an NLP as such. (As before, hi, i = 1, . . . , o1, and gi, i = 1, . . . , o2, are assumed
to be twice continuously differentiable.) Unfortunately, as shown in [8], Mangasarian–
Fromowitz constraint qualification (MFCQ) for this problem is violated at all feasible
points, and thus we may expect serious difficulties when trying to solve (11) directly by
standard NLP algorithms.

Several techniques have been proposed to cope with this hurdle. The most obvious
one is to replace the complementarity constraint in (11) by 〈F (z) , zI〉 ≤ τ with some
τ > 0, and solve a sequence of problems with τ → 0. This approach was analyzed in
[51]; see also [16].

Another option is to replace the complementarity constraints by a nonsmooth equa-
tion (as in the previous section) and use a smoothing technique. Facchinei et al. [15]
propose to use a smoothened min-function

Gτ (z) :=
√

(F i(z) − zi
I)2 + 4τ − F i(z) − zi

I = 0
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with τ > 0. Under some assumptions, they prove that the resulting NLPs possess
nonempty and compact solution sets and the respective Karush-Kuhn-Tucker vectors
exist. They further proposed and analysed several algorithms based on different choices
of the sequence of smoothing parameters µ. An alternative technique, proposed by Jiang
and Ralph [25], uses the smoothened Fischer-Burmeister function

Gτ (z) :=
√

(F i(z))2 + (zi
I)2 + τ − F i(z) − zi

I = 0 .

Again, one solves (inexactly) a sequence of NLPs with τ tending to zero. The authors
further propose to treat τ as a variable and add an equation eτ − 1 = 0 to the NLP in
order to ensure that, at the optimum, τ = 0.

Finally, let us introduce a technique that, numerically, seems to be the most effi-
cient one within this class. Consider again the MPCC problem (11) and replace in the
complementarity constraint equality by inequality:

min
z

f(z) (12)

subject to

hi(z) = 0, i = 1, . . . , o1

gi(z) ≤ 0, i = 1, . . . , o2

F (z) ≥ 0, zI ≥ 0
〈F (z) , zI〉 ≤ 0 .

Now solve this problem directly by an NLP code. Obviously, the new problem is equiv-
alent to (11) and thus still does not satisfy MFCQ. However, numerical experiments
performed independently by Anitescu [1] and Fletcher and Leyffer [18] showed that
some SQP methods perform very well on many MPCC problems. Fletcher and Leyffer
[18] report on results of three SQP codes, namely their own code FilterSQP, KNITRO
[7] and SNOPT [21], on a collection of 137 MPCC problems. Two of these codes fail
to find a solution only in 5 and 7 cases, respectively. Fletcher et al. [19] analyze under
which conditions SQP methods applied to MPCC converge. The consequence of MFCQ
not being satisfied is the unboundedness of the Lagrangian multipliers. It is shown in
[19] that there exists a so-called basic multiplier vector; the multiplier set is then a ray
whose base is this basic multiplier vector. And SQP methods are shown to converge
quadratically to the basic multiplier, provided all QP subproblems remain consistent.
But another consequence of the failure of MFCQ is the fact that any QP subproblem in
SQP may be inconsistent. Anitescu [1] showed the importance of the elastic mode, im-
plemented in some SQP codes (e.g., in SNOPT). This consists in modifying the NLP by
relaxing the constraints and adding a penalty term to the objective function. SQP with
elastic mode converges globally for problems (12) [1]. Another way how to cope with
the QP inconsistency is to relax the linearization of the complementarity constraints, as
adopted in FilterMPEC together with the so-called restoration mode [18].

In their paper, Fletcher and Leyffer [18] also report on results of the primal-dual
interior point code LOQO [56]. Compared to the SQP codes, these results are not very
satisfactory as LOQO fails in 20 instances. Benson et al. [5] analyze these failures
and propose remedies. They show that by careful handling of the slack variables, by
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proper initialization of the slacks, and by special treatment of problems with unbounded
multipliers, they can get much better behaviour of LOQO than as reported in [18]. They
further show (as also suggested in [18]) that the failure of LOQO is usually not due to
failure of MFCQ but to other reasons, like unboundedness of the feasible set or rank-
deficiency of the problem.

Let us list the main advantages and disadvantages of the NLP approach.

+ The approach is suitable for all MPCCs, i.e., also for those belonging to the SMPGE
class. When solving MPEC–MPCC, no uniqueness of the equilibrium problem is
needed (opposite to the ImP technique discussed below).

+ The NLP approach can directly handle state constraints (unlike the ImP technique).
+ There are several well-developed, robust and sophisticated NLP codes, both aca-

demic and commercial. Also, MPCC problems allow for formulations using tools
like GAMS or AMPL. In this way, one can easily generate new problems and solve
them using standard codes.

On the other hand,

– The fact that the NLP approach works on Cartesian product of the variables (for
MPEC problems) prevents from using special solvers for the equilibrium problems
(finite element solvers, multigrid, etc.). Both variables, control and state, are treated
in the same way and any structure in the problem is ignored (in the current methods).

– The NLP approach is limited to MPCC problems and cannot be used for general
MPECs.

In the rest of the paper, we will refer to the latter technique (direct solution of (12)
by NLP software) as to NLP technique or NLP approach.

3.3. Implicit programming approach (ImP)

This approach is naturally connected with the MPEC problem class. Let Ω = ω× IRm,
where ω is a set of feasible controls. The basic idea is to define a solution map of the
equilibrium problem: a multifunction S[IRn � IRm] that assigns each control variable
x ∈ ω a set S(x) of solutions to the equilibrium problem (viewed as a problem in
variable y with a parameter x). Assume that for each pair (x, y) ∈ (ω × IRm)∩GphS
there exist neighborhoods U of x, V of y and a function σ[U → IRm] such that y = σ(x)
and S(x) ∩ V = {σ(x)} for all x ∈ U . In such a case, we can write (MPEC) as the
following optimization problem:

min
x

Θ(x) := f(x, σ(x)) (13)

subject to

x ∈ ω .

Obviously, this approach cannot be used for SMPGE problems, as it is based on the
existence of a control variable. If y is subjected to an additional constraint

y ∈ κ ⊂ IRm ,
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we cannot handle it directly by ImP. Instead, this constraint is usually treated via a
penalty term added to the objective Θ. This is related to the so-called calmness property
([50]) of the constraint system

x ∈ ω, σ(x) ∈ κ

and will not be tackled in the sequel. Instead, we will concentrate on a numerical method
for solving (13) that proved to be rather efficient in a number of MPECs.

In fact, a number of minimization techniques can be used to solve (13) numerically;
the choice depends mainly on the properties of the composite objective Θ. Each of these
techniques is connected with some additional assumption on the problem data (f, S, ω).
For instance, the method of Han et al. [46] proposed in [33] to the solution of (13)
requires f to be continuously differentiable and σ locally Lipschitz and directionally
differentiable.

The bundle method proposed in [42] requires Θ to be locally Lipschitz and weakly
semismooth [54], which has to be translated into conditions imposed on f and σ.
Additionally, ω must be given by affine equalities and inequalities. The weak semi-
smoothness of Θ is ensured, provided f is continuously differentiable and σ is a PC1-
mapping [52]. This situation occurred in most problems that were analyzed and numer-
ically solved in [42]. If σ does not happen to be PC1, the weak semismoothness of Θ
must be verified by analyzing the particular MPEC in question.

A typical bundle code [24] needs at each iterate xk

– the function value Θ(xk)

and

– one element (subgradient) of Clarke’s subdifferential ∂Θ(xk).

The computation of the function value is straightforward: for a given control xk, one
solves the equilibrium problem and plugs the solution into f . The critical point of the
approach is the computation of the subgradient and we will discuss it thoroughly in the
next section.

As in the NLP case, we list the main advantages and disadvantages of the ImP
approach.

+ Clearly, from the computational viewpoint, the biggest advantage is that we separate
the control and the state variable. Very often, MPEC models a real-world problem in
which the two variables play a completely different role. They may also differ in the
dimension: while the dimension of the state variable may be very high (typical for
problems coming from finite element discretization), there may be only few (5–50)
control variables. Computationally the most demanding part is then the solution of
the state (and adjoint) problem for a given control. But since the variables are sepa-
rated, one can use special codes developed for efficient solution of the state problem
(like black-box finite element solvers based on multigrid or domain-decomposition
methods).

+ It turns out that problem (13) if often very well structured for the use of bundle-type
methods. These methods are particularly efficient for
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◦ difficult nondifferentiable problems when we can only compute one arbitrary
subgradient. This is our case: the nonsmoothness comes from the nonsmooth
dependence of the solution of the equilibrium problem on the control variable
and it may be extremely time consuming to compute the full subdifferential;

◦ problems with relatively few variables, say, up to 100. Again, this is often the
case; see the above point.

On the minus side we have the following points:

– The local single-valuedness and the Lipschitz continuity of S is certainly a restric-
tive assumption.

– When the number of control variables becomes high, the existing codes of nondif-
ferentiable optimization may become inefficient. For very difficult problems, the
codes may not be robust enough, even for smaller dimensions.

– The ImP approach cannot handle state constraints directly. Typically, they are treated
by penalty terms added to the objective function in (13).

– The approach is naturally limited to MPEC problems and cannot be used for solving
SMPGEs with no control variables.

– In case of complicated equilibria, the computation of Clarke’s subgradients of Θ
may be a difficult task. The next section is devoted to this particular problem.

4. Computation of subgradients for ImP

So far, in all papers dealing with ImP in connection with bundle methods, the subgradi-
ents needed by the method were computed via generalized Jacobians of the respective
selection σ of S. In fact, one exactly follows the definition of the generalized Jacobian
([9]). When dealing with complex equilibria, like the three-dimensional contact prob-
lem with Coulomb friction or a HVI, this technique is not very handy. As a plausible
alternative, one can employ the generalized differential calculus of B. Mordukhovich
which is richer and deeper developed than its Clarke counterpart. This fact represents a
significant advantage, particularly in cases when Q is not just the normal cone mapping
of a simple set (Paragraphs 2.1.1, 2.1.3) but has a more complicated structure. Using
the Mordukhovich calculus, one can also easily derive conditions ensuring that the com-
puted vectors are indeed Clarke’s subgradients (see conditions MF1, MF2 in [42]). In
this section we will briefly explain how this alternative computation of subgradients can
be performed.

Consider first an equilibrium governed by the GE

0 ∈ F (x, y) + Q(x, y), (14)

with the dimensions as specified in the Section 2. Recall that F is continuously differ-
entiable and Q has a closed graph. Assume that (x, y) is a reference pair, feasible with
respect to (14), and put z := −F (x, y).

The next statement concerns the properties of the respective solution map required
by ImP.
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Theorem 1. Consider the solution map S[IRn � IRm] given by (14) and assume that
it is locally single-valued around (x, y). Additionally suppose that the qualification
condition (

x∗

0

)
∈ (∇F (x, y))T

v + D∗ Q(x, y, z) (v) =⇒
{

x∗ = 0
v = 0 (15)

is fulfilled. Then the (unique) selection σ of S, passing (x, y), is Lipschitz on a neigh-
borhood of x.

Proof. Condition (15) implies the Aubin property of S around (x, y); see [37, Thm.
4.3]. Since S is even locally single-valued around (x, y), the result follows.

As f is continuously differentiable then, under assumptions of Theorem 1, one has

∂Θ(x) = ∇xf(x, y) + (∂σ(x))T ∇yf(x, y) (16)

due to the Chain Rule I of [9]. Since D∗S(x)(y∗) ⊂ (∂σ(x))T y∗ for all y∗ ∈ IRm

([35]), each vector from the set D∗S(x)(∇yf(x, y)) leads to a vector from ∂Θ(x).

Theorem 2. (i) Let (x∗, v) ∈ IRn × IRm be a solution of the GE[
x∗

−∇yf(x, y)

]
∈ (∇F (x, y))T v + D̂∗Q(x, y, z) (v). (17)

Then one has

x∗ ∈ D∗S(x)(∇yf(x, y)) .

(ii) Let the assumptions of Theorem 1 be satisfied. Then to each x∗ ∈ D∗S(x)(∇yf(x, y))
there exists a vector v ∈ IRm such that[

x∗

−∇yf(x, y)

]
∈ (∇F (x, y))T v + D∗Q(x, y, z) (v). (18)

Proof. The GE (14) can be rewritten to the form

Φ(x, y) ∈ GphQ with Φ(x, y) =

 x
y

−F (x, y)


so that, by Definition 3,

D∗S(x)(y∗) = {x∗ ∈ IRn | (x∗,−y∗) ∈ NΦ−1(Gph Q)(x, y)} .

Since NΦ−1(Gph Q)(x, y) = ∂(δGph Q(Φ(x, y))), we have to do with a composition of
a proper l.s.c. function and a smooth map. The statements (i) and (ii) follow now from
[50, Thm. 10.6].
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By comparing (17) and (18), one observes that

D∗S(x)(∇yf(x, y)) = {x∗ ∈ IRn | ∃v ∈ IRm such that (x∗, v) solves the GE (18)}
(19)

whenever GphQ is regular at (x, y, z). The GE (18) is called adjoint generalized equa-
tion (AGE).

In some cases Gph Q is not regular at (x, y) and the GE (17) is difficult to solve.
Then one can try to enforce the equality in (19) by some finer, problem-dependent
assumption. Nevertheless, for a large class of equilibria a standard bundle method
will deliver an acceptable solution even in the case when it is supplied by vectors
∇xf(x, y) + x∗ with x∗ from the right-hand side of (19), GphQ being regular or not.
Such a solution, however, is not necessarily an approximation of a Clarke stationary
point, but of a point which is stationary in a weaker sense; see [11].

Another hurdle is associated with the solution of the AGE (18). Our goal is to choose
such a selection of the multifunction D∗Q(x, y, z) that will reduce (18) to an easily
solvable system of equations. By means of a concrete equilibrium, we will now illustrate
how this goal can be achieved.

Example 1. Consider the GE (14) with

Q(x, y) = NIRm
+

(y − Φ(x, y)), (20)

where Φ[IRn×IRm → IRm] is continuously differentiable. This GE describes a control-
dependent Implicit Complementarity Problem (ICP). In [42] this GE was converted to
an equivalent “expanded” form

0 ∈
[
F (x, y) − λ
y − Φ(x, y)

]
+
[

0
NIRm

+
(λ)

]
(21)

with an additional state variable λ ∈ IRm
+ . This reformulation enables us to apply the

standard approach using generalized Jacobians. The essential requirement, discussed at
the beginning of this section, can then be ensured via Robinson’s strong regularity [42,
Theorem 5.10]. The approach proposed here can be, however, directly applied to the
original (non-expanded) GE.

Let us define the following index sets associated with the reference pair (x, y):

L(x, y) :=
{
i ∈ {1, 2, . . . ,m} | yi − Φi(x, y) > 0

}
I+(x, y) := {i ∈ {1, 2, . . . ,m} | −z > 0}
I0(x, y) := {1, 2, . . . ,m} \ (L(x, y) ∪ I+(x, y)) .

Lemma 1. Assume that the matrix (−∇xΦ(x, y), E−∇yΦ(x, y)) has full row rank and
v is a vector from IRm such that vi = 0 for i ∈ I+(x, y). Then, for the multifunction
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(20), one has

D∗ Q(x, y, z) (v) =
{[ −(∇xΦ(x, y))T u

u − (∇yΦ(x, y))T u

]
| ui = 0 for i ∈ L(x, y),

ui ∈ IR for i ∈ I+(x, y)

and, for i ∈ I0(x, y), ui ∈
〈 IR if vi = 0

IR− if vi < 0
0 otherwise

 . (22)

Proof. Define the function Ψ [IRn × IRm × IRm → IRm] by

Ψ(x, y, u) :=
(

y − Φ(x, y)
u

)
.

The one has
GphQ = Ψ−1(GphNIRm

+
)

and, like in the proof of Theorem 2,

NGph Q(x, y, z) = ∂δΨ−1(Gph NIRm
+

)(x, y, z) = ∂
(
δGph NIRm

+
(Ψ(x, y, z))

)
.

By virtue of [50, Ex. 10.7]

∂
(
δGph NIRm

+
(Ψ(x, y, z))

)
=

 −(∇xΦ(x, y))T 0
E − (∇yΦ(x, y))T 0

0 E

NGph NIRm
+

(y − Φ(x, y), z)

due to our surjectivity assumption. Consequently, by Definition 2,

D∗ Q(x, y, z) (v) =
{[ −(∇xΦ(x, y))T u

u − (∇yΦ(x, y))T u

]
| u ∈ D∗NIRm

+
(y − Φ(x, y), z)(v)

}
.

As shown in [43, Lemma 2.2], the coderivative D∗NRm
+

(y−Φ(x, y), z) (v) is nonempty,
provided vi = 0 for i ∈ I+(x, y). Moreover, for such vectors v, one has

D∗NIRm
+

(y − Φ(y, y), z) (v) =
m

X
i=1

D∗NIR+(yi − Φi(x, y), zi) (vi)

and

D∗NIR+(yi−Φi(x, y), zi) (vi) =

〈0 for i ∈ L(x, y) ∪ {j ∈ I0(x, y) | vj > 0}
IR for i ∈ I+(x, y) ∪ {j ∈ I0(x, y) | vj = 0}
IR− for i ∈ {j ∈ I0(x, y) | vj < 0}.

The result has been established.

In this example, the AGE (18) reduces to a particularly simple form when we put
ui = 0 for i ∈ I0(x, y). It can be solved in the following two steps:
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1. Solve the linear system[
(∇yFL∪I0(x, y))T ET

I+
− (∇yΦI+(x, y))T

]
w = −∇yf(x, y)

in variable w ∈ IRm. (23)

2. Put
x∗ =

[
(∇xFL∪I0(x, y))T −(∇xΦI+)(x, y)T

]
w. (24)

The nonsingularity of the matrix on the left-hand side of (23) follows immediately from
the qualification condition (15). Under this condition, system (23) has a unique solution
and the respective vector x∗, computed in the 2nd step, belongs to the set on the right-
hand side of (19).

Formulas (23), (24) coincide with those derived in [42] via generalized Jacobians
under Robinson’s strong regularity condition (see below) imposed on the expanded GE
(21) at (x, y, λ), λ = −z.

Consider now an equilibrium governed by the GE

0 ∈ F (x, y) + Q(y), (25)

where Q maps this time IRm into subsets of IRm. Again, we suppose that F is continu-
ously differentiable, Q has a closed graph, (x, y) is a reference pair and z = −F (x, y).
In this case, the situation is slightly easier and most formulas can be significantly sim-
plified.

For GEs of the type (25), the existence of a locally unique Lipschitz selection σ of
S, passing the reference point (x, y), is usually ensured via Robinson’s strong regularity
condition, see [48] and [13].

Definition 4. We say that the GE (25) fulfils the Strong Regularity Condition (SRC) at
(x, y), provided the multifunction

Σ(ξ) := {y ∈ IRm | ξ ∈ F (x, y) + ∇yF (x, y) (y − y) + Q(y)}
is locally single-valued and Lipschitz around (0, y).

The other possibility consists in a suitable modification of Theorem 1.

Theorem 3. Consider the solution map S given by (25) and assume that it is locally
single-valued around (x, y). Additionally, suppose that the qualification condition

0 ∈ (∇yF (x, y))T v + D∗Q(y, z) (v) =⇒ v = 0 (26)

is fulfilled. Then the assertion of Theorem 1 remains true.

Proof. The map S can be equivalently written in the form

S(x) =
{

y ∈ IRm |
(

y
−F (x, y)

)
∈ Gph Q

}
, (27)

so that [35, Theorem 6.10] can be applied. By virtue of this result, condition (26) en-
sures that for all y∗ ∈ IRm

D∗S(x, y) (y∗) ⊂ {
(∇xF (x, y))T v | 0 ∈ y∗ + (∇yF (x, y))T v + D∗Q(y, z)(v)

}
.
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Moreover, again by (26), D∗S(x, y) (0) = {0}, which is equivalent to the Aubin prop-
erty of S around (x, y) ([36]). The statement thus follows from the assumed local
single-valuedness of S around (x, y).

The relation between the strong regularity and the assumptions of Theorem 3 is
clarified in the next statement.

Theorem 4. Let the GE (25) fulfil (SRC) at (x, y). Then the assumptions of Theorem 3
are satisfied.

Proof. The local single-valuedness of S around (x, y) follows directly from [13]. Thus
it remains to prove only the implication (26). Since Σ is locally single-valued and Lip-
schitz around (0, y), one has ([36])

D∗Σ(0, y) (0) = {0}
or, equivalently,

Ker D∗Σ−1(y, 0) = {0}.
For the coderivative of Σ−1, however, it holds that

D∗Σ−1(y, 0) (v) = (∇yF (x, y))T v + D∗Q(y, z) (v)

for all v ∈ IRm ([35, Cor. 4.4]). The result has been established.

There are equilibria in which the essential assumption for the application of ImP
is ensured by a completely different argumentation. This is, for instance, the case of
discretized contact problems with Coulomb friction; see [6] and Section 5.1. Such equi-
libria amount to fixed-point problems to which, under certain assumptions, the Banach
Fixed-Point Theorem can be applied. In this way, one can prove the required properties
of S but the qualification condition (26) need not be satisfied, in general.

Theorem 5. Consider the GE (25) around the reference pair (x, y) and assume that
all nonzero solutions to the GE in (26) do not belong to Ker(∇xF (x, y))T . Let v be a
solution of the GE

0 ∈ ∇yf(x, y) + (∇yF (x, y))T v + D∗Q(y, z) (v). (28)

Then, for all y∗ ∈ IRm, one has

D∗S(x, y) (y∗) ⊂ {
(∇xF (x, y))T v | v is a solution of (28)

}
. (29)

This inclusion becomes equality, provided either ∇xF (x, y) is surjective or Gph Q is
regular at (y, z).

Proof. As in the proof of Theorem 3, we rewrite the GE (25) in the form (27) and apply
[35, Theorem 6.10]. From this result, one easily derives the above assumption as well
as relations (28), (29). It also implies the equality in (29) under the regularity of GphQ
at (y, z). To show that the surjectivity of ∇xF (x, y) also implies this equality, one can
employ the argumentation used in the proof of Lemma 1.
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Remark 1. Since (28) plays the same role as (18), we will call it AGE, too.

The assumption in Theorem 5 is trivially satisfied when either the qualification con-
dition (26) holds true or the matrix ∇xF (x, y) is surjective. In this way, we have no
problems with this assumption whenever the required behaviour of S is ensured via the
strong regularity or via Theorem 3.

In many situations Q(y) =
m

X
i=1

Qi(yi). In this case, the surjectivity and/or regular-

ity conditions from Theorem 5 (ensuring equality in (29)) can be applied to each Qi

separately and combined together. In such a way, one arrives at finer conditions, under
which

∇xf(x, y) + (∇xF (x, y))T v ∈ ∂Θ(x)

with some solution v of (28).
The last issue concerns the solution of (28). If the GE (25) models equilibria dis-

cussed in [42] and (SRC) is fulfilled, then it is always possible to choose a selection of
D∗Q(y, z) in such a way that (28) reduces to a uniquely solvable linear system. This
goal can be achieved, however, also in case of more complicated equilibria. To illustrate
the procedure, consider equilibria governed by the GE (25), where

F (x, y) = A(x) y + �(x) and Q(y) = ∂J(y). (30)

Here the maps A[IRn → IRm×m], �[IRn → IRm] are continuously differentiable and
J [IRm → IR] is a proper convex and l.s.c. function. Furthermore, suppose that (x, y) is
a reference pair and A(x) is positive definite. Then it is easy to show that the respective
GE fulfils (SRC) at (x, y) and hence also condition (26) is satisfied. The computation
of the coderivative of the multi-valued part in (30) is generally rather difficult. Never-
theless, besides the simple case

J(y) = δIRm
+

(y),

corresponding to control-dependent linear complementarity problems, there are other
classes of functions for which the coderivative of their subdifferential mapping was
computed. In [14] the authors consider the case

J(y) = δΛ(y),

where Λ is a convex polyhedron. In [38] another situation is investigated: d is a given
natural number and

J(y) =
d∑

i=1

ji
(〈ci, y〉 + bi

)
,

where ci ∈ IRm, bi ∈ IR and ji[IR → IR] is a sum of a piecewise C2 function and the
indicatrix of a closed interval, i = 1, 2, . . . , d. Assume that the [m × d] matrix

CT :=
[
c1 · · · cd

]
has full column rank and denote by u the (unique) vector satisfying the relations

z = CT u (z = −A(x) y − �(x)) ,

ui ∈ ∂ji
(〈ci, y〉 + bi

)
, i = 1, 2, . . . , d.
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Then, for all v ∈ IRm, one has ([38, Theorem 3.4])

D∗Q(y, z) (v) = CT
d

X
i=1

D∗∂ji
(〈ci, y〉 + bi, ui

)
(〈ci, v〉) . (31)

Example 2. Consider an academic equilibrium given by the GE

0 ∈
[
y1

y2

]
+
[
x1

x2

]
+ ∂J(y), (32)

where J(y) = j1(y1 + 0.5) + j2(y1 + y2 + 1) with

j1(ξ) = 0.25max
{
eξ, e−ξ

}
, j2(ξ) = δIR−(ξ),

around the reference pair x1 = 0.25, x2 = 0.5, y1 = y2 = −0.5. The GE (32)
represents the necessary and sufficient optimality conditions of the convex nonsmooth
control-dependent program

min
[
1
2
(y1)2 +

1
2
(y2)2 + x1y1 + x2y2 + max

{
ey1+0.5, e−y1−0.5

}]
subject to

y1 + y2 ≤ −1.

One easily verifies that all above assumptions are fulfilled and the AGE (28) attains the
form

0 ∈ ∇yf(x̂, ŷ) +
[
v1

v2

]
+
[
1 1
0 1

] [
ξ
η

]
, (33)

with ξ ∈ D∗∂j1(0, 0.25) (v1) and η ∈ D∗NIR−(0, 0) (v1+v2). By Definitions 2 and 3,
D∗∂j1(0, 0.25) (0) = D∗NIR−(0, 0) (0) = IR. One of the solutions to (33) has thus a
particularly simple form: v = 0 (η = −∇y2f(x̂, ŷ), ξ = −∇y1f(x̂, ŷ) − η).

5. Three examples

Here we present three numerical examples that should demonstrate the usability and
efficiency of the NLP and ImP techniques. The first example (shape optimization of an
elastic bodies in unilateral contact under Coulomb friction) represents an MPEC that
is solvable by the ImP technique but its reformulation to an MPCC requires a rather
complicated and nontransparent transformation ([42]).

The second example (unique reformulation of truss topology design problem) is an
SMPGE; that means, we cannot apply ImP here. We will solve it by the NLP technique
and compare various NLP solvers.

The third example (shape optimization of a membrane with a compliant obstacle)
is an MPEC–MPCC with a uniquely solvable equilibrium problem. For its solution, we
can apply both the ImP and the NLP technique.
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5.1. Shape optimization in contact problems with Coulomb friction [6]

In Paragraph 2.1.4 we gave a brief introduction to this problem. The full details of the
modeling and finite element analysis can be found in [6]. The respective GE is of the
type discussed in Paragraph 2.1.4 and attains the form

0 ∈ Aττ (x)uτ + Aτν(x)uν − �τ (x) + Q(uτ , λν)
0 = Aντ (x)uτ + Aνν(x)uν − �ν(x) − λν

0 ∈ uν + x + NIRp
+
(λν),

 (34)

with a control variable x ∈ IRn specifying the shape of the contact boundary Γ and
state variables u = (uτ , uν) ∈ IR2p (the normal and tangential components of the
displacements on the contact boundary) and λν ∈ IRp (the normal component of the
contact stress vector); see Fig. 1. The multivalued part in the first line of (34) is given
by

Q(uτ , λν) = λν • ∂j(uτ ), j(uτ ) = F
p∑

i=1

|ui
τ | .

The contact boundary Γ is modeled by a Bezier curve of order n; the design variable
x is a vector of its control points. The end points of the Bezier curve are identical with
the first and last control point.

The shape optimization problem is defined as follows:

min
x,u,λν

f(x, u, λν)

subject to

(u, λν) solves the GE (34)

x ∈ ω

with

ω = {x ∈ IRn | 0 ≤ xi ≤ C0, i = 0, 1, . . . , n;

|xi+1 − xi| ≤ C1

n
, i = 0, 1, . . . , n − 1;

n∑
i=0

xi = C2(n + 1)} ,

where C0, C1, C2 are given positive constants. The equality constraint in the definition
of ω has a physical meaning of preserving the body volume.

We will solve this MPEC by the ImP technique, whereas the nonsmooth optimiza-
tion problem will be solved by the BT code [54]. In every BT iteration we have to solve
the equilibrium problem, i.e., the Signorini problem with Coulomb friction formulated
as a fixed-point problem. For that, we use the splitting variant of the fixed-point method
introduced in [23]. This is basically the method of successive approximations where,
at each step, we solve the contact problem with a given friction. The iterative process
then updates the coefficient of the given friction. The problem with the given friction
is solved using the so-called reciprocal variational formulation that leads to a quadratic
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programming problem with simple box constraints. For its solution we use a so-called
splitting technique, a version of the Gauss–Seidel algorithm.

Next, we will present results of a numerical example. The shape of the unloaded
elastic body O(x), x ∈ ω, is defined through a Bezier curve Bx as follows:

O(x) = {(ξ1, ξ2) ∈ IR2 | ξ1 ∈ (0, a), Bx(x1) < ξ2 < b};
see Figure 1. This figure also shows the distribution of external loads P on the boundary
ΓP . Further, Γu is the part of the boundary with prescribed Dirichlet condition.

a

P

Γ

Pu
Ω(α)

Γ

I
P

IIΓ

P

Γ

x 1

2x

b

C0

0

Fig. 1. The elastic body and applied loads.

Example 3. We try to identify the contact normal stress distribution with a given func-
tion λν . The shape optimization problem can be written as

min ‖λν − λν‖2
2

subject to x ∈ ω .

The example was solved by the ImP technique in connection with the BT code. We
discretized O(x) by a regular 29× 9 mesh, i.e, we had 261 nodes and 522 unknowns in
the state problem. The dimension of the control vector x, generating the Bezier curve
and defining O(x), was set to 20.

Let us demonstrate the convergence behavior of the BT algorithm when minimiz-
ing the nonsmooth composite objective function Θ. Figure 2 shows the decrease of
the function value in the example. We needed 123 BT iterations and 126 function and
subgradient evaluations to reach the prescribed accuracy. This figure also presents the
development of the BT stopping criterium during the iteration process.

5.2. Unique reformulation of truss topology design problem

A truss is an assemblage of pin-jointed uniform straight bars. The bars are subjected to
only axial tension and compression when the truss is loaded at the joints. The truss is
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Fig. 2. Behavior of the BT algorithm in Example 3. Decrease of the cost functional (left) and of the value of
the stopping criterium (right), both in logarithmic scale.

characterized by the set of nodes, bars and nodal forces. Some of the nodes are assumed
to be fixed, that is, some components of the displacement vector are forced to be zero;
let us denote by n the number of free displacement components. The nodal positions,
forces and displacements are assembled in vectors x ∈ IRn, f ∈ IRn and u ∈ IRn,
respectively. The bar volumes are denoted by ti, i = 1, . . . , m, where m is the number
of bars.

Consider first the truss analysis problem, i.e., the problem of finding displacements
for a given truss (a given vector t). This is a convex quadratic problem of minimizing
the potential energy subject to possible unilateral contact constraints:

min
u∈IRn

1
2
uT Au + fT u (35)

subject to

Cu ≥ 0 .

Here A = A(t) ∈ IRn×n is the (symmetric and positive semidefinite) stiffness matrix of
the truss and C ∈ IRp×n contains the unilateral contact information. This problem does
not have a unique solution, in general. The stiffness matrix may even have many zero
eigenvalues when t is obtained as a result of topology optimization. There is, however,
a unique “physical” solution of problem (35). This solution can be identified as the
minimizer of another quadratic functional uT Gu over all solutions of (35). Here G ∈
IRn×n is a symmetric and positive definite matrix; its construction is explained in [27].

Formulating the truss analysis problem (35) as complementarity problem, we can
write the unique truss analysis problem as the SMPGE

min
u∈IRn,λ∈IRp

uT Gu (36)

subject to

Au + f − CT λ = 0
Cu ≥ 0

λ ≥ 0

λT Cu ≤ 0 .
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In a similar way, we can define a unique reformulation of the truss topology design
problem. In the traditional formulation of the problem, one minimizes the so-called
compliance (maximizes the stiffness) of the truss subject to equilibrium conditions:

min
t∈IRm,u∈IRn

−fT u (37)

subject to(
m∑

i=1

tiAi

)
u + f = 0

m∑
i=1

ti ≤ 1

ti ≥ 0, i = 1, . . . , m ;

here Ai ∈ IRn×n are symmetric and positive semidefinite stiffness matrices of single
bars. It is well-known that this (nonconvex) problem is extremely difficult to solve by
standard NLP codes. It was shown by Ben-Tal and Bendsøe [4] that (37) can be equiv-
alently formulated as a convex quadratically constrained quadratic program

min
α∈IR,u∈IRn

α − fT u (38)

subject to

1
2
uT Aiu − α ≤ 0 i = 1, . . . , m .

Problems (37), (38) do not have a unique solution, in general. Using the same technique
as for the truss analysis problem, we define a unique truss design problem as an SMPGE
and use for its solution the NLP approach.

The NLP formulation of the unique truss design problem reads as:

min
t∈IRm,u∈IRn,α∈IR

uT Gu (39)

subject to(
m∑

i=1

tiAi

)
u + f = 0

m∑
i=1

ti ≤ 1

α − 1
2
uT Aiu ≥ 0, i = 1, . . . , m

ti ≥ 0, i = 1, . . . , m
m∑

i=1

ti(α − 1
2
uT Aiu) ≤ 0 .

To demonstrate the capability of the NLP approach, we generated three examples
of the unique truss analysis problem of increasing dimension and solved them by NLP
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codes available on the NEOS1 server. Figure 3 shows one such truss—it is the result of
the truss topology optimization problem and we can see that many bars have zero vol-
ume. Also, there are many nodes lying on straight bars, a source of possible nonunique-
ness. The problems were solved using formulation (36).

Fig. 3. Problem tr21x5. The truss is fixed at the left-hand side nodes and subjected to a vertical load at the
right-lower node.

The following table shows results of the most successful NEOS codes, namely,
LOQO [56], Filter [17], SNOPT [21], MINOS [39], and of the code PENNON [28].
We must remark that “one iteration” has different meaning in different codes, and thus

Table 1. Results for NLP reformulation of the unique truss analysis problem. Given are the numbers of
iterations for each code. “F” stands for failure. “var” and “constr” are the numbers of variables and constraints,
respectively.

problem var constr LOQO Filter SNOPT MINOS PENNON
tr 11x3 47 34 15 10 63 53 13
tr 21x5 103 72 34 9 137 110 23
tr 41x9 569 534 F F F F F

the table basically presents the ability of the code to solve the particular problem.
The unique truss optimization problem (39) resembles problem (37). As (37) was a

difficult NLP problem, we cannot expect (39) to be any simpler and this is clearly seen
from our numerical results. It turned out that the examples from previous table are all
too large, so we generated several smaller ones and solved them again by NLP codes
available on the NEOS server. These examples include additional linear inequality con-
straints on the displacement of certain nodes (modeling rigid obstacle).

The only codes capable to solve at least some of these examples were SNOPT and
MINOS, all the other codes failed. The following table shows the results2. These re-
sults indicate that SMPGE problems with difficult equilibria are the more difficult when
solved by the NLP approach.

5.3. Design of membrane with compliant obstacle [42]

We first define the equilibrium problem—a membrane with a compliant obstacle. Let
O(x) be a domain in IR2 with a Lipschitz boundary described by a design variable x.

1 http://www-neos.mcs.anl.gov/neos/
2 All problems from this section are available in AMPL format on the author’s webpage

http://www2.am.uni-erlangen.de/∼kocvara/mpec/.
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Table 2. Results for NLP reformulation of the unique truss design problem. Given are the numbers of itera-
tions for each code. “F” stands for failure. “var” and “constr” are the numbers of variables and constraints,
respectively.

problem var constr SNOPT MINOS
tro 3x3 31 33 259 368
tro 4x4 64 66 593 F
tro 5x5 109 111 1122 F
tro 6x2 46 48 763 F
tro 11x3 151 153 F F

Assume for the moment that x is kept fixed. The domain is occupied by a membrane
subjected to a force �. The state variable u represents the respective deflection. Again,
we give directly a formulation of the problem discretized by the finite element method.
Let A(x) and �(x) be the stiffness matrix and the force vector in O(x). The loaded
membrane cannot penetrate a compliant obstacle; this condition is expressed by the
inequality

u ≥ G(x, u) := k(A(x)u − �(x)) + χ(x) ,

where χ describes the original shape of the obstacle and k is a coefficient of compli-
ance. The equilibrium problem for a membrane with a compliant obstacle is an ICP in
variable u:

A(x)u − �(x) ≥ 0, u − G(x, u) ≥ 0 (40)

〈A(x)u − �(x), u − G(x, u)〉 = 0.

In the optimum design problem, our objective is to minimize the membrane surface
under the state constraint that in a given subset O0 ⊂ O(x) of the membrane stays in
contact with the obstacle ([42]). The design variables are the positions of the nodes on
a part of the boundary of O(x). Let D0 be an index set including numbers of the nodes
from O0. The optimum design problem reads as

min f(x, u) := measO(x) (41)

subject to

u solves the ICP (40)

(u − G(x, u))i = 0 for i ∈ D0

x ∈ ω.

The set of admissible design variables ω is defined in such a way that the boundary of
O(x) can only move within given bounds.

In ImP, we cannot handle the state constraint in (41) explicitly; instead, we modify
the objective function by an exact penalty with the penalty parameter γ (h is a dis-
cretization parameter):

min fγ(x, u) := measO(x) + γh2
∑
i∈D0

(u − G(x, u))i (42)

subject to

u solves the ICP (40)

x ∈ ω.
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Example 4. We chose two example that are included in the MacMPEC3 collection, in
order to compare the ImP and NLP techniques. The examples differ by the choice of the
obstacle functions χ1(ξ1, ξ2) = −0.04(ξ2

1 + (ξ2
2 − 0.25)2) and χ2(ξ1, ξ2) = −0.05ξ1.

The load is constant over the membrane.
We first solved these problems using the ImP technique. The equilibrium problems

were solved by the nonsmooth Newton method applied to the following nonsmooth
equation, equivalent to ICP (40):

min{A(x)u − �(x), u − G(x, u)} = 0 (componentwise).

The nonsymmetric linear systems were solved by the minimum residuum method with-
out preconditioning. There are other alternative methods for solving of this type of ICP
that may be equally effective. For the computation of subgradients of the composite
function Θ we used formulas (23), (24) from Example 1.

Five discretizations were used with h ∈ {1
8 , 1

16 , 1
32 , 1

64 , 1
128}; the value of the penalty

parameter was r = 106 in all cases. Table 3 summarizes the results. Here we use the
same problem names as in MacMPEC. The numbers of variables and constraints are
given from the ImP viewpoint. We observe a typical behaviour of a bundle algorithm in

Table 3. Results of the ImP approach using BT code. Given are the numbers of BT iterations and CPU time
on Pentium 3 PC (1 GHz) running Windows 2000.

problem var constr iter CPU(sec) f∗
pack-comp1-8 9 18 4 0.27 0.60000000
pack-comp1-16 17 34 36 0.84 0.61695165
pack-comp1-32 33 66 75 8.91 0.65297999
pack-comp1-64 65 130 93 105.98 0.68197856
pack-comp1-128 129 258 77 2262.30 0.69398364
pack-comp2-8 9 18 187 0.64 0.67311716
pack-comp2-16 17 34 76 1.38 0.72713674
pack-comp2-32 33 66 71 8.54 0.78260579
pack-comp2-64 65 130 164 180.49 0.82122227
pack-comp2-128 129 258 91 2515.19 0.83365644

MPEC: the number of iterations is virtually independent on the size of the problem.
In Table 4 we present results of the NLP approach for h ∈ {1

8 , 1
16 , 1

32}, whereas
the NLP problems are solved by FilterMPEC and LOQO. These results were published
in [18] and [56]. The CPU times were obtained on different computers and should be
taken just as indications of the codes behaviour.
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