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Abstract This paper is motivated by problem of optimal shape design of lami-
nated elastic bodies. We use a recently introduced model of delamina-
tion, based on minimization of potential energy which includes the free
(Gibbs-type) energy and (pseudo)potential of dissipative forces, to in-
troduce and analyze a special mathematical program with equilibrium
constraints. The equilibrium is governed by a finite sequence of coupled
mathematical programs that have to be solved one after another in the
direction of increasing time. We derive optimality conditions for the
control problem and illustrate them on an academic example.

Keywords: Inelastic damage, mathematical program with equilibrium constraints,
evolution equilibrium, hemivariational inequality

1. Introduction

The design of crashworthy vehicles depends upon developing struc-
tures capable of absorbing large amounts of crash energy. Composite
materials have been shown to have energy absorbing properties superior
to conventional metallic structures. With the goal of designing crash
elements (structural elements with high energy absorption by crash), we
consider laminated structures. The energy is absorbed by delamination
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of such structures. Mathematical simulation of vehicle crash requires,
first of all, finding a reliable mathematical model. In this paper, we
use a recently introduced model of delamination, based on minimiza-
tion of potential energy which includes the free (Gibbs-type) energy and
(pseudo)potential of dissipative forces ([9]). Based on this model, we
introduce and analyze an evolution control problem with the final goal
of designing optimal shape of crash elements.

Delamination is a progressive separation of bonded laminate and, si-
multaneously, degradation of the used adhesive. The mechanism of de-
lamination is very complex and involves phenomena like debonding and
unilateral contact with nonmonotone friction. In the recent literature,
the modeling of the delamination problem is generally approached either
by using fracture mechanics (see, e.g., [3, 20]) or by introducing special
constitutive laws for the interface material in the spirit of damage me-
chanics, or simply quasistatically. In the second approach, delamination
is described by a damage variable reflecting the destruction of the bonds
in the a-priori known delamination surface (see, e.g., [5, 17]).

Another, static approach was proposed by Panagiotopoulos [16] who
formulated the problem of equilibrium positions as a hemivariational in-
equality (HVI), a generalization of variational inequality for nonmono-
tone operators; see also [2]. Thus, this method has limited applications
only in processes with simple time–dependent loadings. After discretiza-
tion by the finite elements method, this approach results in a nonsmooth
and nonconvex optimization problem. The variable of this problem are
the elements of the discretized displacement vector.

In the model introduced in [9], delamination is considered as a fracture-
like process that can run along a-priori known surfaces between homoge-
neous isotropic elastic bodies that are in frictionless unilateral contact.
It is an activated and rate-independent process, based on the philosophy
that a specific energy is needed to cut the macromolecular structure of
the adhesive, no matter how fast or slow this process is. This model is
supported by a rigorous analysis based on the apparatus recently devel-
oped for rate-independent processes in, e.g., [10–11]. In this paper, we
will refer to this model as RI model. After discretization in time and
space, the RI model results in a sequence of smooth nonconvex opti-
mization problems. Compared to the static HVI model, the dimension
of one problem increases by the number of damage parameters.

Assume that the discretized RI model contains parameters, the values
of which should be optimized with respect to an (upper-level) objective.
In this way, we arrive at a special mathematical program with equi-
librium constraints (MPEC) in which the underlying equilibrium has
evolution nature. From the viewpoint of optimality conditions, similar
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problems were investigated in [21]. There, however, the equilibrium is
governed by a standard optimal control problem (i.e., the optimization
is performed over the whole time interval). In our case, we have to do
with a finite sequence of coupled mathematical programs that have to
be solved one after another in the direction of increasing time. This dif-
ference is naturally reflected in the character of the resulting optimality
conditions.

The paper is organized as follows: In the next section, we introduce
the RI model of [9] and compare it the the static HVI model. After
that, we present a conceptual MPEC with the discretized RI delamina-
tion process as equilibrium constraint. Section 3 is devoted to necessary
optimality conditions for this MPEC. As a workhorse we use the gener-
alized differential calculus of B. Mordukhovich ([13, 12]) which proved to
be an efficient tool in the treatment of various equilibria. The resulting
conditions are illustrated by means of an academic example introduced
in Section 2.

The following notation is employed: If f is a differentiable function
of two variables, then ∇1f and ∇2f denote the partial derivatives with
respect to the first and the second variable, respectively. B is the unit ball
and for a multifunction Q[Rn

; R
m], GphQ := {(x, y) ∈ R

n × R
m | y ∈

Q(x)}. To describe the local properties of sets, multifunctions and real-
valued functions, we make use of suitable concepts from the generalized
differential calculus of B. Mordukhovich ([13],[12]). So, NΩ(x) denotes
the limiting normal cone to the set Ω at x ∈ clΩ, D∗Q(x, y)(·) denotes
the coderivative of the multifunction Q at (x, y) ∈ cl GphQ and ∂f(x)
is the limiting subdifferential of a real-valued function f at x ∈ domf .

For the reader’s convenience, we close this section with a useful stabil-
ity concept for multifunctions which plays an important role in Section 3.

Definition 1 ([19]) A multifunction Q[Rn
; R

m] is calm at (x̄, ȳ) ∈
GphQ provided there is a constant κ ∈ R+ along with neighborhoods U
of x̄ and V of ȳ such that

Q(x) ∩ V ⊂ Q(x̄) + κ‖x − x̄‖B for all x ∈ U .

2. Delamination process

In this section we recall the rate-independent model of the delamina-
tion process, as recently introduced in [9]. In this model, after a (time
and space) discretization, one has to solve in each time step a smooth
nonconvex optimization problem. We further propose a conceptual op-
timization problem in which the discretized delamination process arises
as a constraint.
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2.1 Modeling

For simplicity of notation, we only consider laminates consisting of two
elastic bodies Ω1 and Ω2 with an interface boundary denoted by Γ12; see
Fig. 1. The two bodies are in unilateral contact along Γ12; further they
are glued along Γ12 by an adhesive. The matrix b : Γ12 → R

2×2 reflects
the elastic properties of the adhesive. We adopt, in fact, a dimensional
reduction of the two-dimensional adhesive layer to an one-dimensional
surface Γ12.
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Figure 1.

The state of the system will be considered as y = (u1, u2, ζ) where
ui : Ωi → R

2 is the (small) displacement in the domain Ωi, i = 1, 2,
and ζ : Γ12 → [0, 1] is a damage parameter indicating how much of the
adhesive is effective: 1 means 100% of the adhesive glues at x ∈ Γ12, 0
means that the surface is completely delaminated at the current point
x ∈ Γ12, and 0 < ζ(x) < 1 means that some portion of macromolecules
of the adhesive is already cut while the rest is still effective.

A rate-independent delamination model has recently been introduced
in [9]. This model is based on the minimization of the elastic stored
energy and the dissipation potential subject to several constraints. The
constraints reflect

– the unilateral contact of the two elastic bodies;

– the time-dependent Dirichlet loading by a “hard device”;

– the irreversibility (in time) of the delamination of the adhesive.

The resulting minimization problem is first discretized in the time
variable and further in the space variable by the standard finite element
method. Below we present the fully discretized problem that will be
further studied in the subsequent sections.
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We use the same finite element mesh for both variables, u and ζ. In
order to allow for the separation (delamination) of the elastic bodies, the
joint boundary Γ12 is discretized by N pairs of nodes, say (n1,j , n2,j), j =
1, . . . , N , with ni,j ∈ Ωi, i = 1, 2. At the beginning of the delamination
process the nodes n1,j , n2,j have the same positions for all j = 1, . . . , N .

Let A1, A2 be the stiffness matrices of the elastic bodies Ω1, Ω2,
respectively. The discretized elastic stored energy becomes

V (u, ζ) =

2∑

i=1

uT
i Aiui +

N∑

j=1

ωjζj (u1,j−u2,j)
⊤b(nj)(u1,j−u2,j)

where ωj are integration weights. Similarly, the discretized dissipation
potential is

R(ζ) =
N∑

j=1

−ωjd(nj)ζj .

Here d(x) is a phenomenological parameter having the meaning of a
specific energy needed to delaminate the surface Γ12 at a point x ∈
Γ12, i.e., the energy needed to switch ζ(x) from 1 to 0. This energy is
irreversibly dissipated to the structural change of the adhesive. The case
R(ζ) = +∞ will be respected by a corresponding linear constraint.

We assume that the laminate is loaded by time-depended unilateral
Dirichlet loading (“hard-device”) on parts of the boundaries of Ω1, Ω2.
The load vector (prescribed displacements) at a time step i is denoted
by ui. Let L1 be a rectangular matrix selecting the “loaded” boundary
components from the whole vector u. Finally, denote by L2 a rectangular
matrix that takes care of the nonpenetration of Ω1 and Ω2 on Γ12.

The discrete version of the delamination problem in time step i is then
(we omit the current time step index for simplicity)

minimize V (u, ζ) + R(ζ−ζi−1)

subject to L1u ≥ ui

L2u ≤ 0

ζi−1 ≥ ζ ≥ 0 componentwise.

(1)

Here the index i−1 refers to the previous time step. The irreversibility
of the dissipation process is guaranteed by the left-hand side of the last
constraint.

As we are only interested in the components of the displacement vector
lying on the boundary Γ12, we can eliminate all components correspond-
ing to the interior nodes. This reduces the number of variables in (1) to
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the number of interface boundary nodes times five (two times two com-
ponents of the displacement vector plus the components of ζ) plus the
number of boundary nodes with prescribed non-zero Dirichlet condition
(loaded nodes) times two. In [9] it was shown that (1) can be efficiently
solved by state-of-the-art optimization software and that the proposed
modeling of the delamination process delivers reasonable results.

2.2 Relation to the HVI model

Let us briefly show the relation of the RI model described above to
the HVI model, introduced by Panagiotopoulos and numerically solved
in [2].

The hemivariational inequality model of the static delamination prob-
lem amounts to first-order optimality condition of the following non-
smooth nonconvex optimization problem (we use the same notation as
in the previous section):

minimize
2∑

i=1

uT
i Aiui +

N∑

j=1

ωj min{(u1,j−u2,j)
⊤b(nj)(u1,j−u2,j), d(nj)}

subject to L1u ≥ ui

L2u ≤ 0 .

(2)

Recall the simple fact that, for smooth convex functions f and g, the
set of (Clarke) stationary points of the (nonsmooth) pointwise minimum
function min{f(x), g(x)} is equal to the set of x-components of station-
ary points of the (smooth) mathematical program αf(x) + (1−α)g(x),
α ∈ [0, 1] in variables x, α. Hence the (Clarke) stationary points of prob-
lem (2) are just the u-components of stationary points of the smooth
problem (1), assuming that ζi−1 ≡ 1. In other words, solving the static
HVI model “is the same” as solving the RI model for the first time step,
starting from the non-delaminated state (of course, one has to take into
account that different algorithms may find different stationary points
of these two nonconvex problems). The static model tries to “jump”
directly into the solution at the terminal time—the time discretization
is reduced to only one interval. The HVI results may then only be reli-
able for monotone (in time) loadings and simple geometries, contrary to
the RI model that allows for general nonmonotone loading (and unload-
ing). The difference between the two models, even for monotone loading
and simple problems, is clearly seen when solving the optimal control
problems; see, in particular, Example 2 in Section 4.



On the modeling and control of delamination processes 7

2.3 Control

Our second goal is to control the (discretized) RI delamination process
by certain parameters. The aim is to find such parameters that an
objective function depending on the terminal state is minimized. For
instance, having in mind our motivation from the Introduction, we want
to find such a shape of the boundaries of Ω1, Ω2 that, at the terminal
time, as much energy is dissipated as possible.

This optimal control problem can thus be written as the following
“conceptual” MPEC

minimize ϕ(x, y)

subject to x ∈ Uad,

y is the terminal state of the delamination process

depending on parameter x,

(3)

where Uad ⊂ R
n is the set of admissible controls. The detailed formula-

tion of the problem is given in the next section.
Before going on, let us introduce a simplified example that demon-

strates the difficulties connected with the control of the delamination
process.

Example 1 Consider the four-string example as shown in Figure 2.
In reality, the strings are at the same horizontal position, here they are
plotted with some gap for presentation reasons. The elasticity modulae
of the strings are e1, . . . , e4. Assume that e3 = e4 and denote it by e.
The end-nodes of the strings are denoted n0, n1, n2. The vertical dis-
placements at the nodes are u0, u1, u2. Node n0 is fixed (u0 = 0), node
n2 is subjected to nonzero Dirichlet boundary condition (prescribed dis-
placements) u2 = u.
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The left-hand strings are elastic and do “never” break—they simulate
the elastic bodies. The right-hand strings simulate the adhesive: they
are also elastic but can break when the relative displacement reaches a
certain value.

The Dirichlet condition u depends on time. The equilibrium state in
the i-th time interval is obtained by solving the optimization problem

min
u1,u2,ζ1,ζ2

E :=
2∑

j=1

(
ej(uj−uj−1)

2 + ζje(uj−uj−1)
2 + (ζi−1

j −ζj)ed
)

subject to

u2 ≥ ui

uj − uj−1 ≥ 0, j = 1, 2

ζi−1 ≥ ζ ≥ 0

(4)

The first term under the sum is the strain energy of the elastic strings 1
and 2. The second term is the strain energy of the breakable strings 3
and 4 (the “adhesive”). The third term is the dissipation energy. Num-
ber d is the energy dissipated by breaking one string (this is given in our
case).

In the MPEC, the control variables are e1 and e2. The goal is to find
such design that, at the terminal time k, as much energy is dissipated
as possible:

max
e1,e2,u1,u2,ζ1,ζ2

ϕ := ζk
1 + ζk

2

subject to

e1 + e2 = 2

(u1, u2, ζ1, ζ2) solves (4) at time k.

(5)

Assume the following problem data:

d = 1 · 10−6 (dissipation parameter)

uk = 0.007 (final prescribed displacement)

e = 10.

The optimal solution is

e1 = 1, e2 = 1,

ζk
1 = ζk

2 = 0, uk
1 = 0.0035, uk

2 = 0.007,

ϕ = 2, E = 4.45 · 10−5,
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when both strings 3 and 4 break. However, there may be more solutions
to (5) within some neighborhood of 1 that also lead to the break of both
strings. One such solution is

e1 = 1.05, e2 = 0.95,

ζk
1 = ζk

2 = 0, uk
1 = 0.003325, uk

2 = 0.007,

ϕ = 2, E = 4.44388 · 10−5.

Obviously, everything within the interval e1 ∈ (0.95, 1.05), e2 = 2 − e1

is a solution to (5).
Note that, for instance, (e1 = 1.1, e2 = 0.9) is not an optimal control

of the MPEC (5) any more, because it gives ζk
1 = 1, ζk

2 = 0 as a solution
of the state problem (4). That means, only one string breaks and the
corresponding upper-level criterium is only ϕ = 1.

Next two sections are devoted to necessary optimality conditions for
MPECs of the type (3).

3. Optimality conditions

The discretized delamination model, introduced and discussed in the
previous section, can be generally written down in the form of a finite
sequence of coupled optimization problems

minimize f i(yi−1, yi)

subject to yi ∈ Γi(yi−1), i = 1, 2, . . . , k

y0 given,

(6)

where yi−1 ∈ R
m is the parameter, yi ∈ R

m is the unknown variable,
f i(yi−1, ·) is the objective and the multifunction Γi[Rm

; R
m] speci-

fies the feasible set. This sequence of optimization problems has to be
solved starting from the initial “state” y0, in the direction of the increas-
ing time index. In this way, one obtains eventually the whole trajectory
y1, y2, . . . , yk. The aim of this section is to analyze MPECs with equi-
libria governed by such a sequence of coupled optimization problems. In
each of them, additionally, a control variable x ∈ R

n arises so that the
ith problem attains the “controlled” form

minimize f i(x, yi−1, yi)

subject to yi ∈ Γi(x, yi−1).
(7)

Because our attention is paid to necessary optimality conditions for
MPECs with such equilibria, we can replace the single problems (7)
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by the respective 1st-order necessary optimality conditions. Assuming
that all objectives f i(x, yi−1, ·) are continuously differentiable for each
pair (x, yi−1), these conditions can be written down in the form

0 ∈ ∇3f
i(x, yi−1, yi) + NΓ(x,yi−1)(y

i), i = 1, 2, . . . , k. (8)

Instead of the sequence of relations (7), we can now consider the sequence
of coupled generalized equations (GEs)

0 ∈ F i(x, yi−1, yi) + Qi(x, yi−1, yi), i = 1, 2, . . . , k, (9)

where F i[Rn × R
m × R

m → R
m], Qi[Rn × R

m × R
m

; R
m] represent

the single-valued and the multi-valued part, respectively. This general-
ization enlarges our applicability area also to equilibria governed, e.g.,
by a finite sequence of coupled complementarity problems or variational
inequalities. In this way, we have arrived at a hopefully useful paradigm
describing a specific time evolution of a fairly large class of equilibrium
problems.

On the respective MPEC we impose the following simplifying assump-
tions:

(i) The (upper-level) objective depends only on x and yk;

(ii) The state variables y1, y2, . . . , yk are not subject to any constraints;

(iii) All function F i are continuously differentiable and all maps Qi

have closed graphs.

The first two assumptions are not essential and can be removed. In
the MPECs associated with the delamination process, however, they are
fulfilled and so we decided to simplify the statement of the next theorem
by imposing them from the very beginning. We thus have to deal with
the following MPEC:

minimize ϕ(x, yk)

subject to 0 ∈ F i(x, yi−1, yi) + Qi(x, yi−1, yi), i = 1, 2, . . . , k

y0 given

x ∈ Uad,

(10)

where ϕ[Rn ×R
m → R] is an (upper-level) objective and Uad ⊂ R

n is as
before the set of admissible controls. Throughout the rest of the paper
it is assumed that ϕ is locally Lipschitz and Uad is nonempty and closed.
By y we denote the trajectory (y1, y2, . . . , yk) and m := km.



On the modeling and control of delamination processes 11

Theorem 2 Let (x̂, ŷ) be a (local) solution of MPEC (10). Denote ẑi =
−F i(x̂, ŷi−1, ŷi), i = 1, 2, . . . , k, and define the multifunction Ξ[Rm

;

R
n × R

m] by

Ξ(ξ1, ξ2, . . . , ξk)

:=
{
(x, y) ∈ Uad × R

m|ξi ∈ F i(x, yi−1, yi) + Qi(x, yi−1, yi),

i = 1, 2, . . . , k} .

Assume that Ξ is calm at (0, x̂, ŷ). Then there exist four sequences of
adjoint vectors p1, p2, . . . , pk, q1, q2, . . . , qk, v1, v2, . . . , vk, w1, w2, . . . , wk

and subgradients (κ, η) ∈ ∂ϕ(x̂, ŷk) such that (with ŷ0 = y0)

(pi, qi, vi) ∈ D∗Qi(x̂, ŷi−1, ŷi, ẑi)(wi), i = 1, 2, . . . , k (11)

and the adjoint equation system

0 = η + (∇3F
k(x̂, ŷk−1, ŷk))T wk + vk

0 = (∇3F
k−1(x̂, ŷk−2, ŷk−1))T wk−1 + vk−1

+ (∇2F
k(x̂, ŷk−1, ŷk))T wk + qk

· · · · · ·

0 = (∇3F
1(x̂, y0, ŷ1))T w1 + v1 + (∇2F

2(x̂, ŷ1, ŷ2))T w2 + q2






(12)

is fulfilled. Moreover, one has

0 ∈ κ +

k∑

i=1

[(
∇1F

i(x̂, ŷi−1, ŷi)
)T

wi + pi
]

+ NUad
(x̂). (13)

Proof. The constraints in (10) can be written down in the form

0 ∈ Φ(x, y) + Λ, x ∈ Uad,



12

where

Φ(x, y) = −





x

y0

y1

−F 1(x, y0, y1)
x

y1

y2

−F 2(x, y1, y2)
· · · · · ·

x

yk−1

yk

−F k(x, yk−1, yk)





and Λ = Xk
i=1GphQi

Due to the imposed calmness assumption, one can invoke [14, Thm.2.4]
which yields the existence of a Karush-Kuhn-Tucker (KKT) vector

b = (p1, q1, v1,−w1, p2, q2, v2,−w2, . . . , pk, qk, vk,−wk, ) ∈ NΛ(−Φ(x̂, ŷ))

and subgradients (κ, η) ∈ ∂ϕ(x̂, ŷk) such that

0 ∈





κ

0
...
0
η




− (∇Φ(x̂, ŷ))T b +





NUad
(x̂)

0
...
0




. (14)

Because NΛ(−Φ(x̂, ŷ)) = Xk
i=1NGphQi(x̂, ŷi−1, ŷi, ẑi) see [13, Prop.1.6],

it follows that (pi, qi, vi,−wi) ∈ NGphQi(x̂, ŷi−1, ŷi, ẑi), i = 1, 2, . . . , k. In
this way relations (11) have been established. The first line of (14) leads
now directly to relation (13), whereas the remaining k lines generate the
adjoint system (12).

The calmness assumption is automatically fulfilled provided Uad is
convex polyhedral, all function F i are affine and all sets GphQi are
unions of finitely many convex polyhedral sets. Indeed, in such a case,
GphΞ is also a union of finitely many convex polyhedral sets and Ξ is
locally upper Lipschitz around 0, cf. [18]. This is, however, a stronger
property than the required calmness at (0, x̂, ŷ). Another possibility is
to ensure the Aubin property of Ξ around (0, x̂, ŷ), which is also stronger
than the required calmness condition. This can be done by the following
Mangasarian-Fromowitz constraint qualification.
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Theorem 3 Assume that the system

0 = (∇3F
k(x̂, ŷk−1, ŷk))T wk + vk

0 = (∇3F
k−1(x̂, ŷk−2, ŷk−1))T wk−1 + vk−1 + (∇2F

k(x̂, ŷk−1, ŷk))T wk + qk

· · · · · ·

0 = (∇3F
1(x̂, y0, ŷ1))T w1 + v1 + (∇2F

2(x̂, ŷ1, ŷ2))T w2 + q2

0 ∈

k∑

i=1

[(
∇1F

i(x̂, ŷi−1, ŷi)
)T

wi + pi
]

+ NUad
(x̂)

with (pi, qi, vi) ∈ D∗Qi(x̂, ŷi−1, ŷi, ẑi)(wi), i = 1, 2, . . . , k, possesses only
the trivial solution p1 = p2 = . . . = pk = 0, q2 = q3 = . . . = qk = 0, v1 =
v2 = . . . = vk = 0 and w1 = w2 = . . . wk = 0. Then Ξ has the Aubin
property around (0, x̂, ŷ).

The statement follows from the Mordukhovich characterization of the
Aubin property ([19, Thm.9.40]) and standard rules of the coderivative
calculus [12]. As shown in [14], the above condition is automatically
fulfilled, provided the multifunctions Qi do not depend on the control
and the multifunction ∆[Rm

; R
m], defined by

∆(ξ) = { y ∈ R
m | ξi ∈ F i(x̂, ŷi−1, ŷi)

+ ∇2F
i(x̂, ŷi−1, ŷi)(yi−1 − ŷi−1)

+ ∇3F
i(x̂, ŷi−1, ŷi)(yi − ŷi)

+ Qi(x̂, ŷi−1, ŷi), i = 1, 2, . . . , k } ,

is locally single-valued and Lipschitz around (0, ŷ) (Robinson’s strong
regularity). This is, however, not the case if we deal with the delami-
nation model of Section 2. The optimality conditions of Theorem 2 can
be substantially simplified provided the maps Qi do not depend on x or
yi−1. This is expressed in the following corollaries.

Corollary 4 Let all assumptions of Theorem 2 be fulfilled and as-
sume that the maps Qi, i = 1, 2, . . . , k, do not depend on x. Then
there exist three sequences of adjoint vectors q1, q2, . . . , qk, v1, v2, . . . , vk,
w1, w2, . . . , wk and subgradients (κ, η) ∈ ∂ϕ(x̂, ŷk) such that

(qi, vi) ∈ D∗Qi(ŷi−1, ŷi, ẑi)(wi), i = 1, 2, . . . , k,

the adjoint equation system (12) is satisfied, and

0 ∈ κ +
k∑

i=1

(
∇1F

i(x̂, ŷi−1, ŷi)
)T

wi + NUad
(x̂). (15)
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Corollary 5 Let all assumptions of Theorem 2 be fulfilled and as-
sume that for i = 1, 2, . . . , k the maps Qi depend exclusively on vari-
ables yi, respectively. Then there exist two sequences of adjoint vectors
v1, v2, . . . , vk, w1, w2, . . . , wk and subgradients (κ, η) ∈ ∂ϕ(x̂, ŷk) such
that

vi ∈ D∗Qi(ŷi, ẑi)(wi), i = 1, 2, . . . , k

and the adjoint equation system

0 = η + (∇3F
k(x̂, ŷk−1, ŷk))T wk + vk

0 = (∇3F
k−1(x̂, ŷk−2, ŷk−1))T wk−1 + vk−1

+ (∇2F
k(x̂, ŷk−1, ŷk))T wk

· · · · · ·

0 = (∇3F
1(x̂, y0, ŷ1))T w1 + v1 + (∇2F

2(x̂, ŷ1, ŷ2))T w2






(16)

is fulfilled. Moreover, relation (15) holds true.

Remark As in the classic discrete-time optimal control problems [8],
the adjoint systems (12),(16) have to be solved backwards starting from
the terminal condition. Together with the GEs (9) they represent a
special two-point boundary value problem.

4. Optimization of delamination processes

The aim of this section is to apply the preceding theory to an MPEC,
where the equilibrium is governed by a sequence of optimization prob-
lems (7) with the data (functions f i and multifunctions Γi) specified in
Section 2. Without giving the structure of f i in detail, the ith problem
attains the form

minimize f(x, ζi−1, ui, ζi)

subject to L1u
i ≥ ūi

L2u
i ≤ 0

ζi ≥ 0

ζi ≤ ζi−1,

(17)

where the control x arises only in the objective, all other variables were
described in Section 2 and also the problem data f, L1L2 were defined
there. The next step consists in the construction of such optimality con-
ditions for (17) that will facilitate a subsequent application of Theorem 2
as much as possible. To this purpose, we introduce the polyhedral sets

Ωi :=
{
(ui, ζi) |L1u

i ≥ ūi, ζi ≥ 0
}

,
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consisting (due to the structure of L1) only of lower bounds for some
variables.

Theorem 6 Let x = x̃ and ζi−1 = ζ̃i−1 be given and (ũ, ζ̃i) be a solution
of the respective problem (17). Then there exists a KKT vector λ̃i such
that

0 ∈ ∇3,4f(x̃, ζ̃i−1, ũi, ζ̃i) + (∇2,3G(ζ̃i−1, ũi, ζ̃i))T λ̃i + NΩi(ũi, ζ̃i)

0 ∈ −G(ζ̃i−1, ũi, ζ̃i) + N
R

l
+
(λ̃i),

(18)

where

G(ζi−1, ui, ζi) : =

[
L2u

i

ζi − ζi−1

]

and l is the dimension of the image space of G.

Note that in the above optimality conditions we do not need any
constraint qualification, because all functions arising in the constraints
are affine. The GE (18) is already in the required form (9); it suffices to
put

yi : = (ui, ζi, λi),

F (x, yi−1, yi) : =

[
∇3,4f(x, ζi−1, ui, ζi) + (∇2,3G(ζi−1, ui, ζi))T λi

−G(ζi−1, ui, ζi)

]

and

Qi(yi) : =

[
NΩi(ui, ζi)
N

R
l
+
(λi)

]
.

Since the sets Ωi are translated nonnegative orthants, the coderiva-
tives of the maps Qi can easily be computed on the basis of [15, Lemma
2.1]. Moreover, F is affine and all sets GphQi are unions of a finite
number of convex polyhedral sets ([18]). Hence, we do not need to take
care about the calmness condition in Theorem 2, whenever Uad is convex
polyhedral.

We now illustrate the application of Corollary 5 and the form of the
resulting optimality conditions by means of an MPEC generated on the
basis of the academic equilibrium from Example 1.

Example 2 Consider the four-string problem from Example 1, where
we set xj = ej for j = 1, 2. The respective problem (17) thus attains the
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form

minimize (x1+eζi
1)(u

i
1)

2 + (x2+eζi
2)(u

i
2−ui

1)
2 −

2∑

j=1

ed (ζi
j−ζi−1

j )

subject to ui
1 − ui

2 ≤ 0

ζi
1 − ζi−1

1 ≤ 0

ζi
2 − ζi−1

2 ≤ 0

(ui
1, u

i
2, ζ

i
1, ζ

i
2) ∈ Ωi,

(19)

where Ωi =
{
ui

1, u
i
2, ζ

i
1, ζ

i
2 | ui

1 ≥ 0, ui
2 ≥ ūi, ζi

1 ≥ 0, ζi
2 ≥ 0

}
. The aim is

to maximize the energy dissipated until the terminal time k so that

ϕ(x, yk) = ζk
1 + ζk

2 .

Finally,

Uad = {x ∈ R
2 | x1 + x2 = 2}

and ζ0
1 = ζ0

2 = 1 (the remaining initial values are not needed). The
application of Theorem 6 to (19) yields the following GE:

0 ∈





2x1u
i
1 − 2x2(u

i
2 − ui

1) + 2ζi
1eu

i
1 − 2ζi

2e(u
i
2 − ui

1) + λi
1

2x2(u
i
2 − ui

1) + 2ζi
2e(u

i
2 − ui

1) − λi
1

e(ui
1)

2 − de + λi
2

e(ui
2 − ui

1)
2 − de + λi

3





+ NΩi(ui
1, u

i
2, ζ

i
1, ζ

i
2)

0 ∈




ui

2 − ui
1

ζi−1
1 − ζi

1

ζi−1
2 − ζi

2



 + N
R

3
+
(λi

1, λ
i
2, λ

i
3).

(20)

Hence, even in this simple academic example, one has m = 7, n = 2
and l = 3. It is clear that each vector (x̂, û1, . . . , ûk, ζ̂1, . . . , ζ̂k), where

x̂ ∈ Uad, (û
i, ζ̂i) ∈ R

2 × R
2 is a solution of (19) with x = x̂, ζi−1 = ζ̂i−1

for i = 1, 2, . . . , k and ζ̂k
1 = ζ̂k

2 = 0 generates a global solution of the
above MPEC. As explained in Example 1, for the data given there, it is
possible to construct such a vector on the basis of physical consideration;
in the case k = 2 we obtain, e.g., x̂1 = x̂2 = 1, û1

1 = 0.0032, û1
2 =

0.0035, û2
1 = 0.0035, û2

2 = 0.007, ζ̂1
1 = 0, ζ̂1

2 = 1, ζ̂2
1 = ζ̂2

2 = 0. The

optimality conditions (20) are fulfilled with λ̂1
1 = λ̂1

2 = 0, λ̂1
3 = 10−6, λ̂2

1 =

λ̂2
2 = λ̂2

3 = 0 and the vectors ẑi ∈ NΩ1(ûi
1, û

i
2, ζ̂

i
1, ζ̂

i
2) × N

R
3
+
(λ̂i

1, λ̂
i
2, λ̂

i
3),
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i = 1, 2, equal to

ẑ1 = (0,−0.0064,−10−5, 0,−0.0003,−1, 0)T

ẑ2 = (0,−0.007,−0.0001,−0.0001,−0.0035, 0,−1)T .

To evaluate the coderivatives of the multivalued part in (20), we in-
voke, as already mentioned, [15, Lemma 2.1]. It follows that

v1
1 = v1

4 = v1
7 = 0, w1

2 = w1
3 = w1

5 = w1
6 = 0

and
v2
1 = 0, w2

2 = w2
3 = w2

4 = w2
5 = w2

7 = 0.

Only the adjoint variables v2
6 and w2

6 are related in a more complicated
way, because the respective constraint violates the strict complementar-
ity. One has either v2

6 w2
6 = 0 or v2

6 < 0, w2
6 < 0. The respective adjoint

equation system (16) can thus be substantially simplified and attains
the form

0 =





0
0
1
1
0
0
0





+





4 0
−2 0
0.07 −1
−0, 07 0
1 0
0 0
0 0





[
w2

1

w2
6

]
+





0
v2
2

v2
3

v2
4

v2
5

v2
6

v2
7





0 =





24 −0.006 0
−22 0.006 0
0.064 0 0
−0.006 0 −1

1 0 0
0 0 0
0 1 0








w1

1

w1
4

w1
7



 +





0
v1
2

v1
3

0
v1
5

v1
6

0





+





0
0
w2

6

0
0
0
0





.

This equation system in variables (v1, v2, w1, w2) possesses a solution
in which (w1, w2) = 0. Because κ = 0, relation (15) holds true and the
optimality conditions of Corollary 5 have been verified.

5. Conclusion

The optimality condition derived in Section 3 can be used to test the
stationarity of approximate solutions to considered MPECs computed by
available numerical methods [1],[4]. The complexity of these MPECs and
the respective optimality conditions increases naturally with the number
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of time levels (k). On the other hand, as explained in Section 2.1, in mod-
eling of the delamination processes, a fine time discretization is really
needed to compute a physically acceptable equilibrium. In MPECs asso-
ciated with such equilibria, the need of a large k may be even stronger,
because the (upper-level) objective may force the equilibrium to attain
physically unacceptable values. For instance, in the illustrative four-
string problem, the choice k = 2 is definitely to small to solve the as-
sociated MPEC (Example 2) by an SQP code. As soon as the starting
point is not extremely close to a solution, the procedure terminates at
a physically unacceptable equilibrium. The choice of k is thus a certain
trade-off between the complexity of the problem (and the associated op-
timality conditions) and our effort to arrive at a physically acceptable
equilibrium.
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