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Abstract

Free material design deals with the question of finding thbtdist structure subject
to one or more given loads when both the distribution of nialtemd the material

itself can be freely varied. We additionally consider cosistts on local stresses in
the optimal structure. We discuss the choice of formulatbthe problem and the

stress constraints. The chosen formulation leads to a matieal program with ma-

trix inequality constraints, so-called nonlinear semidiédi program. We present an
algorithm that can solve these problems. The algorithmseth®n a generalized aug-
mented Lagrangian method. A number of numerical example®dstrates the effect
of stress constraints in free material optimization.

1 Introduction

The goal of the paper is to find a formulation of stress comtia the free material
optimization (FMO) problem that would be computationaligdtable and would lead
to reasonable and expected results. The underlying FMO Imadeintroduced in [3]
and later developed in [15] and [2]. The design variableédi elastic stiffness tensor
that can vary from point to point; it should be physically iésle but is otherwise
not restricted. This problem gives the best physicallyimdtale material and can be
considered the “ultimate” generalization of the structogimization problem.

The standard FMO problem (as well as the standard topologmization problem
like SIMP) deals with compliance and “weight” (the term wiatign FMO is somewhat
subtle; see the next section). We either minimize the wesghject to compliance
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constraint or vice versa. However, in engineering practiss usually the local stress
or strain that should be controlled. One of the most ofterseawf structural failure
is high stress, so it is desirable to keep it within given tgvduring the optimization
process.

To control the stress in material and topology optimizatgmowever, not an easy
task; see, e.g., [6] or [11]. The first problem to be faced i tkmmeasure stress, i.e.,
what kind of failure criteria should be used. This quest®avien more complicated in
the FMO case when we design the material itself (see thedattion of Section 3).
In this article we opted for a (local) integral measure of tloem of the stress tensor.
A-posteriori, we also compute other standard failure detén order to see the effect
of the chosen constraint on these. The second problem igiteth Writing down,
formally, the optimization problem with, say, constraiots the von Mises stress, we
will get a difficult mathematical program that is almost inspible to solve by available
optimization software (we are talking about reasonablydatimensions). It is often a
problem with so-called vanishing constraints ([1]) angdimyblem that does not satisfy
standard constraint qualifications. Again, the situatgeven more complicated in the
FMO case, because the variables are matrices (the disxtatiastic stiffness tensor)
and vectors (displacements) that appear in the constiaitsonlinear way. Hence
we face a nonlinear (nonconvex) semidefinite programmioglpm.

In Section 4 we present an algorithm that can deal with thestglgms. It is based
on the generalized augmented Lagrangian method descrittkdrealyzed in [8, 12].
However, in order to solve the particular problems of FMOhwstress constraints,
we had to perform several substantial modifications of thigtiexy algorithm and thus
finished with a new one.

After introducing the basic model, we compare several n®délhe stress and
strain constrained problem by means of a benchmark nunhexaanple, the L-shaped
domain. In particular, we compare the FMO problem with thessigr) variable thick-
ness sheet (VTS) problem and show that the VTS problem caenet as a substitute
for FMO. We also show that the strain constraints, being éstrictive, typically lead
to false or suboptimal results and that it is advisable (bothe VTS and FMO context)
to use the stress constraints. The VTS and FMO results wigssstonstraints lead to
significant change of the design, compared to unconstraokedion. In the VTS case,
the stress is controlled by the change of geometry arouncktieatrant corner. In the
FMO case, the change is rather on the level of material ptieger

2 Primal FMO problem
2.1 Setting of the problem

Material optimization deals with optimal design of elagticuctures, where the design
variables are material properties. The material can evaislan certain areas, thus
one often speaks of topology optimization.

Let Q c R? be a two-dimensional bounded domawith a Lipschitz boundary. By

1The entire presentation is given for two-dimensional badie&eep the notation simple. Analogously,
all this can be done for three-dimensional solids.



u(x) = (u1(x),u2(x)) we denote the displacement vector at a priof the body under
load f, and by

gj(u(x)) = % (as.)fjx) + dl;jx(ix)> fori,j=1,2

the (small-)strain tensor. We assume that our system isrgesleby linear Hooke’s
law, i.e., the stress is a linear function of the strain

Gij (X) = Ejjke(X) e (U(X)) (in tensor notatiohn

whereE is the elastic stiffness tensor. The symmetrie& @llow us to interpret the
2"d order tensorg ando as vectors

e= (e11,622,V2e12)" € R3 0 = (011,02, V2012)" € R3.

Correspondingly, the@order tensoE can be written as a symmetric<33 matrix

E1111 Ei122 V2E1112
E= Ex222 V2E2212 1)

sym. Ei210

In this notation, Hooke’s law reads agx) = E(x)e(u(X)).

For the elastic stiffness tensBrand a given external load functiohe [Ly(I")]?
(whererl is the part of boundary a2 that is not fixed by Dirichlet boundary condi-
tions) the system is in equilibrium for a displacement fiorcti which solves the weak
equilibrium equation

/ (E(x)e(u(x)), e(v(x)))dx — / F(x)-v(x)dx, We ¥ @)
Q r

where? C [HY(Q)]? reflects the Dirichlet boundary conditions.

In free material optimizatio(FMO), the design variable is the elastic stiffness
tensorE which is a function of the space variabi¢see [3]). The only constraints d&h
are that it is physically reasonable, i.e., thais symmetric and positive semidefinite.
As a “cost” ofE we use the trace &. Theminimum weight single-load FMO problem
reads as

A ®
subject to

E>O

pP<Tr(E)<p

u solves (2)

/r f(X)-ux)dx <.

The last (compliance) constraint guerantees that thetiegidtructure is capable of
carrying the given force.



2.2 Discretization

Letmdenote the number of finite elements arttie number of nodes. We approximate
the matrix functiorE(x) by a function that is constant on each element, i.e., charact
ized by a vector of matrices = (Ey,...,En) of its element values. We further assume
that the displacement vecta(x) is approximated by a continuous function that is bi-
linear on every element. Such a function can be written(@s= [, uiJ;(x) where

u; is the value ofu ati-th node and9; is the basis function associated witkh node
(for details, see [4]). At each node the displacement hasn®poaents, s € R?".
With the basis functiong;, j = 1,...,n, we define(3 x 2) matrices

29
il §
0X1 O
~ 09:
P = il §
BJ 0 o'?xz
199; 199
20x;, 20x

Now, for thei-th finite element, letz; be an index set of hodes belonging to this
element. Lenig denotes the number of Gauss integration points in each aterBg
Bi k we denote the block matrix composed (8fx 2) blocks I§j at the j-th position,
i € %, (evaluated at th&-th integration point) and zeros otherwise. Hence the full
dimension ofB; k is (3 x 2n).
The (global) stiffness matrik is a sum of element stiffness matrio&s
nig

m
AE) = ZiAi(E), A(E)= S Bl\EBik.
i= K=1
After the discretization, problem (3) becomes

rmzn i Tr(E) 4)

subject to
E =0, i=1...m
BgTr(Ei)gﬁ i=1,...
flu<y
A(Eju=f.

m

)

Problem (4) is a mathematical programming problem withdhmaatrix inequality con-
straints and standard nonlinear constraints; this is theafled nonlinear semidefinite
programming (NSDP) problem. Recently, there is not muctwsot available for
these problems. In Section 4 we will present two modificatiohan augmented La-
grangian algorithm used in our software packagavRON that can be used to the
solution of NSDP problems of type (4).

However, it was shown in [3] (see also [15] and [10]) that @gquivalent to the



variable thickness she€¥TS) problem

m
rg})ni;pi (5)
subject to
pP<p<p i=1,....m
flu<y
m
i;plA(EO)U =f,

with elastic stiffness tensdiy = | (identity matrix), where the variable is the thick-
ness in the VTS problem and gives us the trace of optinad the equivalent FMO
problem (4).

Now, (5) can be equivalently formulated as a convex optitiomaproblem with
linear objective and quadratic constraints (see againf{15]

min a—szu+p§m—p§d (6)

u,a,5>0,6>0

subject to
nig
UT(ZBIkEOBi,k>U§a+Bi§ i=1,....,m.
K=1

This problem can be solved very efficiently by recent intgpmint codes (e.g., [14, 13])
or by a generalized augmented Lagrangian approach ([8]).

3 Stressconstraint

In engineering practise, it is not (only) the compliancedmrne measure of local strain
that should be controlled. One of the most often causes oftsiral failure is high
stress, so it is desirable to keep it within given limits dgrthe optimization process.
This, however, is not an easy task. First, when designingmgmnisotropic ma-
terial, it is unclear what kind of stress measure (failuigedon) to take. To a great
extent, this depends on the realization of the optimal tesilould the material be
manufactured as fibrous composite, a laminate, by tapadayiocedure, should it be
just approximated by isotropic material with reinforcerreill these technologies use
different failure criteria which are sometimes not evenlwaberstood. We, however,
do not want to limit ourselves to a particular manufactugmgcedure in this phase,
rather to keep the design process as general as possiblee Werdecided to evaluate
the stress by a norm of the stress (or strain) tensor, irtedy@ver the finite element.
In the postprocessing phase, we also compute other stafailare criteria to see the
effect on those. Another reason why to take this particukaasare of stress is to keep
the problem computationally tractable. This is, in fack s$econd reason why there are
not many successful approaches to stress constraintgedporthe literature. Stress



constraints, added to topology or material design problead to hard optimization
problems with so-called vanishing constraints ([1]) angfimblems that do not sat-
isfy standard constraint qualifications and are thus vefficdit to solve by common
software of mathematical programming.

In the continuous formulation, we would work with pointwisgesses, i.e., we
would restrict the nornijo(x)|| for all x € Q. However, in the finite element approxi-
mation we use the primal formula (working with displacensgaind it is a well-known
fact that, generally, evaluation of stresses (from digaiaents) at points may be rather
inexact. Hence we will consider the following integral foohstress and strain con-
straints

[ lol?<solal and [ jef><sjal; ™

hereQ; is theit finite element andQ;| its volume. The integrals will be further ap-
proximated by the Gaussian intergation formulas, as in thiefelement interpolation.
To simplify the notation, in the following, we will skip theuttiplication by the volume
|Qi| and consider itincluded in the upper bousgd®r s; in all numerical examples we
will use elements of the same volume, so this should not leathy misuderstanding.

3.1 VTSwith stressand strain constraints

Let us first consider the variable thickness sheet problénT{te simplest modification
is to add here strain constraints to get:

m
min ] 8
o i; Bi 8)
subject to

flu<y

iPiAi(Eo)U— f

nig nig
> IBikul?{=u"{ 5 BlBix |u| <se i=1,....m.
K=1 K=1
Here we added to the original problem a set of convex quadcatistraints, so we

would not expect the new problem to be any harder than thénatigne.

Remark 3.1 Note that when we consider the dual VTS problem (6) vithk- |, set
p = 0 and neglect the upper bound pnwe get the problem

mina — fTu (9)
subject to

nig
u’ (Z BIkBi,k> u<a i=1,...,m.
1



So the VTS problem (9) as suéha problem with strain constraints. Moreover, the
vector of Lagrangian multipliers associated with the irediqy constraints at the opti-
mal point(u*, a*) is just the optimal primal vectgp* in formulation (5); see [15]. It

is readily seen that when a constraint is active, the streihe corresponding element

is on its upper bound; on the other hand, when a constrainaiive, the multiplier is
equal to zero and the corresponding element is not presém imptimal structure. We
thus get dully strained designwhere the strains are measured by the integral over the
element of the square of the norm of the strain tensor.

In all figures below, we use the color scale shown in Fig. 1.eHiee red color indi-
cates the maximal and violet the minimal value plus somda@psiVhen the minimal
value is zero, it is depicted as white. All examples presthiow were solved by

B B _a

Figure 1: Color scale used in all figures; red indicates makand violet almost min-
imal value; the minimal value is white.

the code BNNON described in Section 4, in particular, by the modificationegiin
Section 4.2.

Example 3.2 The classic example for testing the effect of stress coins¢rés the L-
shaped domain; see Fig. 2(left). When made of homogeneouspgomaterial, the
structure has a stress concentration at the peak of thenaeoorner. If we transform
the problem to a local radial coordinate system, locatetistcorner, the radial stress
components would go to infinity when aproaching the origimtHe global Cartesian
coordinate system, the norm of the stress tensor goes tiyrdswe approach the re-
entrant corner. When we solve the discretized problems wittnaogeneous mesh, the
stress would only go to infinity when the mesh size parameaies ¢o zero. For fixed
mesh size, however, the stress values still reach much bigdaes at the elements
neighboring the corner than in the rest of the domain. FOMR8 problem (where
the material properties are fixed and we just desigrpdh¢he only way to remove the
stress singularity is to change the geometry of the domaipaiticular, to replace the
sharp corner by a sort of smooth arc.

For this and all the subsequent examples we will consideretization of the do-
main by 7500 finite elements (squares) of the same size. Whesolve the VTS
problem (6) with an isotropic materi&éy characterized by Young’s modulusdland
Poison ration 0.3, we obtain the result presented in Figgi2tr (to simplify the pre-
sentation, and to get a well-conditioned problem, we scaleny’s modulus to 1.0;
this also means that stress and strain values will be rouggtyparable). The upper
bound onp in this and all the subsequent examplepis 0.25. The optimal weight
wasV* = 206.2 and the maximal strain normy,.x = 2.76, while the maximal stress
norm wasomax = 0.272. These numbers will serve as reference numbers when defin



Figure 2: L-shaped domain: geometry, load and boundaryitions (left); VTS result
without stress/strain constraints (right)

ing strain and stress upper bounds for this particular m&kle. maximum strain and
stress was (as expected) located at the re-entrant corner.

Example 3.3 Let us now solve the strain constrained VTS problem (8) o.tkkaped
domain from Example 3.2. The upper bound on strains was takeg= 1.0. The
solution obtained by PNNON was feasible, so the strain constraints were satisfied.
The optimal weight for this problem was" = 2114. Fig. 3(left) shows the optimal
distribution of p, while the right-hand side of this figure presents the distion of

the strain norms. Compared to the unconstrained resultndeed see change in the

Figure 3: VTS formulation with strain constraints: optinga(left) and optimal strain
norms (right)



geometry of the optimal structure around the corner; thiésrsseto indicate that we are
on a right track. However, the optimal strains show the urteceffect of “vanishing
constraints”: the strain constraints are mainly activeelements with (almost) zeim,
i.e., for “holes”.

To manage the problem of vanishing constraints, many asifirapose to multiply
both sides of the strain constraint py The constraint effect remains unchanged, the
constraint will “vanish” forp; — 0 (this is what we want); however, the new problem
becomes extremely hard to solve numerically (see [1] foramdmtails). Instead, we
replace the strain constraint in (8) by the following one

nig
P> |[EoBikul? [= pPuTKiu] <sop?, i=1,...,m. (10)
k=1

The physical interpretation of this constraint fully degeron the interpretation gf.

For the “true” VTS problem, whep is the thickness of the structure, the left-hand side
of (10) represents the (norm of the) internal force and tmseef such a constraint
is questionable. However, when the thickness is considewadtant ang is sort of
“density” of the optimal materigbEg, the left-hand side of (10) indeed measures the
norm of the stress tensor. In any case, let us see what diiegié¢w constraint has on
the optimal structure.

Example 3.4 We solve the VTS problem with stress constraints (10) on tiskaped
domain from Example 3.2. The upper bound on stresses was @ as

sy’ =1.0-p? = 0.0625,

to get results comparable with Example 3.3. The optimaksine has weight/* =
2109. Fig. 4(left) shows the optimal distribution pf and the right-hand side of this
figure presents the distribution of the stress norms. Thiglrés indeed “nicer” than
that for the strain constraint. The sharp corner is repldgea (approximation of) re-
entrant semi-circle to avoid the stress concentrationo Alge active stress constraints
are concentrated just around this corner.

When we decrease the upper bound to

syp? =05-p? =0.03125

we get a solution shown in Fig. 5 with optimal volurw& = 217.7. The change in
geometry is even more significant here. Moreover, lookinthatstress norms, the
constraints in almost all the elements on the “leg” from theentrant corner to the
basis are active. This—and the high number BNRON iterations—is a sign that we
are almost on the border of feasibility and cannot decreas@y more.

3.2 FMO with stressand strain constraints

Let us now turn to the primal subject of the paper, the freesnmtoptimization model.
In the FMO problem, the strain constraints are defined analsly to the VTS prob-



"

Figure 4: VTS formulation with stress constraints agd= 1.0: optimalp (left) and
optimal stress norms (right)

lem, leading to the strain constrained FMO problem
) m
rmzni;Tr(Ei) (12)

subject to
Ei>-0, i=1,....m
p<Tr(E)<p i=1...m
flu<y

AEBEu=f

nig

S Bl <se,  i=1..m.

K=1

The stress in the FMO result is now also clearly definedrby Ee, hence the FMO
problem with stress constraints reads as

TlizniTr(Ei) (12)

subject to
E >0 i=1..m
BgTr(Ei)gﬁ i=1....m
flu<y
AEu=f
nig
kleEa,kuHZssabz, i=1...,m.

10
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Figure 5: VTS formulation with stress constraints agd= 0.5: optimalp (left) and
optimal stress norms (right)

Both problems (11) and (12) are nonlinear semidefinite @nogning problems that
can be solved by the variant of the codeNRiON described in Section 4.

In the following, we will solve the above problems for the hagped domain from
Example 3.2 with different values of the upper bounds andpamthe results.

Remark 3.5 Before presenting the results, let us mention two most itapbrfacts
that we have observed. First, the FMO model offers much nmreegibm than the VTS
model, where the material properties were fixed. While in iié&dtress concentration
had to be removed by change of geometry of the optimal streicithe FMO case it
can be treatedolely by the material properties around the re-entrantneor

Second, we observed a rather surprising fact that the optiraterial was almost
always orthotropic, notwithstanding the stress/straimst@ints. This has been tested
and confirmed a-posteriori for all examples and all elemeés do not see any theo-
retical reason that would explain this, but it allows us totphe material directions of
the optimal material and to better demonstrate its progerti

Example 3.6 We first solve the FMO problem without additional stress caistcon-
straints, to get reference values. The optimal structurews in Fig. 6 has volume
232.04 and the maximal stress and strain norm (7) is 0.2023at%b, respectively.
We also evaluate the maximal values of the Tresca, von Mieagjmum stress and
maximum strain failure criteria, computed at points of Gaaus integration.

We further solve the FMO problems (11) and (12) with stresksdrain constraints.
Table 1 shows the values of optimal volume and maximal stetssin and failure cri-
teria for examples with two different upper bounds, namsly= 1.0, s, = 0.7 and
Se = 1.0, s = 0.7. Obviously, the maximal stress values were on their uppend
for the stress constrained problem, and, analogously, thémal strains were on their
upper bound for the strain constrained problem. The resgestimbers are empha-
sized in the table. The presented numbers basically fukfileetations up to one point.

11



On the one hand, the maximal stress in the strain constrgr@mdem more or less

coincides with that computed by the stress constrainedgmolwith the same value
of the upper bound). On the other hand, the maximal straihénstress constrained
problem grows rapidly when we decrease the upper begn@ihat means that we have
more freedom when solving the stress constrained problems i3 the effect of the

vanishing constraints known already from the VTS problemthie strain constrained
problem we again restrict even elements that are not préséhé optimal structure

(see the figures below).

Because the strain constrained problem is more restrjatigecould not decrease
the upper bound any more; the strain constrained problenidAmrcome infeasible.
We can still, however, decrease the upper bosindf the stress constrained problem.
Table 2 shows the values for the stress constrained prolgynwhens, goes down
to 0.5.

As mentioned above, the strain constrained problem is nexteictive. Also, the
strain constraints are active even in “white” regions, whigan unwanted effect. Note,
however, that when we solve a strain constrained problegstiiesses in this problem
are feasible in the stress constrained problem with the sgper bound. Hence, when
we want to find a design satisfying stress constraints, wescare the strain con-
strained problem (which can be numerically easier), kaejpirmind that the resulting
design actually satisfies tighter constraints and thus#sfanction may be higher than
optimal. This is apparent from Table 1.

Figures 6—17 present the corresponding distributions tifngh material stiffness,
and optimal stress and strain norms. For each example,@fsenting the optimal
stiffness, we show detail of the optimal principal stres®ction (and thus optimal
material direction). We can see that in all cases the mataraund the re-entrant
corner is composed of fibres making a smooth arc around theecdahus preventing
the stress singularity. The last two figures for each exarsptev the optimal stress
and strain distribution. Again, we can see that for the stcainstrained problem, the
constraints are often active at “white” regions with almusmaterial (see Figs. 11 and
15). On the other hand, the constraints of the stress camsti@roblem are always
active just around the stress singularity or in regions &itiff material.

4 Thealgorithm

The algorithm used in this article is based on a generalizegnanted Lagrangian
method for the solution of nonlinear (semidefinite) progsatascribed in [8, 12]. Here
we briefly recall it and show how it can be extended for thetamiof the optimization
problems introduced in Section 3.

The goal of the algorithm is to solve general nonlinear sefirite optimization
problems of the form

in (9

subject to (13)
“(x) < 0;

12



Table 1: FMO problem with stress or strain constraints

no stress strain stress strain

constr. 1.0 1.0 0.7 0.7
volume 228.62 230.53 230.81 232.43 233.90
stress 0.201 0.0625 0.0623 0.04375 0.0435
strain 3.431 20.15 1.0 15.3 0.7
Tresca 0.188 0.108 0.122 0.102 0.098
von Mises 0.0387 0.0142 0.0140 0.0107 0.0100
Omax 0.321 0.181 0.159 0.149 0.129
€max 1.347 2.674 0.727 2.240 0.600

Table 2: FMO problem with stress constraints

noconstr. stress 1.0 stress0.7 stress 0.5

volume 228.62 230.53 232.43 235.43
stress 0.201 0.0625 004375 003125
strain 3.431 20.15 15.3 32.34
Tresca 0.188 0.108 0.102 0.093
von Mises 0.0387 0.0142 0.0107 0.0092
Omax 0.321 0.181 0.149 0.123
€max 1.347 2.674 2.240 3.146

13



Figure 6: FMO formulation with no stress/strain constrsimptimalp (left) and opti-
mal principal stress (right)

heref : R" — R and¥(x) : R" — S™ are twice continuously differentiable mappings
andS™ is the space of symmetrienx m)-matrices.
The algorithm is based on a choice of a smooth modified bduetion®,, : S™ —

S™M, depending on a parametgr> 0, that satisfies a number of assumptions (see [8])

guaranteeing, in particular, that
G(X) <0 Pp(9(x)) < 0.

Thus for anyp > 0, problem (13) has the same solution as the following “auged
problem

in f
i 9

subject to (14)
Pp(¥(x) < 0.
A typical choice of®, is
Dp(4(x) = —p*(F (%)~ pl) " —pl. (15)

The Lagrangian of (14) can be viewed as a (generalized) anigehé agrangian
of (13):
FOxU,p) = £ + (U, Pp (4 (X))spm (16)

hereU € S™is a Lagrangian multiplier associated with the inequaliipstraint. The
algorithm is defined as follows:

Algorithm 4.1 Let ¥ and U' be given. Let b> 0,a' > 0. For k= 1,2,... repeat

14



Figure 7: FMO formulation with no stress/strain constrsimptimal stress norms (left)
and optimal strain norms (right)

until a stopping criterion is reached:
(i) Find X1 satisfying|| OxF (X2, UK, p¥)|| < a®
(i) UM =Dy (7 (1)U
(lll) pk+1 < pk7 ak+l < ak-

The unconstrained minimization problem in stgpis approximately solved by mod-
ified Newton's method. Multiplier and penalty update stg#ts, as well as local and
global convergence properties under standard assum@renstudied extensively in
[12].

In the following we discuss how to solve optimization prabteof type (11) and
(12) (or the corresponding VTS problems) by variants of Aitpon 4.1. We offer two
alternatives: a reduced and a direct approach.

Remark 4.2 Note that problem (14) covers problems with several mat@qualities
as well as problems subject to scalar inequality conssaifithe form

gi(x) <0, i=12... .k

Writing the augmented Lagrangian explicitly for this case,abtain:
[
FixU,wp) = f(x)+ Z<Ui7¢p(% (X)))sm
i=
k
+ > Wigp(i(x)
2
whereg is the scalar version @b andw e RK the associated multiplier.

15
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Figure 8: FMO formulation with stress constrainsg, = 1.0: optimal p (left) and
optimal principal stress (right)

4.1 Thereduced approach

Many approaches for the solution of optimal design problanesbased on reduced
formulations, which are solely defined in the design vagabDften the reduced prob-
lems are solved by first order optimization algorithms, vehttre calculations of the
first order derivatives are based on solutions of adjoinblems. In this section we
want to describe a similar approach. However, rather thatticéng ourselves to a
first order algorithm, we will demonstrate how second ordenivéitives can be effi-
ciently calculated and exploited by a variant of Algorithri. .4

We start with the derivation of reduced formulations forlgems (11) and (12).
It is easily seen that for positivye the stiffness matriA(E) is positive definite. Thus
we can eliminate the state variahieby substitutingu := A(E)~* and formulate the
reduced problems

m
mEini;Tr(Ei) 17)
subject to

E >0, i=1,....,m

p<Tr(E)<p, i=1..m

fT(AE) M <y

nig

kzl\|Bi7k(A(E))*1f||2 <S, i=1..m

16
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Figure 9: FMO formulation with stress constraingg, = 1.0: optimal stress norms
(left) and optimal strain norms (right)

and
. m
n‘gni;Tr(Ei) (18)
subject to
E >0 i=1....m
p<Tr(E)<P, i=1...m
fIAE)) f <y
nig
S IEBKAE) |2 <sop?,  i=1,..,m.
K=1

Obviously, both problems are instances of the general dgaimon problem (13). Nev-
ertheless it is not recommendable to apply Algorithm 4.edally. The reason is
twofold: First, the Hessian of the augmented Lagrangiaomaated with problems
(17) and (18) is a large dense matrix and the algorithm mayuirof memory. Sec-
ond, Algorithm 4.1 does not maintain the feasibility of inadjties strictly throughout
the optimization process. Consequently, the global tffnmatrix could become in-
definite and the algorithm may fail.

The first issue can be resolved by the use of approximate Méswitethod for the
solution of step(i) in Algorithm 4.1. Recently, the authors have successfutiple-
mented and tested a version of Algorithm 4.1, where the isolaff the Newton system
is based on Krylov type methods (see [9]). Instead of calimgahe full Hessian of
the augmented Lagrangién this algorithm requires just Hessian-vector products. Be
low we demonstrate how such a product can be calculated iffiairet way for the
problems considered in this paper.

In order to get rid of the second difficulty mentioned above,treat the inequali-
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Figure 10: FMO formulation with strain constraintg,= 1.0: optimal p (left) and
optimal principal stress (right)

ties that should be strictly feasible during the optimiaatprocess by a classic barrier
function. For this reason we introduce an additional matr@quality
L (x) <0
in problem (14) and define the augmented Lagrangian
F(xU,p.8) = f(X) + (U, Pp(# (X)) sy, + SPoarl (X)), (19)

where®y,, can be defined, for example, by

Bparl 7 (X)) = — logdet —.7 (x)).
We thus obtain the following algorithm:

Algorithm 4.3 Let ¥ and U' be given. Let p>0,s' >0,a' > 0. Fork=1,2,...
repeat until a stopping criterion is reached:

(i)  Find X1 satisfying|| OxF (X<t2, UK, p*, 89| < a¥
(i) UK =Dydy (@ (X 1)Uk
(lll) pk+l < pk, Sk+l < Sk, ak+l < ak.
Note that, while the penalty parametgf maybe constant from a certain indiexsee

again [12] for details), the barrier parameter is requitetéhd to zero with increasing

Remark 4.4 (Complexity estimates) We consider the reduced VTS proliémstrain

18
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Figure 11: FMO formulation with strain constraintg,= 1.0: optimal stress norms
(left) and optimal strain norms (right)

constraints
m
min'y p (20)
P i; |
subject to
ngl <p |:1,,m
fT(A(p) tf<y
fT(A(p)) A (A(P)) M < i=1....m,
whereA(p) = 3", piA(Eo) and A = zEE"l BIkBi,k. Using the abbreviatiogy(p) =
fT(A(p))~1f and
gi(p) = fT(A(p)) *A(A(p))

fori = 1,...,mand neglecting the lower and upper boundspgrthe Hessian of the
augmented Lagrangian associated with problem (20) can ittermvas

m

m
05oF (p,w, p) = ;akmf}pgk(p) + k;Bkngk(P)ngk(P),T

where the coefficientsy, Bk, k=0,...,m, depend on the penalty functign the design
variablep and the Lagrangian multiplies. Settingu:= A(p)~*f, one can verify that
for a vectord € R" the matrix-vector product

m
> BOe%k(P)Dptk(p) " -d (21)
K=1
is given by the formula

2(u" (Z WBA) A(P) ) Au, 1 =1,....m,
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Figure 12: FMO formulation with stress constraintg,= 0.7: optimal p (left) and
optimal principal stress (right)

where
we=uA(A(p)~* (Y diAj)u), k=1,...,m.
Performing the calculations in a convenient order and asgpthat
e the matriced\; are sparsely populated wif(1) entries,

¢ K is the maximal number of nonzero entries per row in the sffhmatrixA(p),

we obtain the complexity formul®(m+ Kn) for the calculation of (21). In a similar
way, we can show that the matrix-vector product

m
axd2,0k(p) - d
k; pp

can be assembled as a sum of terms of the type

(U (3 aA) Alp) ) A (A(P) (Y deA u), T =1,...,m
in O(m+ Kn) steps. Finally, taking into account that

e a multiplication of the Hessian of the compliance constraith a vectord € R"
requires als®(m+ Kn) steps and that

¢ the computational complexity of the factorization of thi#fisess matrix is usu-
ally given byO(m+Kn?),

we can conclude that the computational effort for the sofutif problem (20) is of the
same order as the computational effort for the solution efrfduced form of problem
(5), provided the number Hessian-vector multiplicatioeguired is not influenced in

20



Figure 13: FMO formulation with stress constraings,= 0.7: optimal stress norms
(left) and optimal strain norms (right)

a negative way by the strain constraints. This seems to niekeetduced approach
attractive, as the reduced form of problem (5) is succdgssolved in practice.

We have decided to derive the complexity estimates usingl@mo (20) in order to
keep the notation as simple as possible. Note however, tmaparable estimates can
be derived for problems (17) and (18).

4.2 Thedirect approach

As an alternative to the reduced approach presented in doeging section, one can
try to solve problems (11) and (12) directly. An immediat@@ach is to rewrite the
system of bilinear equations

AEBEu=f

arising from the equilibrium constraint by inequalitieslaattempt to solve the result-
ing problem by Algorithm 4.1. Unfortunately, our numerieadperience showed that
such an approach is not only rather inefficient, but fails pletely in most cases. How-
ever, during our numerical experiments we made the follgwiseful observation: The
algorithm behaved stable as long as

o the material matrices stayed strictly positive definite
e the equilibrium equation was only slightly violated.

These observations motivated the following modificatioRgst, we decided to treat
the matrix inequalitie&; >~ 0,i =1,...,m, again by the classic barrier approach (com-
pare Section 4.1) and set= 10%. Second, we changed the concept of equality han-
dling in our algorithm. More precisely, we adopted a concgpich is successfully
used in modern primal-dual interior point algorithms (see,, [14, 13]): rather than
using augmented Lagrangians, we handle the equality eonistidirectly on the level
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Figure 14: FMO formulation with strain constraintg,= 0.7: optimal p (left) and
optimal principal stress (right)

of the subproblem. This leads to the following approach. tsr the optimization
problem

R 9

subject to
4(x) <0, (22)
(%) <0,
h(x) =0,
wheref, ¢ and.~ are defined as in the previous sections hn®k" — RY represents
a set of equality constraints. Then we define the augmentgahhgian

F(x,U,v,p,s) =
f(X) + (U, p(#4 (X)) s + Poar-7 (X)) + V' h(x), (23)

whereU, ®, ®p,, p, sare defined as before amd RY is the vector of Lagrangian mul-
tipliers associated with the equality constraints. Nowtlenlevel of the subproblem,
we attempt to find an approximate solution of the followingteyn (inx andv):

OxF(x,U,v,p,s) =0, (24)
h(x) =0,

where the penalty and barrier paramet®rg as well as the multipliet are fixed. In
order to solve systems of type (24), we apply the damped Newiethod. Descent
directions are calculated utilizing the factorization tine MA27 from the Harwell
subroutine library ([5]) in combination with an inertia cection strategy as described
in [14]. Moreover, the step length is derived using an augetgihagrangian merit
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Figure 15: FMO formulation with strain constraintg,= 0.7: optimal stress norms
(left) and optimal strain norms (right)

function defined as 1
F(x,U,v,p,s) + ﬁllh(X)H%

along with an Armijo rule. Now we are prepared to state theiffexialgorithm:

Algorithm 4.5 Letx,Ut and v be given. Let p>0,s' >0,a' > 0. Fork=1,2,...
repeat until a stopping criterion is reached:

(i) Find X1 v+ satisfying
||Dxf(xk+1,uk7vk+l7 pk7sk)H < ak
Ih()| < a
(i) UM =Dy (7 (X 1)Uk
(iii) pk+1§ pk, Sk+1<sk, aktl < ok,

4.3 Which approach ispreferable?

So far we have only implemented the direct algorithm dewvedidp Section 4.2. Conse-
quently, all numerical studies presented in Section 3 wenepeited by this approach.
The main reason for our decision was that the modificatiormitaptimization soft-
ware package BENNON needed for the direct approach are useful for a much widsscla
of optimization problems as the one presented in this arti&hother reason was that
we could extend an existingMPL interface (see [7]) of PNNON, which enabled us to
define optimization problems (11) and (12) in a comfortatdeg vl he third reason was
that very preliminary experiments on a closely relatedsct#sstructural optimization
problems (FMO problems with displacement constraintg)lted in a high number of
Hessian-vector products needed in the reduced approaetevdq the structure of the
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Figure 16: FMO formulation with stress constraintg,= 0.5: optimal p (left) and
optimal principal stress (right)

problems discussed in this paper is different, so we canmaot d final conclusion on
which algorithm is preferable in practice at this point ofél.
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