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Institute of Information Theory and Automation, Pod vodárenskou v̌ězi 4
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1 STRUCTURAL OPTIMIZATION WITH STABILITY CONSTRAINTS

Structural optimization deals with engineering design problems with the
aim of finding an optimal structure (as specified by a given cost function)
that satisfies a number of given constraints. Typically, thedesigner is faced
to the problem of finding optimal design parameters such thatthe resulting
structure is light and stiff. The stiffness is often quantified by a so-called
compliance. Further, the structure must be in equilibrium.Hence the de-
signer can choose between the problem of minimizing the weight W sub-
ject to upper bound on the complianceC or minimizing the compliance
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2 M. KOČVARA AND M. STINGL

subject to upper bound on the weight. In both formulations, the equilib-
rium appears as a constraint. Formally, the two problems canbe written as
follows:

min C(ρ)

subject to

W (ρ) ≤ Ŵ

equilibrium

min W (ρ)

subject to

C(ρ) ≤ Ĉ

equilibrium

hereρ stands for the design variable (like shape parameters, thickness,material
properties, etc.). It is often the case, in particular when there are no addi-
tional constraints, that the above two problems are equivalent. However,
when we add more constraints to the problems (like displacement or stress
constraints), the equivalence does not hold anymore and we have to care-
fully distinguish which formulation is more appropriate.

Alternatively, we can look at the problem from the viewpointof multicri-
teria optimization and search for the Pareto set of the problemmin(W (ρ), C(ρ))
subject to the equilibrium condition (see, e.g., [12]). But, as the Pareto
points are computed by solving either of the problems with different val-
ues ofŴ or Ĉ, and as we are primarily interested in efficient numerical
solution of the problem, we will concentrate on the single problems.

Arguably, the most serious limitation of the above models isthat they do
not count with possible instability of the optimal structure. Indeed, elastic
instability is often the decisive point when designing a “real-world” struc-
ture, like a bridge or an aircraft. Experience showed that such structures
may fail in some cases not on account of high stresses but owing to insuffi-
cient elastic stability ([25]). In this paper we consider two ways of includ-
ing stability control in the problem formulation. The first one is based on
the so-calledlinear buckling model. This model is based on an assumption
that leads to simplification of the nonlinear structural analysis and that is
naturally satisfied for many real-world structures. The second one is based
on the control of the minimal eigenfrequency of the structure. Both mod-
els lead to control of the minimal eigenvalue of a generalized eigenvalue
problem

K(ρ)u = λQ(ρ)u .

In the first case (linear buckling),Q is the so-called geometry stiffness ma-
trix that depends in a nonlinear way on the design variableρ. In the second
case (self-vibrations),Q is the mass matrix of the structure and the depen-
dence is linear.
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Now the designer has the choice of three different formulations

min C(ρ)

subject to

W (ρ) ≤ Ŵ

λ(ρ) ≥ λ̂

equilibrium

min W (ρ)

subject to

C(ρ) ≤ Ĉ

λ(ρ) ≥ λ̂

equilibrium

max λ(ρ)

subject to

W (ρ) ≤ Ŵ

C(ρ) ≤ Ĉ

equilibrium

i.e., apart from adding the new constraint to the existing two formulations,
he can also maximize stability, subject to upper bounds on weight and com-
pliance.

In the rest of the paper, we will concentrate on the minimum weight for-
mulation. Arguably, the problem of maximizing the stability can lead to
unrealistic design, with a wrong choice of upper boundsŴ andĈ. Also,
we usually aim to find the lightest/stiffest structure that is just stable. The
minimum compliance problem, on the other hand, can lead to serious diffi-
culties with finding a feasible structure; see Section 2.4 and the discussion
in [16].

Our goal is to solve problems with stability constraints based on the lin-
ear buckling phenomenon. As mentioned above, this approachleads to a
nonconvex matrix inequality constraint, involving the geometry stiffness
matrix. We will see later that, due to extremely high computational com-
plexity, we can only solve model problems of relatively low dimension at
the moment. Hence, as a viable alternative, we offer the control of self-
vibrations of the optimal structure. This results in a formulation with lin-
ear matrix inequality constraints (involving the mass matrix) for which the
complexity is much lower. In the last section of the paper, wepresent an
example comparing these two approaches.

Let us mention other approaches that, in some sense, controlthe stability
of the optimal structure. The first one is the worst-case multiple load de-
sign: given a number of independent load cases, we want to finda design
that is optimal with respect to all these loads [4, 2]. It is often the case that
the resulting design is also robust with respect to global stability. In many
applications, the load cases (typically 2–5) are an inherent part of the prob-
lem formulation, while in other applications there is just one “natural” load
case. We are aiming at the latter case. Another option is to formulate the
optimal design problem as a robust optimization problem [3]. For instance,
we can try to find a structure that is robust with respect to small pertur-
bations (and still “almost optimal” with respect to the original objective
function). This approach was investigated in [15].
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Stability of elastic structures has been extensively studied in many mono-
graphs; see, e.g. [24, 25]. The problem of optimal structural design includ-
ing stability constraints is, however, very difficult, and there are not many
references in the literature (see, e.g., [6, 9, 14]). Our approach is close
to the one by Ulf Ringertz ([20, 21]) used mainly for optimum design of
shells. For a particular case of truss topology design, the problem formula-
tion was thoroughly investigated in [16]; several numerical approaches for
its solution were proposed in [1]. We believe that the algorithm introduced
in this paper is more effective than the ones proposed in [1].It is typical for
these algorithms (and ours is not an exception) that they only find a KKT
point, in case the problem is nonconvex. This should be kept in mind when
reviewing the results.

In the rest of the paper, we will concentrate on a particular problem of
material optimization, that is of high practical importance (see, e.g., [4]).

2 MATERIAL OPTIMIZATION WITH STABILITY CONSTRAINTS

2.1 Material optimization problem

Material optimization concerns optimal design of elastic structures, where
the design variables are material properties. The materialcan even vanish
in certain areas, thus one often speaks of topology optimization.

Let Ω ⊂ R
dim, dim = 2, 3, be a bounded domain (the elastic body) with

a Lipschitz boundaryΓ. By u(x) = (u1(x), . . . , udim(x)) we denote the
displacement vector at pointx of the body under loadf , and by

eij(u(x)) =
1

2

(
∂ui(x)

∂xj

+
∂uj(x)

∂xi

)
for i, j = 1, . . . , dim

the (small-)strain tensor. We assume that our system is governed by the
linear Hooke’s law, i.e., the stress is a linear function of the strain

σij(x) = Eijkℓ(x)ekℓ(u(x)) (in tensor notation),

whereE is the so-called elasticity tensor.
Consider the following problem

inf
ρ≥0∫
ρ dx≤1

sup
u∈U

−
1

2

∫

Ω

ρp〈Ee(u), e(u)〉 dx +

∫

Γ2

f · u dx , (1)

whereΓ2 ⊂ Γ and[H1
0 (Ω)]

dim
⊂ U ⊂ [H1(Ω)]

dim
. For different choices

of p, E anddim, we get different classes of problems:
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• Free material optimization (FMO) [28, 4]

p = 1, E = I, dim = 2, 3

Originally, the design variables in FMO are all elements of the elasticity
tensor. It can be shown that (for single-load case) the original problem
can be equivalently reformulated as the above problem, where ρ is the
trace of the optimal elasticity tensor. The optimalE can be reconstructed
from the optimalρ andu.

• Variable thickness sheet (VTS) [4, 18]

p = 1, E . . . elasticity matrix of an isotropic material, dim = 2

Hereρ has the meaning of thickness of a two-dimensional isotropicelas-
tic body.

• Solid Isotropic Material with Penalization (SIMP) [4]

p ≥ 1, E . . . elasticity matrix of an isotropic material, dim = 2, 3

In this problem, nowadays widely popular among the engineers,ρ plays
the role of artificial density. With increasingp, the optimal density tends
to be either on the lower bound (void) or on the upper bound (full ma-
terial E). Therefore, this approach is used whenever one tries to avoid
intermediate densities or anisotropic materials in the optimal structure.

In the following, we will concentrate on the case

p = 1, E . . . elasticity matrix of an isotropic material, dim = 2, 3

that includes VTS and a sub-case of SIMP. Note that we cannot use the
FMO formulation for problems with stability constraints. When we add
additional constraints to (1), the equivalence of the new problem to the orig-
inal FMO formulation does not hold anymore, and the optimalE cannot be
reconstructed.

2.2 Discretization

We now briefly introduce the discretization of the problem. Let m denote
the number of finite elements andn the number of nodes (vertices of the
elements). We approximateρ(x) by a function that is constant on each
element, i.e., characterized by a vectorρ = (ρ1, . . . , ρm) of its element
values. Further assume that the displacement vectoru(x) is approximated
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by a continuous function that is bi- or tri-linear (linear ineach coordinate)
on every element. Such a function can be written asu(x) =

∑n
i=1 uiϑi(x)

whereui is the value ofu at i-th node andϑi is the basis function asso-
ciated withi-th node (for details, see [10]). Recall that, at each node, the
displacement hasdim components, sou ∈ R

dim·n.
With the basis functionsϑj , j = 1, . . . , n, we define(3× 2) and(6× 3)

matrices

B̂j =




∂ϑj

∂x1
0

0
∂ϑj

∂x2

1
2

∂ϑj

∂x2

1
2

∂ϑj

∂x1


 B̂j =




∂ϑj

∂x1
0 0

0
∂ϑj

∂x2
0

0 0
∂ϑj

∂x3

1
2

∂ϑj

∂x2

1
2

∂ϑj

∂x1
0

0 1
2

∂ϑj

∂x3

1
2

∂ϑj

∂x2

1
2

∂ϑj

∂x3
0 1

2
∂ϑj

∂x1




for dim = 2 anddim = 3, respectively.
Now, for thei-th finite element, letDi be an index set of nodes belonging

to this element. Letnig denotes the number of Gauss integration points in
each element. ByBi,k we denote the(1 × n) block matrix composed of
(d × dim) blocksB̂j at thej-th position,j ∈ Di, (evaluated at thek-th
integration point) and zeros otherwise. Hence the full dimension ofBi,k is
(d× dim · n).

The (global) stiffness matrixA is a linear combination of element stiff-
ness matricesAi:

A(ρ) =

m∑

i=1

ρiAi, Ai =

nig∑

k=1

BT
i,kEi,kBi,k .

After the discretization, problem (1) becomes

inf
ρ≥0

m∑
i=1

ρi≤1

sup
u∈Rdim·n

Π(ρ, u) := −
1

2

m∑

i=1

ρi〈Aiu, u〉+ 〈f, u〉 .

It is well-known that the above problem can be formulated as aminimum
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compliance problem

min
u,ρ

fT u

subject to

ρi ≥ 0, i = 1, . . . ,m
m∑

i=1

ρi ≤ 1

A(ρ)u = f .

(2)

This is based on the following variational principle (see, e.g., [3, Sect. 3.4.3]):
For a givenρ, the equilibrium displacementu (satisfyingA(ρ)u = f ) is a
minimizer ofΠ(ρ, u); the compliancefT u is finite if and only ifΠ(ρ, ·) is
bounded above, and in this case one hasfT u = max

u
Π(ρ, u).

Problem (2) is further equivalent to the following minimum weight prob-
lem (up to a scaling factor; compare KKT conditions)

min
u,ρ

m∑

i=1

ρi

subject to

ρi ≥ 0, i = 1, . . . ,m

fT u ≤ 1

A(ρ)u = f .

(3)

2.3 Stability constraint

The stability constraint, in the sense of critical bucklingforce, requires that
all eigenvalues of the generalized eigenvalue problem

(A(ρ) + λG(ρ, u))w = 0 (4)

are either smaller than zero or bigger than one. HereG(ρ, u) is so-called
geometry stiffness matrix; its precise form is given below (see also, e.g.,
[27]). Condition (4) is equivalent to the following matrix inequality (see,
e.g., [16]):

A(ρ) + G(ρ, u) � 0 . (5)

The notationQ � 0 (orQ � 0) means that a symmetric matrixQ is positive
(or negative) semidefinite.
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We now combine the optimization problem (3) with the constraint (5)
to get the minimum weight material optimization problem with stability
constraint. Before writing down the full problem formulation, we rewrite,
using the Schur complement theorem, the compliance constraint and the
equilibrium equation in one matrix inequality constraint

Z(ρ) :=

(
1 fT

f A(ρ)

)
� 0.

We further eliminate the variableu from the stability constraint by assum-
ing thatA(ρ) is nonsingular and setting

G̃(ρ) := G(ρ,A−1(ρ)f).

The minimum weight problem with stability constraints reads

min
ρ

m∑

i=1

ρi

subject to

Z(ρ) � 0

A(ρ) + G̃(ρ) � 0

ρi ≥ 0, i = 1, . . . ,m .

(6)

2.4 Operators A and G̃

For ease of notation, let us only consider the casedim = 3. The geometry
stiffness matrix is defined as follows:

G(w, ρ) = PT

(
m∑

i=1

Gi

)
P, Gi =

nig∑

k=1

QT
i,k Si,k Qi,k ,

whereP is the permutation matrix transforming vectors (e.g. displace-
ments) from the ordering

(ux1 ux2 . . . uxn uy1 uy2 . . . uyn uz1 uz2 . . . uzn )T

into the default ordering

(ux1 uy1 uz1 ux2 uy2 uz2 . . . uxn uyn uzn)T .
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Further,

Qi,k =




Q
(r)
i,k 0 0

0 Q
(r)
i,k 0

0 0 Q
(r)
i,k


 and Si,k =




S
(r)
i,k 0 0

0 S
(r)
i,k 0

0 0 S
(r)
i,k


 .

Recall thatDi denotes the index set of nodes belonging to theeth finite
element. The(3× n) submatrixQ(r)

i,k is composed of columns




∂ϑj

∂x1

∂ϑj

∂x2

∂ϑj

∂x3


 , j ∈ Di

atj-th position, evaluated at thek-th integration point, and zeros otherwise.
S

(r)
i,k is the element stress tensor

S
(r)
i,k =




σ1 σ4 σ6

σ4 σ2 σ5

σ6 σ5 σ3




i,k

composed of items of the element “stress vector”

σi,k = (σ1 σ2 σ3 σ4 σ5 σ6 )T
i,k = ρi Ei,k Bi,k u

which can be further written as

σi,k = ρi Ei,k Bi,k A(ρ)−1f . (7)

In the last formula we clearly see the nonlinear dependence of G̃ onρ.
Given formulas forA andG̃, we can derive a simple algorithm for finding

an initial feasible point for problem (6).
ALGORITHM 2.1Letρ ≥ ε > 0 be given.

(i) If A(ρ) + G̃(ρ) � 0 andZ(ρ) � 0, stop and return currentρ;

otherwise go to Step (ii).

(ii) ρ← 2ρ

(iii) Go to Step (i).
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The termination of this algorithm is guaranteed by the following facts. We
know thatA(ρ) � 0 for anyρ > 0 (as the elasticity matrixE is positive
semidefinite). Multiplyingρ in G̃(ρ) by 2 does not change the value of
G̃(ρ) (see (7)) thus, eventually, for big enoughρ, the eigenvalues ofA(ρ)

will dominate those ofG̃(ρ) and the nonconvex constraint will become
feasible. Similarly, with increasingρ, the eigenvalues ofA(ρ), and thus of
Z(ρ), will increase till, eventually,Z(ρ) � 0 .

3 THE ALGORITHM

Our method is based on the algorithm for convex SDP problems described
in [17]. Here we briefly recall it and introduce its generalization to non-
convex problems. Our goal is to solve optimization problemswith a linear
objective function subject to nonlinear matrix inequalities as constraints:

min
x∈Rn

fT x

subject to

A(x) 4 0 .

(8)

Heref ∈ R
n andA : R

n → S
m is a (generally nonconvex) matrix opera-

tor. Clearly, our structural design problem with stabilityconstraints (6) can
be written in this form.

The algorithm is based on a choice of a smooth penalty/barrier function
Φp : S

m → S
m that satisfies a number of assumptions (see [17]) guaran-

teeing, in particular, that

A(x) 4 0⇐⇒ Φp(A(x)) 4 0 .

Thus for anyp > 0, problem (8) has the same solution as the following
“augmented” problem

min
x∈Rn

fT x

subject to

Φp(A(x)) 4 0 .

(9)

The Lagrangian of (9) can be viewed as a (generalized) augmented La-
grangian of (8):

F (x,U, p) = fT x + 〈U,Φp (A(x))〉Sm
; (10)
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hereU ∈ S
m is a Lagrangian multiplier associated with the inequality

constraint.
The algorithm below can be seen as a generalization of the Augmented

Lagrangian method.
ALGORITHM 3.1 Letx1 andU1 be given. Letp1 > 0. For k = 1, 2, . . .

repeat until a stopping criterion is reached:

(i) Find xk+1 satisfying‖
∂

∂x
F (x,Uk, pk)‖ ≤ αk for givenαk > 0

(ii) Uk+1 = DAΦp(A(x);Uk)

(iii) pk+1 < pk .

Imposing standard assumptions on problem (8), it can be proved that any
cluster point of the sequence{(xk, Uk)}k>0 generated by Algorithm 3.1 is
a KKT point of problem (8). The proof is based on extensions ofresults by
Polyak [19] and Breitfeld and Shanno [8]; for the full version we refer to
[22].

In the next section, we will take a closer look at the approximate uncon-
strained minimization in Step (i), multiplier update in Step (ii) and stopping
criteria of the algorithm.

3.1 Choice of Φp

The penalty functionΦp of our choice is defined as follows:

Φp(A(x)) = −p2(A(x)− pI)−1 − pI . (11)

The advantage of this choice is that it gives closed formulasfor the first and
second derivatives ofΦp. Defining

Z(x) = −(A(x)− pI)−1 (12)

we have (see [17]):

∂

∂xi

Φp(A(x)) = p2Z(x)
∂A(x)

∂xi

Z(x) (13)

∂2

∂xi∂xj

Φp(A(x)) = p2Z(x)

(
∂A(x)

∂xi

Z(x)
∂A(x)

∂xj

+
∂2A(x)

∂xi∂xj

+
∂A(x)

∂xj

Z(x)
∂A(x)

∂xi

)
Z(x) . (14)
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3.2 Minimizing the augmented Lagrangian

We have implemented two algorithms for the (approximate) unconstrained
minimization of the (possibly nonconvex) augmented Lagrangian in Step (i)
of Algorithm 3.1. The first one is the standard Trust-Region method, in
particular, Algorithm 7.3.4 from [11]. The second one is a variant of the
Levenberg-Marquardt method. Here we use the following algorithm to cal-
culate the search directiond.

One step of the minimization method in Step (i) is defined as follows:

1. Given a current iterate(x,U, p), compute the gradientg and HessianH
of F atx.

2. Try to factorizeH by Cholesky decomposition. IfH is factorizable, set
Ĥ = H and go to Step 4.

3. Computeβ ∈ [−λmin,−2λmin], whereλmin is the minimal eigenvalue
of H and set

Ĥ = H + βI.

4. Compute the search direction

d = −Ĥ−1g.

5. Perform line-search in directiond. Denote the step-length bys.

6. Set
xnew = x + sd.

The step-lengths in directiond is calculated by a gradient free line-search
that tries to satisfy the Armijo condition.

For a convexF , this is just a Newton step with line-search. If, in the
nonconvex case, the Cholesky factorization in Step 2 fails,the value ofβ in
Step 3 is calculated in the following way: We start withβ0 > 0, setβ = β0

and try to factorizeH + βI by the Cholesky method. If the factorization
fails due to a negative pivot, the matrixH +βI is considered indefinite and
we multiply β by 2. We repeat this process until the Cholesky factoriza-
tion exists. If the Cholesky factorization is successful already forβ = β0,
we divideβ by 2 until Cholesky factorization fails. We denote the corre-
spondingβ by βmin and setβ = 2βmin. In both cases we end up with
β ∈ [−λmin,−2λmin].

Although this technique is just heuristics, it proved to work well on a
large set of nonconvex NLP and nonconvex SDP problems. It is not possi-
ble, though, to prove convergence of Algorithm 3.1 combinedwith this sim-
ple approach without making additional (restrictive) assumptions. There-
fore we also implemented the trust-region algorithm for which, in order to
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prove convergence of Algorithm 3.1, we needed just standardassumptions.
When compared to the above heuristic approach on a set of NLP problems,
the trust-region variant turned out to be more robust but often slower.

3.3 Multiplier and penalty update, stopping criteria

For the penalty functionΦp from (11), the formula for update of the matrix
multiplier U in Step (ii) of Algorithm 3.1 reduces to

Uk+1 = (pk)2Z(x)UkZ(x) (15)

with Z defined as in (12).
Numerical tests indicate that big changes in the multipliers should be

avoided for the following reasons. Big change ofU means big change of
the augmented Lagrangian that may lead to a large number of Newton steps
in the subsequent iteration. It may also happen that alreadyafter few initial
steps, the multipliers become ill-conditioned and the algorithm suffers from
numerical difficulties. To overcome these, we do the following:

1. CalculateUk+1 using the update formula in Algorithm 3.1.

2. Choose a positiveµA ≤ 1, typically 0.5.

3. ComputeλA = min

(
µA, µA

‖Uk‖
F

‖Uk+1−Uk‖
F

)
.

4. Update the current multiplier by

Unew = Uk + λA(Uk+1 − Uk).

Given an initial iteratex1, the initial penalty parameterp1 is chosen large
enough to satisfy the inequality

p1I −A(x1) ≻ 0.

Let λmax(A(xk)) ∈
(
0, pk

)
denote the maximal eigenvalue ofA(xk),

π < 1 be a constant factor, depending on the initial penalty parameter
p1 (typically chosen between0.3 and0.6) andxfeas be a feasible point cal-
culated by Algorithm 2.1. Using this notation, our strategyfor the penalty
parameter update can be described as follows:

1. If p < peps, setγ = 1 and go to 6.

2. Calculateλmax(A(xk)).

3. If πpk > λmax(A(xk)), setγ = π and go to 6.

4. If l < 3, setγ =
(
λmax(A(xk)) + pk

)
/2, setl := l + 1 and go to 6.
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5. Letγ = π, find λ ∈ (0, 1) such, that

λmax

(
A(λxk+1 + (1− λ)xfeas)

)
< πpk

and setxk+1 = λxk+1 + (1− λ)xfeas.

6. Update current penalty parameter bypk+1 = γpk.

The redefinition ofxk+1 guarantees that the values of the augmented La-
grangian in the next iteration remain finite. The parameterpeps is typically
chosen as10−6. In case we detect problems with convergence of the over-
all algorithm,peps is decreased and the penalty parameter is updated again,
until the new lower bound is reached.

The unconstrained minimization is stopped when‖ ∂
∂x

F (x,U, p)‖ ≤ α,
whereα = 0.01 is a good choice in most cases. Also here,α is decreased
if we encounter problems with accuracy.

Algorithm 3.1 is stopped if both of the following inequalities hold:

|f(xk)− F (xk, Uk, p)|

1 + |f(xk)|
< ǫ ,

|f(xk)− f(xk−1)|

1 + |f(xk)|
< ǫ ,

whereǫ is typically10−7.

4 SOLVING STABILITY PROBLEMS BY PENNON

Algorithm 3.1 with the details discussed above was implemented in the
computer program PENNON1. In this section we will point out the main dif-
ficulties when solving structural design problems with stability constraints
by PENNON. We will also present results of model numerical examples.

4.1 Complexity

This turns out to be the critical issue of our approach. Recall that the main
result of the structural optimization approach introducedin Section 1 is a
picture that shows the distribution of material and/or its properties. Hence
the finite elements serve here as pixels in a digital picture.Obviously, to
get a reasonable resolution in the resulting picture, we have to work with a
sufficiently fine finite element mesh. Praxis shows that in two-dimensional
space, one should use minimum of 5000 elements, though about15000
is “standard”. In three-dimensional models, the number of elements may

1 http://www2.am.uni-erlangen.de/ ∼kocvara/pennon/
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easily reach 100000. From now on, let us concentrate on the 2Dcase—we
will see that even this leads to too large problems.

Let us estimate the memory and number of arithmetic operations needed
to assemble one Hessian of the Lagrangian; here we refer to Section 3.1. It
is easy to see that memory needed to store one Hessian isquadratically pro-
portional to the number of finite elementsm. Further, to solve a problem
with 500 elements, we need about 64 MBytes.

The complexity of Hessian assembling is more critical. It can be shown
that the complexity is of order

O(nig2 · dim2 ·m3)

where, again,nig is the number of points of numerical integration in one
finite element,dim is the space dimension andm the number of finite el-
ements. It is the cubic dependence onm that is disastrous for practical
problems. The high complexity is, in particular, due to manymatrix-matrix
multiplication involved in formula (14). And, although we carefully imple-
mented all critical parts of the program using fast linear algebra libraries,
the resulting code cannot be used for problems of practical size. For in-
stance, to solve a 2D problem with just 400 elements we need, in average,
to assemble about 100 Hessians; for that the code spends 8 h 45min on
a PC with 2.4GHz Pentium 4. Using the above complexity estimate, we
can guess that to solve a problem with 1000 elements (still far below the
“practical minimum”) we would need about 130 hours of CPU time.

4.2 Examples

Material optimization with vibration control Let us start with the sim-
pler problem of material optimization with constraint on minimum free vi-
brations. In this case, the nonlinear stability constraintin (6) is replaced by
a linear one

A(ρ) + λ̂M(ρ) � 0 ,

whereM(ρ) =
∑m

i=1 ρiMi is a mass matrix, dependent linearly onρ, and
λ̂ is the minimum allowed eigenfrequency. The complexity of the linear
SDP is much lower than of the nonlinear one. Figure 1 presentsresult of
a model example. Consider a plate (depicted on the left-handfigure) fixed
on the left-hand side and subjected to a “horizontal” load concentrated on
a small part of the right-hand side. The middle figure shows a result of
the minimum weight problem (3) (with no stability/vibration constraint)
for a zero-Poisson-ration material. The optimal structureonly consists of
horizontal fibers and is, as such, extremely unstable to other than the given
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load. The right-hand figure presents the results of problem (6) for the same
material; the structure is obviously much more stable.

FIGURE 1: SHAPE problem with free vibration control

Because this problem leads to linear SDP, we can solve it by available
SDP codes, in order to compare the efficiency of PENNON with existing
software. Namely, we used the codes CSDP [7], DSDP [5], SeDuMi [23],
SDPA [13], and SDPT3 [26]. We generated a series of problems based
on the above example with increasing level of discretization; the problems
were encoded using the SDPA input format2. Table 1 summarizes the di-
mensions of these problems, while Table 2 presents the results—CPU time
in seconds. The reader can see that PENNON is competitive to the other
solvers.

The CPU times in Table 2 were obtained on a 3.2 GHz Pentium 4 with
4GB RDRAM under Linux3. The core routines of all codes are written
in C/C++ or Fortran. PENNON, SDPA, CSDP and DSDP are linked with
ATLAS-BLAS numerical linear algebra library. The stoppingcriteria of all
codes are set to reach about 7 digits of accuracy in the objective function.

TABLE 1: Selected SHAPE problems.

no. of size of
problem var. matrix
shmup-3 420 1801+840
shmup-4 800 3361+1600
shmup-5 1800 7441+3660

Material optimization with stability control Let us now try to solve the
nonlinear SDP problem (6). Due to the limitations given by the complexity

2 The problems in SDPA format are available on
www2.am.uni-erlangen.de/ ∼kocvara/pennon

3 The table is overtaken fromhttp://plato.la.asu.edu/bench.html with a
kind permission of the author.
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TABLE 2: Results for SHAPE problems. “m” means memory exceeded.

problem PENNON SDPT3 SDPA CSDP DSDP SeDuMi
shmup-3 301 307 419 991 7880 10280
shmup-4 1655 1712 1988 2815 2137 109670
shmup-5 10994 15917 m 46185 fail m

of the algorithm, we can only solve problems with hundreds offinite ele-
ments. Figure 2 shows a result for the problem introduced in the previous
example, this time with the (nonvonvex) stability constraint; the problem
was discretized by 420 elements.

FIGURE 2: SHAPE problem with stability control

Now, while the linear problem of the same size needed 301 seconds (see
Table 2), the nonlinear problem required 22 700 seconds, i.e., more than 6
hours on the same computer. Both problems needed about the same number
of iterations, though, so the additional time was solely spent in the Hessian
assembling routine. To put things into perspective, let us note that the un-
constrained problem (3) can be reformulated as a convex nonlinear program
([28]); to solve this NLP (for the same discretization), we needed less than
one second on the same computer!

As mentioned in Section 3, for generally nonconvex problemswe can
only guarantee convergence of Algorithm 3.1 to a KKT point, and this may
be the case in this problem. However, the resulting figure looks “reason-
able” and we obtained this result for several initial point.

5 CONCLUSIONS

The good news is that Algorithm 3.1, as implemented in PENNON, can
reliably solve nonconvex SDP problems. The behavior of the code does
not differ too much from the linear version and allows us to reach accu-
rate solutions within 60–100 internal iterations. This good behavior was
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confirmed by solving truss design problems with stability constraints and
problems with bilinear matrix inequalities coming from nonlinear systems
control.

On the other hand, notwithstanding the nice convergence behavior, the
complexity and memory requirements of a second-order method are just
too high to solve nonconvex SDPs of the kind and size needed inour appli-
cation. We believe that the way out can be the use of a first order method
for the unconstrained minimization in Step (i) of Algorithm3.1. This is the
subject of our future research.
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