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The goal of this paper is to formulate and solve structuraintipation problems with con-

straints on the global stability of the structure. The dilgbtonstraint is based on the linear
buckling phenomenon. We formulate the problem as a noncorreidsfinite programming

problem and introduce an algorithm based on the Augmentethhg@an method combined
with the Trust-Region technique. The algorithm is implemdritea code PENNON. The

paper is concluded by a series of numerical examples.
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1 STRUCTURAL OPTIMIZATIONWITH STABILITY CONSTRAINTS

Structural optimization deals with engineering designbpgms with the
aim of finding an optimal structure (as specified by a given frsction)

that satisfies a number of given constraints. Typicallydésigner is faced
to the problem of finding optimal design parameters suchttwatesulting
structure is light and stiff. The stiffness is often quaetifby a so-called
compliance. Further, the structure must be in equilibrittence the de-
signer can choose between the problem of minimizing the lwéig sub-

ject to upper bound on the complian€eor minimizing the compliance
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2 M. KOCVARA AND M. STINGL

subject to upper bound on the weight. In both formulatiohs, equilib-
rium appears as a constraint. Formally, the two problemdeanritten as
follows:

min C(p) min W(p)
subject to subject to
W(p) <W Clp)<C
equilibrium equilibrium

herep stands for the design variable (like shape parameter&nbgs,material
properties, etc.). It is often the case, in particular whHeard are no addi-
tional constraints, that the above two problems are ecgrivalHowever,
when we add more constraints to the problems (like displactior stress
constraints), the equivalence does not hold anymore andawe tio care-
fully distinguish which formulation is more appropriate.

Alternatively, we can look at the problem from the viewpahtnulticri-
teria optimization and search for the Pareto set of the problin (W (p), C(p))
subject to the equilibrium condition (see, e.g., [12]). Bas the Pareto
points are computed by solving either of the problems wiffedént val-
ues of W or C, and as we are primarily interested in efficient numerical
solution of the problem, we will concentrate on the singlelghems.

Arguably, the most serious limitation of the above modetba they do
not count with possible instability of the optimal struuindeed, elastic
instability is often the decisive point when designing aatrevorld” struc-
ture, like a bridge or an aircraft. Experience showed thahsiructures
may fail in some cases not on account of high stresses bugdwimsuffi-
cient elastic stability ([25]). In this paper we consideotways of includ-
ing stability control in the problem formulation. The firste@is based on
the so-calledinear buckling modelThis model is based on an assumption
that leads to simplification of the nonlinear structurallgsia and that is
naturally satisfied for many real-world structures. Theoselcone is based
on the control of the minimal eigenfrequency of the struetuBoth mod-
els lead to control of the minimal eigenvalue of a generdliegenvalue
problem

K(p)u = 2Q(p)u

In the first case (linear buckling) is the so-called geometry stiffness ma-
trix that depends in a nonlinear way on the design variabla the second
case (self-vibrations)y is the mass matrix of the structure and the depen-
dence is linear.
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Now the designer has the choice of three different formotesti

min C(p) min W(p) max A(p)
subject to subject to subject to
W(p) <W Clp)<C W(p) <W
NOER) Mp) > A Clp)<C
equilibrium equilibrium equilibrium

i.e., apart from adding the new constraint to the existing ftarmulations,
he can also maximize stability, subject to upper bounds agiwand com-
pliance.

In the rest of the paper, we will concentrate on the minimurighitefor-
mulation. Arguably, the problem of maximizing the stakil@éan lead to
unrealistic design, with a wrong choice of upper boufidsandC'. Also,
we usually aim to find the lightest/stiffest structure ttejuist stable. The
minimum compliance problem, on the other hand, can leadrtousediffi-
culties with finding a feasible structure; see Section 2dithe discussion
in [16].

Our goal is to solve problems with stability constraintsdshen the lin-
ear buckling phenomenon. As mentioned above, this appreacts to a
nonconvex matrix inequality constraint, involving the gesiry stiffness
matrix. We will see later that, due to extremely high comgpiateal com-
plexity, we can only solve model problems of relatively lounénsion at
the moment. Hence, as a viable alternative, we offer therabaof self-
vibrations of the optimal structure. This results in a folation with lin-
ear matrix inequality constraints (involving the mass ixgfior which the
complexity is much lower. In the last section of the paper,present an
example comparing these two approaches.

Let us mention other approaches that, in some sense, ctmrstability
of the optimal structure. The first one is the worst-case iplalioad de-
sign: given a number of independent load cases, we want tafohebkign
that is optimal with respect to all these loads [4, 2]. It ieafthe case that
the resulting design is also robust with respect to glotadibty. In many
applications, the load cases (typically 2-5) are an inhqvert of the prob-
lem formulation, while in other applications there is jused'natural” load
case. We are aiming at the latter case. Another option isrtaftate the
optimal design problem as a robust optimization problemF8} instance,
we can try to find a structure that is robust with respect tollspeatur-
bations (and still “almost optimal” with respect to the anigl objective
function). This approach was investigated in [15].
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Stability of elastic structures has been extensively stligi many mono-
graphs; see, e.g. [24, 25]. The problem of optimal struttlgsign includ-
ing stability constraints is, however, very difficult, aritete are not many
references in the literature (see, e.g., [6, 9, 14]). Oureguh is close
to the one by UIf Ringertz ([20, 21]) used mainly for optimurmasgyn of
shells. For a particular case of truss topology design, thilem formula-
tion was thoroughly investigated in [16]; several numdraggproaches for
its solution were proposed in [1]. We believe that the alfponiintroduced
in this paper is more effective than the ones proposed iffig typical for
these algorithms (and ours is not an exception) that they fomd a KKT
point, in case the problem is nonconvex. This should be keptind when
reviewing the results.

In the rest of the paper, we will concentrate on a particutablem of
material optimization, that is of high practical importar(see, e.g., [4]).

2 MATERIAL OPTIMIZATIONWITH STABILITY CONSTRAINTS

2.1 Material optimization problem

Material optimization concerns optimal design of elastiactures, where
the design variables are material properties. The mateaialeven vanish
in certain areas, thus one often speaks of topology opttioiza

LetQ ¢ R¥™, dim = 2,3, be a bounded domain (the elastic body) with
a Lipschitz boundary’. By u(z) = (ui(x),...,usm(x)) we denote the
displacement vector at pointof the body under loadl, and by

1 (Ou; Ouj . ,
eij(u(z)) = 5 ( gx(x) + lgx(x)) fori,j=1,...,dim
J 7

the (small-)strain tensor. We assume that our system isrgesieby the
linear Hooke’s law, i.e., the stress is a linear functionhef $train
0ij(2) = Eijre(z)ere(u(x)) (in tensor notation

whereFE is the so-called elasticity tensor.
Consider the following problem

inf sup 71/ PP {Ee(u),e(u)) dz Jr/ frudx, 1)
p>0 weU 2 Jq Iy
J pdx<1

wherel, ¢ T and[H}(Q)]"" c U c [H()]""™. For different choices
of p, F anddim, we get different classes of problems:
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e Free material optimization (FMO) [28, 4]
p=1 E=1 dm=23

Originally, the design variables in FMO are all elementshef ¢lasticity
tensor. It can be shown that (for single-load case) the railgiroblem
can be equivalently reformulated as the above problem, eyhés the
trace of the optimal elasticity tensor. The optiniatan be reconstructed
from the optimalp andu.

e Variable thickness sheet (VTS) [4, 18]
p=1, FE...elasticity matrix of an isotropic material dim = 2

Herep has the meaning of thickness of a two-dimensional isotrelgis-
tic body.
e Solid Isotropic Material with Penalization (SIMP) [4]

p>1, FE...elasticity matrix of an isotropic material dim = 2,3

In this problem, nowadays widely popular among the engs)eqplays
the role of artificial density. With increasing the optimal density tends
to be either on the lower bound (void) or on the upper bountl ifia-
terial E). Therefore, this approach is used whenever one tries tiol avo
intermediate densities or anisotropic materials in thénogdtstructure.

In the following, we will concentrate on the case
p=1, FE...elasticity matrix of an isotropic material dim = 2,3

that includes VTS and a sub-case of SIMP. Note that we carsmthe
FMO formulation for problems with stability constraints. hwe add
additional constraints to (1), the equivalence of the nesbjam to the orig-
inal FMO formulation does not hold anymore, and the optifi@annot be
reconstructed.

2.2 Discretization

We now briefly introduce the discretization of the problenet & denote
the number of finite elements amdthe number of nodes (vertices of the
elements). We approximaigx) by a function that is constant on each
element, i.e., characterized by a vectoe= (p1,...,pn) Of its element
values. Further assume that the displacement vedtor is approximated
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by a continuous function that is bi- or tri-linear (linearéach coordinate)
on every element. Such a function can be written@sg = Y., u;¥;(z)
wherew; is the value ofu at i-th node and; is the basis function asso-
ciated withi-th node (for details, see [10]). Recall that, at each ndue, t
displacement hadim components, sa € R*™ ™,

With the basis functions;,j =1, ..., n, we defing(3 x 2) and(6 x 3)
matrices

a9;
o 0 0
a0
a9, 0 0 ) 0
ox1 99,
B.=| o 89; B - L 0 93
J dzs J 189, 109; 0
109; 109 20xy 20x
20z 201 0 109; 109,
2 8%3 2 amg
199, 0 199,
2 Oz 2 0z

for dim = 2 anddim = 3, respectively.

Now, for thei-th finite element, leD; be an index set of nodes belonging
to this element. Letig denotes the number of Gauss integration points in
each element. By3; ;, we denote thé€l x n) block matrix composed of
(d x dim) blocksﬁj at thej-th position,j € D;, (evaluated at thé-th
integration point) and zeros otherwise. Hence the full disien of B; ;. is
(d x dim - n).

The (global) stiffness matrid is a linear combination of element stiff-
ness matricesl;:

m nig
Alp) = ZPiAz‘, A= Z Bij:kEi,kBi,k .
i=1 k=1

After the discretization, problem (1) becomes

p>0  yecRdim-n

1 m
inf sup II(p,u) := —5 Zm(/hu,@ + (f,u) .
i=1

It is well-known that the above problem can be formulated msamum
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compliance problem
min fTu
u,p
subject to
pi>0, 1=1,....m

)

This is based on the following variational principle (seg, 43, Sect. 3.4.3]):
For a givenp, the equilibrium displacement (satisfyingA(p)u = f) is a
minimizer of I1(p, u); the compliancef” v is finite if and only ifI1(p, -) is
bounded above, and in this case one fa8 = max I1(p, u).

Problem (2) is further equivalent to the foIIovﬁng minimuneight prob-
lem (up to a scaling factor; compare KKT conditions)

=1
subject to 3)
pi >0, i=1,....m
fTu <1
Alp)u=f.

2.3 Stability constraint

The stability constraint, in the sense of critical bucklfogce, requires that
all eigenvalues of the generalized eigenvalue problem

(A(p) + AG(p,u))w =0 (4)

are either smaller than zero or bigger than one. H&fg u) is so-called
geometry stiffness matrix; its precise form is given beleesq also, e.g.,
[27]). Condition (4) is equivalent to the following matrirequality (see,
e.g., [16]):

A(p) +G(p,u) = 0. (%)

The notatior) > 0 (or @ = 0) means that a symmetric matiixis positive
(or negative) semidefinite.
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We now combine the optimization problem (3) with the coriatréb)
to get the minimum weight material optimization problem hwitability
constraint. Before writing down the full problem formulatti we rewrite,
using the Schur complement theorem, the compliance camistrad the
equilibrium equation in one matrix inequality constraint

Z(p)::<ch Z(Z))*O‘

We further eliminate the variabke from the stability constraint by assum-
ing thatA(p) is nonsingular and setting

G(p) == G(p, A7 (p)f)-

The minimum weight problem with stability constraints read

m
minE Di
p 4

i=1

subject to 6
Z(p) =0 ©)
Alp)+Glp) = 0
pi >0, 1=1,.

24 Operators Aand G

For ease of notation, let us only consider the céise = 3. The geometry
stiffness matrix is defined as follows:

m nig
G(w,p) = P” (Z Gi> P, Gi=)> QI SikQik,
1=1 k=1

where P is the permutation matrix transforming vectors (e.g. dispt
ments) from the ordering

T
(Uz1 Uz2 - - Ugn Uyl Uy -« - Uy Uzl Uz2 - - Usp, )

into the default ordering

T
(Up1 Uyt Uzl Ug Uy Uz - - - Ugp Uyn Uzp,)
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Further,
QY 0 o A
Qixk=1 0 Qﬁ’“k) 0 and Six=1| 0 Sl(? 0
00 o o s

Recall thatD; denotes the index set of nodes belonging to dtiefinite
element. Thé3 x n) submatrixQET,g is composed of columns

99,
oxq
99
Oxo ’
09
Oxs

Jj €D

at j-th position, evaluated at theth integration point, and zeros otherwise.
Sfrk) is the element stress tensor

01 04 O0Og
Sz(’rk) = |04 o9 o5
O¢ 05 O3 ik
composed of items of the element “stress vector”
0k = (01 02 03 04 05 0¢ )sz =p; By Bij u
which can be further written as
oik = pi Bix Biw A(p) "' f . (7)

In the last formula we clearly see the nonlinear dependeﬁééw p-

Given formulas ford andG, we can derive a simple algorithm for finding
an initial feasible point for problem (6).

ALGORITHM 2.1Letp > ¢ > 0 be given.

(7) If A(p) + G(p) = 0andZ(p) = 0, stop and return currenp;
otherwise go to Step (ii).

(i)  p=2p
(4i7) Go to Step (i).
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The termination of this algorithm is guaranteed by the faitg facts. We
know thatA(p) > 0 for anyp > 0 (as the elasticity matri¥ is positive
semidefinite). Multiplyingp in @(p) by 2 does not change the value of
@(p) (see (7)) thus, eventually, for big enoughthe eigenvalues ofi(p)
will dominate those ofG(p) and the nonconvex constraint will become
feasible. Similarly, with increasing, the eigenvalues ol (p), and thus of
Z(p), will increase till, eventuallyZ(p) > 0 .

3 THE ALGORITHM

Our method is based on the algorithm for convex SDP problerssribed
in [17]. Here we briefly recall it and introduce its generatian to non-
convex problems. Our goal is to solve optimization problevith a linear
objective function subject to nonlinear matrix inequaktas constraints:
. T, .
St
subject to 8

A(z) 0.

Heref € R™ and A : R® — S™ is a (generally nonconvex) matrix opera-
tor. Clearly, our structural design problem with stabilitynstraints (6) can
be written in this form.

The algorithm is based on a choice of a smooth penalty/dtnestion
¢, : S™ — S™ that satisfies a number of assumptions (see [17]) guaran-
teeing, in particular, that

A(r) 0 <= ®,(A(z)) < 0.

Thus for anyp > 0, problem (8) has the same solution as the following
“augmented” problem
s T
i S
subject to ©)
,(A()) < 0.

The Lagrangian of (9) can be viewed as a (generalized) augohéra-
grangian of (8):

F(z,U,p) = o+ (U, &, (A(z)))s (10)

m )
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hereU € S™ is a Lagrangian multiplier associated with the inequality
constraint.

The algorithm below can be seen as a generalization of then&ated
Lagrangian method.

ALGORITHM 3.1Letz! andU! be given. Lep' > 0. Fork =1,2,...
repeat until a stopping criterion is reached:

(i)  Findz*+! satisfyingHagF(ac, U, p")|| < oF for givena® > 0
Xr
(i) UM = Da®,(A(x);U")
(ii7)  ptt < pk.

Imposing standard assumptions on problem (8), it can besprthat any
cluster point of the sequendézy,, Uy)} ., generated by Algorithm 3.1 is
a KKT point of problem (8). The proof is based on extensionestilts by
Polyak [19] and Breitfeld and Shanno [8]; for the full versioe refer to
[22].

In the next section, we will take a closer look at the appr@tgruncon-
strained minimization in Step (i), multiplier update in 8{&) and stopping
criteria of the algorithm.

3.1 Choiceof ¢,
The penalty functior,, of our choice is defined as follows:
@, (A(x)) = —p*(A(z) —pI) ™" —pl. (11)

The advantage of this choice is that it gives closed formigiathe first and
second derivatives ab,,. Defining

2(z) = —(A(z) —pI) ™" 12)
we have (see [17]):

oy () = 2(0) 5 D 2 ()

2 €T x 2 T
Gy P’ Z(x) (82;)2(“7)8?;) gaja(mj

OA(x) OA(x)
+ 7z, Z(x) oz, )Z(az) (14)

(13)




12 M. KOCVARA AND M. STINGL

3.2 Minimizing the augmented L agrangian

We have implemented two algorithms for the (approximatepnstrained
minimization of the (possibly nonconvex) augmented Lagiamin Step (i)
of Algorithm 3.1. The first one is the standard Trust-Regiosthmod, in
particular, Algorithm 7.3.4 from [11]. The second one is aiaat of the
Levenberg-Marquardt method. Here we use the followingritym to cal-
culate the search directieh

One step of the minimization method in Step (i) is defined Hevis:

1. Given a current iterater, U, p), compute the gradientand Hessiaid
of F atzx.

2. Try to factorizeH by Cholesky decomposition. I is factorizable, set
H = H and go to Step 4.

3. Computes € [—Amin, —2Amin|, Wherel,;, is the minimal eigenvalue
of H and set

H=H+ I
4. Compute the search direction
d= —ﬁ_lg.

5. Perform line-search in directiah Denote the step-length by

6. Set
Tpew = X + sd.

The step-lengths in directiond is calculated by a gradient free line-search
that tries to satisfy the Armijo condition.

For a convexF, this is just a Newton step with line-search. If, in the
nonconvex case, the Cholesky factorization in Step 2 fhisyalue of5 in
Step 3 is calculated in the following way: We start with> 0, setg = 3y
and try to factorizeH{ + 1 by the Cholesky method. If the factorization
fails due to a negative pivot, the matik+ 31 is considered indefinite and
we multiply 5 by 2. We repeat this process until the Cholesky factoriza-
tion exists. If the Cholesky factorization is successfukatly forg = g3y,
we divide 8 by 2 until Cholesky factorization fails. We denote the cerre
spondingg by B, and setd = 28,,. In both cases we end up with
ﬁ € [_)\mirn _2Amin]-

Although this technique is just heuristics, it proved to karell on a
large set of nonconvex NLP and nonconvex SDP problems. titipossi-
ble, though, to prove convergence of Algorithm 3.1 combivét this sim-
ple approach without making additional (restrictive) asptions. There-
fore we also implemented the trust-region algorithm forahhin order to
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prove convergence of Algorithm 3.1, we needed just stanassdmptions.
When compared to the above heuristic approach on a set of Nititepns,
the trust-region variant turned out to be more robust betro§lower.

3.3 Multiplier and penalty update, stopping criteria

For the penalty functio®@, from (11), the formula for update of the matrix
multiplier U in Step (ii) of Algorithm 3.1 reduces to

Ut = (p")?Z(2)U*Z () (15)

with Z defined as in (12).

Numerical tests indicate that big changes in the multiplignould be
avoided for the following reasons. Big changeldimeans big change of
the augmented Lagrangian that may lead to a large humbenatoNesteps
in the subsequent iteration. It may also happen that alratidyfew initial
steps, the multipliers become ill-conditioned and the algm suffers from
numerical difficulties. To overcome these, we do the folluyvi
1. Calculate/*+! using the update formula in Algorithm 3.1.

2. Choose a positivey < 1, typically 0.5.
3. Computely = min (,uA, m M) .
4. Update the current multiplier by
Unew = U* 4 ) (U - UR).

Given an initial iterate:*, the initial penalty parametet is chosen large
enough to satisfy the inequality

p'I — A(z') = 0.

Let Amax(A(z¥)) € (0,p*) denote the maximal eigenvalue gf(z*),
7 < 1 be a constant factor, depending on the initial penalty patam
p! (typically chosen betweeh3 and0.6) andz:..s be a feasible point cal-
culated by Algorithm 2.1. Using this notation, our stratégrthe penalty
parameter update can be described as follows:

1. If p < peps, s€ty = 1 and go to 6.

2. Calculate pay (A(z*)).

3.1 % > Anax(A(2F)), sety = 7 and go to 6.

4.1f1 < 3, sety = (Amax(A(z")) + pi) /2, setl := 1+ 1and go to 6.
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5. Lety =, find A € (0,1) such, that
Amax (AN + (1 = N)peas)) < 7py;

and setr* 1 = AzF 1 + (1 — N)pens.
6. Update current penalty parameterfyy * = vp*.

The redefinition of:**! guarantees that the values of the augmented La-
grangian in the next iteration remain finite. The paramgtgy is typically
chosen as0~5. In case we detect problems with convergence of the over-
all algorithm,p.,,s is decreased and the penalty parameter is updated again,
until the new lower bound is reached.

The unconstrained minimization is stopped whef F'(z, U, p)|| < «,
wherea = 0.01 is a good choice in most cases. Also herés decreased
if we encounter problems with accuracy.

Algorithm 3.1 is stopped if both of the following inequadis hold:

[f(a") = F(* URp)| _ |f(@*) — fa*)]
L4 [f (")l ’ 1+ [f(2%)]

<€,

wheree is typically 10~7.

4 SOLVING STABILITY PROBLEMSBY PENNON

Algorithm 3.1 with the details discussed above was impldaegtin the
computer program PENNONN this section we will point out the main dif-
ficulties when solving structural design problems with giigtconstraints
by PENNON. We will also present results of model numericalregles.

4.1 Complexity

This turns out to be the critical issue of our approach. Rélat the main
result of the structural optimization approach introduge&ection 1 is a
picturethat shows the distribution of material and/or its progextiHence
the finite elements serve here as pixels in a digital pict@bviously, to
get a reasonable resolution in the resulting picture, we @awork with a
sufficiently fine finite element mesh. Praxis shows that in-tiraensional
space, one should use minimum of 5000 elements, though a5OO0
is “standard”. In three-dimensional models, the numberlefents may

L http://www2.am.uni-erlangen.de/ ~kocvara/pennon/
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easily reach 100000. From now on, let us concentrate on thea2B—we
will see that even this leads to too large problems.

Let us estimate the memory and number of arithmetic operatieeded
to assemble one Hessian of the Lagrangian; here we refectm88.1. It
is easy to see that memory needed to store one Hessjaadsatically pro-
portional to the number of finite elements. Further, to solve a problem
with 500 elements, we need about 64 MBytes.

The complexity of Hessian assembling is more critical. i ba shown
that the complexity is of order

O(nig? - dim? - m?)

where, againnig is the number of points of numerical integration in one
finite elementdim is the space dimension amd the number of finite el-
ements. It is the cubic dependenceanthat is disastrous for practical
problems. The high complexity is, in particular, due to margtrix-matrix
multiplication involved in formula (14). And, although warefully imple-
mented all critical parts of the program using fast linegehta libraries,
the resulting code cannot be used for problems of practizal g-or in-
stance, to solve a 2D problem with just 400 elements we neealjdérage,
to assemble about 100 Hessians; for that the code spends @im 4/
a PC with 2.4GHz Pentium 4. Using the above complexity esémae
can guess that to solve a problem with 1000 elements (stilbbétow the
“practical minimum”) we would need about 130 hours of CPUdim

4.2 Examples

Material optimization with vibration control Let us start with the sim-
pler problem of material optimization with constraint onnimium free vi-
brations. In this case, the nonlinear stability constrairg6) is replaced by
alinear one R

A(p) +AM(p) = 0,

whereM (p) = Y| p; M, is a mass matrix, dependent linearly grand
X is the minimum allowed eigenfrequency. The complexity af timear
SDP is much lower than of the nonlinear one. Figure 1 pregestdt of
a model example. Consider a plate (depicted on the left-fignce) fixed
on the left-hand side and subjected to a “horizontal” loadcemtrated on
a small part of the right-hand side. The middle figure showssailt of
the minimum weight problem (3) (with no stability/vibraticconstraint)
for a zero-Poisson-ration material. The optimal structurly consists of
horizontal fibers and is, as such, extremely unstable ta ttiae the given
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load. The right-hand figure presents the results of prob&rfof the same
material; the structure is obviously much more stable.

T
w

FIGURE 1: SHAPE problem with free vibration control

Because this problem leads to linear SDP, we can solve it biade
SDP codes, in order to compare the efficiency of PENNON wiiktigg
software. Namely, we used the codes CSDP [7], DSDP [5], SaD2a],
SDPA [13], and SDPT3 [26]. We generated a series of probleased
on the above example with increasing level of discretirgtibe problems
were encoded using the SDPA input forfhafable 1 summarizes the di-
mensions of these problems, while Table 2 presents theses@PU time
in seconds. The reader can see that PENNON is competitiveetother
solvers.

The CPU times in Table 2 were obtained on a 3.2 GHz Pentium 4 wit
4GB RDRAM under LinuX. The core routines of all codes are written
in C/C++ or Fortran. PENNON, SDPA, CSDP and DSDP are linketth wi
ATLAS-BLAS numerical linear algebra library. The stoppiagteria of all
codes are set to reach about 7 digits of accuracy in the algdanction.

TABLE 1: Selected SHAPE problems.

no. of size of
problem var. matrix
shmup-3 420 1801+840
shmup-4 800 3361+1600
shmup-5 1800 7441+3660

Material optimization with stability control  Let us now try to solve the
nonlinear SDP problem (6). Due to the limitations given by ¢omplexity

2 The problems in SDPA format are available on
www?2.am.uni-erlangen.de/ ~kocvara/pennon

3 The table is overtaken frorhttp:/plato.la.asu.edu/bench.html with a
kind permission of the author.
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TABLE 2: Results for SHAPE problems. “m” means memory exceeded.
problem PENNON SDPT3 SDPA CSDP DSDP SeDuMi

shmup-3 301 307 419 991 7880 10280
shmup-4 1655 1712 1988 2815 2137 109670
shmup-5 10994 15917 m 46185 fail m

of the algorithm, we can only solve problems with hundred§irofe ele-
ments. Figure 2 shows a result for the problem introducetiémptevious
example, this time with the (nonvonvex) stability consitathe problem
was discretized by 420 elements.

FIGURE 2: SHAPE problem with stability control

Now, while the linear problem of the same size needed 301nsiso@ee
Table 2), the nonlinear problem required 22 700 secondsmere than 6
hours on the same computer. Both problems needed abouttigensember
of iterations, though, so the additional time was solelynspethe Hessian
assembling routine. To put things into perspective, letats that the un-
constrained problem (3) can be reformulated as a convextganlprogram
([28]); to solve this NLP (for the same discretization), weeded less than
one second on the same computer!

As mentioned in Section 3, for generally honconvex problevascan
only guarantee convergence of Algorithm 3.1 to a KKT point ¢his may
be the case in this problem. However, the resulting figur&ddoeason-
able” and we obtained this result for several initial point.

5 CONCLUSIONS

The good news is that Algorithm 3.1, as implemented in PENNCdah
reliably solve nonconvex SDP problems. The behavior of thdecdoes
not differ too much from the linear version and allows us tacte accu-
rate solutions within 60—100 internal iterations. This dgdzhavior was
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confirmed by solving truss design problems with stabilitpstoaints and
problems with bilinear matrix inequalities coming from tiopar systems
control.

On the other hand, notwithstanding the nice convergencavieth the
complexity and memory requirements of a second-order ndetine just
too high to solve nonconvex SDPs of the kind and size neededriappli-
cation. We believe that the way out can be the use of a first and¢hod
for the unconstrained minimization in Step (i) of Algoriti8rl. This is the
subject of our future research.
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