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We present a compact overview of the recent development in free material optimization (FMO),
a branch of structural optimization. The goal of FMO is to design the ultimately best material
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FMO models naturally lead to linear and nonlinear semidefinite programming problems (SDP); their
numerical tractability is then guaranteed by recently introduced SDP algorithms.
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1 Introduction

Free material optimization (FMO) is a branch of structural optimization that gains more and more
interest in the recent years. The underlying FMO model was introduced in [4] and later developed
in [21] and [2]. The design variable is the full elastic stiffness tensor that can vary from point to
point; it should be physically available but is otherwise not restricted. This problem gives the best
physically attainable material and can be considered the “ultimate” generalization of the structural
optimization problem. The method is supported by powerful optimization and numerical
techniques, which allow us to work with bodies of complex initial design and with very fine
finite-element meshes, giving thus quite accurate solutions even for bodies with complex geometries.
Recently, FMO has been used for conceptual design of aircraft components; the most prominent
example is the design of ribs in the leading edge of the new Airbus A380. In this particular case,
the use of the modern optimization techniques leads to a significant weight savings; see Fig. 1.
The goal of this article is to show recent developments in FMO formulations and models with the
most important technological constraints, such as stress and displacement constraints. The article
follows the overview paper [12] and shows the shift in the mathematical programming formulations:
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the basis of the new models is linear and nonlinear large-scale semidefinite programming; see
also [10] for FMO models with stability constraints that again lead to linear or nonlinear SDP
problems. This shift in the modeling—from standard nonlinear to semidefinite programming—was
enabled by the recent development of new algorithms for (nonlinear) SDP problems. All our FMO
models are solved by code Pennon that has been originally developed for this purpose and later
turned to a general-purpose NLP and SDP code. In the last section of this article we thus present a
brief overview of the basic algorithm implemented in Pennon.

Figure 1. Desing of a leading edge rib of A380 using FMO: the wing leading edge; sample FMO
result; post-optimization with technological constraints; final product.

2 Primal and dual FMO problem

We study the optimization of the design of a continuum structure that is loaded by multiple
independent forces. In order to deal with the problem in a very general form, we consider the
distribution of the material in space as well as the material properties at each point as design
variables. The idea to treat the material itself as a function of the space variable goes back to the
works [4, 15] and has also been studied in various other contexts; see [3].

2.1 Problem formulation

Let Ω ⊂ Rdim, dim = 2, 3, be a bounded domain (the elastic body) with a Lipschitz boundary Γ.

We use the standard notation [H1(Ω)]
dim

and [H1
0 (Ω)]

dim
for Sobolev spaces of functions

v : Ω → Rdim. By u(x) = (u1(x), . . . , udim(x)) with u ∈ [H1(Ω)]
dim

we denote the displacement
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vector at point x of the body under load, by

eij(u(x)) =
1

2

 
∂u(x)i

∂xj

+
∂u(x)j

∂xi

!
for i, j = 1, . . . , 3

the (small-)strain tensor and by σij(x) (i, j = 1, . . . , 3) the stress tensor. We assume that our
system is governed by linear Hooke’s law, i.e., the stress is a linear function of the strain

σij(x) = Eijkℓ(x)ekℓ(u(x)) (in tensor notation), (1)

where E is the so-called (plain-stress) elasticity tensor of order 4. We will often skip the argument
x in the following text. The strain and stress tensors are symmetric (e.g. eij = eji) and also E is
symmetric in the following sense:

Eijkℓ = Ejikℓ = Eijℓk = Ekℓij i, j, k, ℓ = 1, . . . , dim.

These symmetries allow us to avoid the tensor notation and interpret the 2−tensors e and σ as
vectors

e = (e11, e22,
√

2e12)T ∈ R
3, σ = (σ11, σ22,

√
2σ12)

T ∈ R
3

for dim = 2 and analogously as vectors in R6 for dim = 3. Correspondingly, the 4−tensor E can be
written as a symmetric 3 × 3 matrix

E =

0
@

E1111 E1122

√
2E1112

E2222

√
2E2212

sym. 2E1212

1
A (2)

for dim = 2 and as an analogous symmetric 6 × 6 matrix for dim = 3.
Since E will be understood as a matrix in our paper, we will use double indices for the elements of
E; the correspondence between Eij and the tensor components Eijkℓ is clear from (2). Recall that
in our approach not only e and σ but also E is a function of the space variable x. To include the
case of material–no-material, it is natural to work with (N = 3 or 6)

E ∈ [L∞(Ω)]N×N (in short: E ∈ L∞(Ω)).

We consider a partitioning of the boundary Γ into two parts: Γ = Γ1 ∪ Γ2, where Γ1 and Γ2 are
open in Γ and Γ1 ∩ Γ2 = ∅. Further we put

H = {u ∈ [H1(Ω)]
dim |ui = 0 on Γ1 for i = 1 or 2 or 3 or any combination}, i.e.,

[H1
0 (Ω)]

dim ⊂ H ⊂ [H1(Ω)]
dim

. The system is in equilibrium (outer forces and inner reaction forces
balance each other) for any u which solves the weak equilibrium equation

Z

Ω
〈E(x)e(u(x)), e(v(x))〉dx −

Z

Γ2

f(x) · v(x)dx = 0 for all v ∈ H . (3)

We now come to the crucial issue. Whereas (3) is the job of the nature, the designer will try to find
a material (i.e., a matrix function E) for which the structure is as effective as possible. Physics tells
us that the elasticity matrix E has to be symmetric and positive semidefinite on all of Ω, which we
write as

E(x) < 0 for all x ∈ Ω (in short: E < 0).
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As “cost” of the material E we use the trace of E. We further introduce upper and lower bounds
ρ ≥ 0 and ρ > 0

ρ ≤ Tr(E(x)) ≤ ρ for all x ∈ Ω.

We look for a structure which can withstand a whole set of loads fℓ, ℓ = 1, . . . , L, in the worst-case
sense. The stiffness of the structure for a particular load is measured by the compliance
1
2

R
Γ2

fℓ(x) · uℓ(x)dx. We require with a given γ > 0:

Z

Γ2

fℓ(x) · uℓ(x)dx ≤ γ, ℓ = 1, . . . , L.

The minimum weight FMO problem reads as

min
(u1,...,uL)∈H×...×H

E∈L∞(Ω)

Z

Ω
Tr(E)dx (4)

subject to

E � 0

ρ ≤ Tr(E) ≤ ρ

uℓ solves (3) with f = fℓ for all ℓ = 1, . . . , L
Z

Γ2

fℓ(x) · uℓ(x)dx ≤ γ, ℓ = 1, . . . , L .

Equivalently (up to a scaling), we seek the design function E which yields the smallest possible
worst-case compliance

min
(u1,...,uL)∈H×...×H

E∈L∞(Ω)

max
ℓ=1,...,L

Z

Γ2

fℓ(x) · uℓ(x)dx (5)

subject to

E � 0

ρ ≤ Tr(E) ≤ ρ

uℓ solves (3) with f = fℓ for all ℓ = 1, . . . , L
Z

Ω
Tr(E) ≤ V .

2.2 Discretization

In order to solve our (infinite-dimensional) problems numerically, we have to discretize them. For
the discretization we use the finite element method. Details of the corresponding convergence
analysis can be found in [20].
To simplify the notation, we use the same symbols for the discrete objects (vectors) as for the
“continuum” ones (functions). Assume that Ω can be partitioned into m squares (dim = 2) or
bricks (dim = 3) called Ωi which are all of the same size (otherwise we use the standard
isoparametric concept, see [6]). Let us denote by n the number of nodes (vertices of the elements).
We approximate the matrix function E(x) by a function that is constant on each element, i.e.,
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characterized by a vector of matrices E = (E1, . . . , Em) of its element values. Further assume that
the displacement vector u(x) is approximated by a continuous function that is bi- or tri-linear
(linear in each coordinate) on every element. Such a function can be written as
u(x) =

Pn
i=1 uiϑi(x) where ui is the value of u at ith node and ϑi is the basis function associated

with ith node (for details, see [6]). Recall that, at each node, the displacement has dim
components, so u ∈ Rdim·n.
With the basis functions ϑj , j = 1, . . . , n, we define (3 × 2) and (6 × 3) matrices

bBj =

0
BB@

∂ϑj

∂x1
0

0
∂ϑj

∂x2

1
2

∂ϑj

∂x2

1
2

∂ϑj

∂x1

1
CCA bBj =

0
BBBBBBBBBBB@

∂ϑj

∂x1
0 0

0
∂ϑj

∂x2
0

0 0
∂ϑj

∂x3

1
2

∂ϑj

∂x2

1
2

∂ϑj

∂x1
0

0 1
2

∂ϑj

∂x3

1
2

∂ϑj

∂x2

1
2

∂ϑj

∂x3
0 1

2

∂ϑj

∂x1

1
CCCCCCCCCCCA

for dim = 2 and dim = 3, respectively. Now, for an element Ωi, let Di be an index set of nodes
belonging to this element. Let nig denotes the number of Gauss integration points in each element.

By Bi,k we denote the block matrix composed of (3 × 2) blocks bBj at the j-th position, j ∈ Di,
(evaluated at the k-th integration point) and zeros otherwise. Hence the full dimension of Bi,k is
(3 × 2n).
The (global) stiffness matrix A is a sum of element stiffness matrices Ai:

A(E) =
mX

i=1

Ai(E), Ai(E) =

nigX

k=1

BT
i,kEiBi,k .

After the discretization, problem (4) becomes

min
u,...,uL, E

mX

i=1

Tr(Ei) (6)

subject to

Ei � 0, i = 1, . . . , m

ρ ≤ Tr(Ei) ≤ ρ i = 1, . . . , m

(fℓ)T uℓ ≤ γ, ℓ = 1, . . . , L

A(E)uℓ = fℓ, ℓ = 1, . . . , L .

Problem (6) is a mathematical programming problem with linear matrix inequality constraints and
standard nonlinear constraints; this is the so-called nonlinear semidefinite programming (NSDP)
problem. In Section 5 we will present two modifications of an augmented Lagrangian algorithm used
in our software package Pennon that can be used to the solution of NSDP problems of type (6).
Using a simple trick, we can rewrite the nonconvex problem (4) as a convex one. Assume that
ρ > 0 . Then A(E) is positive definite (i.e., non-singular) and we can eliminate the displacement



April 11, 2007 14:27 Optimization final

6

variable using the equilibrium equation uℓ = A(E)−1fℓ to get a reduced primal problem

min
E

mX

i=1

Tr(Ei) (7)

subject to

Ei � 0, i = 1, . . . , m

ρ ≤ Tr(Ei) ≤ ρ, i = 1, . . . , m

(fℓ)T A(E)−1fℓ ≤ γ, ℓ = 1, . . . , L .

which is now convex. This problem still includes a mixture of NLP and SDP constraints. However,
using the Schur complement theorem, it can be written as a linear SDP problem:

min
E

mX

i=1

Tr(Ei) (8)

subject to

Ei � 0, i = 1, . . . , m

ρ ≤ Tr(Ei) ≤ ρ, i = 1, . . . , m

„
γ (fℓ)T

fℓ A(E)

«
� 0, ℓ = 1, . . . , L .

2.3 Dual formulation

Problem (8) is a linear SDP, thus a problem of a seemingly simple structure and (still seemingly)
simple to solve, given the existence of high-quality primal-dual linear SDP codes. However, it turns
out that the problem is just too large for the current software. Recall that the main result of FMO
is a picture; the finite elements serve as pixels in this picture and it is thus important to have a
reasonably fine finite-element mesh in order to get a useful information. The minimum number of
elements is considered 5000 in the two-dimensional situation and it can well go to 100000 in
complex three-dimensional cases. The size of the matrix inequality in (8) is, roughly, dim times the
number of elements.
The way out offers dualization of the original FMO formulation. Consider the discretized version of
problem (5):

min
u,...,uL, E

max
ℓ=1,...,L

(fℓ)T uℓ (9)

subject to

Ei � 0, i = 1, . . . , m

ρ ≤ Tr(Ei) ≤ ρ i = 1, . . . , m

A(E)uℓ = fℓ, ℓ = 1, . . . , L

mX

i=1

Tr(Ei) ≤ V .

It is easy to see that this is equivalent to (6), up to scaling. This is further equivalent to the
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following saddle-point problem

min
E

max
ℓ=1,...,L

max
u

−1

2
uT A(E)u − (fℓ)T u (10)

subject to

Ei � 0, i = 1, . . . , m

ρ ≤ Tr(Ei) ≤ ρ i = 1, . . . , m

mX

i=1

Tr(Ei) ≤ V .

Problem (10) can now be shown to be Lagrangian dual to the following problem

min
u1,...,uL,α≥0

λℓ≥0,
P

λℓ≤1,β≥0,β≥0

αV − 2
LX

ℓ=1

λℓ(f
ℓ)T uℓ − ρ

mX

i=1

β
i
+ ρ

mX

i=1

βi (11)

subject to

LX

ℓ=1

λℓBi(u
ℓ)Bi(u

ℓ)T � (α − β
i
+ βi) · IN , i = 1, . . . , m

with

Bi(v) =

nigX

k=1

Bi,kv .

This, again, is a nonconvex SDP problem. However, using a simple change of variables, it can be
transformed into a convex one. Put ũℓ = λkuℓ . Then (11) becomes

min
ũ1,...,ũL,α≥0

λℓ≥0,
P

λℓ≤1,β≥0,β≥0

αV − 2
LX

ℓ=1

(fℓ)T ũℓ − ρ

mX

i=1

β
i
+ ρ

mX

i=1

βi (12)

subject to

LX

ℓ=1

1

λℓ

Bi(ũ
ℓ)Bi(ũ

ℓ)T � (α − β
i
+ βi) · IN , i = 1, . . . , m ,

which is now a problem with a linear objective and convex, though nonlinear, semidefinite
constraints.

Remark 1 Consider a single-load problem with L = 1. Then (11) reduces to

min
u,α≥0

β≥0,β≥0

αV − 2fT u − ρ
mX

i=1

β
i
+ ρ

mX

i=1

βi (13)

subject to

Bi(u)Bi(u)T � (α − β
i
+ βi) · IN , i = 1, . . . , m
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which simplifies to a problem with standard convex quadratic inequality constraints

min
u,α≥0

β≥0,β≥0

αV − 2fT u − ρ

mX

i=1

β
i
+ ρ

mX

i=1

βi (14)

subject to

uT

0
@

nigX

k=1

BT
i,kBi,k

1
Au ≤ α − β

i
+ βi, i = 1, . . . , m .

Problem (14) is the formulation derived directly in the original FMO paper [4] (up to the lower and
upper bounds). This formulation (convex QCQP) can be solved very efficiently by recent
large-scale NLP solvers.

Let us return the the convex SDP multiple-load formulation (12). It is readily seen that, using the
Schur complement theorem, it is equivalent to the following linear SDP problem

min
ũ1,...,ũL,α≥0

λℓ≥0,
P

λℓ≤1,β≥0,β≥0

αV − 2
LX

ℓ=1

(fℓ)T ũℓ − ρ
mX

i=1

β
i
+ ρ

mX

i=1

βi (15)

subject to

0
BBB@

(α − β
i
+ βi) · IN Bi,1ũ1 . . . Bi,nigũ1 . . . Bi,1ũL . . . Bi,nigũL

λ1IG

. . .
sym. λLIG

1
CCCA < 0,

i = 1, . . . , m ,

with G = L · nig. But this is exactly the formulation derived directly in [2].

2.4 Numerical solution: linear or nonlinear?

In the previous section we have first derived a nonlinear SDP and later an equivalent linear SDP
formulation of the multiple-load problem. Let us ask which of these formulations is more suitable
for the numerical solution of large-scale problems, which is our primal goal.
Let us first introduce another change of variables in problem (12)

λ = µ2, uℓ = vℓ/µ
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to arrive at the problem

min
v1,...,vL,α≥0

µ,β≥0,β≥0

αV − 2
LX

ℓ=1

µℓ(fℓ)T vℓ − ρ

mX

i=1

β
i
+ ρ

mX

i=1

βi (16)

subject to

LX

ℓ=1

Bi(v
ℓ)Bi(v

ℓ)T
4 (α − β

i
+ βi)IN , i = 1, . . . , m

LX

ℓ=1

(µℓ)2 ≤ 1, µℓ ≥ 0, ℓ = 1, . . . , L .

The resulting problem is a semidefinite program with bilinear objective function and convex
quadratic matrix inequality constraints. This kind of problems can be efficiently solved by the code
PENBMI [8], a special version of Pennon; see Section 5. Note that the above formulation was first
proposed in the thesis of R. Werner [20] who, however, did not consider it numerically important
due to the lack of nonlinear SDP algorithm at that time.
The main (and only) advantage of (15) over (16) is the fact that it is a linear problem that can be
solved by available linear SDP software. Benchmark examples, however, show that standard
software packages have difficulties to solve large-scale problems; in fact, only Pennon and
SeDuMi [17] can solve examples of practical dimensions [13]. The problem has several other
disadvantages:

• the constraint matrices in (15) are sparse but relatively large and, compared to the single-load
problem, the solution time is considerably high for large problems;

• the size of the constraint matrices is linearly proportional to the number of load cases; that
means, the solution time for problems with a higher number of load cases is rather high;

• the dimension of the constraint matrices in (15) increases considerably when switching from 2d
to the 3d problems (from 8 · 4 · L to 24 · 8 · L);

• the optimal elasticity matrices E∗
1 , . . . , E∗

M are not readily available and their recovering
requires solution of an auxiliary problem; see [2].

On the other hand, the advantages of (16) are significant; in particular

• the convex quadratic matrix constraints are of much smaller dimension than the linear
constraints in (15); further, the dimension (and the number of the constraints) does not increase
with the number of load cases and only mildly increases when going from 2d to 3d problems
(from 3 × 3 to 6 × 6);

• the material matrices are the multipliers to these constraints and are readily available in the
PENBMI code; this is not the case of (15) for which a postprocessing has to be performed which
is of the same complexity as the problem solution itself.

2.5 Complexity estimates and example

Recall first that the reduced primal problem (7) is known to be quite inefficient, compared to the
problem (15), as it is a nonlinear SDP problem with a difficult equilibrium constraint. It can be
solved by the recent version of the code Pennon; however, because explicite calculation of second
order derivatives is impossible due to computational complexity and storage requirements, and
because Pennon is based on a second-order algorithm, we solve the Newton system approximately
by a conjugate gradient method, which is based on Hessian-vector products. As a result, the whole
approach is not that robust as the other two approaches, where the analytic second derivatives are
available. In order to be able to work with the inverse of the stiffness matrix, we also have to relax
the original constraint 0 ≤ Tr(Em) to 0 < ρ ≤ Tr(Em).
It is now easy to see the dependence of the computational complexity of the three problems on the
number of load-cases. While in the current formulation (15) this dependence is cubic, in the new
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formulation (16) it is only quadratic. Furthermore, the dependence is only linear in the primal
formulation (7). These complexity estimates will be clearly demonstrated in the following
numerical example.

Example 2.1 We consider an academic two-dimensional problem with the number of load-cases
increasing from two to ten. All problems are discretized using 5000 elements. In the next two
figures we see the data (left) and optimal solution (right) for the problem with two and six
load-cases, respectively.

Figure 2. Example 1: initial design and optimal result for two load-cases

Figure 3. Example 1: initial design and optimal result for six load-cases

Table 1 gives the dimensions of the problems: while the number of the primal variables (given just
by the number of finite elements) stays the same, the number of dual variables (given by the
displacement vectors) increases linearly with the number of load-cases.

Table 1. Example 1: problem dimensions

elements loads dual variables primal variables
5000 2 20598 30001
5000 4 41205 30001
5000 6 61812 30001
5000 10 103122 30001

Table 2 then presents the results for the three approaches: the linear SDP formulation (15), the
dual nonlinear SDP formulation (16) and also the primal formulation of the problem (7). We can
clearly see the effect predicted by the complexity estimates. For small number of load-cases, the
dual nonlinear SDP formulation is clearly the best one. With increasing number of load-cases, it is
better and better than the linear SDP formulation. The primal formulation, as expected, is by far
the worst one for small number of load-cases. However, its complexity grows only linearly with this
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number, and we can see that for large number of load-cases it actually becomes the most efficient
formulation; a rather unexpected effect. But recall that the (first-order) primal formulation is much
less robust than the other two and, for large real-world problems, this effect may not be confirmed.

Table 2. Example 1: numerical results for 2-10 forces (process time in seconds)

loads process time process time process time
(linear SDP) (dual nl. SDP) (primal nl. SDP)

2 197 120 597
4 896 512 1171
6 2992 1473 1496
10 15356 5216 3012

3 Stress constraint

In engineering practise, it is not (only) the compliance but some measure of local strain that is of
main interest and should be controlled. One of the most often causes of structural failure is high
stress, so it is desirable to keep it within given limits during the optimization process.
This, however, is not an easy task. First, when designing general anisotropic material, it is unclear
what kind of stress measure (failure criterion) to take. To a great extent, this depends on the
realization of the optimal result: should the material be manufactured as fibrous composite, a
laminate, by tape-laying procedure, should it be just approximated by isotropic material with
reinforcement—all these technologies use different failure criteria which are sometimes not even
well understood. We, however, do not want to limit ourselves to a particular manufacturing
procedure in this phase, rather to keep the design process as general as possible. Hence we decided
to evaluate the stress by a norm of the stress tensor, integrated over the finite element. Another
reason why to take this particular measure of stress is to keep the problem computationally
tractable. This is, in fact, the second reason why there are not many successful approaches to stress
constraints reported in the literature. Stress constraints, added to topology or material design
problem, lead to hard optimization problems with so-called vanishing constraints [1] and/or
problems that do not satisfy standard constraint qualifications and are thus very difficult to solve
by common software of mathematical programming.
In the continuous formulation, we would work with pointwise stresses, i.e., we would restrict the
norm ‖σ(x)‖ for all x ∈ Ω. However, in the finite element approximation we use the primal formula
(working with displacements) and it is a well-known fact that, generally, evaluation of stresses
(from displacements) at points may be rather inexact. Hence we will consider the following integral
form of stress and strain constraints

Z

Ωi

‖σ‖2 ≤ sσ |Ωi| ; (17)

here Ωi is the ith finite element and |Ωi| its volume. The integrals will be further approximated by
the Gaussian intergation formulas, as in the finite element interpolation. To simplify the notation,
in the following, we will skip the multiplication by the volume |Ωi| and consider it included in the
upper bounds sσ ; in all numerical examples we will use elements of the same volume, so this should
not lead to any misunderstanding.
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3.1 FMO with stress and strain constraints

The stress in the FMO result is defined by σ = Ee, hence the FMO problem with stress constraints
reads as

min
u,E

mX

i=1

Tr(Ei) (18)

subject to

Ei � 0, i = 1, . . . , m

ρ ≤ Tr(Ei) ≤ ρ i = 1, . . . , m

fT u ≤ γ

A(E)u = f

nigX

k=1

‖EBi,ku‖2 ≤ sσρ2, i = 1, . . . , m .

This is again a nonlinear semidefinite programming problem that can be solved by the variant of
the code Pennon described in Section 5.
The classic example for testing the effect of stress constraints is the L-shaped domain; see Fig. 4.
When made of homogeneous isotropic material, the structure has a stress concentration at the peak
of the re-entrant corner. If we transform the problem to a local radial coordinate system, located at
this corner, the radial stress components would go to infinity when approaching the origin. In the
global Cartesian coordinate system, the norm of the stress tensor goes to infinity as we approach
the re-entrant corner. When we solve the discretized problems with a homogeneous mesh, the stress
would only go to infinity when the mesh size parameter went to zero. For fixed mesh size, however,
the stress values still reach much higher values at the elements neighboring the corner than in the
rest of the domain. For standard structural optimization techniques, like shape or topology
optimization, the only way to remove the stress singularity is to change the geometry of the domain,
in particular, to replace the sharp corner by a sort of smooth arc. For all the subsequent examples
we will consider discretization of the domain by 7500 finite elements (squares) of the same size.

Figure 4. L-shaped domain: geometry, load and boundary conditions

Remark 1 Before presenting the results, let us mention two most important facts that we have
observed. First, the FMO model offers much more freedom compared to topology optimization
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problems with a given isotropic material. While in the topology optimization the stress
concentration has to be removed by change of geometry of the optimal structure, in the FMO case
it can be treated solely by the material properties around the re-entrant corner.
Second, we observed a rather surprising fact that the optimal material was always almost
orthotropic, notwithstanding the stress/strain constraints. This has been tested and confirmed
a-posteriori for all examples and all elements. We do not see any theoretical reason that would
explain this, but it allows us to plot the material directions of the optimal material and to better
demonstrate its properties.

Example 3.1 We first solve the FMO problem without additional stress or strain constraints, to
get reference values. The optimal structure, shown in Fig. 5 has volume 232.04 and the maximal
stress norm (17) is 0.202. We also evaluate the maximal values of the Tresca, von Mises, maximum
stress and maximum strain failure criteria, computed at points of Gaussian integration.
We further solve the FMO problem (18) with stress constraints. Table 3 shows the values of
optimal volume and maximal stress, strain and failure criteria for examples with three different
upper bounds, namely sσ = 1.0, sσ = 0.7 and sσ = 0.5. Obviously, the maximal stress values were
on their upper bound for the stress constrained problem. The respective numbers are emphasized
in the table.

Table 3. FMO problem with stress constraints

no constr. stress 1.0 stress 0.7 stress 0.5
volume 228.62 230.53 232.43 235.43
stress 0.201 0 .0625 0 .04375 0 .03125

strain 3.431 20.15 15.3 32.34
Tresca 0.188 0.108 0.102 0.093
von Mises 0.0387 0.0142 0.0107 0.0092
σmax 0.321 0.181 0.149 0.123
emax 1.347 2.674 2.240 3.146

Figures 5–8 present the corresponding distributions of optimal material stiffness, and optimal stress
and strain norms for a problem with no stress constraint and for the most restrictive stress
constraint with sσ = 0.5. For both examples, after presenting the optimal stiffness, we show detail
of the optimal principal stress direction (and thus optimal material direction). We can see that in
both cases the material around the re-entrant corner is composed of fibres making a smooth arc
around the corner, thus preventing the stress singularity. The last two figures for each example
show the optimal stress and strain distribution. We can see that the stress constraints are always
active just around the stress singularity or in regions with a stiff material.

4 Displacement constraint

When solving practical problems, it is often important to consider additional constraints on the
displacements of the optimal structure. There may be different motivations for this, for instance

• The deformed optimal structure should have prescribed shape. When designing, for instance,
parabolic antenna, we want its boundary to be parabolic after the deformation of the structure
by structural forces. Or we may require that a straight boundary of another structure remains
straight even when we load the structure by external forces.

• Certain part of the boundary of the optimal structure should move in certain direction. This
may be desirable when designing various mechanism; see, e.g., [3]. For instance, we may want to
design such a structure that when we apply a force at one corner, the opposite corner will move
in a prescribed direction.
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Figure 5. FMO formulation with no stress/strain constraints: optimal ρ (left) and optimal
principal stress (right)

Figure 6. FMO formulation with no stress/strain constraints: optimal stress norms (left) and
optimal strain norms (right)

In this paper, we consider, for simplicity, linear displacement constraints of the type

Cu ≤ d

with a matrix C ∈ Rr×n and a vector d ∈ Rr.
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Figure 7. FMO formulation with stress constraints, sσ = 0.5: optimal ρ (left) and optimal
principal stress (right)

Figure 8. FMO formulation with stress constraints, sσ = 0.5: optimal stress norms (left) and
optimal strain norms (right)

The primal formulation of the free material optimization problem with displacement constraints
then reads as follows:

min
u,E

mX

i=1

Tr(Ei) (19)

subject to

Ei � 0

ρ ≤ Tr(Ei) ≤ ρ, i = 1, . . . , m

f⊤u ≤ γ

A(E)u = f

Cu ≤ d .
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u  < -1y

Figure 9. Beam without (left) and with (right) displacement constraints

Figure 10. Optimal result for the beam without displacement constraints; density distribution and
deformation

Figure 11. Optimal result for the beam with displacement constraints; density distribution and
deformation

Just like with the stress constraint problem in the previous section, problem (19) is a nonlinear
semidefinite programming problem that can be solved by the code Pennon.

4.1 Examples

Example 4.1 (Prescribed shape) We first consider a simply supported beam depicted in Fig. 9
left, together with the boundary conditions and the load. Figure 10 shows the density of the
optimal material for a problem without any additional displacement constraints. The right-hand
side of this figure shows the deformation of the optimal beam; as expected, the optimal structure
bends. Let us now require that the top segment of the beam remains straight after the
deformation. This leads to additional linear displacement constraints. The optimal result (density
distribution and displacements) is presented in Fig. 11. We can see that, indeed, the displacement
constraints are fulfilled and the deformation of the optimal structure differs significantly from the
previous case without displacement constraints. Surprisingly, there is no significant change in the
density distribution of the optimal material. That means that all changes needed to fulfill the
displacement constraints are performed on the level of material properties of single elements.

Example 4.2 (Displacement inverter) In this example we want to design displacement
inverter. The goal is to find a structure that converts an input force on the left-hand edge to a
displacement in the opposite direction on the right-hand edge. The initial structure is shown in
Fig. 12, together with the boundary conditions, the force and the displacement constraint.
Figure 13 shows the FMO results without the displacement constraint; the structure is as stiff as
possible in order to support the given force. The FMO results with the displacement constraints is
presented in Fig. 14: we see the density distribution of the optimal material (left) and the
deformation of the optimal structure (right). We can see sort of a compliant mechanism that
indeed fulfills the displacement constraint and that, unlike in the beam example, differs
significantly from the result without the displacement constraint.
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u  < -1x

Figure 12. Displacement inverter: initial design, boundary conditions, force and displacement
constraint

Figure 13. Optimal result for the displacement converter without displacement constraints;
density distribution and deformation

Figure 14. Optimal result for the displacement converter with displacement constraints; density
distribution and deformation
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5 The algorithm

The algorithm used to solve the problems of this article is based on a generalized augmented
Lagrangian method for the solution of nonlinear (semidefinite) programs described in [9, 16]. Here
we briefly recall it and show how it can be extended for the solution of the optimization problems
introduced in Sections 2–4.
The goal of the algorithm is to solve general nonlinear semidefinite optimization problems of the
form

min
x∈Rn

f(x) (20)

subject to

G(x) 4 0 ;

here f : Rn → R and G(x) : Rn → Sm are twice continuously differentiable mappings and Sm is the
space of symmetric (m×m)-matrices.
The algorithm is based on a choice of a smooth modified barrier function Φp : Sm → Sm,
depending on a parameter p > 0, that satisfies a number of assumptions (see [9]) guaranteeing, in
particular, that

G(x) 4 0 ⇔ Φp(G(x)) 4 0 .

Thus for any p > 0, problem (20) has the same solution as the following “augmented” problem

min
x∈Rn

f(x) (21)

subject to

Φp(G(x)) 4 0 .

A typical choice of Φp is

Φp(G(x)) = −p2(G(x) − pI)−1 − pI . (22)

The Lagrangian of (21) can be viewed as a (generalized) augmented Lagrangian of (20):

F (x, U, p) = f(x) + 〈U, Φp (G(x))〉Sm
; (23)

here U ∈ Sm is a Lagrangian multiplier associated with the inequality constraint. The algorithm is
defined as follows:

Algorithm 1 Let x1 and U1 be given. Let p1 > 0, α1 > 0. For k = 1, 2, . . . repeat until a stopping
criterion is reached:

(i) Find xk+1 satisfying ‖∇xF (xk+1, Uk, pk)‖ ≤ αk

(ii) Uk+1 = DGΦp(G(xk+1); Uk)

(iii) pk+1 ≤ pk , αk+1 < αk .

The unconstrained minimization problem in step (i) is approximately solved by modified Newton’s
method. Multiplier and penalty update strategies, as well as local and global convergence
properties under standard assumptions are studied extensively in [16]. Let us only mention that,
imposing standard assumptions, one can prove that any cluster point of the sequence
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{(xk, Uk)}k>0 generated by the algorithm is a KKT point of problem (20). The proof given in [16]
is an extension of results by Polyak [14] and Breitfeld and Shanno [5].
The algorithm, as implemented in the code Pennon [9], proved to be very efficient for the solution
of the dual problems of type (15) and (16); see [13] for a comparison of various linear SDP solvers
when solving (16). In the following we discuss how to solve the primal optimization problems of
type (18) and (19) by variants of Algorithm 1. We offer two alternatives: a reduced and a direct
approach.

Remark 1 Note that problem (21) covers problems with several matrix inequalities as well as
problems subject to scalar inequality constraints of the form gi(x) ≤ 0, i = 1, . . . , k. Writing the
augmented Lagrangian explicitly for this case, we obtain:

F (x, U, w, p) = f(x) +

lX

i=1

〈Ui, Φp (Gi(x))〉Smi
+

kX

i=1

wiϕp (gi(x))

where ϕ is the scalar version of Φ and w ∈ Rk the associated multiplier.

5.1 The reduced approach

Many approaches for the solution of optimal design problems are based on reduced formulations,
which are solely defined in the design variables. Often the reduced problems are solved by first
order optimization algorithms, where the calculations of the first order derivatives are based on
solutions of adjoint problems. In this section we want to describe a similar approach. However,
rather than restricting ourselves to a first order algorithm, we will demonstrate how second order
derivatives can be efficiently calculated and exploited by a variant of Algorithm 1.
We start with the derivation of reduced formulations for the stress constrained problem (18); the
corresponding formulation for the displacement constrained problem (19) would be similar. It is
easily seen that for positive ρ the stiffness matrix A(E) is positive definite. Thus we can eliminate

the state variable u by substituting u := A(E)−1f and formulate the reduced problem as

min
E

mX

i=1

Tr(Ei) (24)

subject to

Ei � 0, i = 1, . . . , m

ρ ≤ Tr(Ei) ≤ ρ, i = 1, . . . , m

fT (A(E))−1f ≤ γ

nigX

k=1

‖EBi,k(A(E))−1f‖2 ≤ sσρ2, i = 1, . . . , m .

Obviously, the problem is an instance of the general optimization problem (20). Nevertheless it is
not recommendable to apply Algorithm 1 directly. The reason is twofold: First, the Hessian of the
augmented Lagrangian associated with problem (24) is a large dense matrix and the algorithm may
run out of memory. Second, Algorithm 1 does not maintain the feasibility of inequalities strictly
throughout the optimization process. Consequently, the global stiffness matrix could become
indefinite and the algorithm may fail.
The first issue can be resolved by the use of approximate Newton’s method for the solution of step
(i) in Algorithm 1. Recently, the authors have successfully implemented and tested a version of
Algorithm 1, where the solution of the Newton system is based on Krylov type methods (see [11]).
Instead of calculating the full Hessian of the augmented Lagrangian F , this algorithm requires just
Hessian-vector products.
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In order to get rid of the second difficulty mentioned above, we treat the inequalities that should be
strictly feasible during the optimization process by a classic barrier function. For this reason we
introduce an additional matrix inequality

S(x) 4 0

in problem (21) and define the augmented Lagrangian

eF (x, U, p, s) = f(x) + 〈U, Φp(G(x))〉Sm
+ sΦbar(S(x)) , (25)

where s is a barrier parameter and Φbar can be defined, for example, by

Φbar(S(x)) = − log det(−S(x)).

5.2 The direct approach

As an alternative to the reduced approach presented in the preceding section, one can try to solve
problem (18) directly. We changed the concept of equality handling in our algorithm by treating
them directly on the level of the subproblem; this concept is successfully used in modern
primal-dual interior point algorithms (see, e.g., [18,19]). Consider the optimization problem

min
x∈Rn

f(x) (26)

subject to

G(x) 4 0

h(x) = 0 ,

where f , G and S are defined as in the previous sections and h : Rn → Rd represents a set of
equality constraints. Then we define the augmented Lagrangian

F (x, U, v, p, s) = f(x) + 〈U, Φp(G(x))〉Sm
+ v⊤h(x) ,

where U, Φ, p are defined as before and v ∈ Rd is the vector of Lagrangian multipliers associated
with the equality constraints. Now, on the level of the subproblem, we attempt to find an
approximate solution of the following system (in x and v):

∇xF (x, U, v, p) = 0 (27)

h(x) = 0 ,

where the penalty parameter p and the multiplier U are fixed. In order to solve systems of type
(27), we apply the damped Newton method. Descent directions are calculated utilizing the
factorization routine MA27 from the Harwell subroutine library [7] in combination with an inertia
correction strategy as described in [19]. Moreover, the step length is derived using an augmented
Lagrangian merit function defined as

F (x, U, v, p) +
1

2µ
‖h(x)‖2

2

along with an Armijo rule.
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