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Abstract

We present a new formulation of the truss topology problem that results in unique
design and unique displacements of the optimal truss. This is reached by adding an
upper level to the original optimization problem and formulating the new problem as
an MPCC (Mathematical Program with Complementarity Constraints). We derive op-
timality conditions for this problem and present several techniques for its numerical
solution. Finally, we compare two of these techniques on a series of numerical exam-
ples.

1 Introduction

A truss is an assemblage of pin-jointed uniform straight bars. The bars are subjected to
only axial tension and compression when the truss is loaded at the joints. With a given
load and a given set of joints at which the truss is fixed, the goal of the designer is to
find a truss that is as light as possible and satisfies the equilibrium conditions. In the
simplest, yet meaningful, approach, the number of the joints (nodes) and their position
are kept fixed. The design variables are the bar volumes and the only constraints are the
equilibrium equation and an upper bound on the weighted sum of the displacements of
loaded nodes, so-called compliance. Recently, this model (or its equivalent reformu-
lations) has been extensively analyzed in the mathematical and engineering literature
(see, e.g., [1, 4, 12]).

It is well-known that, when using a small-displacement model, various formula-
tions of the truss topology optimization problem do not have a unique solution. The
non-uniqueness may concern both, the bar volumes and the displacements. The non-
uniqueness in displacement may be either at the “free” nodes (nodes that, at the op-
timum, are not connected to the struture by any bar) or at nodes that lie on a straight
bar and are otherwise not connected to the rest of the structure. The two cases are
demonstrated in Figure 1. On the left-hand side is the initial structure; all bars have

∗Institute of Applied Mathematics, University of Erlangen, Martensstr. 3, 91058 Erlangen, Germany
(kocvara@am.uni-erlangen.de). On leave from the Academy of Sciences of the Czech Republic.

∗∗Institute of Information Theory and Automation, Academy of Sciences of the Czech Republic, Pod
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Figure 1: Example non-uniqueness in truss topology design

the same volume. The right-hand side shows the optimal structure. Nodes number 4,
5, 6, 8 and 9 have non-unique displacements, whereas nodes 6,8,9 represent the first
case (free nodes) and nodes 4 and 5 the second case. It is the second case that causes
troubles in many generalizations of the truss design problem. For instance, we may
face difficulties when we want to add additional constraints on the displacements at
certain node (e.g. node 4 in Figure 1); see [13].

The goal of this paper is to give a formulation of the truss topology problem that
results in unique displacements and bar volumes of the optimal truss. This is reached
by adding an upper level to the original optimization problem and formulating the
new problem first as an MPGE (Mathematical Program with a Generalized Equation
Constraint) and later as an MPCC (Mathematical Program with Complementarity Con-
straints). We first give effective formulation of the truss analysis problem (with fixed
bar volumes) and later of the truss design problem.

We would like to point out that all MPGE and MPCC problems in this paper are
of a special type. They do not work with the usual pair of control and state variables;
instead, they only include one, so-called decision variable. An MPGE problem from
this class can be written as

min
y

ϕ(y)

s.t. 0 ∈ F (y) + Q(y) ,

where y ∈ R
`, ϕ[R` → R], F [R` → R

`] and Q[R`
 R

`]. (With Q(·) = N
R

`
+
(·),

MPGE becomes MPCC.) That means, we want to identify one specific solution of the
generalized equation

0 ∈ F (y) + Q(y) .

In the second part of the paper we derive optimality conditions for our problem,
while in the third part we present several techniques for its numerical solution. Finally,
we compare two of these techniques on a series of numerical examples.

We employ the following notation: For an [m × n] matrix A and an index set
I ⊂ {1, 2, . . . , n}, AI denotes the submatrix of A with columns specified by I . Analo-
gously, for a vector z ∈ R

n, zI denotes the subvector, composed from the components
zi, i ∈ I . Furthermore, B is the unit ball and R(H) denotes the range of the matrix H .
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2 The truss topology problem and its reformulations

Consider a truss characterized by the set of nodes, bars and nodal forces. Some of the
nodes are assumed to be fixed, that is, some components of the displacement vector are
forced to be zero; let us denote by n the number of free displacement components. The
nodal positions, forces and displacements are assembled in vectors x ∈ R

n, f ∈ R
n

and u ∈ R
n, respectively. The bar volumes are denoted by ti, i = 1, . . . ,m, where m

is the number of bars.

2.1 The truss analysis problem

Consider first the problem of finding displacements for a given truss, i.e., a given vec-
tor t. This is a convex quadratic problem of minimizing the potential energy subject to
possible unilateral contact constraints:

min
u∈Rn

1

2
uT Au + fT u (1)

subject to

Cu ≥ 0 .

Here A = A(t) ∈ R
n×n is the (symmetric and positive semidefinite) stiffness matrix

of the truss and C ∈ R
p×n contains the unilateral contact information. This problem

does not have a unique solution, in general. The stiffness matrix may even have many
zero eigenvalues. This is particularly true when t is obtained as a result of topology
optimization (see the next section). There is, however, a unique “physical” solution
of problem (1). This solution can be identified as a minimizer of a strictly convex
continuously differentiable functional F(u) over all solutions of (1). The construction
of F(u) is explained in Section 5. That means, the physical solution can be found by
solving the following MPGE problem:

min
u∈Rn

F(u) (2)

subject to

u solves (1) .

We can further replace the lower-level problem (1) by the corresponding optimality
conditions and get an MPCC1:

min
u∈Rn,λ∈Rp

F(u) (3)

subject to

Au + f − CT λ = 0

0 ≤ Cu ⊥ λ ≥ 0 .

1Symbol ⊥ is used for complementarity of the vectors on its left and right-hand side.
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2.2 The truss design problem

In the traditional formulation of the truss topology problem, one minimizes the com-
pliance (maximizes the stiffness) of the truss subject to equilibrium conditions:

min
t∈Rm,u∈Rn

−fT u (4)

subject to
(

m∑

i=1

tiAi

)
u + f = 0

m∑

i=1

ti ≤ 1

ti ≥ 0, i = 1, . . . ,m ;

here Ai ∈ R
n×n are symmetric and positive semidefinite element stiffness matrices. It

is well-known that this (nonconvex) problem is extremely difficult to solve by standard
NLP codes. From the codes recently available on the NEOS2 server, only SNOPT can
solve bigger than trivial problems.

It was shown by Ben-Tal and Bendsøe [3] that (4) can be equivalently formulated
as a convex quadratic problem with quadratic constraints

min
α∈R,u∈Rn

α − fT u (5)

subject to

1

2
uT Aiu − α ≤ 0, i = 1, . . . ,m .

This new formulation can be efficiently solved by interior point methods (see, e.g.,
[11]). The vector of optimal bar volumes t (part of the optimal solution to (4)), is
equal, up to a scaling, to the KKT vector corresponding to inequality constraints in (5).
In the following we will ignore this scaling and simply denote the KKT vector by t.

Problem (5) does not have a unique solution, in general. As before, the stiffness

matrix
m∑

i=1

tiAi may have (for optimal t) many zero eigenvalues. This is typical when

working with so-called ground structure approach. Here we start with a dense mesh of
potential bars; only few of them may be present (ti > 0) at the optimum.

But not only the solution u of (5), also the corresponding KKT vector t is not
unique. So, in this case, we would like to identify both, the unique (possible “phys-
ical”) solution u and the unique KKT vector t. Again, this goal can be reached by
minimizing a strictly convex continuously differentiable functional G(t, u) over all so-
lutions (and associated KKT vectors) of (5). In other words, the unique solution of the

2http://www-neos.mcs.anl.gov/neos/
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truss topology problem can be found by solving the following MPGE:

min
t∈Rm,u∈Rn

G(t, u) (6)

subject to

(t, u) solves (5) .

Alternatively, we can formulate the constraint in (6) as

(t, u) solves (4).

Let us further reformulate this problem as an MPCC. To do that, we write down opti-
mality conditions for (convex) problem (5); the result is a complementarity problem.
Then we put these conditions as new constraints in the above problem to get

min
t∈Rm,u∈Rn,α∈R

G(t, u) (7)

subject to
(

m∑

i=1

tiAi

)
u + f = 0

m∑

i=1

ti ≤ 1

0 ≤ (α −
1

2
uT Aiu) ⊥ ti ≥ 0, i = 1, . . . ,m .

3 Optimality conditions

In [16], necessary optimality conditions were derived for a class of MPCCs on the
basis of the generalized differential calculus of B. Mordukhovich. To derive optimality
conditions of this type for the MPCC (7), consider first an abstract problem

min ϕ(y1, y2) (8)

subject to

H(y) = 0

0 ≤ F (y) ⊥ y2 ≥ 0 ,

where y = (y1, y2) ∈ R
`, y2 ∈ R

µ (µ < `), ϕ[R` → R] is locally Lipschitz and
F [R` → R

µ], H[R` → R
ν ] are continuously differentiable. Let us associate with a

locally optimal variable ŷ in (8) the index sets

L(ŷ) :=
{
i ∈ {1, 2, . . . , µ} | ŷ2

i > 0
}

I+(ŷ) := {i ∈ {1, 2, . . . , µ} | Fi(ŷ) > 0}

I0(ŷ) :=
{
i ∈ {1, 2, . . . , µ} | ŷ2

i = 0, Fi(ŷ) = 0
}

.

The argument ŷ will be dropped whenever these index sets occur as subscripts.
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Theorem 3.1. Consider problem (8) and assume that ŷ = (ŷ1, ŷ2) is its local solution.
Further suppose that ∇H(ŷ) is surjective and that the constraint qualification

[
0
w

]
− (∇F (ŷ))T v ∈ R[(∇H(ŷ))T ]

wL = 0, vI+
= 0 and for i ∈ I0(ŷ)

either wivi = 0 or wi < 0 and vi > 0





implies w = v = 0 (∈ R
µ)

holds true. Then there exist multipliers ŵ, v̂ ∈ R
µ and λ̂ ∈ R

ν such that

0 ∈ ∂ϕ(ŷ) +

[
0
w

]
− (∇F (ŷ))T v̂ + (∇H(ŷ))T λ̂

and

for i ∈ L(ŷ) one has ŵi = 0,

for i ∈ I+(ŷ) one has v̂i = 0,

for i ∈ I0(ŷ) one has either v̂iŵi = 0 or ŵi < 0 and v̂i > 0.

Proof. The statement follows directly from [16, Thm.3.2] by putting x = y1, y = y2

and Ω = {y ∈ R
`|H(y) = 0}. To be able to express the normal cone NΩ(ŷ) in terms

of H , we assume the surjectivity of ∇H(ŷ).

Problem (7) can be written down in the form of (8): we just put ` = n + 1 + m,
µ = m, ν = n + 1, y1 = (u, α), y2 = t, ϕ(y) = G(t, u),

F (y) =




α − 1
2
〈u,A1u〉
...

α − 1
2
〈u,Amu〉




and

H(y) =




(
m∑

i=1

tiAi

)
u + f

−1 +
m∑

i=1

ti


 .

This is legal because in problem (7) the inequality
∑m

i=1 ti ≤ 1 can be replaced by the
equality

∑m
i=1 ti = 1.

Necessary optimality conditions for (7) can now be stated as follows.

Theorem 3.2. Let ŷ = (û, α̂, t̂) be a local solution to (7) and define the [(n + 1)×m]
matrix

D(û, α̂) :=

[
−A1û · · · −Amû

1 · · · 1

]
. (9)

Assume that the matrices (D(û, α̂))L∪I0
and




Σm
i=1t̂iAi 0
01×n 0

(A1û)T 1
...

...
(Amû)T 1




(10)
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have the full column rank. Then there exist multiplies λ̂ ∈ R
n, α̂ ∈ R, ŵ, v̂ ∈ R

m

such that

0 = ∇vG(t̂, û) −

(
∑

i∈L∪I0

v̂iAi

)
û +

(
m∑

i=1

t̂iAi

)
λ̂ (11)

0 =
∑

i∈L∪I0

v̂i

0 = ∇ti
G(t̂, û) + ŵi + 〈Aiû, λ̂〉 + α̂, i = 1, 2, . . . ,m.

Moreover, vectors ŵ, v̂ fulfill the relations from Theorem 3.1.

Proof. The statement follows directly from Theorem 3.1, because the injectivity of
(D(û, α̂))L∪I0

ensures (together with vI+
= 0) the satisfaction of the constraint quali-

fication and the injectivity of (10) amounts to the surjectivity of ∇H(ŷ).

In the next illustrative example the objective G depends only on the variable u.

Example 1. Consider the following MPCC:

min
u∈R2,t∈R2,α∈R1

1

2
(u2 + 0.3)2

subject to

(2t1 + t2)u1 − t2u2 = 1

− t2u1 + t2u2 = 0

t1 + t2 ≤ 1

0 ≤ (α − u2
1) ⊥ t1 ≥ 0

0 ≤ (α −
1

2
(u1 − u2)

2) ⊥ t2 ≥ 0 .

The solution is

û = (
1

2
,−

1

2
+

√
1

2
), t̂ = (1, 0), α̂ =

1

4
.

One easily computes A1 =

[
2 0
0 0

]
, A2 =

[
1 −1
−1 1

]
and realizes that L = {1} and

I0 = {2}. The gradient of the objective amounts to û2 + 0.3 = −0.2 +
√

1
2

and

D(û, α̂) =



−1 −1 +

√
1
2

0 1 −
√

1
2

1 1


 .
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Hence the constraint qualification is fulfilled and also the injectivity of the respective
matrix (10) can easily be verified. The linear system (11) attains the form




0

0.2 −
√

1
2

0
0
0




=




0 1 1 −
√

1
2

0 2 0

0 0 −1 +
√

1
2

0 0 0

0 −1 −1 0 0 0
0 0 0 1 1 0

1 0 0 1 1 −
√

1
2

−1 +
√

1
2







w2

v1

v2

α

λ1

λ2




.

We can thus set, e.g., ŵ1 = 0, ŵ2 = 0, v̂1 = −1.73, v̂2 = 1.73, α̂ = −0.606,
λ̂1 = 0.606, and λ̂2 = −1.462. Observe that all additional conditions imposed on the
multipliers ŵ, v̂ are fulfilled.

4 Solution approaches

In this section we present three approaches to the numerical solution of an optimization
problem of the type

min
y

ϕ(y) (12)

s.t. 0 ∈ F (y) + Q(y) ,

where y ∈ R
`, ϕ[R` → R] is assumed to be continuously differentiable, F [R` → R

`]
is continuously differentiable and Q[R`

 R
`] has a closed graph. That means, we

want to identify one, possibly unique, solution of the generalized equation

0 ∈ F (y) + Q(y) . (13)

With Q(·) = N
R

`
+
(·), problem (12) becomes MPCC mentioned in the Introduction.

Two from the methods proposed in the sequel are tailored to this particular form of Q.
Needless to say that our reformulation of truss topology problem is of type (12).

4.1 Exact penalty

Let us first recall from [17] that a multifunction Φ[Rs
 R

p] with a closed graph is
calm at (v, w) ∈ Gph Φ, provided there exist neighborhoods V of v, W of w and a
scalar L > 0 such that

Φ(v) ∩W ⊂ Φ(v) + L‖v − v‖B for all v ∈ V.

Now assume that the map

(ξ1, ξ2) 7→

{
y ∈ R

` |

(
ξ1 + y

ξ2 − F (y)

)
∈ Gph Q

}

8



is calm at (0, 0, ŷ), where ŷ is a local solution of (12). Then ŷ is a local minimizer of
the penalized objective

ϕ(y) + R distGphQ

(
y

−F (y)

)

provided R is sufficiently large. This approach has, unfortunately, a big drawback; the
penalty term is highly nonconvex and we need to find its global minimum (zero).

4.2 Minimizing over solution set

Assume that F (·) = ∇f(·) and Q(·) = NK(·), where f [R` → R] is convex and
continuously differentiable and K ⊂ R

` is closed and convex. Then (13) corresponds
to the convex optimization problem

min
y∈R`

f(y) (14)

subject to

y ∈ K .

The solution set S of this problem is convex and can be fully characterized by the prob-
lem data and one arbitrary solution of (14). Solving (12) then amounts to minimizing
ϕ on this solution set3. The characterization of S is based on the following proposition
that directly follows from the definition of a solution.

Proposition 4.1. Let y∗ be a solution of (14). Then y is a solution of (14) if and only if

y ∈ K (15)

f(y) = f(y∗) . (16)

When f(y) = 1
2
yT My + gT y with a positive semidefinite M , condition (16) amounts

to
M(y − y∗) = 0, gT (y − y∗) = 0 .

Applying this to our truss problems, we get the following equivalent formulations
of (2) and (6).

Corollary 4.2. Let u∗ be a solution of (1). Then û is the solution of the truss analysis
problem (2) if and only if it solves the following problem

min
u∈Rn

F(u) (17)

subject to

Cu ≥ 0

A(u − u∗) = 0

fT (u − u∗) = 0 .

3This fact was pointed out by J.-S. Pang.
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Application of this approach to the truss design problem (6) is not so straightfor-
ward, because (4) is not a convex problem and Proposition 4.1 does not apply. On the
other hand, problem (5) does not contain t as a (primal) variable and can thus be only
used in case when G does not depends on t.

Corollary 4.3. Assume that G only depends on u. Let (α∗, u∗) be a solution of (5).
Then û is the solution of the truss design problem (6) if and only if it solves the following
problem

min
u∈Rn

G(u) (18)

subject to

1

2
uT Aiu − α ≤ 0, i = 1, . . . ,m .

α − α∗ = 0

fT (u − u∗) = 0 .

Note that both problems (17) and (18) are convex mathematical programs. In the
last section we will present results of numerical examples solved by this approach. We
will see that problems (17) and (18) can be solved almost equally efficiently as the
underlying problems (1) and (5).

4.3 NLP reformulation

This technique has been recently proposed by several authors [2, 8, 9]. Assume that
Q(·) = N

R
`
+
(·); problem (12) is then an MPCC. The technique consists in reformula-

tion of this MPCC problem as an NLP one. In particular, one replaces the complemen-
tarity constraint of type

0 ≤ z1 ⊥ z2 ≥ 0

by inequalities
z1 ≥ 0, z2 ≥ 0, zT

2 z1 ≤ 0.

The new problem, although it does not satisfy standard constraint qualification, can
often be solved by standard NLP methods, both of SQP and interior-point type [2, 8, 5].
Fletcher and Leyffer [8] report on results of three SQP codes, namely their own code
FilterSQP, KNITRO [6] and SNOPT [10], on a collection of 137 MPCC problems.
Two of these codes fail to find a solution only in 5 and 7 cases, respectively. Because
the MPCC problem does not satisfy usual NLP constraint qualifications, it may happen
that the quadratic programming subproblem in SQP is infeasible. The robustness of
SQP based codes is then increased by various techniques, like the elastic mode in
SNOPT [10].

10



In our case we write the truss analysis problem (3) as

min
u∈Rn,λ∈Rp

F(u) (19)

subject to

Au + f − CT λ = 0

Cu ≥ 0

λ ≥ 0

λT Cu ≤ 0 .

The NLP formulation of the truss design problem (7) reads as follows:

min
t∈Rm,u∈Rn,α∈R

G(t, u) (20)

subject to
(

m∑

i=1

tiAi

)
u + f = 0

m∑

i=1

ti ≤ 1

α −
1

2
uT Aiu ≥ 0, i = 1, . . . ,m

ti ≥ 0, i = 1, . . . ,m
m∑

i=1

ti(α −
1

2
uT Aiu) ≤ 0 .

Let us stress that this formulation allows us to solve the general truss design problem
(7), without the restrictive assumption of Corollary 4.3.

5 Choice of F and G

In this section we would like to derive functions F and G that give a unique and possibly
physical solution in MPCCs (3) and (7). The uniqueness can be easily guaranteed by a
proper choice of F and G. What do we mean by a “physical solution”?

Let us start with the truss analysis problem (3). Consider again the 3 × 3 example
from Figure 1. In the analysis problem, we do not have to take care of the free nodes
6,8,9, as they can be eliminated from the system. We do have to take care of nodes 4 and
5, lying on straight bars and having no connection to the rest of the structure. We call
displacement of such a node physical if it is a linear combination of the displacements
at the end nodes of the bars (nodes 1 and 7 for node 4, nodes 3 and 7 for node 5); that
means, straight bars (like 1–4–7 and 3–5–7) remain straight after deformation.

The fact that the displacements may not be unique in the original analysis prob-
lem (1) follows from the linear model of trusses. In this model, the strain in a bar is

11



computed as a relative prolongation in the direction of the bar axis x before deforma-
tion. Consequently, a bar deformed only along its own axis (Fig. 2(a)) gets the same
value of strain as a bar with higher deflection that is additionally “rotated” (Fig. 2(b)),
even though the true strain should be higher in the second case.

x

l

l∆
(b)(a)

x1 1l∆

Figure 2: A bar deformed along its axis (a) and a bar deformed and rotated (b)

Consider a general bar of length ` in the 2D space, as shown in Fig. 3. The displace-

� �� �

� �� �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

2

α

x1

x

Figure 3: A general bar in the 2-D space

ments are assumed to be linear between the two end-points; let u = (u1, u2, u3, u4)
denote the vector of nodal displacements. The large-deflection strain-displacement re-
lation for this bar is given by

ε =
1

`
γT u +

1

2

(
1

`
γT u

)2

+
1

2

(
1

`
δT u

)2

(21)

with

γ =




− cos α

− sin α

cosα

sinα


 , δ =




sin α

− cos α

− sin α

cos α


 . (22)

In the linear framework, the deflections are assumed to be small so that the quadratic
terms in the strain-displacement relation can be neglected. This has the side-effect
of non-unique displacements. To make the displacements of nodes like 4 and 5 in
Figure 1 unique and in accordance with the nonlinear model, we want to minimize the
component of their displacements that is perpendicular to the bar axis. That means, we
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want to minimize the last term in (21) (which in the nonlinear formulation enters the
potential energy that is to be minimized).

Hence, with the stiffness matrix of the truss given by

A(t) =

m∑

i=1

tiAi , Ai =
Ei

`2i
γiγ

T
i ,

we introduce the function F as

F(u) = uT Φu, Φ =

m∑

i=1

δiδ
T
i , (23)

where γi, δi, i = 1, . . . ,m, are vectors from (22) evaluated for particular bars. Matrix
Φ is obviously symmetric and positive definite.

The situation is more complicated in the truss design problem (7). Let us first as-
sume that we are only interested in the uniqueness of u and do not care about possible
non-uniqueness of t. Hence we may assume that G is only a function of u. The men-
tioned complication is due to the fact that the formulations (4) and (5) are actually not
fully equivalent. Although they give the same optimal value of the compliance, the
solution set in (4) is bigger than in (5). Let us demonstrate it again on the example
from Figure 1. When we choose G as F in (23) and solve the MPCC problem (7), we
get the solution shown in Figure 4, left. Here we also depict bars that, at the optimum,
have ti = 0 and are therefore not present in the optimal structure. This solution is
certainly not physical; neither of the bars 1–4–7 and 3–5–7 is straight after deforma-
tion (for numbering we refer to Figure 1). A physical solution is presented in Figure 4,
right. However, although the physical solution has the same value of compliance as the

Figure 4: Non-physical (left) and physical (right) solution of the 3 × 3 truss design
problem. Also bars with zero volumes are presented.

“non-physical” one, and although it is feasible in problem (4), it is not feasible in (5).
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(For instance, bar 7–8 severely violates the quadratic constraint.) This is because, un-
like in (4), the constraints in (5) are relevant also for bars that, at the optimum, are not
present in the structure at all.

Therefore, if we use as a basis for our MPCC formulation problem (7), we can
never reach the physical solution in this example, whatever the choice of G is. In this
light, it seems that the best choice of G is the same as in (23), because it results in
unique displacements that are possibly closest to the physical solution. This was also
our choice in the following test examples. If one wants to find a physical solution of
the truss optimization problem and does not care about the non-uniqueness of t, one
has to proceed in a different way: first to solve problem (5) by any method to get an
optimal truss characterized by a vector t∗. Then, to solve the analysis problem (3) with
this truss, which gives unique and physical displacements.

Now, as we mentioned above, the optimal vector t may also be non-unique. This
is demonstrated in Figure 5: it again shows a 3 × 3 truss, this time with all nodes
connected by potential bars. Both trusses presented in this figure and all their convex
combinations are optimal solutions of problem (4). The criterium for selecting one
of these solutions (i.e., function G(t, u)) depends on user’s preferences. We propose
to select a solution vector t with the least number of active bars (bars with nonzero
volume). This can be simulated, for instance, by minimizing the function

G(t, u) = uT Φu +

m∑

i=1

t2i (24)

with Φ from (23).
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Figure 5: Two solutions of the 3 × 3 truss design problem with all nodes connected.

6 Examples

We present results of numerical computations using the solution set approach (Sec-
tion 4.2) and the NLP reformulation (Section 4.3).
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6.1 The truss analysis problem

We generated three examples of the truss analysis problem of increasing dimension.
Figure 6 shows one such truss—it is the result of the truss optimization problem and
we can see that many bars have zero volume. Also, there are many nodes lying on
straight bars, a source of possible nonuniqueness. The problems were solved using for-

Figure 6: Problem tr21x5. The truss is fixed at the left-hand side nodes and subjected
to a vertical load at the right-lower node.

mulations (17) and (19) with function F chosen as in (23). The resulting optimization
problems were solved by NLP codes available on the NEOS server.

Table 1: Results for the “solution set” reformulation (17) of the truss analysis problem.
Given are the numbers of iterations for each code. ”F” means that the code stopped
with a failure message. ”F(3)” denotes failure close to the optimal point, with 3 digits
of accuracy.

problem var constr LOQO Filter SNOPT MINOS PENNON
tr 11x3 60 62 26 4 F 39 9
tr 21x5 200 202 26 F 100 92 10
tr 41x9 720 722 F(3) F F(4) F 73

Table 2: NLP reformulation (19) of the truss analysis problem.

problem var constr LOQO Filter SNOPT MINOS PENNON
tr 11x3 47 34 33 10 63 53 13
tr 21x5 103 72 34 9 137 123 23
tr 41x9 569 534 F F F F F

Table 1 shows the results of the solution set reformulation for the most successful
NEOS codes, namely, LOQO [18], FilterSQP [7], SNOPT [10], MINOS [15], and of
our code PENNON [14]. Table 2 presents the results of the NLP reformulation for the
same codes.

We must remark that “one iteration” has different meaning in different codes, and
thus the table basically presents the ability of the code to solve the particular problem.
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6.2 The truss design problem

In order to compare the two solution approaches, let us first assume that G is only a
function of u. The difference between the two approaches is more dramatic than in
the truss analysis problem. On the one hand, (18) is a convex problem that is similar
to (5). We know that (5) can be solved very efficiently by interior-point and penalty
methods and may expect the same in case of (18). On the other hand, the problem (20)
resembles problem (4). As (4) was a difficult NLP problem, we cannot expect (20) to
be any simpler and this is clearly seen from our numerical results. It turned out that
the examples from the previous section are all too big for the NLP approach, so we
generated several smaller ones. These new examples are based on the 3× 3 truss from
Figure 1 but include an additional constraint on the horizontal displacement of node 7;
it should be nonnegative. Figure 7 shows an optimal 3 × 3 truss with this additional
constraint, before and after deformation.

Figure 7: Problem tro 3x3; optimal solution before and after deformation.

We first solved the new examples (plus the old ones) by the solution set approach,
using again the NEOS solvers. Table 3 reports the results—number of iterations needed
by each solver. To get a vague idea how do the codes compare with respect to CPU
time, the last two rows of Table 3 present CPU times in seconds for the two largest
problems. The times for the first four codes were obtained using the NEOS benchmark
solver and are thus comparable. The times for PENNON refer to Pentium III 1000MHz
PC running Linux.

The only code capable to solve NLP reformulations of the MPCC (7) was SNOPT,
all the other codes failed (MINOS could solve the smallest example in 368 iterations).
Table 4 presents the results.

Finally, we present results of the general formulation of the physically meaningful
truss design problem, i.e., with G being a function of u and t. Consider a series of
examples of increasing dimension, based on the 3 × 3 truss with all nodes connected
by potential bars; see Figure 5. We take the particular form of G as defined in (24).
As these problems cannot be solved by the solution set approach, we only show results
for the NLP reformulation (7). Again, these problems are very difficult to solve, as
expected. Table 5 shows results for the successful NEOS solvers.
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Table 3: “Solution set” reformulation (18) of the truss design problem. The last row
contains CPU times in seconds.

problem var constr LOQO Filter SNOPT KNITRO PENNON
tro 3x3 12 20 22 10 36 54 13
tro 4x4 24 41 21 14 F 99 18
tro 5x5 40 70 26 17 200 298 18
tro 6x2 20 27 35 16 139 59 35
tro 11x3 60 92 55 16 566 188 50
tro 21x5 200 342 51 24 6526 830 79
tro 41x9 720 1322 134 F 63416 F 78
tro 21x5 200 342 1.6 4.6 13.6 22.4 1.9
tro 41x9 720 1322 24.3 n.a. 419.7 n.a. 8.8

Table 4: NLP reformulation (20) of the truss design problem.

problem var constr SNOPT
tro 3x3 31 32 259
tro 4x4 64 65 593
tro 5x5 109 110 1122
tro 6x2 46 47 763
tro 11x3 151 152 F

All problems from this section are available in AMPL format on the Web page
http://www2.am.uni-erlangen.de/∼kocvara/mpec/.
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Table 5: NLP reformulation (20) of the truss design problem.

problem var constr SNOPT KNITRO MINOS
tro 3x3f 40 39 31 623 334
tro 4x4f 111 109 49 F 1588
tro 5x5f 241 238 4755 F F
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[14] M. Kočvara and M. Stingl. PENNON—a code for convex nonlinear and semidef-
inite programming. Optimization Methods and Software, 2003. In print.

18



[15] B. A. Murtagh and M. A. Saunders. MINOS 5.5 user’s guide. Report SOL 83-
20R, Dept of Operations Research, Stanford University, 1998.

[16] J. Outrata. On mathematical programs with complementarity constraints. Opti-
mization Methods and Software, 14:117–137, 2000.

[17] R. T. Rockafellar and R. J-B. Wets. Variational Analysis. Springer, Berlin-
Heidelberg, 1998.

[18] R. J. Vanderbei and D. F. Shanno. An interior point algorithm for nonconvex
nonlinear programming. Computational Optimization and Applications, 13:231–
252, 1999.

19




