COMPACTIFICATIONS AND

REPRESENTABILITY OF GROUPS

Stefano Ferri

Universidad de los Andes, Bogotá.

• Universal semigroup compactifications.

- Universal semigroup compactifications.
- Admissible algebras of functions.

- Universal semigroup compactifications.
- Admissible algebras of functions.
- Representability.

- Universal semigroup compactifications.
- Admissible algebras of functions.
- Representability.

(In reality we shall only treat a few specific cases.)

Universal semigroup compactifications.

Universal semigroup compactifications.

Definition. Given a topological group \mathcal{G} a semigroup compactification (X, ψ) of G is defined as a pair, where X is a semigroup with a compact Hausdorff topology and ψ : $S \to X$ is a continuous homomorphism with dense image such that:

- (i.) in X all right translates $x \mapsto xy$ are continuous and
- (ii.) the left translates $y \mapsto \psi(s)y$ are continuous in X for all $s \in G$.

Definition. A semigroup compactification (X, ψ) of \mathcal{G} is said to be universal w.r.t. a property \mathcal{P} if

- (i.) (X, ψ) has the property \mathcal{P} and,
- (ii.) whenever (Y, φ) is a semigroup compactification of \mathcal{G} wich has the property \mathcal{P} , there exists a surjective continuous homomorphism $\pi : Y \to X$ such that the following diagram commutes:

$$\begin{array}{cccc} X & \stackrel{\pi}{\longrightarrow} & Y \\ \psi \uparrow & \nearrow & \varphi \\ \mathcal{G}. \end{array}$$

Example. If \mathcal{G} is a discrete infinite group it is well known (...) that the Stone-Čech compactification $\beta \mathcal{G}$ with product defined by

$$x \cdot y := \lim_{s \to x} \lim_{t \to y} s + t$$

is the compactification of \mathcal{G} which is universal w.r.t. the *joint continuity property*.

Notation. Let $C(\mathcal{G})$ denote the algebra of bounded continuous complex-valued functions defined on \mathcal{G} .

Notation. Let $C(\mathcal{G})$ denote the algebra of bounded continuous complex-valued functions defined on \mathcal{G} .

• Given $s \in \mathcal{G}$ we denote by $\rho_s [\lambda_s]$ the right [left] translation by s, defined by $\rho_s(t) := ts [\lambda_s(t) := st]$ for $t \in \mathcal{G}$.

Notation. Let $C(\mathcal{G})$ denote the algebra of bounded continuous complex-valued functions defined on \mathcal{G} .

- Given $s \in \mathcal{G}$ we denote by $\rho_s [\lambda_s]$ the right [left] translation by s, defined by $\rho_s(t) := ts [\lambda_s(t) := st]$ for $t \in \mathcal{G}$.
- Given a function $f: \mathcal{G} \to \mathcal{G}$ we write $L_s(f)$ for $f \circ \lambda_s$.

• Given a subalgebra $F \subseteq C(\mathcal{G})$ we say that F is left introverted if for every $n \in F^*$ and $f \in F$ the function $n \cdot f$ defined by

$$(n \cdot f)(x) := \langle n, \mathcal{L}_x(f) \rangle \qquad (x \in \mathcal{G})$$

belongs to F.

• Given a subalgebra $F \subseteq C(\mathcal{G})$ we say that F is left introverted if for every $n \in F^*$ and $f \in F$ the function $n \cdot f$ defined by

$$(n \cdot f)(x) := \langle n, \mathcal{L}_x(f) \rangle \qquad (x \in \mathcal{G})$$

belongs to F.

(The algebra is left-m-introverted if this holds only for multiplicative functions.)

• Given a subalgebra $F \subseteq C(\mathcal{G})$ we say that F is left introverted if for every $n \in F^*$ and $f \in F$ the function $n \cdot f$ defined by

$$(n \cdot f)(x) := \langle n, \mathcal{L}_x(f) \rangle \qquad (x \in \mathcal{G})$$

belongs to F.

(The algebra is left-m-introverted if this holds only for multiplicative functions.)

• Translation invariant subalgebras of $C(\mathcal{G})$ containing the constants which are left-m-introverted are called *admissible*. **Fact.** There is a precise correspondance between admissible subalgebras of $C(\mathcal{G})$ and universal semigroup compactifications of \mathcal{G} .

• If X is a universal semigroup compactification of \mathcal{G} , then the functions in $C(\mathcal{G})$ which can be continuously extended to X form an admissible algebra.

- If X is a universal semigroup compactification of \mathcal{G} , then the functions in $C(\mathcal{G})$ which can be continuously extended to X form an admissible algebra.
- Given an admissible algebra F there exist a semigroup compactification \mathcal{G}^{F} which is universal with respect to the property that are precisely the functions in F which can be continuously extended to \mathcal{G}^{F} .

A "concrete" way to construct \mathcal{G}^{F} is to regard it as the quotient $\beta(\mathcal{G}_d)/\sim$ where $x \sim y$ if, for every $f \in \mathrm{F}$ we have that $f^{\beta}(x) = f^{\beta}(y)$.

Representability.

Representability.

Definition. The universal topological group compactification of \mathcal{G} is called the AP–compactification (AP for almost periodic) and denoted by \mathcal{G}^{AP} . The semigroup compactification of \mathcal{G} universal w.r.t. the property of being a semitopological semigroup (i.e. having separately continuous multiplication) is called the WAP–compactification (WAP for weakly almost periodic) and denoted by \mathcal{G}^{WAP} .

Representability.

Definition. The universal topological group compactification of \mathcal{G} is called the AP–compactification (AP for almost periodic) and denoted by \mathcal{G}^{AP} . The semigroup compactification of \mathcal{G} universal w.r.t. the property of being a semitopological semigroup (i.e. having separately continuous multiplication) is called the WAP–compactification (WAP for weakly almost periodic) and denoted by \mathcal{G}^{WAP} .

The spaces $AP(\mathcal{G})$ and WAP(G) have several interesting characterisations.

• $AP(\mathcal{G})$ is the closed subalgebra of $C(\mathcal{G})$ generated by the coefficients of all finite dimensional irreducible representations of \mathcal{G} into a Hilbert space.

- $AP(\mathcal{G})$ is the closed subalgebra of $C(\mathcal{G})$ generated by the coefficients of all finite dimensional irreducible representations of \mathcal{G} into a Hilbert space.
- A function $f \in C(\mathcal{G})$ is in $AP(\mathcal{G})$ if and only if $L_{\mathcal{G}}(f)$ is relatively compact.

• (H. Bohr) A function in $C(\mathbf{R})$ is almost periodic if for every $\varepsilon > 0$ there esists $\ell_{\varepsilon} > 0$ such that interval of length ℓ_{ε} contains an element t such that $||L_t(f) - f|| < \varepsilon$.

- (H. Bohr) A function in $C(\mathbf{R})$ is almost periodic if for every $\varepsilon > 0$ there esists $\ell_{\varepsilon} > 0$ such that interval of length ℓ_{ε} contains an element t such that $||L_t(f) - f|| < \varepsilon$.
- (Wilhelm Maak) A functions in $C(\mathcal{G})$ is in AP(G) if for every $\varepsilon > 0$ there exists a finite cover of \mathcal{G} with the property that, whenever there exist $s, t \in \mathcal{G}$ and $a, b \in \mathcal{G}$ such that *asb* and *atb* are in the same member of the cover, then:

$$|f(csd) - f(ctd)| < \varepsilon \qquad (c, d \in \mathcal{G}).$$

 Solutions of second order linear differential equation are in AP(R). **Definition.** A group \mathcal{G} is said to be *unitarily representable* if it can be embedded into the unitary group of some Hilbert space (endowed with the strong operator topology).

(i) \mathcal{G} is unitarily representable;

- (i) \mathcal{G} is unitarily representable; (ii) \mathcal{G} embeds into \mathcal{G}^{AP} ;

- (i) \mathcal{G} is unitarily representable;
- (ii) \mathcal{G} embeds into $\hat{\mathcal{G}}^{AP}$;
- (iii) $AP(\mathcal{G})$ determines the topology of \mathcal{G} .

Definition. A group \mathcal{G} is said to be *reflexively representable* if it can be embedded into the unitary group of some Hilbert space (endowed with the strong operator topology).

(i) \mathcal{G} is reflexively representable;

Fact. TFAE:

- (i) \mathcal{G} is reflexively representable; (ii) \mathcal{G} embeds into \mathcal{G}^{WAP} ;

Fact. TFAE:

- (i) \mathcal{G} is reflexively representable;
- (ii) \mathcal{G} embeds into \mathcal{G}^{WAP} ;
- (iii) $WAP(\mathcal{G})$ determines the topology of \mathcal{G} .

Our contribution.

Our contribution.

If \mathcal{G} is a non-compact SIN group, then \mathcal{G}^{WAP} contains a topological copy of $\beta \kappa \setminus \kappa$, where κ is the compact covering number of \mathcal{G} .

This led to the question of whether every SIN group (or at least every Abelian one) is reflexively representable.

Theorem. (S.F. & J. Galindo) The aditive group c_0 is not reflexively representable.

Theorem. (S.F. & J. Galindo) The aditive group c_0 is not reflexively representable.

The proof follows the lines of Raynaud's proof that c_0 cannot be uniformly embedded into ℓ_2 .

Lemma 1. Let \mathcal{G} be a topological group, $\phi \in WAP(\mathcal{G})$ and fix integers $n > k \geq 1$. Let $\langle x_{i_1,\ldots,i_k} \rangle$ and $\langle y_{i_{k+1},\ldots,i_n} \rangle$ be two multi-indexed sequences in \mathcal{G} . Fix n free ultrafilters p_1,\ldots,p_n on . If π is a shuffle with cut k, then

$$p_1 - \lim_{i_1} \dots p_n - \lim_{i_n} \phi(x_{i_1,\dots,i_k} + y_{i_{k+1},\dots,i_n}) =$$

 $= p_{\pi(1)} - \lim_{i_{\pi(1)}} \dots p_{\pi(n)} - \lim_{i_{\pi(n)}} \phi(x_{i_1,\dots,i_k} + y_{i_{k+1},\dots,i_n}).$

Lemma 2. Let \mathcal{G} be a metrizable group equipped with a translation invariant metric d and let e denote its identity. If the embedding $w : \mathcal{G} \to \mathcal{G}$ is a homeomorphism, then for every $\varepsilon > 0$ there exists a continuous weakly almost periodic function ϕ_{ε} and some $\delta_{\varepsilon} > 0$ such that $\phi_{\varepsilon}(e) = 0$ and, for every $x \in \mathcal{G}$,

$$|\phi_{\varepsilon}(x)| < \delta_{\varepsilon}$$
 implies $d(x, e) < \varepsilon$.

Theorem. (S.F. & J. Galindo) The aditive group c_0 is not reflexively representable.

We won't give a proof but it follows the lines of Raynaud's proof that c_0 cannot be uniformly embedded into ℓ_2 .

Proof of Theorem. Suppose towards a contradiction that c_0 embeds into its WAP-compactification and consider the weakly almost periodic function ϕ and the positive number $\delta > 0$ determined by $\varepsilon = 1/2$ in Lemma 1.

Since ϕ is continuous, there will be some $\alpha > 0$ such that $||x - y||_{\infty} < \alpha$ implies $|\phi(x - y)| < \delta/2$.

Fix k such that $1/k < \alpha$ and consider the vectors $s_n \in c_0$ defined so that their first n coordinates are 1/k and the rest are 0. The inequality $\|\sum_{j=1}^{2k} (-1)^j s_j\|_{\infty} < \alpha$ then holds. Clearly, the same inequality will hold for every sequence of indices $n_1 < n_2 < \ldots < n_{2k}$:

$$\left\|\sum_{j=1}^{k} s_{n_{2j}} - \sum_{j=1}^{k} s_{n_{2j-1}}\right\|_{\infty} < \alpha.$$

We have thus that, for every n_1, \ldots, n_{2k} (with $n_1 < n_2 < \ldots < n_{2k}$)

$$\left|\phi\left(\sum_{j=1}^{k} s_{n_{2j}} - \sum_{j=1}^{k} s_{n_{2j-1}}\right)\right| < \delta/2.$$

Taking *p*-limits along free ultrafilters p_1, \ldots, p_{2k} , we get

$$\left| p_1 - \lim_{n_1} p_2 - \lim_{n_2} \dots p_{2k} - \lim_{n_{2k}} \phi \left(\sum_{j=1}^k s_{n_{2j}} - \sum_{j=1}^k s_{n_{2j-1}} \right) \right| \le \delta/2.$$

The permutation sending $1 \rightarrow 1, 2 \rightarrow 3, 3 \rightarrow 5, \ldots, k \rightarrow 2k-1, k+1 \rightarrow 2, k+2 \rightarrow 4, \ldots, 2k \rightarrow 2k$ is a shuffle.

By Lemma 2 (recall that ϕ is weakly almost periodic) the above limit equals

$$p_{1} - \lim_{n_{1}} p_{3} - \lim_{n_{3}} p_{5} - \lim_{n_{5}} \dots p_{2k-1} - \lim_{n_{2k-1}} p_{2} - \lim_{n_{2}} \dots$$
$$\dots p_{2k} - \lim_{n_{2k}} \left| \phi \left(\sum_{j=1}^{k} s_{n_{2j}} - \sum_{j=1}^{k} s_{n_{2j-1}} \right) \right|.$$

Hence for large enough $n_1 < n_3 < n_5 < \ldots < n_{2k-1} < n_2 < n_4 < \ldots < n_{2k}$ we have that

$$\left|\phi\left(\sum_{j=1}^{k} s_{n_{2j}} - \sum_{j=1}^{k} s_{n_{2j-1}}\right)\right| < \delta.$$

The election of ϕ and δ implies that

$$\left\|\sum_{j=1}^{k} s_{n_{2j}} - \sum_{j=1}^{k} s_{n_{2j-1}}\right\|_{\infty} < 1/2.$$

But, taking into account that $n_1 < n_3 < n_5 < \ldots < n_{2k-1} < n_2 < n_4 < \ldots < n_{2k}$, a moment's reflection shows that

$$\left\|\sum_{j=1}^{k} s_{n_{2j}} - \sum_{j=1}^{k} s_{n_{2j-1}}\right\|_{\infty} = \left\|\sum_{j=1}^{k} s_j - \sum_{j=k+1}^{2k} s_j\right\|_{\infty} = 1.$$

This is the desired contradiction.

Definition. A metric on \mathcal{G} is *stable* if for every sequences $\langle x_n \rangle_n$, $\langle y_n \rangle_n$ in \mathcal{G} and every pair of ultrafilters $p, q \in \beta$ we have that

$$p - \lim_{n} q - \lim_{m} d(x_n, y_m) = q - \lim_{m} p - \lim_{n} d(x_n, y_m).$$

Theorem. (I. Ben Yaacov, A. Berenstein, S.F.) If \mathcal{G} is metrizable and reflexively representable then \mathcal{G} admits a uniformly equivalent stable metric.

Theorem. (I. Ben Yaacov, A. Berenstein, S.F.) If \mathcal{G} is metrizable and reflexively representable then \mathcal{G} admits a uniformly equivalent stable metric.

Corollary. The aditive groups T and J are not reflexively representable.