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A familiar line of investigation

Question schema
Let f : X → X be a self-map on a set X . Can I put a nice topology
(or more generally, structure) on X which makes f continuous (or,
more generally, structure preserving)?

e.g. nice = compact Hausdorff.
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A familiar theorem

Theorem (Stone-Weierstrass)

Let X be a compact Hausdorff space, and F a ring of continuous
functions X → R. If
1. Every constant map is in F ;

2. For each pair of distinct points x , y in X there is an f ∈ F
with f (x) ̸= f (y);

3. F is closed under uniformly convergent sequences;

then F = C (X ,R).

Clearly each of these conditions is necessary.
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A related question

Question
Suppose F is a collection of functions X → R, where X is a set.
Let τF denote the initinal topology on X generated by the
functions in F . When do we have F = C ((X , τF ),R)?
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The obvious necessary conditions
We clearly need a few obvious conditions on F . These are
encapsulated in the definition below. The definition says “F
behaves like a set of continuous functions X → R” (on a
functionally Hausdorff topology on X ).

Definition
Let X be a set and F ⊆ RX . We say F is a real functional subring
(on X ) if

1. F is closed under pointwise addition, multiplication and
subtraction (so in particular F forms an algebraic ring), as
well as f 7→ |f | ;

2. F separates the points of X (i.e. for x , y ∈ X with x ̸= y
there is an f ∈ F with f (x) ̸= f (y));

3. F contains all the constant maps.

4. F is closed under uniformly convergent sequences.

Given a real functional subring on a set X , we denote the initial
topology on X generated by F as τF .



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

The obvious necessary conditions
We clearly need a few obvious conditions on F . These are
encapsulated in the definition below. The definition says “F
behaves like a set of continuous functions X → R” (on a
functionally Hausdorff topology on X ).

Definition
Let X be a set and F ⊆ RX . We say F is a real functional subring
(on X ) if

1. F is closed under pointwise addition, multiplication and
subtraction (so in particular F forms an algebraic ring), as
well as f 7→ |f | ;

2. F separates the points of X (i.e. for x , y ∈ X with x ̸= y
there is an f ∈ F with f (x) ̸= f (y));

3. F contains all the constant maps.

4. F is closed under uniformly convergent sequences.

Given a real functional subring on a set X , we denote the initial
topology on X generated by F as τF .



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Refined question

Question
Suppose F is a real functional subring on X , where X is a set.
When do we have F = C ((X , τF ),R)?

But also...

Question
Given a real functional subring F on X , when is the initial
topology τF “nice”?
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Pseudocompactness

Definition
A space X is pseudocompact if and only if every continuous
function X → R has compact image.

Questions
Suppose F is a real functional subring on X of functions with
compact image. Is

▶ (X , τF ) pseudocompact?

▶ C ((X , τF ) ,R) = F?
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Definition
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function X → R has compact image.

Questions
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Answers

Theorem
No.

More precisely.

Theorem
There is a real functional subring on a set X of functions with
compact image such that (X , τF ) is not pseudocompact.

First example due to Suabedissen, an additional one found by L
and Pitz. Maybe more are known!
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Do we get any completeness like properties?

Question
Given a real functional subring F on X of functions with compact
image, does τF have any completeness properties?

Answer
Yes. Its Baire.
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Given a real functional subring F on X of functions with compact
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Answer
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Outline

Theorem
If F consists of maps with compact image then (X , τF ) has a
compactification with no non-trivial Gδ sets.

Non-trivial means here that any non-empty Gδ in the
compactification meets the space X .

Theorem
If F consists of maps with compact image then (X , τF ) is Choquet
(Player II has a winning strategy in the Choquet game on (X , τF )).

Theorem (Oxtoby)

A space X is Baire if and only if Player I does not have a winning
strategy in the Choquet game on X .
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A compactification

Lemma
Suppose F is a real functional subring on X . Then (X , τF ) is
Tychonoff. In particular, the set

B =
{
f −1 (U) : U open in [0, 1], f ∈ F ∩ [0, 1]X

}
forms a base for (X , τF ).
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A compactification

Definition
Given a real functional subring F on a set X , write Fb for
F ∩ [0, 1]X . The above lemma says that the diagonal map

∆
f ∈Fb

f : X → [0, 1]Fb

is an embedding. This gives us a compactification of (X , τF ),
which we denote FX , given by ∆

f ∈Fb

f ,

(
∆

f ∈Fb

f

)
(X )

[0,1]Fb
 .

Observe also that the projection map πf for f ∈ Fb is a continuous
extension of f to FX . When we write πf we will mean πf ↾ FX ,
and not the map on the appropriate Tychonoff cube (unless noted
otherwise).
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A compactification

Theorem
Suppose F is a real functional subring on the set X . Then every
f ∈ Fb has compact image if and only if FX \ X contains no
non-empty Gδ subsets of FX.

We use the following technical lemma:

Lemma
Suppose x ∈ FX and C is closed in FX with x ̸∈ C. Suppose
n ∈ ω. Then there is an f ∈ Fb with ran (f ) ⊆

[
0, 1

2n

]
πf (C ) ⊆ {0}

and

πf (x) =
1

2n
.
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Some details of the trickier direction

If G =
∩

n∈ω Gn is a non-trivial Gδ and x ∈ G , let for each n ∈ ω,
fn ∈ Fb be such that

▶ ran (fn) ⊆
[
0, 1

2n

]
▶ πfn (FX \ Gn) ⊆ {0}
▶ πfn (x) =

1
2n

Let f =
∑

n∈ω fn ∈ F . Observe that πf = π∑
n∈ω fn =

∑
n∈ω πfn

since the two functions agree on the dense set X .
f does not have compact image!
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Choquetness of X

Theorem
If F consists of maps with compact image then (X , τF ) is Choquet
(Player II has a winning strategy in the Choquet game on (X , τF )).

Proof idea
Transfer a winning strategy from the Choquet game on FX .
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Choquetness of X

Theorem
If F consists of maps with compact image then (X , τF ) is Choquet
(Player II has a winning strategy in the Choquet game on (X , τF )).

Proof idea
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Some details

Let σ be a winning strategy for Player II in the Choquet game on
FX with respect to regular open sets (a base for FX ).

Given a partial play of the game on X , lift to a partial play on FX
by taking the interior of the closure of all open sets mentioned.
Consult σ, and then instersect with X . This describes a strategy µ.
If we lift a µ-compatible sequence to FX (again by taking the
interior of the closure), then we obtain a σ-compatible sequence,
which hence has non-empty intersection.
But this non-empty intersection meets X (its a Gδ!). But
intersecting each element of our σ-compatible sequence with X is
just our original µ-compatible sequence.
Hence µ wins for Player II.
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by taking the interior of the closure of all open sets mentioned.
Consult σ, and then instersect with X . This describes a strategy µ.
If we lift a µ-compatible sequence to FX (again by taking the
interior of the closure), then we obtain a σ-compatible sequence,
which hence has non-empty intersection.
But this non-empty intersection meets X (its a Gδ!). But
intersecting each element of our σ-compatible sequence with X is
just our original µ-compatible sequence.

Hence µ wins for Player II.
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Some questions

Question
Given a real functional subring F on X , when is τF
pseudocompact?

Question
Given a real functional subring F on X , when is
F = C ((X , τF ) ,R)?
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Thanks for listening!


