Completeness properties of initial topologies

Richard Lupton

July 1, 2014

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

A familiar line of investigation

Question schema

Let $f: X \to X$ be a self-map on a set X. Can I put a nice topology (or more generally, structure) on X which makes f continuous (or, more generally, structure preserving)?

A familiar line of investigation

Question schema

Let $f: X \to X$ be a self-map on a set X. Can I put a nice topology (or more generally, structure) on X which makes f continuous (or, more generally, structure preserving)?

e.g. nice = compact Hausdorff.

A familiar theorem

Theorem (Stone-Weierstrass)

Let X be a compact Hausdorff space, and \mathcal{F} a ring of continuous functions $X \to \mathbb{R}$. If

- 1. Every constant map is in \mathcal{F} ;
- 2. For each pair of distinct points x, y in X there is an $f \in \mathcal{F}$ with $f(x) \neq f(y)$;

3. \mathcal{F} is closed under uniformly convergent sequences; then $\mathcal{F} = C(X, \mathbb{R})$.

A familiar theorem

Theorem (Stone-Weierstrass)

Let X be a compact Hausdorff space, and \mathcal{F} a ring of continuous functions $X \to \mathbb{R}$. If

- 1. Every constant map is in \mathcal{F} ;
- 2. For each pair of distinct points x, y in X there is an $f \in \mathcal{F}$ with $f(x) \neq f(y)$;

3. \mathcal{F} is closed under uniformly convergent sequences;

then $\mathcal{F} = C(X, \mathbb{R})$.

Clearly each of these conditions is necessary.

Question

Suppose \mathcal{F} is a collection of functions $X \to \mathbb{R}$, where X is a set. Let $\tau_{\mathcal{F}}$ denote the initial topology on X generated by the functions in \mathcal{F} . When do we have $\mathcal{F} = C((X, \tau_{\mathcal{F}}), \mathbb{R})$?

The obvious necessary conditions

We clearly need a few obvious conditions on \mathcal{F} . These are encapsulated in the definition below. The definition says " \mathcal{F} behaves like a set of continuous functions $X \to \mathbb{R}$ " (on a functionally Hausdorff topology on X).

The obvious necessary conditions

We clearly need a few obvious conditions on \mathcal{F} . These are encapsulated in the definition below. The definition says " \mathcal{F} behaves like a set of continuous functions $X \to \mathbb{R}$ " (on a functionally Hausdorff topology on X).

Definition

Let X be a set and $\mathcal{F} \subseteq \mathbb{R}^X$. We say \mathcal{F} is a real functional subring (on X) if

- 1. \mathcal{F} is closed under pointwise addition, multiplication and subtraction (so in particular \mathcal{F} forms an algebraic ring), as well as $f \mapsto |f|$;
- 2. \mathcal{F} separates the points of X (i.e. for $x, y \in X$ with $x \neq y$ there is an $f \in \mathcal{F}$ with $f(x) \neq f(y)$);
- 3. \mathcal{F} contains all the constant maps.

4. ${\mathcal F}$ is closed under uniformly convergent sequences.

Given a real functional subring on a set X, we denote the initial topology on X generated by \mathcal{F} as $\tau_{\mathcal{F}}$.

Refined question

Question

Suppose \mathcal{F} is a real functional subring on X, where X is a set. When do we have $\mathcal{F} = C((X, \tau_{\mathcal{F}}), \mathbb{R})$?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Refined question

Question

Suppose \mathcal{F} is a real functional subring on X, where X is a set. When do we have $\mathcal{F} = C((X, \tau_{\mathcal{F}}), \mathbb{R})$?

But also...

Question

Given a real functional subring \mathcal{F} on X, when is the initial topology $\tau_{\mathcal{F}}$ "nice"?

Pseudocompactness

Definition

A space X is pseudocompact if and only if every continuous function $X \to \mathbb{R}$ has compact image.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Definition

A space X is pseudocompact if and only if every continuous function $X \to \mathbb{R}$ has compact image.

Questions

Suppose \mathcal{F} is a real functional subring on X of functions with compact image. Is

- $(X, \tau_{\mathcal{F}})$ pseudocompact?
- $C((X, \tau_{\mathcal{F}}), \mathbb{R}) = \mathcal{F}?$

Answers

Theorem *No*.

Answers

Theorem No.

More precisely.

Theorem

There is a real functional subring on a set X of functions with compact image such that (X, τ_F) is not pseudocompact.

Answers

Theorem *No.*

More precisely.

Theorem

There is a real functional subring on a set X of functions with compact image such that (X, τ_F) is not pseudocompact.

First example due to Suabedissen, an additional one found by L and Pitz. Maybe more are known!

Do we get any completeness like properties?

Question

Given a real functional subring \mathcal{F} on X of functions with compact image, does $\tau_{\mathcal{F}}$ have any completeness properties?

Do we get any completeness like properties?

Question

Given a real functional subring \mathcal{F} on X of functions with compact image, does $\tau_{\mathcal{F}}$ have any completeness properties?

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Answer

Yes. Its Baire.

Outline

Theorem

If \mathcal{F} consists of maps with compact image then $(X, \tau_{\mathcal{F}})$ has a compactification with no non-trivial G_{δ} sets.

Non-trivial means here that any non-empty G_{δ} in the compactification meets the space X.

Outline

Theorem

If \mathcal{F} consists of maps with compact image then $(X, \tau_{\mathcal{F}})$ has a compactification with no non-trivial G_{δ} sets.

Non-trivial means here that any non-empty G_{δ} in the compactification meets the space X.

Theorem

If \mathcal{F} consists of maps with compact image then $(X, \tau_{\mathcal{F}})$ is Choquet (Player II has a winning strategy in the Choquet game on $(X, \tau_{\mathcal{F}})$).

Outline

Theorem

If \mathcal{F} consists of maps with compact image then $(X, \tau_{\mathcal{F}})$ has a compactification with no non-trivial G_{δ} sets.

Non-trivial means here that any non-empty G_{δ} in the compactification meets the space X.

Theorem

If \mathcal{F} consists of maps with compact image then $(X, \tau_{\mathcal{F}})$ is Choquet (Player II has a winning strategy in the Choquet game on $(X, \tau_{\mathcal{F}})$).

Theorem (Oxtoby)

A space X is Baire if and only if Player I does not have a winning strategy in the Choquet game on X.

Lemma

Suppose \mathcal{F} is a real functional subring on X. Then $(X, \tau_{\mathcal{F}})$ is Tychonoff. In particular, the set

$$\mathcal{B} = \left\{ f^{-1}\left(U
ight) : U \text{ open in } [0,1], \ f \in \mathcal{F} \cap [0,1]^X
ight\}$$

forms a base for $(X, \tau_{\mathcal{F}})$.

Definition

Given a real functional subring \mathcal{F} on a set X, write \mathcal{F}_b for $\mathcal{F} \cap [0,1]^X$. The above lemma says that the diagonal map

$$\mathop{\Delta}_{f\in\mathcal{F}_b}f\colon X o [0,1]^{\mathcal{F}_b}$$

is an embedding. This gives us a compactification of $(X, \tau_{\mathcal{F}})$, which we denote $\mathcal{F}X$, given by

$$\left(\underbrace{\underset{f \in \mathcal{F}_{b}}{\Delta} f, \overline{\left(\underbrace{\underset{f \in \mathcal{F}_{b}}{\Delta} f \right) (X)}^{[0,1]^{\mathcal{F}_{b}}} } \right)$$

Observe also that the projection map π_f for $f \in \mathcal{F}_b$ is a continuous extension of f to $\mathcal{F}X$. When we write π_f we will mean $\pi_f \upharpoonright \mathcal{F}X$, and not the map on the appropriate Tychonoff cube (unless noted otherwise).

Theorem

Suppose \mathcal{F} is a real functional subring on the set X. Then every $f \in \mathcal{F}_b$ has compact image if and only if $\mathcal{F}X \setminus X$ contains no non-empty G_{δ} subsets of $\mathcal{F}X$.

Theorem

Suppose \mathcal{F} is a real functional subring on the set X. Then every $f \in \mathcal{F}_b$ has compact image if and only if $\mathcal{F}X \setminus X$ contains no non-empty G_δ subsets of $\mathcal{F}X$.

We use the following technical lemma:

Lemma

Suppose $x \in \mathcal{F}X$ and C is closed in $\mathcal{F}X$ with $x \notin C$. Suppose $n \in \omega$. Then there is an $f \in \mathcal{F}_b$ with $ran(f) \subseteq [0, \frac{1}{2^n}]$

 $\pi_f(C) \subseteq \{0\}$

and

$$\pi_f(x)=\frac{1}{2^n}.$$

Some details of the trickier direction

If $G = \bigcap_{n \in \omega} G_n$ is a non-trivial G_{δ} and $x \in G$, let for each $n \in \omega$, $f_n \in \mathcal{F}_b$ be such that

- ▶ $\operatorname{ran}(f_n) \subseteq \left[0, \frac{1}{2^n}\right]$
- $\pi_{f_n}(\mathcal{F}X \setminus G_n) \subseteq \{0\}$

$$\blacktriangleright \pi_{f_n}(x) = \frac{1}{2^n}$$

Some details of the trickier direction

If $G = \bigcap_{n \in \omega} G_n$ is a non-trivial G_{δ} and $x \in G$, let for each $n \in \omega$, $f_n \in \mathcal{F}_b$ be such that

- ▶ $\operatorname{ran}(f_n) \subseteq \left[0, \frac{1}{2^n}\right]$
- $\pi_{f_n}(\mathcal{F}X \setminus G_n) \subseteq \{0\}$

$$\blacktriangleright \pi_{f_n}(x) = \frac{1}{2^n}$$

Let $f = \sum_{n \in \omega} f_n \in \mathcal{F}$. Observe that $\pi_f = \pi_{\sum_{n \in \omega} f_n} = \sum_{n \in \omega} \pi_{f_n}$ since the two functions agree on the dense set X.

Some details of the trickier direction

If $G = \bigcap_{n \in \omega} G_n$ is a non-trivial G_{δ} and $x \in G$, let for each $n \in \omega$, $f_n \in \mathcal{F}_b$ be such that

- ▶ $\operatorname{ran}(f_n) \subseteq \left[0, \frac{1}{2^n}\right]$
- $\pi_{f_n}(\mathcal{F}X \setminus G_n) \subseteq \{0\}$

Let $f = \sum_{n \in \omega} f_n \in \mathcal{F}$. Observe that $\pi_f = \pi_{\sum_{n \in \omega} f_n} = \sum_{n \in \omega} \pi_{f_n}$ since the two functions agree on the dense set X.

f does not have compact image!

Choquetness of X

Theorem

If \mathcal{F} consists of maps with compact image then $(X, \tau_{\mathcal{F}})$ is Choquet (Player II has a winning strategy in the Choquet game on $(X, \tau_{\mathcal{F}})$).

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Choquetness of X

Theorem

If \mathcal{F} consists of maps with compact image then $(X, \tau_{\mathcal{F}})$ is Choquet (Player II has a winning strategy in the Choquet game on $(X, \tau_{\mathcal{F}})$).

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Proof idea

Transfer a winning strategy from the Choquet game on $\mathcal{F}X$.

Let σ be a winning strategy for Player II in the Choquet game on $\mathcal{F}X$ with respect to regular open sets (a base for $\mathcal{F}X$).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let σ be a winning strategy for Player II in the Choquet game on $\mathcal{F}X$ with respect to regular open sets (a base for $\mathcal{F}X$). Given a partial play of the game on X, lift to a partial play on $\mathcal{F}X$ by taking the interior of the closure of all open sets mentioned.

Let σ be a winning strategy for Player II in the Choquet game on $\mathcal{F}X$ with respect to regular open sets (a base for $\mathcal{F}X$). Given a partial play of the game on X, lift to a partial play on $\mathcal{F}X$ by taking the interior of the closure of all open sets mentioned. Consult σ , and then instersect with X. This describes a strategy μ .

Let σ be a winning strategy for Player II in the Choquet game on $\mathcal{F}X$ with respect to regular open sets (a base for $\mathcal{F}X$). Given a partial play of the game on X, lift to a partial play on $\mathcal{F}X$ by taking the interior of the closure of all open sets mentioned. Consult σ , and then instersect with X. This describes a strategy μ . If we lift a μ -compatible sequence to $\mathcal{F}X$ (again by taking the interior of the closure), then we obtain a σ -compatible sequence, which hence has non-empty intersection.

Let σ be a winning strategy for Player II in the Choquet game on $\mathcal{F}X$ with respect to regular open sets (a base for $\mathcal{F}X$). Given a partial play of the game on X, lift to a partial play on $\mathcal{F}X$ by taking the interior of the closure of all open sets mentioned. Consult σ , and then instersect with X. This describes a strategy μ . If we lift a μ -compatible sequence to $\mathcal{F}X$ (again by taking the interior of the closure), then we obtain a σ -compatible sequence, which hence has non-empty intersection.

But this non-empty intersection meets X (its a G_{δ} !). But intersecting each element of our σ -compatible sequence with X is just our original μ -compatible sequence.

Let σ be a winning strategy for Player II in the Choquet game on $\mathcal{F}X$ with respect to regular open sets (a base for $\mathcal{F}X$). Given a partial play of the game on X, lift to a partial play on $\mathcal{F}X$ by taking the interior of the closure of all open sets mentioned. Consult σ , and then instersect with X. This describes a strategy μ . If we lift a μ -compatible sequence to $\mathcal{F}X$ (again by taking the interior of the closure), then we obtain a σ -compatible sequence, which hence has non-empty intersection. But this non-empty intersection meets X (its a G_{δ} !). But intersecting each element of our σ -compatible sequence with X is just our original μ -compatible sequence.

Hence μ wins for Player II.

Some questions

Question

Given a real functional subring \mathcal{F} on X, when is $\tau_{\mathcal{F}}$ pseudocompact?

Question

Given a real functional subring \mathcal{F} on X, when is $\mathcal{F} = C((X, \tau_{\mathcal{F}}), \mathbb{R})$?

Thanks for listening!

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>