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Open dynamical systems

Let (X , f ) be a discrete dynamical system

X compact metric space f : X → X continuous map with
htop(f ) > 0.

Let U ⊂ X be an open set.
Consider

XU = {x ∈ X | f n(x) /∈ U for every n ≥ 0 or n ∈ Z}

and fU = f |XU
.

We call (XU , fU) an open dynamical system or a map with a
hole. (Pianigiani, Yorke 1979)
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The doubling map

Let f : S1 → S1 be the doubling map

f (x) =

{
2x if x ∈ [0, 1

2 );
2x − 1 if x ∈ [ 1

2 , 1).

f is continuous, surjective but not injective.

f is topologically transitive.

htop(f ) is positive.

Let (a, b) ⊂ S1. Consider

X(a,b) = {x ∈ S1 | f n(x) /∈ (a, b) for every n ≥ 0}.
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Introducing holes and restricting the problem

Lemma (Glendinning - Sidorov 2013)

Let a, b ∈ S1 with a < b.

Then:

i) If 0 < a < 1
4 and 1

2 < b < 1, or 0 < a < 1
2 and 3

4 < b < 1 then
X(a,b) = {0}.

ii) If 1
2 < a < 1 or 0 < b < 1

2 , then dimH X(a,b) > 0.

Let a ∈ ( 1
4 ,

1
2 ). We define:

φ(a) = sup{b ∈ S1 | X(a,b) 6= {0}}

and
χ(a) = sup{b ∈ S1 | X(a,b) is uncountable}.

We will just consider a ∈ ( 1
4 ,

1
2 ) and b ∈ ( 1

2 ,
3
4 ) with b ≤ χ(a).
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The problem

Let Λ(a,b) = X(a,b) ∩ [2b − 1, 2a] the attractor of (X(a,b), f
a
b ).

1 What is the structure of their cycles?
(Allouche-Clarke-Sidorov 2009, Hare-Sidorov 2013)

2 Is f ab transitive? Does f ab has the specification property?

Our interest is to answer Question 2.
Motivation: Is (Λ(a,b), f

a
b ) intrinsically ergodic?

Rafael Alcaraz Barrera Doubling map with holes



Open dynamical systems
Symmetrical Holes

Asymmetrical Holes

The doubling map with holes
Symbolic dynamics

The problem

Let Λ(a,b) = X(a,b) ∩ [2b − 1, 2a] the attractor of (X(a,b), f
a
b ).

1 What is the structure of their cycles?
(Allouche-Clarke-Sidorov 2009, Hare-Sidorov 2013)

2 Is f ab transitive? Does f ab has the specification property?

Our interest is to answer Question 2.
Motivation: Is (Λ(a,b), f

a
b ) intrinsically ergodic?

Rafael Alcaraz Barrera Doubling map with holes



Open dynamical systems
Symmetrical Holes

Asymmetrical Holes

The doubling map with holes
Symbolic dynamics

The problem

Let Λ(a,b) = X(a,b) ∩ [2b − 1, 2a] the attractor of (X(a,b), f
a
b ).

1 What is the structure of their cycles?
(Allouche-Clarke-Sidorov 2009, Hare-Sidorov 2013)

2 Is f ab transitive? Does f ab has the specification property?

Our interest is to answer Question 2.
Motivation: Is (Λ(a,b), f

a
b ) intrinsically ergodic?

Rafael Alcaraz Barrera Doubling map with holes



Open dynamical systems
Symmetrical Holes

Asymmetrical Holes

The doubling map with holes
Symbolic dynamics

The problem

Let Λ(a,b) = X(a,b) ∩ [2b − 1, 2a] the attractor of (X(a,b), f
a
b ).

1 What is the structure of their cycles?
(Allouche-Clarke-Sidorov 2009, Hare-Sidorov 2013)

2 Is f ab transitive? Does f ab has the specification property?

Our interest is to answer Question 2.
Motivation: Is (Λ(a,b), f

a
b ) intrinsically ergodic?

Rafael Alcaraz Barrera Doubling map with holes



Open dynamical systems
Symmetrical Holes

Asymmetrical Holes

The doubling map with holes
Symbolic dynamics

The problem

Let Λ(a,b) = X(a,b) ∩ [2b − 1, 2a] the attractor of (X(a,b), f
a
b ).

1 What is the structure of their cycles?
(Allouche-Clarke-Sidorov 2009, Hare-Sidorov 2013)

2 Is f ab transitive? Does f ab has the specification property?

Our interest is to answer Question 2.

Motivation: Is (Λ(a,b), f
a
b ) intrinsically ergodic?

Rafael Alcaraz Barrera Doubling map with holes



Open dynamical systems
Symmetrical Holes

Asymmetrical Holes

The doubling map with holes
Symbolic dynamics

The problem

Let Λ(a,b) = X(a,b) ∩ [2b − 1, 2a] the attractor of (X(a,b), f
a
b ).

1 What is the structure of their cycles?
(Allouche-Clarke-Sidorov 2009, Hare-Sidorov 2013)

2 Is f ab transitive? Does f ab has the specification property?

Our interest is to answer Question 2.
Motivation: Is (Λ(a,b), f

a
b ) intrinsically ergodic?

Rafael Alcaraz Barrera Doubling map with holes



Open dynamical systems
Symmetrical Holes

Asymmetrical Holes

The doubling map with holes
Symbolic dynamics

Symbolic Representation

Let any x ∈ [0, 1). A binary expansion of x is

x =
∞∑
i=1

xi
2i

where xi is equal to 0 or 1.

Let Σ2 =
∞∏
n=1
{0, 1}. The projection map π : Σ2 → [0, 1) defined by

π(x) =
∞∑
n=1

xn
2n
.

Observe that π is a semi-conjugacy between 2x mod 1 and the
one sided shift σ, where σ : Σ2 → Σ2 σ((xi )

∞
i=1) = (xi+1)∞i=1.
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Lexicographic subshifts

Given x , y ∈ Σ2 we say that x is lexicographically less that y ,
x ≺ y if there exists k ∈ N such that xj = yj for i < k and xk < yk .

Let F be a set of (finite)-words

ΣF = {x ∈ Σ2 | u is not contained in x for any word u ∈ F}.

(ΣF , σ |ΣF ) is called a subshift.

Lemma

Σ(a,b) = {x ∈ Σ2 | π−1(2b − 1) ≺ σn(x) ≺ π−1(2a)
for every n ≥ 0}.

Moreover, (Σ(a,b), σ(a,b)) is a subshift and (Σ(a,b), σ(a,b)) is
conjugated to (Λ(a,b), f

a
b ).
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For every n ∈ N, the set of admissible words of length n of ΣF is
given by:

Bn(ΣF ) = {u ∈ {0, 1}n | u is a factor of x , for x ∈ ΣF}.

The set of admissible words or the language of ΣF , denoted by
L(ΣF ), is defined to be

L(ΣF ) =
∞⋃

m=1

Bm(ΣF ).
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A subshift (ΣF , σ |ΣF )

is a subshift of finite type (SFT) if F is finite;

is topologically transitive if for any u = u1 . . . u`(u) and
v = v1 . . . v`(v) there exist w = w1 . . .w`(w) such that uwv is
admissible;

has the specification property if there exist m ∈ N such that
for every u = u1 . . . u`(u) and v = v1 . . . v`(v) there exist
w = w1 . . .wn such that uwv is admissible and n ≤ m.

is coded if A =
∞⋃
n=1

An where (An, σAn) is a transitive subshift

of finite type.
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Symmetrical Holes

Let a ∈ ( 1
4 ,

1
2 ).

We say that a hole (a, b) is symmetrical if b = 1− a.

Let (ai )
∞
i=1 the binary expansion of a then

ā = (ai )∞i=1 = (1− ai )
∞
i=1.

We call ā the mirror image of a.

We say that (Σ(a,b), σ(a,b)) is symmetric if for every x ∈ Σ(a,b),
x̄ ∈ Σ(a,b).
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Lemma

Let a ∈ ( 1
4 ,

1
2 ). Then (Σ(a,1−a), σ(a,1−a)) is a symmetric subshift.

Theorem (Glendinning-Sidorov 2001)

For a ∈ [0, 1
2 ], then:

1 Σ(a,1−a) is empty if a ∈ [ 1
4 ,

1
3 );

2 Σ(a,1−a) = {(01)∞, (10)∞} if a ∈ [ 1
3 ,

13
32 );

3 Σ(a,1−a) is countable if a ∈ [ 13
32 , a

∗);

4 Σ(a,1−a) is uncountable and dimH(Σa) > 0 if a ∈ (a∗, 1
2 ].

where a∗ = π(t) and t is the Thue-Morse sequence.

Then, we considered a ∈ (a∗, 1
2 )
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We say that a sequence ω is a Parry sequence if ω1 = 1 and
σn(ω) 4 ω for every n ≥ 0

we denote the set of Parry sequences by
P. π(P) is a set of Lebesgue measure zero with dimH(π(P)) = 1.
For a techncal reason we will only consider a ∈ (a∗, 1

2 ) such that
π−1(2a) is a Parry sequence.
(Let N = {x ∈ Σ2 | x1 = 1} \ P. If π−1(2a) ∈ N then Σa is a SFT
(Bundfuss, Krüger, Troubetzkoy 2011).)
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Transitivity

Theorem (A.B. 2014)

For any a ∈
(
a∗, 5

12

)
, (Σ(a,1−a), σ(a,1−a)) is not transitive.

We say that a finite sequence ω is irreducible if for any k < `(ω)
such that wk = 1 the word ωk = w1, . . . ,wk satisfies that ω′′′k ≺ ω
where ω′′′ = w1 . . .w`(ω)(w̄1 . . .w`(ω)−11)∞

Theorem (A.B. 2014)

If π−1(2a) is a finite (periodic) sequence then Σ(a,1−a) is a subshift
of finite type. Moreover, if π−1(2a) is irreducible then Σ(a,1−a) is a
transitive subshift of finite type.

In general Σ(a,1−a) is not transitive.
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The exceptional set and approximation properties

E = {x ∈ P | x is aperiodic }.

Lemma

If a > 5
12 satisfies that π−1(2a) ∈ E there exist a sequence ω−n of

irreducible sequences such that;

1 ω−n ≺ ω−n+1 and ω−n −→ π−1(2a). Then Σ(a,1−a) is coded, i.e

Σ(a,1−a) =
∞⋃
n=1

Σω−n
.
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Specification

Consider a such that Σ(a,1−a) is coded.

Does Σ(a,1−a) has specification? (Transitive + bounded “bridges”).

If (ΣF , σΣF ) is a transitive SFT then (ΣF , σΣF ) has specification.
(Parry 1964) (Recall that (ΣF , σΣF ) has the specification property
if there exist m ∈ N such that for every u = u1 . . . u`(U) and
v = v1 . . . v`(v) there exist w = w1 . . .wn such that uwv is
admissible and n ≤ m.)

Let a such that π−1(2a) is an irreducible word.We define the
specification number of (Σ(a,1−a), σ(a,1−a)), sa ∈ N to be such m.
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Theorem (Gurevič 1972)

If lim
n→∞

sω−n <∞ then Σ(a,1−a) has specification.

Theorem (A.B. 2014)

lim
n→∞

sω+
n
<∞ if:

1 If 0n does not occur in π−1(2a);

2 If 0n occurs finite times in π−1(2a);

3 If 0n occurs infinitely many times in π−1(2a) and π−1(2a)
satisfies a not nice technical theorem.
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Technical Theorem

Theorem (A.B. 2014)

Let n ≥ 2 and ω ∈ E ∩ (1n, 1n+1). If for every r ∈ N, ω+
r satisfies

that
1

22`(ω+
r )
< d(ω+

r−1
′
, ω+

r ) ≤ 1

2`(ω
+
r )+n

,

then lim
n→∞

sω+
n
<∞. Here ω′ = ωω̄1 . . . ¯ω`(ω)−11.

Intuitively, the technical theorem says that sω+
r

does not increase
exponentially fast.
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Symmetric subshifts with no specification

Theorem (A.B. 2014)

Let n ≥ 2 fixed. Let π−1(2a) ∈ E such that
π−1(2a) ∈ (1n, 1n+1)≺, a > 5

12 , 0n occurs in π−1(2a) infinitely
many times. If there exists an increasing sequence {ri}∞i=1 ⊂ N and
R ∈ N such that for every ri ≥ R ω−ri satisfies

`(ω−ri−1
(ω−ri−1 1

. . . ω+
ri−1`(ω−ri−1

)−1
1)kri ) ≤ `(ω−ri )

and
1

2(kri +1)`(ω−ri )+n
≤ d(ω−ri

′′′
, ω) ≤ 1

2(kri +1)`(ω−ri )

for some kri ≥ 1 then (Σ(a,1−a), σ(a,1−a) does not have
specification.
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Renormalization

Definition

We say that (a, b) is renormalizable if there exist

two words ω and
ν, and sequences {nωi }∞i=1 {nνi }∞i=1, {mω

j }∞j=1 and
{mν

j }∞j=1 ⊂ N ∪ {∞}such that ω = 0-maxω, ν = 1-minν ,
`(ων) ≥ 3 and

π−1(a) = ωνn
ν
1 ωnω1 νn

ν
2 ωnω2 νn

ν
3 . . .

and
π−1(b) = νωmω1 νm

ν
1 ωmω2 νm

ν
2 ωnω3 . . .

If `(ω) + `(ν) = 3 we call (a, b) trivially renormalizable.
If ω or ν can be infinite. In this case, we say that (a, b) is
renormalizable by an infinite sequence.
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Renormalization and Transitivity

Theorem (A.B. 2014)

1 If (a, b) ∈ LW is renormalizable by ω and ν and
`(ω) + `(ν) > 4 then (Σ(a,b), σ(a,b)) is not transitive.

2 If (a, b) ∈ LW is renormalizable by an infinite sequence then
(Σ(a,b), σ(a,b)) is not transitive.

3 If (a, b) is not renormalizable and (Σ(a,b), σ(a,b)) is a subshift
of finite type, then (Σ(a,b), σ(a,b)) is transitive.
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Specification

Given a sequence a ∈ Σ2, consider
0a = max{n ∈ N | 0n is a factor of a}, and
1a = max{n ∈ N | 1n is a factor of a}.

Theorem (A.B. 2014)

If 0a + 2 ≤ 0b and 1a > 1b then (Σ(a,b), σ(a,b)) has specification.
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